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Algebraic stability of zigzag persistence modules

MAGNUS BAKKE BOTNAN

MICHAEL LESNICK

The stability theorem for persistent homology is a central result in topological data
analysis. While the original formulation of the result concerns the persistence bar-
codes of R–valued functions, the result was later cast in a more general algebraic
form, in the language of persistence modules and interleavings. We establish an
analogue of this algebraic stability theorem for zigzag persistence modules. To do
so, we functorially extend each zigzag persistence module to a two-dimensional
persistence module, and establish an algebraic stability theorem for these extensions.
One part of our argument yields a stability result for free two-dimensional persistence
modules. As an application of our main theorem, we strengthen a result of Bauer et
al on the stability of the persistent homology of Reeb graphs. Our main result also
yields an alternative proof of the stability theorem for level set persistent homology
of Carlsson et al.
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1 Introduction

1.1 Background

Persistence modules Let Vec denote the category of vector spaces over some fixed
field k , and let vec denote the subcategory of finite-dimensional vector spaces. We
define a persistence module to be a functor M W P ! Vec for P a poset. We will often
refer to such M as a P –indexed module. If M takes values in vec, we say M is
pointwise finite-dimensional (pfd). The P –indexed persistence modules form a category
VecP whose morphisms are the natural transformations.

Persistence modules are the basic algebraic objects of study in the theory of persistent
homology. The theory begins with the study of 1-D persistence modules, ie functors
R ! Vec or Z ! Vec, where R and Z are taken to have the usual total orders.
The structure theorem for 1-D persistence modules given by Webb [44] and Crawley-
Boevey [25] tells us that the isomorphism type of a pfd 1-D persistence module M is
completely described by a collection B.M/ of intervals in R, called the barcode of M.
B.M/ specifies the decomposition of M into indecomposable summands.

Persistent homology In topological data analysis, one often studies a data set by
associating to the data a persistence module. To do so, we first associate to our data
a filtration, ie a functor F W R! Top such that the map Fa ! Fb is an inclusion
whenever a � b . For example, if our data is an R–valued function  W T !R for T a
topological space, we may take F to be the sublevel set filtration S"./, defined by

S"./a D fy 2 T j .y/� ag; a 2R:

Since S"./a � S"./b whenever a � b , this indeed gives a filtration. If our data set
is instead a point cloud, we often consider a Vietoris–Rips or Čech filtration; see eg the
survey article of Carlsson [10] for details.

Letting Hi W Top! Vec denote the i th singular homology functor with coefficients
in k , we obtain a (typically pfd) persistence module HiF for any i � 0. The barcodes
B.HiF/ serve as concise descriptors of the coarse-scale, global, nonlinear geometric
structure of the data set. These descriptors have been applied to many problems in
science and engineering, for example to natural scene statistics (in the work of Carlsson,
Ishkhanov, de Silva and Zomorodian [11]), evolutionary biology (Chan, Carlsson and
Rabadan [16]), periodicity detection in gene expression data (Perea, Deckard, Haase
and Harer [39]), sensor networks (de Silva and Ghrist [41]) and clustering (Chazal, de
Silva and Oudot [21]).
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Stability The stability theorem for persistent homology guarantees that in several
settings, the barcode descriptors of data are stable with respect to perturbations of
the data. The original formulation of the stability theorem, given by Cohen-Steiner,
Edelsbrunner and Harer [23], concerns the persistent homology of R–valued functions,
and is formulated with respect to a standard metric db on barcodes called the bottleneck
distance, which we define in Section 2.3. In the generality provided by Chazal, Cohen-
Steiner, Glisse, Guibas and Oudot [17], the result is as follows:

Theorem 1.1 (stability of persistent homology for functions [23; 17]) For T a
topological space, i � 0 and functions ; �W T !R such that HiS"./ and HiS".�/
are pfd, we have

db
�
B.HiS".//;B.HiS".�//

�
� d1.; �/;

where d1.; �/D supx2T j.x/� �.x/j.

As a corollary of Theorem 1.1, Chazal et al obtain a stability theorem for persistent
homology of Rips and Čech filtrations on finite metric spaces; see Chazal, Cohen-
Steiner, Guibas, Mémoli and Oudot [18] and Chazal, de Silva and Oudot [21].

Algebraic stability A purely algebraic formulation of the stability theorem was intro-
duced by Chazal et al [17], generalizing the stability results for R–valued functions
and point cloud data. This algebraic stability theorem asserts that an �–interleaving
(a pair of “approximately inverse” morphisms) between pfd 1-D persistence modules
M and N induces an �–matching (approximate isomorphism) between the barcodes
B.M/ and B.N /. It was observed by Lesnick [33] that the converse of this result also
holds: given an �–matching between B.M/ and B.N /, we can easily construct an
�–interleaving between M and N. The algebraic stability theorem and its converse are
together known as the isometry theorem; see Theorem 2.11 for the precise statement.

A slightly weaker formulation of the isometry theorem establishes a relationship between
the interleaving distance (a pseudometric on persistence modules) and the bottleneck
distance. It says that the interleaving distance between M and N is equal to the
bottleneck distance between B.M/ and B.N /.

The algebraic stability theorem is perhaps the central theorem in the theory of persistent
homology; it provides the core mathematical justification for the use of persistent
homology in the study of noisy data. The theorem is used, in one form or another, in
nearly all available results on the approximation, inference and estimation of persistent
homology.
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Induced matching theorem Bauer and Lesnick [3] showed that the algebraic stability
theorem, ostensibly a result about pairs of morphisms of persistence modules, is in
fact an immediate corollary of a general result about single morphisms of persistence
modules. This result, called the induced matching theorem, concerns a simple, explicit
map � sending each morphism f W M ! N of pfd 1-D persistence modules to a
matching �.f /W B.M/ =! B.N /. The theorem tells us that the quality of this matching
is tightly controlled by the lengths of the longest intervals in B.kerf / and B.cokerf /;
see Theorem 2.12.

Zigzag modules For posets A and B , the product poset A�B is defined by taking
.a; b/� .a0; b0/ if and only a� a0 and b � b0. Let Aop denote the opposite poset of A.

Zigzag modules are natural generalizations of Z–indexed modules which have received
much attention from the topological data analysis community; see in particular the
foundational work of Carlsson and de Silva [12], Carlsson, de Silva and Morozov [13]
and Bendich, Edelsbrunner, Morozov and Patel [5]. Zigzag modules are functors
ZZ! Vec, where ZZ is the subposet of Zop �Z given by

ZZ WD
˚
.i; j / j i 2 Z; j 2 fi; i � 1g

	
:

A structure theorem for pfd zigzag modules gives us a definition of barcode for these
modules closely analogous to the one for 1-D persistence modules. In the special case
where all but a finite number of the vector spaces are trivial, this is a classical result
due to Gabriel [31]. A proof of the general structure theorem appears in a recent paper
of Botnan [8].

U –indexed modules Let U denote the subposet of Rop �R consisting of objects
.a; b/ with a � b . U –indexed modules arise naturally as refinements of the sublevel
set persistent homology modules introduced above: Given a function  W T !R with
T a topological space, we obtain a functor S./W U!Top, the interlevel set filtration
of  , by taking S./.a;b/D�1.Œa; b�/, with S./.a;b/!S./.c;d/ the inclusion map
whenever c � a� b� d . For i � 0, HiS./ is clearly a U –indexed module. It can be
shown that if  is continuous or bounded below, then HiS./ determines HiS"./.

We will be especially interested in the case of functions  of Morse type. These
are certain generalizations of Morse functions for which each HiS./ is completely
determined by its restriction to a discrete subposet of U ; see Section 4.2 for the
definition.

U –indexed modules also arise naturally in a different (but related) way: in Section 4.1,
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we use Kan extensions to define a fully faithful functor EW VecZZ
! VecU . This

functor appears implicitly in recent work on interlevel set persistent homology [13; 5].

Block-decomposable modules In general, the algebraic structure of a U –indexed
module can be very complicated. As a result, there is no nice definition of a barcode
available for such a module in general; see the work of Carlsson and Zomorodian [15]
and also Lesnick and Wright [34, Section 1.4]. However, if M is a U –indexed module
such that either

(1) M ŠHi .S.// for  W T !R of Morse type, or

(2) M ŠE.V / for V a pfd zigzag module,

then M decomposes into especially simple indecomposable summands, which we call
block modules; see Sections 3 and 4. We call any U –indexed module that decomposes
into block modules block-decomposable.

We may define the barcode B.M/ of a block-decomposable module M in much the
same way that we do for 1-D and zigzag modules. The barcode of a block-decomposable
module is a collection of simple convex regions in R2 called blocks; see Section 3 for
the definition and an illustration.

Level set barcodes The intersection of any block with the diagonal y D x is either
empty or an interval. Thus, for M block-decomposable, intersecting each block in
B.M/ with the line y D x and identifying this line with R, we obtain a collection
diagB.M/ of intervals in R. For  W T !R of Morse type, we call

Li ./ WD diagB.HiS.//

the i th level set barcode of  . Level set barcodes were introduced in [13]. Li ./ tracks
how homological features are born and die as one sweeps across the level sets of  .

Theorem 1.2 (stability of level set barcodes [13]) For T a topological space, maps
; �W T !R of Morse type and i � 0,

db.Li ./;Li .�//� d1.; �/:

1.2 Our results: algebraic stability for zigzag and block-decomposable
modules

The �–interleavings and the interleaving distance dI are readily defined on U –indexed
persistence modules. Furthermore, we will see in Section 2.3 that we can define
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�–matchings and a bottleneck distance db for the barcodes of block-decomposable
modules in much the same way we do for 1-D persistence modules. Given this, it is
natural to wonder whether an algebraic stability result holds for block-decomposable
modules. Our Proposition 2.13 and Theorem 3.3 give the following such result:

Theorem

(i) If there exists an �–interleaving between pfd block-decomposable modules M
and N, then there exists a 5

2
�–matching between B.M/ and B.N /.

(ii) Conversely, if there exists an �–matching between B.M/ and B.N /, then there
exists an �–interleaving between M and N.

In particular,
dI .M;N /� db.B.M/;B.N //� 5

2
dI .M;N /:

The proof of (ii) is trivial. We refer to (i) as the block stability theorem. The block sta-
bility theorem was conjectured (independently) by Ulrich Bauer and Dmitriy Morozov,
who were motivated by an application to the stability of Reeb graphs described below.
Discussions with Bauer and Morozov inspired this work.

We show in Section 4.1 that by way of the functor EW VecZZ
! VecU , our forward

and converse algebraic stability results for block-decomposable modules specialize
to corresponding algebraic stability results for zigzag modules. Prior to our work,
the problem of establishing an algebraic stability theorem for zigzag modules was
well known among researchers working on the theoretical foundations of topological
data analysis, and was mentioned in the literature in several places; see Lesnick [33],
Oudot [37], Oudot and Sheehy [38] and the mention of the more general problem of
“hard stability” in the work of Bubenik, de Silva and Scott [9].

We obtain the block stability theorem as a corollary of induced matching results for
block-decomposable modules analogous to those known to hold in 1-D. As part of the
proof, we establish an induced matching theorem for free 2-D persistence modules;
this yields an isometry theorem for such modules as a corollary.

The block stability theorem yields an alternative proof of Theorem 1.2, the stability
result for level set persistent homology. In contrast to the earlier proof, our proof does
not require us to consider extended persistence or relative homology.

Algebraic stability of constructible sheaves over R Interleavings and barcodes can
be defined for pfd (co)sheaves of vector spaces over R that are constructible with respect
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to a locally finite partition of R, much as we define them for block-decomposable
persistence modules; see the thesis of Curry [26] and the subsequent related work
by Curry and Patel [27]. As a corollary, the block stability theorem yields a similar
algebraic stability theorem for such (co)sheaves. However, we will not explicitly
consider (co)sheaves in this paper.

1.3 Stability of the persistent homology of Reeb graphs

We briefly describe the application of the block stability theorem to Reeb graphs; details
are given in Section 4.3.

We define a Reeb graph to be a continuous function  W G!R of Morse type, where G
is a topological graph and the level sets of  are discrete. A well-known construction
associates a Reeb graph, Reeb.�/, to an R–valued function � of Morse type. These
invariants of R–valued functions are readily computed and easy to visualize. As
such, they are popular objects of study in computational geometry and topology, and
have found many applications in data visualization and exploratory data analysis. In
particular, the topological data analysis tool Mapper, introduced by Carlsson et al and
commercialized by Ayasdi, constructs certain discrete approximations to Reeb graphs
from point cloud data; see Singh, Mémoli and Carlsson [43].

If we want to study the stability of Reeb graphs and Mapper in the presence of noise,
we need a good metric on Reeb graphs. In the last few years, several works have
introduced such metrics and have studied their stability properties; see Bauer, Ge and
Wang [2], Bauer, Munch and Wang [4], Di Fabio and Landi [28] and de Silva, Munch
and Patel [42]. In particular, the last work presents an appealing definition of the
interleaving distance dI on Reeb graphs.

Bauer, Ge and Wang [2] observe that the 0th level set barcode L0./ of a Reeb graph
 encodes all nontrivial persistent homology information in the Reeb graph. A basic
question about dI , then, is whether Reeb graphs which are close with respect to dI have
close 0th level set barcodes. Building on a result of [2], Bauer, Munch and Wang [4]
recently provided an affirmative answer to this question. A simple formulation of their
result says that for Reeb graphs  and � ,

db.L0./;L0.�//� 9dI .; �/:

A somewhat stronger formulation of the result can be given using the language of
extended persistence; see [4].
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As an easy corollary of the block stability theorem, our Theorem 4.13 gives an im-
provement of the result of [4]:

(1) db.L0./;L0.�//� 5dI .; �/:

1.4 Bjerkevik’s related work

The version of the block stability theorem we establish here is not tight. To prove
the result, we show that it suffices to establish the result for each of four subtypes
of block-decomposable modules. Our algebraic stability results for three of the four
subtypes are tight, but our result for the remaining subtype, denoted by type o , turns
out to be weaker than the optimal one by factor of 5

2
.

Following the release of the first version of this paper, Håvard Bakke Bjerkevik [6]
has obtained a tight algebraic stability result for modules of type o , via an elegant new
argument. Together with our arguments in Section 7, this gives a tight form of the block
stability theorem. As a corollary, our stability results for zigzag modules strengthen
correspondingly to an isometry theorem for zigzag modules, and the constant in our
stability result for the level set persistent homology of Reeb graphs is lowered from 5

to 2, which is tight. (On the other hand, the problem of giving a tight single-morphism
algebraic stability result remains open; see Section 9.) Notably, the approach of [6] also
adapts readily to give algebraic stability results for some other types of modules to which
our approach does not readily extend, such as rectangle-decomposable persistence
modules; see Section 9.

The main advantage of the approach to block stability taken in our paper, relative to
that of [6], is that by extending the induced matching approach to algebraic stability,
our approach provides explicit matchings of barcodes. In 1-D, the induced matching
approach is very intuitive, and it is natural to study how the simple, explicit constructions
of that approach extend to block-decomposable modules; our work makes clear both
what can be done in this direction and where one encounters difficulties. We imagine
that there could be a way to strengthen our arguments to recover the optimal constants
for the block stability theorem obtained in [6], via explicit matchings. However, this
would require further technical advances; see the end of Section 9.

Outline

Section 2 of this paper reviews algebraic aspects of persistent homology, introducing
generalized definitions of barcodes and the bottleneck distance along the way. In
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Section 3, we introduce block-decomposable modules and their barcodes, and state
the block stability theorem. Section 4 presents our applications of the block stability
theorem, including our treatment of algebraic stability for zigzag modules.

Sections 5, 6 and 7 are devoted to the proof of the block stability theorem. Section 5
introduces a way of decomposing a monomorphism of 2-D persistence modules. Using
this decomposition, Section 6 proves the induced matching theorem for free 2-D
persistence modules, as well as a similar induced matching result of a more technical
nature for a class of 2-D persistence modules we call R�–free. Section 7 applies the
results of Section 6 to prove the block stability theorem.

Section 8 gives an easy extension of the block stability theorem to a slightly more
general class of modules, and speculates on an application of this to the stability of
level set persistence for non-Morse-type functions. We conclude in Section 9 with a
brief exploration of the problem of further generalizing the results of this paper.
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2 Preliminaries

For P a poset and C an arbitrary category, M W P ! C a functor and a; b 2 P, let
Ma DM.a/ and let 'M .a; b/W Ma!Mb denote the morphism M.a � b/.
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2.1 Barcodes of interval-decomposable persistence modules

An interval of P is a subset J � P such that:

(1) J is nonempty.

(2) If a; c 2 J and a � b � c , then b 2 J .

(3) Connectivity For any a; c 2 J , there is a sequence aD b0; b1; : : : ; bl D c of
elements of J with bi and biC1 comparable for 0� i � l � 1.

We refer to a multiset of intervals in P as a barcode (over P ).

Definition 2.1 For J an interval in P, the interval module IJ is the P –indexed
module such that

IJa D

�
k if a 2 J ;
0 otherwise;

'IJ .a; b/D

�
idk if a � b 2 I;
0 otherwise:

We say a persistence module M is decomposable if it can be written as M ŠV ˚W for
nontrivial persistence modules V and W ; otherwise, we say that M is indecomposable.

Proposition 2.2 IJ is indecomposable.

Proof For M a persistence module, let End.M/ denote the k–vector space of
endomorphisms of M. An endomorphism of IJ acts locally by multiplication,
so it follows by commutativity and connectivity that End.IJ / Š k . Assume that
IJ Š M ˚ N for persistence modules M and N. Then End.M/˚ End.N / is a
subspace of End.M ˚N/Š End.IJ /Š k . The only subspaces of k are 0 and k , so
either End.M/D 0 or End.N /D 0, implying that either M or N is trivial.

A P –indexed module M is interval-decomposable if there exists a (possibly infinite)
multiset B.M/ of intervals in P such that

M Š
M

J2B.M/

IJ :

Since the endomorphism rings of interval persistence modules are local (in fact, iso-
morphic to k ), it follows from the Azumaya–Krull–Remak–Schmidt theorem [1] that
the multiset B.M/ is uniquely defined. We call B.M/ the barcode of M.

Theorem 2.3 (structure of 1-D and zigzag persistence modules [8; 25]) Suppose M
is a pfd P –indexed module for P 2 fR;Z;ZZg. Then M is interval-decomposable.
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Remark 2.4 For ZZ–indexed modules, this structure theorem has typically appeared
in the TDA literature under an additional finiteness assumption — see [12], for example.
However, a proof of the general result as stated above can be found in [8].

2.2 Multidimensional persistence modules and interleavings

Multidimensional persistence modules For n� 1, let Rn denote the poset obtained
by taking the product of R with itself n times. Rn–indexed modules are known in
the TDA literature as n–dimensional persistence modules. They arise naturally in the
study of data with noise or nonuniformities in density; see eg [15; 19; 34].

Remark 2.5 The analogue of Theorem 2.3 does not hold for P D Rn when n � 2.
Indeed, it is a basic lesson from the representation theory of quivers that an arbitrary
P –indexed module M is interval-decomposable only for very special choices of P .

Interleavings of Rn–indexed functors For C an arbitrary category and u 2 Rn ,
define the u–shift functor .�/.u/W CRn!CRn on objects by M.u/aDMuCa , together
with the obvious internal morphisms, and on morphisms f W M ! N by f .u/a D
f .uCa/W M.u/a!N.u/a . For u 2 Œ0;1/n , let 'uM W M !M.u/ be the morphism
whose restriction to each Ma is the linear map 'M .a; aC u/. For � 2 Œ0;1/ we
will abuse notation slightly by letting .�/.�/ denote the �.1; : : : ; 1/–shift functor and
letting '�M denote '�.1;:::;1/M .

Definition 2.6 Given � 2 Œ0;1/, an �–interleaving between M;N W Rn! C is a pair
of morphisms f W M !N.�/ and gW N !M.�/ such that

g.�/ ıf D '2�M ; f .�/ ıg D '2�N :

We call f and g �–interleaving morphisms. If there exists an �–interleaving between
M and N, we say M and N are �–interleaved. The interleaving distance

dI W Ob.CRn/�Ob.CRn/! Œ0;1�

is given by

dI .M;N /D inff� � 0 jM and N are �–interleavedg:

The distance dI is an extended pseudometric; that is, dI is symmetric, dI satisfies the
triangle inequality and dI .M;M/D 0 for all Rn–indexed modules M.
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Interleavings and �–trivial (co)kernels For u2 Œ0;1/n , we say an n-D persistence
module M is u–trivial if 'uM D 0. For � 2 Œ0;1/, we say M is �–trivial if M
is .�; �; : : : ; �/–trivial. Note that M is 2�–trivial if and only if M is �–interleaved
with 0.

Remark 2.7 It is an easy exercise to show that if f W M !N.�/ is an �–interleaving
morphism, then kerf and cokerf are each 2�–trivial. For n D 1, the converse is
also true. For n > 1, only a weaker converse holds: if f W M !N.�/ has 2�–trivial
(co)kernel, then f is a 2�–interleaving morphism, but it may not be the case that M
and N are �0–interleaved for any �0 < 2� ; see [3] for details.

Duals of persistence modules Dualizing each vector space and each linear map in
a P –indexed module M yields a P op –indexed module M � . As in the case of finite-
dimensional vector spaces, when M is pfd, M �� is canonically isomorphic to M.
Moreover, given a map f W M ! N of P –indexed modules, we have a dual map
f �W N �!M � . This gives a functor

.�/�W VecP
! VecP op

:

We omit the proof of the following:

Proposition 2.8

(i) If f W M ! N is a morphism of Rn–indexed modules with �–trivial kernel,
then f � has �–trivial cokernel.

(ii) Dually, if f has �–trivial cokernel, then f � has �–trivial kernel.

2.3 The isometry theorem

Matchings A matching � between multisets S and T (written as � W S =! T ) is a
bijection � W S � S 0! T 0 � T . Formally, we regard � as a relation � � S �T where
.s; t/ 2 � if and only if s 2 S 0 and �.s/ D t . We call S 0 and T 0 the coimage and
image of � , respectively, and denote them by coim � and im � . If w 2 coim � [ im � ,
we say that � matches w . We say that � is bijective if S 0 D S and T 0 D T .

For two matchings � W S =! R and � W R =! T we define the composite matching
� ı � W S =! T by taking .s; t/ 2 � ı � if and only if .r; t/ 2 � and .s; r/ 2 � for some
r 2R .

Generalized �–matchings and bottleneck distance We now introduce a generaliza-
tion of the bottleneck distance to barcodes over Rn .
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.1; 0/

I1
.0; 1/

J1

y D 0
J2

y D 3
I2

y D 4

y D 1

.1; 0/

x D 0 x D 2I3

Figure 1: The 1–matching � of Example 2.9. Left: � matches the quadrants
I1 and J1 . Center: � matches the horizontal strips I2 and J2 . Right: � does
not match the vertical strip I3 .

We say intervals J ;K � Rn are �–interleaved if IJ and IK are �–interleaved.
Similarly, we say J is �–trivial if IJ is �–trivial, ie if for each a2J , aC�.1; : : : ; 1/…
J . For C a barcode over Rn and � � 0, define C� � C to be the multiset of intervals in
C that are not �–trivial.

Define an �–matching between barcodes C and D to be a matching � W C =!D satisfying
the following properties:

(1) C2� � coim � and D2� � im � .

(2) If �.J /D K , then J and K are �–interleaved.

For barcodes C and D, we define the bottleneck distance db by

db.C;D/D inf f� 2 Œ0;1/ j there exists an �–matching between C and Dg:

It is not hard to check that db is an extended pseudometric. In particular, it satisfies
the triangle inequality.

Example 2.9 Let C D fI1; I2; I3g and DD fJ1; J2g, where

I1 D fa 2R2 j a � .1; 0/g; J1 D fa 2R2 j a � .0; 1/g;

I2 D f.a1; a2/ 2R2 j 1� a2 � 4g; J2 D f.a1; a2/ 2R2 j 0� a2 � 3g;

I3 D f.a1; a2/ 2R2 j 0 < a1 < 2g:

Observe that Ii and Ji are 1–interleaved for i 2 f1; 2g and that I3 is 2–trivial. Thus,
the matching � W C =! D defined by � D f.I1; J1/; .I2; J2/g is a 1–matching. See
Figure 1 for an illustration.
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�–Matchings of barcodes over R For J �R an interval and � � 0, let the interval
thk�.J / be given by

thk�.J /D fa 2R j ja� bj � � for some b 2 J g:

It is easy to check that intervals J ;K � R are �–interleaved if and only if either
J � thk�.K/ and K � thk�.J /, or J and K are both 2�–trivial. Moreover, J is
2�–trivial if and only if J is strictly contained in the interval Œa; aC2�� for some a2R.
This gives us a concrete description of �–matchings of barcodes over R.

Remark 2.10 In the 1-D setting, our definition of �–matching is slightly different
from the one given in [3], because it allows us to match 2�–trivial intervals that are
far away from each other. However, this difference turns out to be of no importance;
in particular, it is easy to see that the two definitions of �–matching yield equivalent
definitions of db .

The isometry theorem In its strong formulation for pfd persistence modules [3], the
isometry theorem says the following:

Theorem 2.11 (isometry [17; 33; 20; 3]) Pfd R–indexed persistence modules M
and N are �–interleaved if and only if there exists an � -matching between B.M/

and B.N /. In particular,

dI .M;N /D db.B.M/;B.N //:

See also [20] or [3] for a version of the isometry theorem which applies to a more
general class of 1-D persistence modules called q–tame.

The induced matching theorem As noted in the introduction, the induced matching
theorem [3] concerns a simple map � sending each morphism f W M ! N of pfd
R–indexed modules to a matching �.f /W B.M/ =! B.N /. We will not need the full
strength of the induced matching theorem, and so to minimize the amount of notation
we introduce, we present a slightly weaker version of the result.

For a 2 R, let ha; ai D Œa; a�. For a < b 2 R[ f�1;1g, let ha; bi � R denote an
interval in R with left endpoint a and right endpoint b . Thus,

� ha;1i denotes either of the intervals .a;1/, Œa;1/;

� h�1; ai denotes either of the intervals .�1; a/; .�1; a�,

� ha; bi denotes one of the intervals .a; b/, Œa; b�, Œa; b/, .a; b�.
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Theorem 2.12 (induced matchings) Let f W M ! N be a morphism of pfd R–
indexed modules and assume that �.f /ha; bi D ha0; b0i. Then:

(i) a0 � a � b0 � b .

(ii) If f has �–trivial kernel, then �.f / matches each interval in B.M/� and
jb� b0j � � .

(iii) Dually, if f has ı–trivial cokernel, then �.f / matches each interval in B.N /ı
and ja� a0j � ı .

Converse algebraic stability One direction of Theorem 2.11 generalizes immediately
to interval-decomposable Rn–indexed modules; given the way we have defined �–
matchings, the proof is essentially trivial.

Proposition 2.13 (converse algebraic stability) Given interval-decomposable Rn–
indexed modules M and N, if there exists an �–matching between B.M/ and B.N /,
then M and N are �–interleaved. In particular,

dI .M;N /� db.B.M/;B.N //:

2.4 U –indexed modules as 2-D persistence modules

Recalling the definition of U from Section 1, we define a functor

embW VecU
! VecRop�R;

given on objects M by taking emb.M/ to be trivial outside of U ; explicitly, we define
emb.M/ by

emb.M/.a;b/ D

�
M.a;b/ if a � b;
0 otherwise,

'emb.M/..a; b/; .c; d//D

�
'M ..a; b/; .c; d// if c � a � b � d;
0 otherwise,

with the action of emb on morphisms defined in the obvious way. Clearly, emb is
fully faithful, so by way of this functor, we may regard VecU as full subcategory
of VecRop�R .

Remark 2.14 (Rop�R–indexed and R�Rop –indexed modules) The isomorphism
R!Rop sending each a 2R to �a induces an isomorphism Rop�R!R2 . This in
turn induces an isomorphism VecR2

! VecRop�R . By way of these isomorphisms, all

Algebraic & Geometric Topology, Volume 18 (2018)



3148 Magnus Bakke Botnan and Michael Lesnick

the definitions introduced in Section 2.2 in the Rn–indexed case, eg of �–interleavings
and �–matchings, carry over to the Rop�R–indexed setting. Similarly, they carry over
to the R�Rop –indexed setting.

2.5 Kan extensions

In several places in this paper, we introduce functors VecA
! VecB for distinct posets

A and B , as we have in Section 2.4 above. For this, it will be convenient to adopt
the language of Kan extensions. We now briefly review Kan extensions in the specific
setting of interest to us, giving concrete formulae in terms of limits and colimits.
See [35] for the standard, fully general definition of Kan extensions.

Given a functor of posets F W A! B and b 2 B , let

AŒF � b� WD fa 2A j F.a/� bg:

Define AŒF � b��A analogously.

Given a persistence module M W A! Vec, one defines a persistence module

LanF .M/W B! Vec;

called the left Kan extension of M along F , by taking

LanF .M/.b/D lim
��!

M jAŒF�b�;

with the internal maps LanF .b/! LanF .b0/ given by universality of colimits for all
b � b0. Given M;N W A! Vec and a natural transformation f W M !N, universality
of colimits also yields an induced morphism LanF .f /W LanF .M/! LanF .N /. We
thus obtain a functor LanF .�/W VecA

! VecB .

Example 2.15 For emb the functor defined in Section 2.4, letting eW U ,!Rop �R

denote the inclusion, we have embD Lane.�/.

Dually, one also defines a persistence module RanF .M/W A! Vec, the right Kan
extension of M along F , by taking

RanF .M/.b/D lim
 ��

M jAŒF�b�;

with the internal maps given by universality of limits. As with left Kan extensions, this
definition is functorial, so we obtain a functor RanF .�/W VecA

! VecB .
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Proposition 2.16

(i) LanF .�/ preserves direct sums, ie for any indexing set A and persistence
modules fMi W A! Vecgi2A , we have

LanF

�M
i

Mi

�
Š

M
i

LanF .Mi /:

(ii) Dually, RanF .�/ preserves direct products, ie for any persistence modules
fMi W A! Vecgi2A , we have

RanF

�Y
i

Mi

�
Š

Y
i

RanF .Mi /:

Proof This follows directly from standard category theory results: LanF .�/ is left
adjoint to the restriction VecB

! VecA along F ; see for example [40, (1.1)]. Since
LanF .�/ is a left adjoint, it preserves coproducts [35, Theorem V.5.1]. This establishes
(i) and the dual argument establishes (ii).

Remark 2.17 Given an indexing set A and persistence modules

fMi W A! vecgi2A;
if
L
i Mi is pfd, then M

i

Mi D

Y
i

Mi :

It follows that if, in Proposition 2.16(ii), both
L
i Mi and

L
i RanF .Mi / are pfd, then

RanF

�M
i

Mi

�
Š

M
i

RanF .Mi /:

3 The block stability theorem

In general, a U –indexed module does not decompose into a direct sum of interval
modules. However, as noted in the introduction, we shall restrict our attention to
U –indexed modules called block-decomposables which admit a particularly simple
decomposition.

Blocks For any interval J in R, we define an interval JBL in U as follows:

.a; b/BL WD f.x; y/ 2U j a < x; y < bg for a < b 2R[f�1;1g;

Œa; b/BL WD f.x; y/ 2U j a � y < bg for a < b 2R[f1g;
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.a; b�BL WD f.x; y/ 2U j a < x � bg for a < b 2R[f�1g;

Œa; b�BL WD f.x; y/ 2U j x � b; y � ag for a � b 2R:

In addition, for a < b 2R, we define an interval

Œb; a�BL WD f.x; y/ 2U j x � a < b � yg:

We call an interval in U having one of the five forms above a block, and we let BL
denote the set of all blocks. Each of the five types of blocks is depicted in Figure 2.

For a; b 2 R [ f˙1g, let ha; biBL denote a block of the form .a; b/BL , Œa; b/BL ,
.a; b�BL or Œa; b�BL . For example, for a2R, ha;1iBL is either Œa;1/BL or .a;1/BL ,
and hb; aiBL D Œb; a�BL for a < b 2R,.

Block barcodes We call a multiset of blocks a block barcode. Note that in view of
Remark 2.14, �–matchings and the bottleneck distance db between block barcodes are
well defined.

Partitions of block barcodes It will be convenient to partition BL into four subsets,
as follows:

BLo WDf.a; b/BL ja<b2Rg;

BLco WDfŒa; b/BL ja<b2Rg[f.�1; b/BL jb2Rg;

BLoc WDf.a; b�BL ja<b2Rg[f.a;1/BL ja2Rg;

BLc WDfŒa; b�BL ja; b2Rg[fŒa;1/BL ja2Rg[f.�1; b�BL ja2Rg[f.�1;1/BLg:

If ? 2 fo; co; oc; cg and J 2BL? , we say J is is of type ?. For example, Œ0; 1�BL and
.�1;1/BL are both of type c .

For B a block barcode and ? 2 fo; co; oc; cg, we let B? denote the multisubset of
blocks in B of type BL? .

.a; a/

.b; b/

.a; b/BL

.a; a/

.b; b/

Œa; b/BL

.a; a/

.b; b/

.a; b�BL

.a; a/

.b; b/

Œa; b�BL and Œb; a�BL (dark)

Figure 2: The five different types of blocks
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�–Matchings of block barcodes The following result, whose straightforward proof
we omit, yields a concrete description of an �–matching of block barcodes:

Lemma 3.1

(i) ha; biBL is 2�–trivial if and only if one of the following is true:

� ha; biBL is of type co or oc , and b� a � 2� .

� ha; biBL is of type o and b� a � 4� .

(ii) Blocks ha; biBL and ha0; b0iBL are �–interleaved if and only if either ha; biBL

and ha0; b0iBL are of the same type and

ja� a0j � �; jb� b0j � �;

or both ha; biBL and ha0; b0iBL are 2�–trivial.

Diagonals of block barcodes Let DW R!R2 denote the diagonal map D.t/D .t; t/
and, for any block J �U , let diagJ DD.R/\J . Note that for any interval I �R,

diag IBL DD.I/:

In this sense, IBL is labeled by its intersection with the diagonal.

For B a block barcode, we define diagB , the diagonal of B , to be the barcode over R

given by
diagB D fdiagJ j J 2 B; diagJ ¤∅g:

Proposition 3.2 For block barcodes B and C :

(i) An �–matching � W B =!C induces a 2�–matching diag � W diagB =! diag C. In
particular,

db.diagB; diag C/� 2db.B;C/:

(ii) If, additionally, � matches each interval .a; b/BL in Bo� [Co� to an interval
.a0; b0/BL with

ja� a0j � � and jb� b0j � �;

then diag � is an �–matching.

Proof This is immediate from Lemma 3.1 and the definition of an �–matching.
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Block-decomposable modules It follows from Proposition 2.2 that for any block J ,
the U –indexed interval module IJ is indecomposable; we call IJ a block module.
We say a U –indexed module is block-decomposable if it decomposes into a direct sum
of block modules. We say an Rop�R–indexed module M is block-decomposable if
M D emb.N / for N block-decomposable.

With these definitions, we may work interchangeably with block-decomposable modules
over U and their embeddings under emb. We will work primarily in the Rop�R–
indexed setting. In particular, we will understand an �–interleaving between U –indexed
modules M and N to be an �–interleaving between emb.M/ and emb.N /; see
Remark 2.14. Explicitly then, an �–interleaving between M and N consists of two
collections of linear maps

ffa;bW Ma;b!Na��;bC�ga�b2R and fga;bW Na;b!Ma��;bC�ga�b2R

satisfying the obvious commutativity conditions with each other and with the internal
maps of M and N.

Block stability We now state the main result of this paper, which establishes a relation-
ship between the interleaving distance and bottleneck distance on block-decomposable
modules:

Theorem 3.3 (block stability theorem) Let M and N be �–interleaved pfd block-
decomposable modules. Then there exists a matching �W B.M/ =! B.N / that matches
each block in

B.M/c[B.M/o5�[B.M/co2�[B.M/oc2� and B.N /c[B.N /o5�[B.N /
co
2�[B.N /

oc
2�;

such that if �.I/ D J , then I and J are �–interleaved and of the same type. In
particular, � is a 5

2
�–matching.

We give the proof of Theorem 3.3 in Sections 5, 6 and 7.

4 Applications of the block stability theorem

Before turning to the proof of the block stability theorem, we consider three applica-
tions. First, we explain how the block stability theorem induces an algebraic stability
theorem for zigzag modules. Next, we show how the stability result for level set zigzag
persistence of [13] follows from the block stability theorem. Last, we explain the
application to the stability of Reeb graphs.
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4.1 Algebraic stability of zigzag persistence modules

In this section, we define the fully faithful functor E sending each zigzag module
to a block-decomposable module, first mentioned in Section 1. We use E to define
interleaving and bottleneck distances for zigzag modules and their barcodes. With
these definitions, the block stability theorem and its converse extend trivially to zigzag
modules.

Our functor E is closely analogous to the functor sending a cellular cosheaf over R to
a constructible cosheaf over R; see [26].

Block extensions of zigzags Let �W ZZ ,!Rop �R denote the inclusion, and let

.�/jU W VecRop�R
! VecU

denote the restriction. We define the block extension functor EW VecZZ
! VecU by

E WD .�/jU ıLan�.�/:

Figure 3 illustrates the action of E on objects.

Intervals in the zigzag category We partition the intervals of ZZ into four types;
letting < denote the partial order on Z2 (not on Zop �Z), these are given as follows:

.b; d/ZZ WD f.i; j / 2 ZZ j .b; b/ < .i; j / < .d; d/g for b < d 2 Z[f�1;1g;

Œb; d/ZZ WD f.i; j / 2 ZZ j .b; b/� .i; j / < .d; d/g for b < d 2 Z[f1g;

.b; d �ZZ WD f.i; j / 2 ZZ j .b; b/ < .i; j /� .d; d/g for b < d 2 Z[f�1g;

Œb; d �ZZ WD f.i; j / 2 ZZ j .b; b/� .i; j /� .d; d/g for b � d 2 Z:

We shall let hb; d iZZ denote any of the intervals above.

Properties of the block extension functor The following lemma is illustrated by
Figure 4. The proof is left to the reader.

Lemma 4.1 The block extension functor sends interval modules to block interval
modules. Specifically, for any zigzag interval hb; d iZZ ,

E.I hb;diZZ/Š I hb;diBL :
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V.i;i�1/

V.iC1;i/

V.iC2;iC1/

V.iC3;iC2/

V.i�1;i�1/

V.i;i/

V.iC1;iC1/

V.iC2;iC2/

V.iC3;iC3/9Š

E.V /.x;y/

E.V /.x0;y0/

Figure 3: The vector space E.V /.x;y/ is the colimit of the restriction of V
to indices contained in the box with upper-left corner .x; y/ .

Proposition 4.2 For any pfd zigzag module V , E.V / is block-decomposable, and
we have a bijective matching B.V /$ B.E.V // which matches each zigzag interval
hb; d iZZ to the block interval hb; d iBL .

Proof By Proposition 2.16, Lan�.�/ preserves direct sums. Clearly .�/jU preserves
direct sums as well, so E D .�/jU ıLan�.�/ also preserves direct sums. The result
now follows from Theorem 2.3 and Lemma 4.1.

The following result, not used elsewhere in the paper, describes an additional sense in
which E preserves the structure of VecZZ :

Proposition 4.3 EW VecZZ
! VecU is fully faithful.

0

k

0

0

0

0

0

I .i;iC1/ZZ

0

k

0

0

k

0

0

I Œi;iC1/ZZ

0

k

0

0

0

k

0

I .i;iC1�ZZ

0

k

0

0

k

k

0

I Œi;iC1�ZZ

Figure 4: Extension to block interval modules of the four different types of
zigzag interval modules. Compare with Figure 2.
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Proof Lan�.�/ is left adjoint to the restriction functor .�/j�W VecRop�R
! VecZZ

[40, (1.1)]. The reader may easily verify that .�/j� ı Lan�.�/ Š idvecZZ ; this also
follows from [35, Corollary X.3.3]. Hence, Lan�.�/ is fully faithful [32]. It is easy to
check that this property is preserved by postcomposition with .�/jU .

Algebraic stability of zigzag modules

Definition 4.4 We define the interleaving and bottleneck distances on pfd zigzag
persistence modules and their barcodes by

dI .V;W / WD dI .E.V /; E.W //; dZZ
b .B.V /;B.W // WD db

�
B.E.V //;B.E.W //

�
:

Given these definitions, we get forward and converse algebraic stability results for
zigzags immediately from Theorem 3.3 and Proposition 2.13.

Remark 4.5 The interleaving distance on zigzag modules defined in this section is in
fact an extension of the usual interleaving distance on Z–indexed modules: We have an
obvious fully faithful functor DW VecZ

! VecZZ which sends a Z–indexed module
to a zigzag module by taking all leftwards arrows to be isomorphisms; that is, for V a
zigzag module, we take

D.V /.i;i/ DD.V /.iC1;i/ D Vi ;
'D.V /..i C 1; i/; .i; i//D idVi ;

'D.V /..i; i � 1/; .i; i//D 'V .i � 1; i/:

The ordinary interleaving distance can be defined on Z–indexed modules just as for
R–indexed modules, and it can be checked that D preserves interleaving distances.

4.2 Stability of (inter)level set persistence

We next explain how the stability of level set and interlevel set zigzag persistence, as
established in [13; 5], follows from the block stability theorem. To begin, we introduce
the necessary definitions, following [13].

Interlevel set persistent homology For T a topological space, we say a continuous
function  W T !R is of Morse type if:

(1) There exists a strictly increasing function GW ZZ!R such that

lim
z!˙1

Gz D˙1
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�2 �1 0 1 2

Figure 5: The immersed curve T of Examples 4.6 and 4.10

and such that for each open interval I D .Gz;GzC1/, �1.I / is homeomorphic
to a product I �Y with  the projection onto I. Note that Y may be different
for different choices of I.

(2) Each homeomorphism hW I �Y ! �1.I / extends to a continuous function

xhW xI �Y ! �1.xI /D S./xI ;

where xI denotes the closure of I.

(3) dimHi .
�1.t// <1 for all t 2R and i � 0.

Example 4.6 Let T be the immersed curve in R2 depicted in Figure 5 and let
 W T !R denote the projection onto the x–axis. Then  is of Morse type; we may
take the function GW Z!R to be the usual inclusion.

Structure of interlevel set persistent homology Recall the definition of the interlevel
set filtration S./ from Section 1.

Theorem 4.7 [13; 5] For  W T !R of Morse type and i � 0:

(i) HiS./ is block-decomposable, so Bi ./ WD B.HiS.// is well defined.

(ii) There is a one-to-one correspondence between blocks Œb; a�BL 2 BiC1./ with
a < b and blocks .a; b/BL 2 Bi ./.

Theorem 4.7(i) is proven by appealing to the structure theorem for zigzag persis-
tence modules and exploiting the connection between block-decomposable and zigzag
persistence modules. Theorem 4.7(ii) is an application of the Mayer–Vietoris theorem.

Remarks 4.8
(1) In fact, Theorem 4.7 is proven in [13; 5] under an additional finiteness assumption.

In view of the structure theorem for modules over infinite zigzags given in [8],
the finiteness assumption is not necessary.
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(2) Theorem 4.7 admits an extension to a relative interlevel set persistence; see
[13; 5]. We will consider only the absolute version of the theorem here.

(3) Bi ./ can be computed in practice by doing an extended persistence or zigzag
persistent homology computation, and appealing to the formulae in [13].

Level set barcodes Recall from Section 1 that the barcode Li ./ WD diagBi ./ is
called the i th level set (zigzag) barcode of  .

Remark 4.9 In view of Theorem 4.7 (ii), the block barcodes fBi ./gi�0 and the
level set barcodes fLi ./gi�0 determine each other, so there is no loss in passing from
interlevel set (block) barcodes to level set barcodes, as long as we consider homology
in all degrees.

Example 4.10 It can be shown that for  W T !R as in Example 4.6,

B0./D fŒ�2; 2�BL; .�1; 1/BL; Œ�1; 0/BL; .0; 1�BLg:

Thus, the 0th level set barcode of  is

L0./D fŒ�2; 2�; .�1; 1/; Œ�1; 0/; .0; 1�g:

Stability of level set persistence The stability theorem for level set persistence first
appeared in [13]. The original proof is an application of the stability of extended
persistence [24], and hence can be seen as an application of algebraic stability for
1-D persistence modules. We now give a different proof, based on the block stability
theorem, which avoids consideration of extended persistence and relative homology.

Theorem 4.11 (stability of (inter)level set persistence) Let ; �W T !R be of Morse
type and let � D d1.; �/. Then, for all i � 0,

db.Bi ./;Bi .�//� �;

db.Li ./;Li .�//� �:

Proof For all x � y , we have inclusions

S./.x;y/ � S.�/.x��;yC�/ � S./.x�2�;yC2�/;

S.�/.x;y/ � S./.x��;yC�/ � S.�/.x�2�;yC2�/;

By the functoriality of Hi , these induce an �–interleaving between HiS./ and
HiS.�/. Applying Theorem 3.3, we obtain �–matchings between Bi ./? and Bi .�/?
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for ? 2 fc; oc; cog and a 5
2
�–matching between Bi ./o and Bi .�/o . To establish

the theorem, we will in fact need an �–matching between Bi ./o and Bi .�/o which
matches each interval in .a; b/BL 2 Bi ./o� [Bi .�/o� to an interval .a0; b0/BL with

ja� a0j � � and jb� b0j � �;

as in the statement of Proposition 3.2(ii). We obtain this as follows: Let

�W BiC1./c! BiC1.�/c

denote the �–matching provided by Theorem 3.3 and note that � is bijective. Then
Theorem 4.7(ii) gives us injections

i1W Bi ./o ,! BiC1./c and i2W Bi .�/o ,! BiC1.�/c :

By composition, we get a matching

i�12 ı� ı i1W Bi ./
o

=! Bi .�/o;

where i�12 denotes the reverse of the matching i2 .

The composition � ı i1 matches each block .a; b/BL 2 Bi ./o� to a block

�Œb; a�BL D Œb
0; a0�BL 2 BiC1.�/c

with
ja� a0j � � and jb� b0j � �:

Since b� a > 2� , we have in particular that

a0 � aC � < b� � � b0:

Thus, Œb0; a0�BL 2 im i2 , and

i�12 ı� ı i1.a; b/BL D .a
0; b0/BL 2 Bi .�/o:

This shows that
Bi ./o� 2 coim i�12 ı� ı i1:

Applying the same argument in the opposite direction, we obtain that

Bi .�/o� 2 im i�12 ı� ı i1

and that i�12 ı�ıi1 is an �–matching as in the statement of Proposition 3.2(ii). Applying
Proposition 3.2(ii), the result now follows.
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In Section 8, we discuss the stability problem for interlevel set and level set persistent
homology in the case that our functions are not of Morse type.

4.3 Interleaving stability of Reeb graphs

This section applies the block stability theorem to strengthen the result of [4] on the
interleaving stability of Reeb graphs. To begin, we review Reeb graphs and their
interleavings. Our discussion loosely follows [42], which gives an in-depth treatment
of the categorical interpretation of Reeb graphs; see that paper for more details.

Reeb graphs Recall from Section 1.3 that we define a Reeb graph to be a continuous
function  W G!R of Morse type, where G is a topological graph and the level sets
of  are discrete.

We associate a Reeb graph, Reeb.�/, to any function �W T !R of Morse type, in the
following way: Define an equivalence relation on T by taking x � y if and only if x
and y lie in the same connected component of ��1.s/ for some s 2R, and let T=�
denote the resulting quotient space. Then � descends to a continuous function

Reeb.�/W T=�!R:

It is easy to check that Reeb.�/ is indeed a Reeb graph as defined above.

Interleavings of Reeb graphs In essentially the same way that we defined the functor
embW VecU

! VecRop�R in Section 2.4, we can define a functor

embW SetU
! SetRop�R:

Namely, for M W U ! Set, we take emb.M/jU DM, and we take emb.M/.a;b/ D∅
whenever b < a . We define an �–interleaving of Reeb graphs  and � to be an
�–interleaving between emb ı�0 ıS./ and emb ı�0 ıS.�/, where �0W Top! Set
denotes the path-components functor.

Remark 4.12 The definition of interleaving of Reeb graphs introduced in [42] is
slightly different from ours, in that the definition of [42] is given in terms of the inverse
images under  of bounded open intervals, rather than bounded closed intervals. It is
easy to see, however, that the interleaving distances associated with the two definitions
are equal.

Algebraic & Geometric Topology, Volume 18 (2018)



3160 Magnus Bakke Botnan and Michael Lesnick

Interlevel persistence of Reeb graphs As noted in Section 1.3, the following stability
result for the persistent homology of Reeb graphs strengthens the result of Bauer, Munch
and Wang [4].

Theorem 4.13 For �–interleaved Reeb graphs  and � of Morse type,

db.L0./;L0.�//� 5 dI .; �/:

Proof Note that we have isomorphisms

H0 ı emb ı�0 ıS./Š emb ıH0 ı�0 ıS./Š emb ıH0 ıS./;

and similarly for � . Thus, by functoriality of H0 , an �–interleaving between  and �
induces an �–interleaving between H0S./ and H0S.�/. Applying Theorem 3.3 and
Proposition 3.2 to this interleaving gives the desired result.

5 Decomposition of monomorphisms with small cokernel

We now begin developing the technical machinery needed to prove the block stability
theorem and our induced matching theorem for free 2-D persistence modules.

A morphism f W M ! N of persistence modules is a monomorphism if each map
of vector spaces faW Ma ! Na is an injection and an epimorphism if each fa is
a surjection. This section concerns the decomposition of a monomorphism of 2-D
persistence modules with �–trivial cokernel into a pair of simpler monomorphisms
whose cokernels are each short-lived in one of the two coordinate directions.

To give the reader a sense of the role that these decompositions play in our arguments,
let us recall that in the induced matching approach to proving algebraic stability in the
1-D case, one associates a matching �.f /W B.M/!B.N / to a morphism f W M !N

of pfd 1-D persistence modules. To do so, one considers the epi-mono decomposition
of f

(2) M � imf ,!N I

�.f / is defined as the composition of canonical matchings

B.M/ =! B.imf / =! B.N /:

In the present paper, we use the decompositions introduced in this section in an
analogous way, to define matchings between the barcodes of free or block-decomposable
modules.
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5.1 Definition and first properties of our decomposition

Let e1 and e2 denote the standard basis vectors in R2 .

For f W M ! N a morphism of R2–indexed modules and � 2 Œ0;1�, we define a
factorization

(3) imf
f �1,�! L�.f /

f �2,�!N

of the inclusion imf ,!N as follows: For � 2 Œ0;1/ and a 2Rn , let

L�.f /a WD fn 2Na j 'N .a; aC �e1/.n/ 2 imf g:

Noting that L�.f /� L�
0

.f / whenever � < �0 <1, we let

L1.f / WD
[
��0

L�.f /D fn 2Na j 'N .a; aC �e1/.n/ 2 imf for some � 2 Œ0;1/g:

We call the modules L�.f / interpolants. The following lemma is immediate:

Lemma 5.1 For all � 2 Œ0;1/:

(i) f �1 has �e1–trivial cokernel.

(ii) If f has �–trivial cokernel, then f �2 has �e2–trivial cokernel.

Remark 5.2 The factorizations (3) dualize in the expected way, yielding factorizations
of the epimorphism M � imf associated to f and a dual version of Lemma 5.1.
However, in this paper, rather than work explicitly with such decompositions of
epimorphisms, we will simply dualize the epimorphisms we encounter to obtain
monomorphisms, and work with the decompositions (3).

Interpolants between free and R�–free modules The remainder of this section is
devoted to the proof of two results describing the structure of the interpolants L�.f / in
special cases. The first of these, Proposition 5.19, tells us that when f is a monomor-
phism of pfd free R2–indexed modules, then L1.f / is also free. This result is a main
step in our proof of the induced matching theorem for free modules (Theorem 6.7).
The second result, Proposition 5.22, is a more technical variant of Proposition 5.19
concerning monomorphisms of R� –free modules. An R� –free module is one obtained
from a pfd free R�Rop –indexed module by setting to 0 all vector spaces below the
diagonal line y D xC 2� ; see Definition 5.20. Proposition 5.22 plays a role in part of
our proof of the block stability theorem analogous that of Proposition 5.19 in the proof
of Theorem 6.7.
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Our strategy for proving Propositions 5.19 and 5.22 centers around the computation of
(multigraded) Betti numbers, standard invariants of Z2–indexed modules in commuta-
tive algebra. The starting point for our approach is the simple observation that the first
Betti number of a finitely generated Z2–indexed module M is 0 if and only if M is free.

Because we work with R2–indexed modules and do not assume our modules to be
finitely generated, our arguments in this section are necessarily somewhat technical.
The reader may find it helpful to consider how these arguments simplify in the finitely
generated, Z2–indexed setting.

5.2 Free 2-D persistence modules and Betti numbers

To prepare for the main results of this section, we review some standard definitions and
facts about 2-D persistence modules. Though we restrict attention to the 2-D setting,
everything we say here in Section 5.2 extends immediately to n-D persistence modules.

Free modules For a 2R2 , define the interval

a WD fb 2R2 j a � bg:

We say an R2–indexed module F is free if there is a multiset �.F / in R2 such that

F Š
M

a2�.F /

I a :

Note that since the barcode B.F / is uniquely defined, the multiset �.F / is unique.

We say an R2–indexed module is finitely generated if it is isomorphic to a quotient of
a free R2–indexed module F with B.F / finite.

Free Z2–indexed modules are defined in the analogous way; for F a free Z2–indexed
module, the invariant �.F / is defined as a multiset in Z2 .

Remark 5.3 Later we shall consider free Rop�R–indexed and R�Rop –indexed
modules. These are the interval-indecomposable modules with barcodes consisting,
respectively, of intervals of the form

.a1; a2/ WD f.b1; b2/ 2R2 j a1 � b1 and a2 � b2g;

.a1; a2/ WD f.b1; b2/ 2R2 j a1 � b1 and a2 � b2g:
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A basis for a free R2–indexed module F is a set W�
S
a2R2 Fa such that any element

m 2 Fd can be uniquely expressed as a finite sum

(4) mD c1'F .d1; d /.w1/C � � �C cl'F .dl ; d /.wl/

for wi 2W\Fdi and scalars ci 2 k . For w 2W\Fa , we write deg.w/D a . Clearly,
a basis exists for any free Rn–indexed module.

We leave the proof of the following as an easy exercise.

Lemma 5.4 If f W M ! N is a monomorphism of free R2–indexed persistence
modules with �–trivial cokernel, then L1.f /D L�.f /.

Lemma 5.5 If f W M ! N is a morphism of finitely generated free R2–indexed
modules, then L1.f /D L�.f / for some finite � .

Proof Since N is finitely generated, there exists b 2 R such that for all t 2 R,
N.a;t/ D 0 whenever a � b . In addition, since M is finitely generated and N is free,
there exists c > b such that 'imf ..d; t/; .d 0; t // is an isomorphism for any t 2 R

whenever c � d � d 0. It is easy to check that L1.f /D Lc�b.f /.

Example 5.6 We give an example of a monomorphism f W M ,!N of free modules
with 2–trivial cokernel and its interpolant L1.f /. The example is illustrated in
Figure 6. Let

M D I .3;1/ ˚ I .2;2/ and N D I .2;0/ ˚ I .0;1/ :

For a � b 2R2 , let j ba W I
b ,! I a denote the inclusion and let f W M ,!N be the

monomorphism given in matrix form by0@j .3;1/.2;0/
j
.2;2/

.2;0/

j
.3;1/

.0;1/
0

1A :
It’s easy to see that L1.f /ŠI .2;1/ ˚I .0;2/ , so L1.f / is indeed free, as guaranteed
by Proposition 5.19 below. Note that, as guaranteed by Lemma 5.4, L1.f /DL2.f /.
Note also that lower edges of the intervals in B.M/ and B.L1.f // lie on the same
horizontal lines, while the left edges the intervals in B.L1.f // and B.N / lie on the
same vertical lines. As shown in Section 6, this is true whenever f is a monomorphism
of free R2–indexed modules with �–trivial cokernel for some finite � .
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.3; 1/

.2; 2/

.2; 0/

.0; 1/ .2; 1/

.0; 2/

.2; 0/

.0; 1/

Figure 6: The barcodes of the free modules M, N and L1.f / of
Example 5.6. Left: the modules M (green) and N (gray outside of the
support of M ). Right: the modules L1.f / (green) and N (gray outside of
the support of L1.f /).

Bigraded modules We define a bigraded module to be a kŒx1; x2�–module M

equipped with a direct sum decomposition as a k–vector space M Š
L
a2Z2Ma

such that the action of kŒx1; x2� on M satisfies xi .Ma/�MaCei for all a 2 Z2 and
i 2 f1; 2g. The bigraded modules form a category, where the morphisms f W M !N

are module homomorphisms such that f .Ma/�Na for all a2Z2 . There is an obvious
isomorphism between VecZ2 and the category of bigraded modules. Thus, we may
regard Z2–indexed modules as modules, in the usual sense.

Minimal resolutions We next give a brief introduction to minimal free resolutions of
finitely generated Z2–indexed persistence modules. For more details, consult [29; 36].

A free resolution of a Z2–indexed module M is an exact sequence

F D � � �
d3
�! F 2

d2
�! F 1

d1
�! F 0

of free Z2–indexed modules with M Š coker d1 . We say F is minimal if im di �

IFi�1 for every i , where I D hx1; x2i is the maximal graded ideal of kŒx1; x2�.

Theorem 5.7 [29, Theorems 19.4 and 20.2] For any finitely generated Z2–indexed
module M :

(i) There exists a minimal free resolution F of M with each F i finitely generated.

(ii) If F and G are minimal free resolutions of M, then there is an isomorphism
F !G inducing the identity map on M.

For the remainder of Section 5.2, let M be a finitely generated Z2–indexed module.
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Betti numbers For i �0 and a2Z2 , we define a nonnegative integer �i .M/a , the i th

Betti number of M at degree a , by choosing a minimal free resolution F for M and
letting �i .M/a be the number of copies of a in �.F i /. It follows from Theorem 5.7(ii)
that this definition of �i .M/a is independent of the choice of F , and is thus well
formed.

Observe that �1.M/a D 0 for all a 2 Z2 if and only if M is free.

A Koszul homology formula For z 2 Z2 , we define the Z2–indexed module M.z/
to be the shift of M by z , exactly as we did for R2–indexed modules in Section 2.2.
For any aD .a1; a2/ 2N2 , we have a short chain complex

(5) M.�a1e1� a2e2/
�a
�!M.�a1e1/˚M.�a2e2/

a
�!M;

where

�ajM.�a1e1�a2e2/.m/D .�x
a2
2 m; x

a1
1 m/; ajM.�aiei /.q/D x

ai
i q:

We will sometimes write �a and a as �aM and aM , respectively. In addition, we
abbreviate �.1;1/ and  .1;1/ by � and  .

The following commutative algebra result tells us that the first Betti number can be
computed locally in terms of  and � :

Theorem 5.8 [30, Proposition 2.7] For any z 2 Z2 ,

�1.M/z D dim ker z=im �z :

Eisenbud [30] establishes Theorem 5.8 in the slightly different setting of Z–graded
kŒx1; x2�–modules, ie where kŒx1; x2� is given the standard grading

deg.xr11 x
r2
2 /D r1C r2:

However, the proof in our case is essentially the same.

Remark 5.9 One can extend the short chain complex (5) to a chain complex whose
i th homology gives the i th Betti number of M for all i � 0. Namely,

�i .M/a D dimHi .M ˝K�/a;

where K� , the Koszul complex, is a minimal free resolution of k as a kŒx1; x2�–module.
For more on this see [30].
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We conclude this subsection with a technical result which will be useful to us later,
leaving the easy proof to the reader:

Lemma 5.10 If M is free, then for any a 2N2 ,

ker aM D im �aM :

5.3 Continuous extensions of discrete persistence modules

We wish to use Theorem 5.8 to study the first Betti numbers of the interpolants L�.f /
in the decomposition (3). However, Theorem 5.8 applies to finitely generated Z2–
indexed modules, whereas the modules L�.f / are R2–indexed and, in the settings of
interest to us, need not be finitely generated. To bridge the gap between the Z2– and
R2–indexed settings, we use left Kan extensions.

Grid functions We define an (injective) 2-D grid to be a function GW Z2!R2 given
by

G.z1; z2/D .G1.z1/;G2.z2//

for strictly increasing functions Gi W Z!R with limi!�1 D�1 and limi!1 D1.

Define flG W R2! im.G/ by

flG.t/Dmaxfs 2 im.G/ j s � tg:

Continuous extensions For G a 2-D grid, we let EG denote the functor

LanG.�/W VecZ2
! VecR2

I

equivalently, but more concretely, we may specify EG as follows:

(1) For M a Z2–indexed persistence module and a; b 2R2 ,

EG.M/a DMy ; 'EG.M/.a; b/D 'M .y; z/;

where y; z 2 Z2 are given by G.y/D flG.a/ and G.z/D flG.b/.

(2) The action of EG on morphisms is the obvious one.

Let
.�/jG W VecR2

! VecZ2

denote the restriction along G.
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support of IJ support of IJ jG support of EG.IJ jG/

Figure 7: The restriction and continuous extension of Example 5.11

Example 5.11 Let G.z/D z for all z 2 Z2 and define rectangles J and K by

J D f.a; b/ j 0:5� a � 2:5; 0:5� b � 2:5g; K D f.a; b/ j 1� a < 3; 1� b < 3g:

Then EG.IJ jG/D IK ; see Figure 7.

Interpolants of a morphism between free modules as continuous extensions

Lemma 5.12 If F is a free R2–indexed module and GW Z2!R2 is a 2-D grid such
that d 2 imG whenever d 2 �.F /, then 'F .flG.a/; a/ is an isomorphism for all a2R2.

Proof Let bD flG.a/. The map 'F .b; a/ is an injection since F is free, so it suffices
to show that 'F .b; a/ is a surjection. Assume that n 2 Fa and n … im'F .b; a/. Then
there must exist d 2 �.F / such that d � a and dl > bl for at least one l 2 f1; 2g.
Assuming l D 1, then the point

b0 D .d1; b2/

is in imG and b < b0 � a , contradicting the maximality of b , and similarly if l D 2.

Proposition 5.13 For f W M !N a morphism of finitely generated free R2–indexed
modules and � 2 Œ0;1/, let

W1 WD fa1 j a 2 �.M/[ �.N /g[ fa1� � j a 2 �.M/g;

W2 WD fa2 j a 2 �.M/[ �.N /g:

If GW Z2!R2 is a 2-D grid whose image contains W1 �W2 , then

L�.f /ŠEG.L
�.f /jG/:

Proof It suffices to show that for all a 2R2 ,

'L�.f /.flG.a/; a/W L
�.f /flG.a/! L�.f /a

is an isomorphism.
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Let bD flG.a/. By Lemma 5.12, 'N .b; a/ is an isomorphism. Moreover, an argument
similar to the proof of Lemma 5.12 shows that 'M .bC�e1; aC�e1/ is an isomorphism:
Let m 2 MaC�e1 and assume that m … im'M .b C �e1; aC �e1/. Then, as above,
there must exist d 2 �.M/ such that d � aC �e1 and dl > .bC �e1/l for at least one
l 2 f1; 2g, contradicting the maximality of b .

Since L�.f / is a submodule of N, the map 'L�.f /.b; a/ is injective. Let n 2
L�.f /a with 'N .a; aC �e1/.n/D f .m/. Since 'N .b; a/ and 'M .bC�e1; aC�e1/
are isomorphisms, there exist n0 2 Nb and m0 2 MbC�e1 with n D 'N .b; a/.n

0/

and m D 'M .b C �e1; a C �e1/.m
0/. The commutativity of f and injectivity of

'N .bC �e1; aC �e1/ imply that 'N .b; bC �e1/.n0/D f .m0/, and thus n0 2L�.f /b .
This shows that 'L�.f /.b; a/ is surjective, and hence an isomorphism.

5.4 Trivial first Betti numbers and freeness of interpolants

Lemma 5.14 For f W M !N and G as in Proposition 5.13:

(i) L�.f /jG is finitely generated.

(ii) �1.L
�.f /jG/z D 0 whenever G.z/ � a � �e1 for some a 2 R2 with fa an

injection.

Proof (i) This holds because L�.f /jG is a submodule of the finitely generated
persistence module N jG ; the standard result that a submodule of a finitely generated
module over a Noetherian ring is itself finitely generated [29] also holds in the bigraded
case.

To prove (ii), let us simplify notation by writing

LD L�.f /jG ; N DN jG ; MDM jG ; fD f jG :

Assume without loss of generality that z D 0. We will prove that �1.L/0 D 0 by
showing that the quotient ker L=im �L of Theorem 5.8 vanishes at 0.

For y 2 Z2 , let yC denote the maximum element of Z2 with G.yC/� G.y/C �e1 .
Note that by Lemma 5.12, for y 2 Z2 and v 2 Ny , we have v 2 Ly if and only if
'N .y; y

C/.v/ 2 im fyC .

Note that, in view of the way we define grid functions, the y–coordinates of 0C and
.�e1/

C are equal, as are the y–coordinates of .�e2/C and .�e1 � e2/C . Symmet-
rically, the x–coordinates of 0C and .�e2/C are equal, as are the x–coordinates of
.�e1/

C and .�e1� e2/C .
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Let b D .0C1 � .�e1/
C
1 ; 0
C
2 � .�e2/

C
2 /, and let

CN D .
b
N /0C W

M
j2f1;2g

N.�ej /C !N0C ;

�CN D .�
b
N /0C W N.�e1�e2/C !

M
j2f1;2g

N.�ej /C :

Define CM and �CM analogously.

In addition, let

'� D
M

j2f1;2g

'N .�ej ; .�ej /
C/W

M
j2f1;2g

N�ej !
M

j2f1;2g

N.�ej /C ;

'�� D 'N .�e1� e2; .�e1� e2/
C/W N�e1�e2 !N.�e1�e2/C ;

f� D
M

j2f1;2g

f.�ej /C W
M

j2f1;2g

M.�ej /C
!

M
j2f1;2g

N.�ej /C ;

f�� D f.�e1�e2/C WM.�e1�e2/C
!N.�e1�e2/C :

Consider the commutative diagram of vector spaces

L�e1�e2
.�L/0

//
� _

��

L
j2f1;2g L�ej

.L/0
//

� _

��

L0� _

��

N�e1�e2
.�N /0

//

'��

��

L
j2f1;2gN�ej

.N /0
//

'�

��

N0� _
'N .0;0

C/

��

N.�e1�e2/C
�
C
N
//
L
j2f1;2gN.�ej /C


C
N
// N0C

M.�e1�e2/C
�
C
M
//

f��

OO

L
j2f1;2gM.�ej /C


C
M
//

f�

OO

M0C

f
0C

OO

We have G.0C/� G.0/C �e1 � a , where the second inequality holds by assumption,
so since fa is an injection and M is free, f0C is an injection as well.

Let l 2 ker .L/0 and observe that l 2 ker N by commutativity of the top-right square.
Thus, since the second row of the diagram is exact by Theorem 5.8, there exists

l 0 2N�e1�e2
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such that �N .l 0/D l . To establish the result, it suffices to show that

l 0 2 L�e1�e2

or, equivalently, that '��.l 0/ 2 im f�� .

There exists m0 2
L
j2f1;2gM.�ej /C

such that f�.m
0/ D '�.l/. By the injectivity

of f0C and the commutativity of the middle-right and bottom-right squares in the
diagram above, m0 2 ker CM . It follows from Lemma 5.10 that the bottom row of the
diagram is exact, so there exists m such that �CM.m/Dm

0 . Moreover, commutativity
of the bottom-left square yields

�CN ı f��.m/D f� ı �
C
M.m/D '�.l/:

On the other hand, from the definition of l 0, we have that

'�.l/D '� ı �N .l
0/D �CN ı'��.l

0/:

The injectivity of �CN implies that f��.m/D '��.l 0/, and (ii) follows.

For M a Z2–indexed or R2–indexed persistence module, we define a presentation
of M to be a morphism ˆW F 1! F 0 of free persistence modules with M Š cokerˆ.
When M is Z2–indexed, we’ll say ˆ is minimal if imˆ� IF0 .

From Lemma 5.14, we obtain the following:

Lemma 5.15

(i) For f W M !N a morphism of finitely generated free R2–indexed modules and
� 2 Œ0;1/, there exists a presentation ˆW F 1! F 0 of L�.f / with F 0 and F 1

finitely generated such that F 1v Š 0 whenever v � a � �e1 for some a 2 R2

with fa an injection.

(ii) In particular, if f is a monomorphism, then L�.f / is free.

Proof For G a 2-D grid as above, Lemma 5.14(i) tells us that L�.f /jG is finitely
generated. Thus, by Theorem 5.7(i) there exists a minimal presentation

ˆ0W G1!G0

for L�.f /jG . The functor EG is easily seen to be exact, so by Proposition 5.13,
applying this functor to ˆ0 yields a presentation

EG.ˆ
0/W E.G1/!E.G0/
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for L�.f /. We take ˆDEG.ˆ
0/ and F i DEG.G

i / for i D 0; 1. Since G0 and G1
are finitely generated, the same is true for F0 and F1 .

If fa is an injection, then in view of Lemma 5.14(ii), G1z Š 0 for all z 2 Z2 with
G.z/� a� �e1 . If v � a� �e1 , then clearly flG.v/� a� �e1 , and we thus have

F 1v Š F
1
flG.v/

ŠG1G�1.flG.v//
Š 0:

This gives (i). (ii) follows immediately from (i).

Persistence modules free below a For a 2R2 , let R2�a denote the subposet of R2

with objects fv 2R2 j v � ag. We say that an R2–indexed module M is free below a

if there exists a free R2–indexed module F such that the restrictions of M and F
to R2�a are isomorphic.

Let M a denote the R2–indexed module for which M a
v DMmin.a;v/ , where

min.a; v/D .min.a1; v1/;min.a2; v2//;

with the internal morphisms in M a induced by those of M. A morphism f W M !N

induces a morphism f aW M a!N a in an obvious way.

We omit the following lemma’s easy proof:

Lemma 5.16 If M is free below a , then M a is free.

Lemma 5.17 For f a morphism of finitely generated free R2–indexed modules,
� 2 Œ0;1/, and a 2R2 with fa an injection, we have that L�.f /a��e1 is free.

Proof For ˆW F 1!F 0 a presentation for L�.f / as in Lemma 5.15(i), the restrictions
of L�.f / and F 0 to R2�a��e1 are isomorphic. Thus, L�.f / is free below a� �e1 .
The result now follows from Lemma 5.16.

Example 5.18 We give an example showing that Lemma 5.17 is sharp, in the sense
that under the hypotheses of the lemma, L�.f /b is not necessarily free for b >a� �e1 .
Let M D I .2;0/ ˚I .0;2/ , N D I .0;0/ and let f W M !N be any morphism whose
restriction to both the first and second summands of M is a monomorphism. Then
L1.f /D I .1;0/ [.0;2/ �N. Note that f.2;2/ is not an injection, but fc is an injection
for any c < .2; 2/. We have that L1.f /.1;2/ is not free, but L1.f /c is free for any
c < .1; 2/.

Here is the first main result of this section; see Example 5.6 and Figure 6 for an
illustration.
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Proposition 5.19 If f W M!N is a monomorphism of pfd free R2–indexed modules,
then L1.f / is free.

Proof For j 2 f0; 1; 2; : : :g, let aj D .j; j /. Note that f aj W M aj ! N aj is
a monomorphism of finitely generated free persistence modules. By Lemma 5.5,
L1.f aj / D L�.f aj / for some finite � . Lemmas 5.15(ii) and 5.16 then imply that
L1.f aj /aj D L1i .f /

aj is free.

Letting Lj WD L1.f /aj , note that there is a canonical monomorphism Lj ,! LjC1 ,
so we may identify Lj with a submodule of LjC1 , and lim

��!
Lj Š L1.f /. We

inductively define a basis Wj for each Lj such that Wj �WjC1 : Take W0 to be any
basis for L0 . Now assume that we have defined Wj . If W 0 is any basis for LjC1 then

W 00 D fw0 2W 0 j deg.w0/� aj g

is a basis for Lj . Hence, WjC1 D Wj [ .W 0 �W 00/ is a basis for LjC1 with
Wj �WjC1 . Clearly,

W0[ .W1�W0/[ .W2�W1/[ � � �

is a basis for lim
��!

Lj , so lim
��!

Lj is free.

5.5 Interpolants of R�–free modules

For � � 0, define an endofunctor R� on VecR�Rop
by

R�.M/.s;t/ D

�
M.s;t/ for all t � s > 2�;
0 otherwise,

with the internal maps 'R�.M/.�;�/ and the action of R� on morphisms defined in
the obvious way. Note that we have a canonical epimorphism M �R�.M/.

Definition 5.20 We say that an R�Rop –indexed module M is R�–free if M Š
R�.FM / for FM a pfd free R�Rop –indexed module.

Observe that an R�–free module M is interval-decomposable, with

B.M/D f.a; b/� j .a; b/ 2 B.FM /; .a; b/� ¤∅g;
where

.a; b/� D f.s; t/ 2 .a; b/ j t � s > 2�gI

see Figure 8.

We omit the easy proof of the following:
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.a; b/ .b� 2�; b/

.a; aC 2�/

Figure 8: An interval .a; b/�

Lemma 5.21 M is R�–free if and only if R�.M/ŠM and there exists a set

W �
[

t�s>2�

M.s;t/

such that for any .s; t/ 2 R2 with t � s > 2� and m 2 M.s;t/ , m can be uniquely
expressed as a linear combination of elements of W, as in (4).

In analogy with the free case, we call the set W above an R� –basis. Finally, we come
to the second main result of this section:

Proposition 5.22 Let f W M !N be a monomorphism of R�–free persistence mod-
ules. Then R3�=2.L�.f // is R3�=2–free.

Proof Let ˛M W M !R�.FM / and ˛N W N !R�.FN / be isomorphisms. The map
˛N ıf ı˛

�1
M W R�.FM /!R�.FN / lifts to a map zf W FM!FN such that the following

diagram commutes:
M

˛M

Š
//

f

��

R�.FM /

R�. zf /
��

FMoooo

zf
��

N
˛N

Š
// R�.FN / FNoooo

Observe that

R3�=2.L
�.f //ŠR3�=2.L

�.R�. zf ///DR3�=2.L
�. zf //;

where the isomorphism on the left follows from commutativity of the left square in the
diagram. Hence, it suffices to show that R3�=2.L�. zf // is R3�=2–free. Our argument
is similar to the proof of Proposition 5.19.

Let aj D .j;�j / for j 2 f0; 1; 2; : : : g. We first show that R3�=2.L�. zf a
j

// is R3�=2–
free. Note that since FM and FN are pfd, zf a

j

W F a
j

M !F a
j

N is a morphism of finitely
generated free persistence modules. By commutativity of the above diagram, R�. zf /
is a monomorphism, ie zf.s;t/ is an injection for t � s > 2� . Further, zf a

j

.s;t/
is also
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.�10; 0/

.�9;�1/
.�4;�1/.�10;�1/

.�10; 0/

Figure 9: Illustration of Example 5.23 in the case � D 1 . Left: the support
of the R� –free persistence modules M (green) and N (gray). Right: the
support of L�.f / .

an injection for t � s > 2� . To see this, note that there exist u � s and v � t with
zf
aj
.s;t/
D zf.u;v/ . We have v�u� t � s > 2� , so zf aj

.s;t/
D zf.u;v/ is injective.

By Lemma 5.15 then, there exists a presentation ˆW F 1! F 0 for L�. zf a
j

/ with F 0

finitely generated such that F 1
.s;t/
D 0 whenever t � s > 3� . Thus, R3�=2.L�. zf a

j

//

is R3�=2–free, as claimed.

For any R�Rop –indexed module Q such that R3�=2.Q/ is R3�=2–free, R3�=2.Qa/
is also R3�=2–free for all a 2R2 : If R3�=2.Q/ŠR3�=2.F / for F pfd and free, then

R3�=2.Q
a/ŠR3�=2.F

a/:

Thus, since R3�=2.L�. zf a
j

// is R3�=2–free, R3�=2.L�. zf a
j

/a
j��e1/ is R3�=2–free

as well. Moreover,

Lj WDR3�=2.L
�. zf /a

j��e1/DR3�=2.L
�. zf a

j

/a
j��e1/;

so Lj is also R3�=2–free.

Note that we have a canonical monomorphism Lj ,! LjC1 and that lim
��!

Lj Š

R3�=2.L
�. zf //. By choosing an R3�=2–basis for each Lj , we may inductively construct

an R3�=2–basis for R3�=2.L�. zf // precisely as in the proof of Proposition 5.19. By
Lemma 5.21 then, R3�=2.L�. zf // is R3�=2–free.

Example 5.23 The previous lemma is tight: Let M D I .�9�;��/� , N D I .�10�;0/� ,
and let f W M!N be any nonzero morphism. Then f is a monomorphism of R� –free
persistence modules, but the persistence module R3�=2�ı.L�.f // is not R3�=2�ı –free
for any ı > 0; see Figure 9.
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6 Induced matching theorem for free multidimensional
persistence modules

Let f W M !N be a morphism of R2–indexed modules. For i 2 f1; 2g, let

o.i/ WD

�
2 if i D 1;
1 if i D 2;

and for a 2R, define the line

T i
a WD ftei C aeo.i/ j t 2Rg:

In Section 6.1, we associate to each such line a morphism xf of 1-D persistence modules
derived from f . When M and N are free, intervals in the barcodes of the domain
and codomain of xf correspond, respectively, to intervals in B.M/ and B.N / with an
edge lying on T i

a . We prove that when f is a monomorphism with �–trivial cokernel,
then so is xf .

In Section 6.2, we use the morphisms xf , together with the decomposition (3) and the
1-D induced matchings of [3], to define the matching

�.f /W B.M/! B.N /

induced by a monomorphism f W M !N of pfd free modules. We use this matching
to formulate our induced matching theorem for free modules.

In Section 6.3, we establish a similar induced matching result for monomorphisms of
R�–free modules.

6.1 Induced morphisms of 1-D persistence modules

For c D .c1; c2/ 2R2 , i 2 f1; 2g and a 2R, we write c <T i
a if co.i/ < a . For M an

R2–indexed module, define the submodule M 00 �M by

(6) M 00b D fm 2Mb jm 2 im'M .c; b/ for some c < T i
ag;

and let M 0 WDM=M 00 . Note that if M is free, then M 0 and M 00 are both free, and

B.M 0/D fc 2 B.M/ j c 6< T i
ag;

B.M 00/D fc 2 B.M/ j c < T i
ag:

Given a morphism f W M !N, we have that f .M 00/�N 00 , so f induces a morphism
f 0W M 0!N 0 . Restricting f 0 to the line T i

a , we obtain a morphism of 1-D persistence
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modules

(7) xf WD f 0jT ia
W M 0jT ia

!N 0jT ia
:

For the next two lemmas, f 0 and xf are understood to be defined with respect to a
fixed choice of a 2R.

Lemma 6.1 If f has �ei –trivial cokernel then xf has �–trivial cokernel.

Proof We show that f 0 has �ei –trivial cokernel; the result then follows by restricting
the indexing poset to T i

a . For any b 2 R2 and n 2 Nb , let Œn� 2 N 0
b

denote the
corresponding coset. Suppose that m 2MbCei satisfies f .m/D 'N .b; bC �ei /.n/.
Then

f 0Œm�D Œf .m/�D Œ'N .b; bC �ei /.n/�D 'N 0.b; bC �ei /Œn�:

Lemma 6.2 Assume that M is free below tei Caeo.i/ (see the end of Section 5) and
that f has �ei –trivial cokernel. If fteiCaeo.i/ is injective, then xft�� is injective. In
particular, if f is a monomorphism of free modules, then xf is a monomorphism.

Proof Let b D .t � �/ei C aeo.i/ . Then xft�� D f 0b , so we need to show that f 0
b

is
injective, ie that for any m 2Mb with fb.m/ 2N 00b , we have m 2M 00

b
.

Since fb.m/ 2N 00b , we have fb.m/D 'N .c; b/.n/ for some c 2R2 with ci � .t ��/,
co.i/ < a and n 2Nc . Let d WD tei C aeo.i/ . Since f has �ei –trivial cokernel, there
exists m0 2M 00cC�ei such that fcC�ei .m

0/D 'N .c; cC �ei /.n/. This, together with
the commutative diagram

Mc Mb Md

Nc Nb Nd

NcC�ei

McC�ei

'M .c;b/

fc

'M .b;d/

fb fd

'N .c;b/

'N .c; cC �ei /

'N .c; d/

'N .b;d/

'N .cC �ei ; d/

fcC�ei 'M .cC �ei ; d/

Algebraic & Geometric Topology, Volume 18 (2018)



Algebraic stability of zigzag persistence modules 3177

yields the chain of equalities

fd ı'M .b; d/.m/D 'N .b; d/ ıfb.m/

D 'N .b; d/ ı'N .c; b/.n/

D 'N .c; d/.n/

D 'N .cC �ei ; d / ı'N .c; cC �ei /.n/

D 'N .cC �ei ; d / ıfcC�ei .m
0/

D fd ı'M .cC �ei ; d /.m
0/:

The injectivity of fd implies

'M .b; d/.m/D 'M .cC �ei ; d /.m
0/:

Since M is free below d , it follows that m 2 im'M .e; b/, where

e Dmin.ci C �; .t � �//ei C co.i/eo.i/:

Since e < T i
a , we thus have m 2M 00

b
, as desired.

The next example shows that the previous proposition is tight.

Example 6.3 Let M D I .0;1/ ˚ I .1;0/ , N D I .0;0/ , and f W M ! N be any
morphism that is injective on each of the summands of M. Then f has e1–trivial
cokernel and f is injective on .t; 1/ for all t < 1. It is easy to see that M 0jT11 Š I

Œ0;1/

and N 0jT11 D 0. Hence xfsW M 0jT11 !N 0jT11
is not injective for any s 2 Œ0;1/.

6.2 Induced matchings of free 2-D persistence modules

For M a pfd R2–indexed module and a 2 R, let B.M I i; a/ WD B.M 0jT ia/. For
f W M !N a morphism of pfd R2–indexed modules, let

�.f I i; a/ WD �. xf /W B.M I i; a/ =! B.N I i; a/;

where �. xf / is the matching induced by xf W M 0jT ia ! N 0jT ia
; see Section 2.3. The

matchings �.f I i; a/ assemble into a matching

(8)
G
a2R

�.f I i; a/W
G
a2R

B.M I i; a/ =!

G
a2R

B.N I i; a/:

Definition 6.4 (direction-i induced matchings) Assume that M and N are free.
We then have a bijection

F
a2R B.M I i; a/! B.M/ matching Œt;1/ 2 B.M I i; a/
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to .tei C aeo.i// 2 B.M/, and similarly for N. By way of these bijections, the
matching (8) induces a matching

�.f I i/W B.M/ =! B.N /:

We call this the direction-i matching induced by f .

Definition 6.5 (induced matchings for monomorphisms of free R2–indexed modules)
Now assume that f W M ,!N is a monomorphism of pfd free R2–indexed persistence
modules. We decompose f as in Section 5.1:

(9) M Š imf
f1
,�! L1.f /

f2
,�!N:

We define �.f /, the matching induced by f , as

�.f / WD �.f2I 2/ ı�.f1I 1/W B.M/ =! B.N /

Example 6.6 Let f W M !N be as in Example 5.6. We have

�.f1I 1/.3; 1/ D .2; 1/ ; �.f1I 1/.2; 2/ D .0; 2/ ;

�.f2I 2/.2; 1/ D .2; 0/ ; �.f2I 2/.0; 2/ D .0; 1/ :

Therefore,
�.f /.3; 1/ D .2; 0/ ; �.f /.2; 2/ D .0; 1/ :

Theorem 6.7 (induced matchings of free modules) Let f W M !N be a monomor-
phism of pfd free R2–indexed modules and assume that �.f /.b /D b0 . Then:

(i) �.f / matches each interval in B.M/ and b0 � b .

(ii) If f has �–trivial cokernel for some � 2 Œ0;1/, then �.f / also matches each
interval in B.N /, and kb� b0k1 � � .

Proof To streamline our exposition, we give the proof of both (i) and (ii) under the
assumption that f has �–trivial cokernel; our argument adapts immediately to give a
proof of (i) in the case that f does not have �–trivial cokernel for any finite � .

L1.f / is free by Proposition 5.19. By Lemma 5.4, L1.f / D L�.f /, so by
Lemma 5.1, for i 2 f1; 2g the inclusion fi has �ei –trivial cokernel. For convenience,
we introduce the notation

L0 WD imf; L1 WD L
1.f / and L2 WDN:
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For a 2R, Lemmas 6.1 and 6.2 imply that

xf D f 0i jT ia
W L0i�1jT ia

! L0i jT ia

is a monomorphism with �–trivial cokernel. From Theorem 2.12 it follows that

�. xf /W B.Li�1I i; a/ =! B.Li I i; a/

is a bijective matching such that �. xf /Œb;1/D Œb0;1/, where b� � � b0 � b . Thus,
the direction-i matching

�.fi I i/W B.Li�1/ =! B.Li /

is bijective and matches .bei C aeo.i// to .b0ei C aeo.i// .

Hence, �.f /W B.M/ =! B.N / is a bijective matching with the desired properties.

We omit the easy proof of the following:

Proposition 6.8 For free R2–indexed modules M and N, a matching � W B.M/ =!

B.N / is an �–matching if and only if it is bijective and for all b 2B.M/, �.b /Db0

with kb� b0k1 � � .

Define a bijection r�W B.N.�//! B.N / by r�.b /D .bC .�; �// .

Corollary 6.9 (isometry theorem for free R2–indexed modules) Pfd free R2–indexed
modules M and N are �–interleaved if and only if there exists an �–matching between
B.M/ and B.N /.

Proof An �–interleaving morphism f W M ! N.�/ is a monomorphism with 2�–
trivial cokernel. By Theorem 6.7(ii), �.f /W B.M/ =! B.N.�// is a bijective matching
such that �.f /.b /D b0 , where b� .2�; 2�/� b0 � b . The composition

r� ı�.f /W B.M/ =! B.N /

is a bijective matching such that for all b 2B.M/, �.b /D b0 with kb�b0k1 < � .
Thus, by Proposition 6.8, r� ı�.f / is an �–matching.

The converse is a special case of Proposition 2.13.

The difficulty of defining induced matchings for free R3–indexed modules An
algebraic stability theorem for free Rn–indexed modules for any n is established in [6],
generalizing our Corollary 6.9. We imagine that Theorem 6.7 can be correspondingly
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generalized to an induced matching theorem for free Rn–indexed modules for any n.
However, the construction of induced matchings given here does not generalize directly
to n� 3. To explain, the decomposition (9) does generalize to a decomposition

M
f1
,�! L11 .f /

f2
,�! � � �

fn�1
,��! L1n�1.f /

fn
,�!N

of a monomorphism f W M ,!N of free Rn–indexed modules, where for a 2Rn and
eŒi� WD e1C � � �C ei ,

L1i .f /a WD fn 2Na j 'N .a; aC �eŒi�/.n/ 2 imf for some � 2 Œ0;1/g;

and each fi is the inclusion. As in the 2-D case, if f has �–trivial cokernel, then each
fi has �ei –trivial cokernel. However, the next example shows that in contrast to the
nD 2 case, L1i .f / needn’t be free for n� 3.

Example 6.10 Take N to be the free R3–indexed module with generators a , b ,
and c at respective grades .1; 0; 0/, .0; 1; 0/, and .0; 0; 1/, and let M �N be the free
submodule generated by

fa� c 2N.1;0;1/; a� b 2N.1;1;0/; a 2N.1;1;1/g;

where by slight abuse of notation, we use the same label for a generator and its image
under an internal map in N. Let f W M ,!N be the inclusion. Then

fa� c 2N.1;0;1/; a� b 2N.1;1;0/; b 2N.0;1;1/; c 2N.0;1;1/g

is a minimal set of generators for L11 .f /; clearly, L11 .f / is not free.

When each L1i .f / is free, the construction of this section does extend to give an
induced matching �.f /W B.M/! B.N / with the desired properties. However, when
one or more of the L1i .f / is not free, the construction breaks down. Thus, a new idea
is needed to extend our definition of induced matchings to free Rn–indexed modules
for n� 3.

6.3 Matchings induced by monomorphisms of R�–free modules

Suppose f W M !N is a morphism of R�–free R�Rop –indexed modules. Then, for
i 2 f1; 2g, we can define the direction-i matching

�.f I i/W B.M/! B.N /

Algebraic & Geometric Topology, Volume 18 (2018)



Algebraic stability of zigzag persistence modules 3181

.a; a/

.b; b/
.a; b/Œb

;a
C
2
�
/

Œa; b� 2�/

Figure 10: An illustration of the matchings (10) for a single choice of interval
in B.M/

in essentially the same way we did for free modules in Definition 6.4. To see this, note
that as illustrated in Figure 10, for an R�–free module M, we may define bijective
matchings

(10)
G
b2R

B.M I 1; b/ =! B.M/;
G
a2R

B.M I 2; a/ =! B.M/

by matching both Œa; b � 2�/ 2 B.M I 1; b/ and Œb; aC 2�/ 2 B.M I 2; a/ to .a; b/� .
The construction of Definition 6.4 now carries over.

Now let f W M !N be a monomorphism of R� –free modules with �–trivial cokernel.
Consider the decomposition of f given by (3):

M Š imf
f1
,�! L

f2
,�!N;

where LD L�.f /.

For the remainder of this section, we write the functor R3�=2 simply as R . Note
that RL WD R.L/ is R3�=2–free by Proposition 5.22. Hence, we have the following
sequence of R3�=2–free modules

RM
Š

Rf
�!R.imf /

Rf1,��!RL
Rf2,��!RN;

where Rf1 and Rf2 have �e1 and �.�e2/–trivial cokernel, respectively. For simplicity,
we let g WDRf1 ıRf and h WDRf2 .

We define �.f /W B.M/ =! B.N /, the matching induced by f , as the composite
matching

(11) B.M/ =! B.RM/
�.gI1/

=���! B.RL/ �.hI2/=���! B.RN/ =! B.N /;

where the matchings B.M/ =! B.RM/ and B.RN/ =! B.N / are the obvious ones, ie
the ones matching each interval .a; b/

3�=2
to .a; b/� .
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Proposition 6.11 The composite matching

� WD �.hI 2/ ı�.gI 1/W B.RM/ =! B.RN/
satisfies:

(1) �..a; b/
3�=2

/D .a0; b0/
3�=2

, where a0 � a � a0C � and b0� � � b � b0.

(2) B.RM/�=2 � coim � and B.RN/� � im � .

Proof First, note that for any R3�=2–free module Q and b 2 R, each interval in
B.QI 1; b/ is of the form Œa; b� 3�/.

Let xg be the morphism of 1-D persistence modules associated to g for the point
be2 2L1 . Then xg has �–trivial cokernel by Lemma 6.1. Further, xgt is an injection for
all t < b�4� by Lemma 6.2, so in particular xg has �–trivial kernel. By Theorem 2.12,
then, the matching

�.xg/W B.RM I 1; b/ =! B.RLI 1; b/
satisfies:

(1) fŒa; b� 3�/ 2 B.RM I 1; b/ j a < b� 4�g � coim�.xg/.

(2) fŒa; b� 3�/ 2 B.RLI 1; b/ j a < b� 4�g � im�.xg/.

(3) �.xg/Œa1; b� 3�/D Œa2; b� 3�/ where a2 � a1 � a2C � .

For Q any R3�=2–free module and .a; b/
3�=2
2 B.Q/, a < b � 4� if and only if

.a; b/
3�=2
2 B.Q/�=2 . Thus, the direction-1 matching �.gI 1/ satisfies:

(1) �.gI 1/..a1; b/3�=2/D .a2; b/3�=2 , where a2 � a1 � a2C � .

(2) B.RM/�=2 � coim�.gI 1/ and B.RL/�=2 � im�.gI 1/.

By the symmetric argument, the direction-2 matching �.hI 2/ satisfies:

(1) �.hI 2/..a; b1/3�=2/D .a; b2/3�=2 , where b2� � � b1 � b2 .

(2) B.RL/�=2 � coim�.hI 2/ and B.RN/�=2 � im�.hI 2/.

It follows that �..a; b/
3�=2

/D .a0; b0/
3�=2

, where a0 � a� a0C � and b0� � � b � b0,
as desired. Moreover,

B.RN/� � �.hI 2/.B.RL/�=2/� �.hI 2/.im�.gI 1/\ coim�.hI 2//D im �;

and
�.gI 1/.B.RM/�=2/� B.RL/�=2 � coim�.hI 2/:

The latter shows that B.RM/�=2 � coim � .
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.�10; 0/

.�9;�1/

y D xC 3

.�4;�1/.�10;�1/
.�10; 0/

y D xC 3

Œ�9;�4/

Œ0
;
�
7
/

y D xC 3
Œ�10;�4/

Œ�
1
;
�
7
/

y D xC 3

Figure 11: The intervals arising in the construction of the induced matching
�.f / of Example 6.13. Top-left: supports of the R1–free modules M
(green) and N (gray). Top-right: support of L WD L1.f / . Bottom-left:
supports of the R3=2–free modules RM (green) and RN (gray); also
shown are B.RM I 1;�1/D fŒ�9;�4/g and B.RN I 2;�10/D fŒ0;�7/g .
Bottom-right: support of the R3=2–free module RL; also shown are
B.RLI 1;�1/D fŒ�10;�4/g and B.RLI 2;�10/D fŒ�1;�7/g .

Corollary 6.12 (induced matchings of R�–free modules) For f W M !N a mono-
morphism of R�–free modules with �–trivial cokernel, the induced matching

�.f /W B.M/ =! B.N /
satisfies:

(1) �..a; b/� /D .a
0; b0/� , where a0 � a � a0C � and b0� � � b � b0.

(2) B.M/� � coim� and B.N / 3
2
� � im�.

Example 6.13 We consider the induced matching �.f / defined above in the case
where f is the monomorphism of R�–free modules of Example 5.23 and � D 1.
Note that f has 1–trivial cokernel. The intervals involved in the construction of the
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matching are illustrated in Figure 11. We see that in this example, the sequence of
matchings (11) defining �.f / is of the form

f.�9;�1/1 g =! f.�9;�1/3=2g
�.gI1/

=���! f.�10;�1/3=2g
�.hI2/

=���! f.�10; 0/3=2g

=! f.�10; 0/1 g:

Thus, each barcode in the sequence consists of a single interval.

We observe that in fact, each matching in this sequence is a bijection, so the same is
true of composition �.f /. This is clearly true for the first and last matchings in the
sequence. As illustrated in Figure 11,G

b2R

B.RM I 1; b/D B.RM I 1;�1/D fŒ�9;�4/g;

G
b2R

B.RLI 1; b/D B.RLI 1;�1/D fŒ�10;�4/g;

G
a2R

B.RLI 2; a/D B.RLI 2;�10/D fŒ�1;�7/g;

G
a2R

B.RN I 2; a/D B.RN I 2;�10/D fŒ0;�7/g:

Thus, we have

�.gI 1;�1/.Œ�9;�4//D Œ�10;�4/ and �.hI 2;�10/.Œ�1;�7//D Œ0;�7/;

so under the bijections of (10) we get the bijective matchings

�.gI 1/..�9;�1/3=2/D .�10;�1/3=2 and �.hI 2/..�10;�1/3=2/D .�10; 0/3=2:

7 Proof of the block stability theorem

In this section, we complete the proof of our main stability result for block-decomposable
modules. Throughout, we regard block-decomposable modules as Rop�R–indexed
modules.

7.1 Decomposition of interleavings

Definition 7.1 For a block-decomposable module M, we choose summands

M o
Š

M
.a;b/BL2B.M/o

I .a;b/BL ; M co
Š

M
ha;biBL2B.M/co

I ha;biBL ;

M oc
Š

M
ha;biBL2B.M/oc

I ha;biBL ; M c
Š

M
ha;biBL2B.M/c

I ha;biBL
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such that M D M o ˚M co ˚M oc ˚M c . For ? 2 fco; oc; c; og, we say M is of
type ? if M is pfd and M DM? .

For f W M !N a morphism of block-decomposable modules and ?; �2 fco; oc; c; og,
let f ?;�W M? ! N � denote the morphism obtained by precomposing f with the
inclusion M? ,!M and postcomposing with the projection N �N � .

Lemma 7.2 For block-decomposable modules M and N, Hom.M?; N �/D 0 when-
ever

.?; �/ 2 f.o; co/; .o; oc/; .o; c/; .co; oc/; .co; c/; .oc; co/; .oc; c/g:

Proof We show that Hom.M o; N co/D 0. Similar arguments apply to the remaining
cases. It suffices to consider the case that M and N are indecomposables. Assume to
the contrary that we have f 2 Hom.I .a;b/BL ; I Œc;d/BL/ with f.x;y/ ¤ 0. Then

a < x � y < b; y < d;

and by choosing x0 < a we obtain the commutative diagram

k D I
.a;b/BL
.x;y/

//

f.x;y/
��

I
.a;b/BL
.x0;y/

D 0

f.x0;y/
��

k D I
Œc;d/BL
.x;y/

id
// I
Œc;d/BL
.x0;y/

D k

contradicting that f.x;y/ ¤ 0. This shows that Hom.I .a;b/BL ; I Œc;d/BL/D 0: The same
argument shows that Hom.I .a;b/BL ; I .�1;d/BL/D 0.

Proposition 7.3 If f W M !N.�/ is an �–interleaving morphism, then so is f ?;? for
any ? 2 fo; co; oc; cg. In particular, f ?;? has 2�–trivial kernel and cokernel.

Proof Let gW N !M.�/ be such that f and g form an �–interleaving. By decom-
posing M and N as in Definition 7.1 and applying Lemma 7.2, we can express f in
matrix form as

f D

2666664
M o M co M oc M c

f o;o f co;o f oc;o f c;o N o.�/

0 f co;co 0 f c;co N co.�/

0 0 f oc;oc f c;oc N oc.�/

0 0 0 f c;c N c.�/

3777775 ;
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and similarly for g.�/. Since g.�/ ı f D '2�Mo ˚'
2�
M co ˚'

2�
Moc ˚'

2�
M c , we may write

g.�/ ıf in matrix form as

g.�/ıf D

2666664
M o M co M oc M c

go;o.�/ıf o;o 0 0 0 M o.2�/

0 gco;co.�/ıf co;co 0 0 M co.2�/

0 0 goc;oc.�/ıf oc;oc 0 M oc.2�/

0 0 0 gc;c.�/ıf c;c M c.2�/

3777775 ;

and the following equality is immediate:

.go;o.�/ ıf o;o/˚ .gco;co.�/ ıf co;co/˚ .goc;oc.�/ ıf oc;oc/˚ .gc;c.�/ ıf c;c/

D '2�Mo ˚'
2�
M co ˚'

2�
Moc ˚'

2�
M c :

The result follows by applying the symmetric argument to the composition f .�/ıg .

Thus, we can study algebraic stability for block-decomposables by considering an
interleaving morphism on each of four subtypes individually.

Remark 7.4 In view of Proposition 7.3, one might wonder whether �–triviality of
the (co)kernel of a morphism f W M !N is inherited by f ?;? for ? 2 fo; co; oc; cg.
In fact, the answer is no: it can be shown that if f W M ! N has �–trivial kernel
and cokernel, then so have the three morphisms f c;c ; f co;co and f oc;oc , and the
morphism f o;o has �–trivial kernel and 2�–trivial cokernel. This result is tight, as
demonstrated by the following example.

Example 7.5 Let M D I .0;��BL˚I Œ3�;4�/BL and N D I .0;4�/BL . Let f1W I .0;��BL!N

and f2W I Œ3�;4�/BL ! N be any two nonzero morphisms and define f .m1; m2/ D
f1.m1/C f2.m2/. Then f has �–trivial kernel and cokernel, but the cokernel of
0DM o!N o DN is 2�–trivial and not ı–trivial for any ı < 2� .

7.2 An induced matching theorem

We establish the block stability theorem (Theorem 3.3) by separating the interleaving
morphism f into its four components via Proposition 7.3, and studying each of them
independently. In fact, Theorem 3.3 is an easy corollary of Proposition 7.3 and the
following result:
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Theorem 7.6 (induced matchings of block-decomposables) For any fixed ? 2

fc; o; co; ocg, let M and N be block-decomposable modules of type ?, and let
f W M !N be a morphism with �–trivial kernel and cokernel. Then we can define an
explicit matching

�.f /W B.M/ =! B.N /

such that for �.f /ha; biBL D ha
0; b0iBL :

(i) If ?D co , then B.M/� � coim�.f /, B.N /� � im�.f / and

a� � � a0 � a; b� � � b0 � b:

(ii) If ?D oc , then B.M/� � coim�.f /, B.N /� � im�.f / and

a � a0 � aC �; b � b0 � bC �:

(iii) If ?D c , then B.M/D coim�.f /, B.N /D im�.f / and

a� � � a0 � a; b � b0 � bC �:

(iv) If ?D o , then B.M/ 5
2
� � coim�.f /, B.N /2� � im�.f / and

a � a0 � aC �; b� � � b0 � b:

Proof of Theorem 3.3 from Theorem 7.6 For Q an Rop�R–indexed module, let
R.Q/ denote the Rop�R–indexed module given by

R.Q/.s;t/ D

�
Q.s;t/ for all t � s � 0;
0 otherwise,

with the internal maps 'R.Q/.�;�/ inherited from Q . We have an obvious morphism
�QW Q!R.Q/.

If M and N are block-decomposable modules, then R.N.�// is block-decomposable.
If f W M ! N.�/ is an �–interleaving morphism, then as mentioned in Remark 2.7,
f has 2�–trivial kernel and cokernel, and the same is true for �N.�/ıf W M!R.N.�//.
By Proposition 7.3 then, for ? 2 fco; oc; c; og, f ?;?W M?!R.N.�//? has 2�–trivial
kernel and cokernel as well.

Let r?� W B.R.N.�///? =! B.N /? be the matching given by

r?� hb; d iBL D

8̂̂̂<̂
ˆ̂:
haC �; bC �iBL if ?D co,
ha� �; b� �iBL if ?D oc,
haC �; b� �iBL if ?D c,
ha� �; bC �iBL if ?D o.
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If ? 2 fco; oc; cg, then r?� is bijective; in the case that ?D o , ro� matches all blocks
of B.R.N.�///o and all blocks .a; b/BL 2 B.N /o with b� a > 2� .

Let �.�N.�/ ı f ?/W B.M/? =! B.R.N.�///? be the matching given by Theorem 7.6.
We define the matching �W B.M/ =! B.N / in the statement of Theorem 3.3 as the
(disjoint) union of the four matchings˚

r?� ı�.�N.�/ ıf
?/W B.M/? =! B.N /? j ? 2 fco; oc; c; og

	
:

By Theorem 7.6, the definitions of the matchings r?� and Lemma 3.1(i), it follows that
� has the desired properties.

The remainder of this section is devoted to the proof of Theorem 7.6. The cases
? 2 fco; ocg can be understood in terms of an equivalence with R–indexed persistence,
whereas our proofs for the cases ? 2 fc; og build on our results for free and R�–free
modules from Section 6.

7.3 Proof of Theorem 7.6(i)–(ii)

As the arguments for Theorem 7.6(i)–(ii) are essentially identical, we will only prove (i).
We shall see that the result follows easily from Theorem 2.12.

Note that if M is of type co , the shift map 'M ..x; y/; .x0; y// is an isomorphism
for all x0 � x . Hence, there is a functorial way to identify M with an R–indexed
module MOrd : Define

MOrd
t WDM.t;t/; 'MOrd.t; t 0/ WD 'M ..t

0; t 0/; .t; t 0//�1 ı'M ..t; t/; .t; t
0//;

and for f W M !N a morphism of modules of type co , define f OrdW MOrd!NOrd

by
f Ord
t WD f.t;t/:

Lemma 7.7 Let M and N be of type co , and let f W M !N have �–trivial kernel
and cokernel. Then f Ord has �–trivial kernel and cokernel.

Proof Since f has �–trivial kernel, 'kerf ..t; t/; .t � �; t C �//D 0, so since

'M ..t; t C �/; .t � �; t C �//

is an isomorphism, we also have

'kerf ..t; t/; .t; t C �//D 0:
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Similarly,

'cokerf ..t; t/; .t; t C �//D 0:

Thus, the two commutative diagrams

kerf Ord
t

��

D
// kerf.t;t/

0

��

cokerf Ord
t

��

D
// cokerf.t;t/

0

��

kerf.t;tC�/

Š

��

cokerf.t;tC�/:

Š

��

kerf Ord
tC� kerf.tC�;tC�/D

oo cokerf Ord
tC� cokerf.tC�;tC�/D

oo

complete the proof.

Proof of Theorem 7.6(i) It is easy to see that for ha; biBL a block of type co ,
.I ha;bi/Ord D I ha;bi , and, more generally, that for any module Q of type co , QOrd ŠL
ha;biBL2B.Q/ I

ha;bi . We therefore have a bijection B.Q/!B.QOrd/ which matches
ha; biBL to ha; bi. For f W M !N a morphism of modules of type co with �–trivial
kernel and cokernel, the matching �.f Ord/W B.MOrd/ =! B.NOrd/ thus induces a
matching �.f /W B.M/ =! B.N /. It follows from Lemma 7.7 and Theorem 2.12 that
�.f / has the desired properties.

7.4 Proof of Theorem 7.6(iii)

Further decomposition of a module of type c To prove Theorem 7.6(iii), we shall
separately match the four types of closed intervals Œa; b�BL , .�1; b�BL; Œa;1/BL and
.�1;1/BL . First, much as we decomposed a block-decomposable module into four
summands in Definition 7.1, we choose a further decomposition of a module M of
type c into four submodules

M DM . /
˚M . �

˚M Œ /
˚M Œ �;

where

M . /
Š

M
.�1;1/BL2B.M/

I .�1;1/BL ; M . �
Š

M
.�1;b�BL2B.M/

I .�1;b�BL ;

M Œ /
Š

M
Œa;1/BL2B.M/

I Œa;1/BL ; M Œ �
Š

M
Œa;b�BL2B.M/

I Œa;b�BL :
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For N of type c and � 2 f. /; . �; Œ /; Œ �g, we let f �W M � ! N � be the morphism
obtained by the composition M � ,!M

f
�! N � N � , where the first morphism is

inclusion and the last is projection.

Proposition 7.8 If f W M !N is a monomorphism with �–trivial cokernel, then so
is f �W M �!N � for � 2 f. /; . �; Œ /; Œ �g.

Proof We shall prove the result for �D . /. The proofs of the three remaining cases
are similar. Using an argument similar to the proof of Lemma 7.2, it is easy to see that
Hom.M . /; N �/D 0 for � 2 f. �; Œ /; Œ �g. Hence, f . / is a monomorphism.

Since cokerf is �–trivial, for any y�x � 2� and n2N ./

.x;y/
, there exists m2M.x;y/

with f .m/D n. Write
mDm. /Cm. �CmŒ /CmŒ �

for m� 2M � . We shall argue that m. � D mŒ / D mŒ � D 0, so that f . /.m. //D n. It
follows that cokerf ./ is �–trivial.

To arrive at a contradiction, assume that mŒ � ¤ 0. By the structure of M Œ �

.x;y/
, we may

choose sufficiently large x0 > y such that for y0 D x0C 2� , we have

(12) 'M ..x; y/; .x; y
0//.mŒ �/ … im'M ..x

0; y0/; .x; y0//:

Consider the unique element n0 2N ./

.x0;y0/
such that

'N ..x
0; y0/; .x; y0//.n0/D 'N ..x; y/; .x; y

0//.n/:

Since cokerf is �–trivial, n0 2 imf . That is, there exists m0 2M.x0;y0/ such that
n0 D f.x0;y0/.m

0/. Hence,

f ı'M ..x
0; y0/; .x; y0//.m0/D 'N ..x

0; y0/; .x; y0//.n0/

D 'N ..x; y/; .x; y
0//.n/

D f ı'M ..x; y/; .x; y
0//.m/:

This, together with the injectivity of f , implies

'M ..x; y/; .x; y
0//.m/D 'M ..x

0; y0/; .x; y0//.m0/:

Letting m0Œ � denote the component of m0 in M Œ �

.x0;y0/
, it follows that

'M ..x; y/; .x; y
0//.mŒ �/D 'M ..x

0; y0/; .x; y0//.m0Œ �/;

contradicting that 'M ..x; y/; .x; y0//.mŒ �/ … im'M ..x
0; y0/; .x; y0//. Thus, mŒ � D 0.

Similarly, one can show that m. � DmŒ / D 0.
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The matching �.f / If M and N are of type c and f W M ! N has �–trivial
kernel and cokernel, then in fact f is a monomorphism. By Proposition 7.8 we may
split f into four monomorphisms f �W M �! N � with �–trivial cokernel. We take
the matching �.f /W B.M/ =! B.N / to be the disjoint union of four matchings˚

�.f �/W B.M �/ =! B.N �/ j � 2 f . /; . �; Œ /; Œ � g
	
:

For � 2 f . /; . �; Œ / g we define the matching �.f �/ as follows:

. / A morphism between M . / and N . / is a monomorphism with �–trivial cokernel
if and only if it is an isomorphism. Thus, B.M . //D B.N . //; we take �.f . //
to be the identity.

Œ / 'M Œ /..x; y/; .x0; y// is an isomorphism for all x0 � x , and similarly for N Œ / ,
so we may define the matching �.f Œ // in essentially the same way we defined
the induced matching of Theorem 7.6(i). The same argument used to prove
Theorem 7.6(i) shows that �.f Œ // is bijective, and that if �.f Œ //Œa;1/BL D

Œa0;1/BL , then a� � � a0 � a .

. � We define �.f . �/ in essentially the same way as for �.f Œ //. �.f . �/ is bijective,
and if �.f Œ //.1; b�BL D .1; b

0�BL , then b� � � b0 � b .

To finish the proof of Theorem 7.6(iii), it remains to define the matching �.f Œ �/ and
verify that if �.f Œ //Œa; b�BL D Œa

0; b0�BL , then

a � a0 � aC � and b� � � b0 � b:

In what follows, we define �.f Œ �/ via the induced matching construction for free 2-D
persistence modules of Section 6.2.

The matching �.f Œ �/ Letting eW U ,!Rop �R denote the inclusion, we define an
endofunctor

 �

.�/ on VecRop�R by

 �

.�/ WD Rane.�/ ı .�/jU :

Thus, for .s; t/ 2R2 and
 ��

.s; t/�U given by

 ��

.s; t/ WD f.x; y/ 2U j x � s; y � tg;

we have
 �

M.s;t/ D lim
 ��

M j  �
.s;t/

for any Rop�R–indexed module M.

Algebraic & Geometric Topology, Volume 18 (2018)



3192 Magnus Bakke Botnan and Michael Lesnick

I Œa;b�BL

.a; a/

.b; b/

.b; a/

Figure 12: The image under
 �

.�/ of the block module I Œa;b�BL (in light gray)
is a free module with a single generator at .b; a/ .

Properties of
 �
.�/ on modules of type cŒ � The following lemma is illustrated by

Figure 12; we omit the proof.

Lemma 7.9 For any a; b 2R, we have
 �����

I Œa;b�BL Š I .b;a/ :

We say a module M is of type cŒ � if M is of type c and M DM Œ � .

Lemma 7.10 For each module M of type cŒ � ,
 �

M is pfd.

Proof For .s; t/ 2 R2 , let v D .v1; v2/, where v1 D min.s; t/ and v2 D max.s; t/.
Note that for a; b 2 R, if .s; t/ 2 .b; a/ , then v 2 Œa; b�BL . In view of Lemma 7.9,
then, it follows that

dim
� M

J2B.M/

 �

IJ
�
.s;t/

� dim
� M

J2B.M/

IJ
�
v

D dimMv <1:

Thus,
L

J2B.M/

 �

IJ is pfd. Since M is also pfd, it follows from Remark 2.17 that

(13)
 �

M Š

 ������������ M
J2B.M/

IJ
�
Š

M
J2B.M/

 �

IJ :

In particular,
 �

M is pfd.

Proposition 7.11 If M is of type cŒ � , then
 �

M is a free Rop�R–indexed module and

B.
 �

M/D f.b; a/ j Œa; b�BL 2 B.M/g:

Proof This follows immediately from Lemma 7.9 and (13).
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Proposition 7.12 If M and N are of type cŒ � and gW M ! N is a monomorphism
with �–trivial cokernel, then EgW

 �

M !
 �

N is a monomorphism with �–trivial cokernel.

Proof We need to show that for each .s; t/ 2R2 , Eg.s;t/ is an injection, and

im' EN ..s; t/; .s� �; t C �//� im Eg.s��;tC�/:

First, assume that s � t . The universality of limits yields canonical isomorphisms such
that the following diagram commutes:

M.s��;tC�/

g.s��;tC�/

��

Š

++

M.s;t/
oo

Š
//

g.s;t/

��

 �

M.s;t/
//

Eg.s;t/
��

 �

M.s��;tC�/

Eg.s��;tC�/
��

N.s��;tC�/
Š

33
N.s;t/oo

Š
//
 �

N.s;t/ //
 �

N.s��;tC�/

It follows that Eg.s;t/ and ' EN ..s; t/; .s� �; t C �// have the required properties.

Next we consider the case s > t . If Eg.s;t/.m/D 0 then

Eg.t;s/ ı' EM ..s; t/; .t; s//.m/D 0

by commutativity. By the case s � t considered above and Proposition 7.11, the two
morphisms in the latter composition are injective, so mD 0. Hence, Eg.s;t/ is injective.

Let n 2 EN .s;t/ and observe that there exist m1 2
 �

M.t��;tC�/ and m2 2
 �

M.s��;sC�/

such that

Eg.m1/D
�
' EN ..t; t/; .t � �; t C �// ı' EN ..s; t/; .t; t//

�
.n/;

Eg.m2/D
�
' EN ..s; s/; .s� �; sC �// ı' EN ..s; t/; .s; s//

�
.n/:

This is true because Eg has �–trivial cokernel when restricted to indices .s0; t 0/ for
which s0 � t 0.

As
 �

M is free and Eg.t��;sC�/ is an injection, there exists an element m 2
 �

M.s��;tC�/

such that
' EM ..s� �; t C �/; .t � �; t C �//.m/Dm1;

' EM ..s� �; t C �/; .s� �; sC �//.m/Dm2:

Hence, Eg.m/D ' EN ..s; t/; .s��; tC�//.n/ by commutativity and the injectivity of the
internal maps in EN .
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Completion of the proof of Theorem 7.6(iii) Propositions 7.11 and 7.12 assure that
 �

f Œ �W
 ��

M Œ �
!

 �

N Œ �

is a monomorphism of free Rop�R–indexed modules with �–trivial cokernel. By
Theorem 6.7(ii),

�.
 �

f Œ �/W B.
 ��

M Œ �/ =! B.
 �

N Œ �/

is a bijective matching such that if

�.
 �

f Œ �/..a; b/ /D .a0; b0/ ;

then
a � a0 � aC � and b� � � b0 � b:

By Proposition 7.11, �.
 �

f Œ �/ induces a bijective matching �.f Œ �/W B.M Œ �/ =! B.N Œ �/

such that if
�.f Œ �/Œa; b�BL D Œa

0; b0�BL;

then
a � a0 � aC � and b� � � b0 � b:

7.5 Proof of Theorem 7.6(iv)

To prove Theorem 7.6(iv), we apply the induced matching theorem for R� –free modules
in a way analogous to the way we applied the induced matching theorem for free 2-D
persistence modules in the proof of Theorem 7.6(iii). First, we define a functor X�
sending each module of type o to an R�–free module.

Definition of X� Let us extend .Rop � R/ � f0; 1g to a poset D with the same
underlying set by adding an arrow .v; 0/! .w; 1/ if and only if v <w . For i 2 f0; 1g,
let

�i W R
op
�R ,!D

denote the obvious map sending R�Rop to R�Rop � fig. We define
�!

.�/ WD .�/j�1 ıLan�0.�/:

Thus, for .s; t/ 2R2 and
��!

.s; t/�Rop �R given by
��!

.s; t/ WD f.x; y/ j s < x and y < tg;

we have
�!

M.s;t/ D lim
��!

M j �!
.s;t/

for any Rop�R–indexed persistence module M ; the
internal maps of

�!

M are given by the universality of colimits.
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Define
X� WDR� ı .�/

�
ı
�!

.�/;

where
.�/�W VecRop�R

! VecR�Rop

denotes the dualization functor of Section 2.4.

Properties of X� on modules of type o

Lemma 7.13 For M of type o , ı > 0 and .s; t/ 2 R2 , there are a finite number of
blocks .a; b/BL 2 B.M/ such that a � s , b � t and b� a � ı .

Proof Let #.s; t/ denote the number of blocks .a; b/BL with the specified properties.
It is easy to check that since M.s;s/ is finite-dimensional for all s 2R, each #.s; s/ is
finite. If s < t , then

#.s; t/� #
�
1
2
.sC t /; 1

2
.sC t /

�
<1:

If s > t , then, choosing a positive integer l such that min.s; t/C lı >max.s; t/, we
have

#.s; t/�
lX
iD0

#.min.s; t/C iı;min.s; t/C iı/ <1:

Proposition 7.14 If M is of type o and ı > 0, then Xı.M/ is Rı –free and

B.Xı.M//D f.a; b/ı j .a; b/BL 2 B.M/ıg:

Proof As illustrated in Figure 13, Xı.I .a;b/BL/ D I .a;b/ı for all a < b 2 R. By
Proposition 2.16(i), Lan�0.�/ preserves direct sums. Clearly, .�/j�1 , .�/� and Rı
also preserve direct sums, so the composition Xı preserves direct sums as well. Hence,

Xı.M/Š
M

.a;b/BL2B.M/ı

Xı.I
.a;b/BL/D

M
.a;b/BL2B.M/ı

I .a;b/ı :

Thus, B.Xı.M// is as claimed.

To see that Xı.M/ is Rı –free, let

F WD
M

.a;b/BL2B.M/ı

I .a;b/ :

F is pfd by Lemma 7.13 , so since Xı.M/ŠRı.F /, the result follows.
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.a; a/

.b; b/

I .a;b/BL

.a; a/

.b; b/

�����!

I .a;b/BL

.a� 2ı; b/

.a; bC 2ı/

Xı.I
.a;b/BL/D I .a;b/ı

Figure 13: Applying Xı.�/ to I .a;b/BL

Lemma 7.15 Let M and N be of type o , and let f W M ! N be a morphism with
�–trivial cokernel. Then f is surjective at all indices .s; t/ for which t � s � 2� .

Proof Observe that 'N ..s0; t 0/; .s; t// is surjective whenever t 0�s0 � 0. If n 2N.s;t/
is not in the image of f , then neither is any element in

'N
��
1
2
.sC t /; 1

2
.sC t /

�
; .s; t/

��1
.n/¤∅;

contradicting that f has �–trivial cokernel.

Proposition 7.16 If M and N are of type o and f W M ! N has �–trivial kernel
and cokernel, then X�.f / is a monomorphism with �–trivial cokernel.

Proof It follows from Lemma 7.13 that for any module Q of type o and .s; t/ 2R2 ,
there exists a � > 0 such that 'Q..sC�; t ��/; .sC�0; t ��0// is an isomorphism for
all 0 < �0 � �. In particular, the natural map Q.sC�;t��/! EQ.s;t/ is an isomorphism.
Applying this observation four times, we find that there exists � > 0 such that the
leftmost and rightmost horizontal maps are isomorphisms in the following commutative
diagram:

M.s��C�;t����/

f.s��C�;t����/

��

Š //
�!

M.s��;tC�/

Ef.s��;tC�/
��

�!

M.s;t/
oo

Ef.s;t/
��

M.sC�;t��/
Šoo

f.sC�;t��/

��

rr

N.s��C�;t����/
Š //

�!

N.s��;tC�/
�!

N.s;t/oo N.s��;tC�/
Šoo

ll

This shows that Ef has �–trivial kernel, and by Lemma 7.15, that Ef.s;t/ is surjective at
all indices satisfying t � s > 2� . The result now follows from Proposition 2.8.

Algebraic & Geometric Topology, Volume 18 (2018)



Algebraic stability of zigzag persistence modules 3197

Proof of Theorem 7.6(iv) Suppose M and N are of type o and f W M ! N has
�–trivial kernel and cokernel. By Propositions 7.14 and 7.16,

X�.f /W X�.N /!X�.M/

is a monomorphism of R�–free persistence modules with �–trivial cokernel. By
Corollary 6.12 and Proposition 7.14, we obtain matchings

B.M/ =! B.X�.M// =! B.X�.N // =! B.N /:

The composition of these is our desired matching.

8 Stability of almost-block-decomposable modules

In this section, we present a simple extension of the block stability theorem to a
slightly more general classes of modules, and discuss an application to the stability of
(inter)level set persistent homology.

Recall our definition of a block from Section 3. We define an almost-block J to be an
interval in U for which there exists a block JBL such that dI .IJ ; IJBL/D 0. Some
almost-blocks which are not blocks are shown in Figure 14. We say M is almost-
block-decomposable if M is interval-decomposable, with each interval in B.M/ an
almost-block.

Corollary 8.1 (almost-block stability) For pfd almost-block-decomposable modules
M and N,

dI .M;N /� db.B.M/;B.N //� 5
2
dI .M;N /:

Sketch of proof For any ı > 0, there exist pfd block-decomposable modules M 0

and N 0 with

dI .M;M
0/; dI .N;N

0/; db.M;M
0/; db.N;N

0/� ı:

.a; a/

.b; b/

.a; a/

.b; b/

.a; a/

.b; b/

.a; a/

.b; b/

Figure 14: Four almost-blocks that are not blocks
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Given this, the inequality db.B.M/;B.N //� 5
2
dI .M;N / follows easily from Theorem

3.3 together with the triangle inequalities for dI and db .

It follows from Proposition 2.13 that dI .M;N /� db.B.M/;B.N //.

Almost-block stability and interlevel set persistent homology Almost-block-de-
composable persistence modules can arise as the interlevel set persistent homology of
non-Morse functions, as the following example illustrates:

Example 8.2 The function  W .0; 1/! R given by .t/ D t is not of Morse type.
H0.S.// is almost-block-decomposable but not block-decomposable; B.H0.S.///
consists of a single interval J with db.J ; Œ0; 1�BL/D 0.

In fact, we hypothesize that Theorem 4.7(i) generalizes as follows:

Conjecture 8.3 For any topological space T and continuous function  W T !R, if
Hi .S.// is pfd then it is almost-block-decomposable.

If Conjecture 8.3 is true, then the definition of level set barcodes of Section 4.2 extends
to any R–valued function with pfd interlevel set homology, and a stability result
for the interlevel and level set barcodes of such functions follows immediately from
Corollary 8.1.

Remark 8.4 In [14], Carlsson, de Silva, Kališnik and Morozov use the formalism of
rectangle measures [20] to define level set barcodes of R–valued functions in a general
setting, and establish a stability result for these barcodes. Conjecture 8.3 is inspired by
discussions with de Silva and Kališnik about that work.

Remark 8.5 Subsequent to the first iteration of this paper, Cochoy and Oudot [22]
have established a structure theorem for a certain class of 2-D persistence modules
which yields as corollaries two variants of Conjecture 8.3:

(i) Let S./ı be the U –indexed module given by S./ı
.a;b/
WD�1..a; b// if a<b ,

and S./ı
.a;b/
D 0 otherwise. Then Hi .S./ı/ is almost-block-decomposable.

(ii) Let M be the U –indexed module obtained from Hi .S.// by setting to 0 each
vector space on the diagonal line yDx . Then M is almost-block-decomposable.
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9 Discussion

Towards a general theory of algebraic stability In this paper, we have introduced
an algebraic stability theorem for block-decomposable modules which, as an easy
corollary, yields a stability result for zigzag modules. It is natural to ask whether our
results generalize to an algebraic stability theorem for arbitrary interval-decomposable
Rn–indexed modules. In answer to this question, the following example shows that for
interval-decomposable R2–indexed modules M and N, the ratio

db.B.M/;B.N //
dI .M;N /

can be arbitrarily large.

Example 9.1 For fixed a � 0, let J1 � R2 be the polygonal interval whose outer
edge is specified by the sequence of vertices

.5;�a/; .9C a;�a/; .9C a; 4/; .6; 4/; .6; 6/;

.4; 6/; .4; 9C a/; .�a; 9C a/; .�a; 5/; .5; 5/:

Let J2 be the square interval with vertices .6; 1�a/, .10Ca; 1�a/, .10Ca; 5/; .6; 5/,
and let J3 be the square with vertices .1� a; 6/, .5; 6/, .5; 10C a/, .1� a; 10C a/;
see Figure 15. For M D IJ1 and N D IJ2 ˚ IJ3 , we have

dI .M;N /D 1; db.B.M/;B.M//D 2C 1
2
a:

Example 9.1 makes clear that to formulate a general algebraic stability result for
interval-decomposable Rn–indexed modules, we need either to constrain the shape
of the intervals in our barcodes, or to work with a distance on barcodes other than the
bottleneck distance.

Let us say an R2–indexed module M is rectangle-decomposable if M is interval-
decomposable and B.M/ is a collection of rectangles. A preliminary version of this
paper [7] conjectured that the isometry theorem holds for interval-decomposable Rn–
indexed modules whose barcodes consist of convex intervals. However, Bjerkevik has
subsequently given an example of rectangle-decomposable R2–indexed modules M
and N with

db.B.M/;B.N //D 3dI .M;N /;

disproving the conjecture [6]. We thus weaken the conjecture as follows:
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J3

J2

J1

Figure 15: An illustration of Example 9.1 in the case aD 0

Conjecture 9.2 (generalized algebraic stability) For each n 2 f1; 2; : : :g, there is a
constant cn such that for M and N interval-decomposable Rn–indexed modules with
each interval in B.M/ and B.N / convex, we have

db.B.M/;B.N //� cn dI .M;N /:

Bjerkevik [6] provides positive answers to this conjecture in the case of free and
rectangle-decomposable modules, using arguments similar to the one used there to
strengthen the block stability theorem.

Single morphism algebraic stability We have proven the block stability theorem by
way of an induced matching result for block-decomposable modules, Theorem 7.6.
While Theorem 7.6(i)–(iii) are tight, Theorem 7.6(iv) (concerning modules of type o) is
not tight: A simple application of the tight form of the block stability theorem appearing
in [6] gives that under the assumptions of Theorem 7.6(iv), there exists a 2–matching
between the barcodes in question; this improves on the constant of 5

2
appearing in

Theorem 7.6(iv), albeit with matchings that are not explicitly given. On the other hand,
for modules of type o , the best lower bound we know for single morphism algebraic
stability is 3

2
. The problem of establishing a tight single morphism algebraic stability

result for block-decomposable modules thus remains open. The same problem is also
of interest for more general interval-decomposable Rn–indexed modules.

As with the proof of the induced matching theorem in 1-D given in [3], we have proven
Theorem 7.6(iv) by factoring a morphism of block-decomposable persistence modules
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into morphisms with simpler structure, and then defining induced matchings for each
of the factors. We wonder whether this strategy could be pushed further to yield
stronger, more general single morphism stability results. The central difficulty is that
the interpolating modules one obtains via our factorization are typically not interval-
decomposable. In our study of block-decomposable modules, we have circumvented
this issue by working with certain truncations of the interpolating modules which are
interval-decomposable.

A potential alternative strategy would be to avoid truncation, and instead perturb our
morphism f W M ! N to obtain another morphism f 0W M ! N whose associated
interpolants are interval-decomposable, while controlling the persistence of kerf 0

and cokerf 0. It seems plausible that such an approach could yield stronger and more
general results.
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