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Hyperplanes of Squier’s cube complexes

ANTHONY GENEVOIS

To any semigroup presentation P D h† j Ri and base word w 2 †C may be
associated a nonpositively curved cube complex S.P; w/ , called a Squier complex,
whose underlying graph consists of the words of †C equal to w modulo P , where
two such words are linked by an edge when one can be transformed into the other
by applying a relation of R . A group is a diagram group if it is the fundamental
group of a Squier complex. We describe hyperplanes in these cube complexes. As
a first application, we determine exactly when S.P; w/ is a special cube complex,
as defined by Haglund and Wise, so that the associated diagram group embeds into
a right-angled Artin group. A particular feature of Squier complexes is that the
intersections of hyperplanes are “ordered” by a relation � . As a strong consequence
on the geometry of S.P; w/ , we deduce, in finite dimensions, that its universal
cover isometrically embeds into a product of finitely many trees with respect to the
combinatorial metrics; in particular, we notice that (often) this allows us to embed
quasi-isometrically the associated diagram group into a product of finitely many
trees, giving information on its asymptotic dimension and its uniform Hilbert space
compression. Finally, we exhibit a class of hyperplanes inducing a decomposition
of S.P; w/ as a graph of spaces, and a fortiori a decomposition of the associated
diagram group as a graph of groups, giving a new method to compute presentations of
diagram groups. As an application, we associate a semigroup presentation P.�/ to
any finite interval graph � , and we prove that the diagram group associated to P.�/
(for a given base word) is isomorphic to the right-angled Artin group A.�/ . This
result has many consequences on the study of subgroups of diagram groups. In
particular, we deduce that, for all n� 1 , the right-angled Artin group A.Cn/ embeds
into a diagram group, answering a question of Guba and Sapir.
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1 Introduction

Given a class of groups, an interesting question raised by Wise is: May these groups
be cubulated, that is, do they act nicely on a CAT.0/ cube complex? A positive
answer yields interesting properties, depending on the action we find. In particular,
cubulating hyperbolic 3–manifold groups was the key point in proving the virtual Haken
conjecture; see Agol [1]. Known cubulated groups include, in particular, Coxeter groups
(see Niblo and Reeves [26]), Artin groups of type FC (see Charney and Davis [9]),
small cancellation groups (see Wise [34]), one-relator groups with torsion (see Lauer
and Wise [23]) and free-by-cyclic groups (see Hagen and Wise [18]). The so-called
diagram groups, mainly studied by Guba and Sapir, were cubulated by Farley [12].

A simple definition is the following: Let P D h† j Ri be a semigroup presentation
and w 2†C a base word. We define the Squier complex S.P; w/ as the cube complex
whose vertices are the words of †C equal to w modulo P ; whose edges, written
.a; u! v; b/, link two words aub and avb if uD v 2R; and whose n–cubes are
similarly associated to the notation

.a1; u1! v1; : : : ; an; un! vn; anC1/:

Then, the diagram group D.P; w/ is defined as the fundamental group of S.P; w/.

Although Squier complexes turn out to be nonpositively curved, diagram groups have
not been studied from the point of view of CAT.0/ cube complexes. This approach
turned out to be the key to the solution of the conjecture of Guba and Sapir that a finitely
generated diagram group with no subgroup isomorphic to Z2 is free; see Genevois [13].
In this article, we pursue the geometric analysis of diagram groups focussing on the
hyperplanes of their Squier complexes.

The first question we are interested in is (see Section 2 for precise definitions):

Question 1.1 When is a diagram group the fundamental group of a (compact) special
cube complex?

According to Haglund and Wise [20], consequences of this property include linearity
and separability of some subgroups. Therefore, a natural problem is to determine when
Squier complexes are special. A precise answer is given by our first result:

Theorem 1.2 Let P D h† j Ri be a semigroup presentation and w0 2 †
C a base

word. Then, the following assertions are equivalent:
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(i) S.P; w0/ is clean.

(ii) S.P; w0/ has no self-intersecting hyperplanes.

(iii) There are no words a; b; p 2 †C such that w0 D ab , a D ap and b D pb

modulo P with Œp�P ¤ fpg.

Moreover, S.P; w0/ is special if and only if it satisfies the conditions above and the
following one:

(iv) There are no words a; u; v; w; b; p; q; � 2 †C such that w0 D auvwb , au D
au.v�/ and wb D .�v/wb modulo P and uv D p; vw D q 2R.

In particular, any compact Squier complex is special. Another geometric property
specific to Squier complexes is that the intersections of hyperplanes are “ordered”.
Roughly speaking, we say that, inside a square .a; u!v; b; p!q; c/, the hyperplane
J1 dual to the edge .a; u ! v; bpc/ meets the hyperplane J2 dual to the edge
.aub; p! q; c/ by the left; we write J1 � J2 .

Proposition 1.3 The relation � satisfies the following properties:

� If J1 � J2 and J2 � J3 , then J1 � J3 .

� J1 and J2 are comparable with respect to � if and only if they intersect.

� maxfn� 0 j there exist J1; : : : ; Jn such that J1 � � � � � Jng D dimS.P; w/.

In our opinion, this result is of independent interest and is probably fundamental in
the cubical geometry of diagram groups. For instance, it is not difficult to deduce
that the transversality graphs of Squier complexes do not contain induced cycles of
odd length greater than 5 (Corollary 4.5), restricting the class of Squier complexes
among nonpositively curved cube complexes. In the finite-dimensional case, we use
the relation � to prove:

Theorem 1.4 Let X.P; w/ be the universal cover of S.P; w/. If d D dimS.P; w/
is finite, then X.P; w/ isometrically embeds into a product of d trees with respect to
the combinatorial metrics.

Thus, the second question we are interested in is:

Question 1.5 When does a finitely generated diagram group quasi-isometrically embed
into the product of finitely many trees?
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A positive answer to this question gives information on the asymptotic geometry of the
group: it bounds the asymptotic dimension, the dimensions of the asymptotic cones
and the uniform Hilbert space compression. Many groups are known to be quasi-
isometrically embeddable into a product of finitely many trees, such as hyperbolic
groups (see Buyalo, Dranishnikov and Schroeder [7]), some relatively hyperbolic groups
(see Mackay and Sisto [24]), mapping class groups (see Hume [21]) and virtually special
groups. On the other hand, Thompson’s group F , the discrete Heisenberg group and
wreath products are known for not satisfying this property; see Pauls [29]. In particular,
since Thompson’s group F and several wreath products are diagram groups, the
property we are considering does not hold for all diagram groups. We deduce a partial
answer to the question above thanks to the previous theorem, provided that Property B
(see Definition 4.9), introduced in Arzhantseva, Guba and Sapir [2], is satisfied:

Theorem 1.6 Suppose that S.P; w/ is finite-dimensional and D.P; w/ is finitely
generated. If D.P; w/ satisfies Property B, then it quasi-isometrically embeds into a
product of dimS.P; w/ trees.

Finally, we introduce a family of hyperplanes in S.P; w/ which induces a decompo-
sition of S.P; w/ as a graph of spaces; see Theorem 5.8 for a precise statement. In
particular, this gives a decomposition of the associated diagram group D.P; w/ as a
graph of groups. In fact, we already used a similar splitting in [13].

As an application, we will identify new diagram groups among the class of right-angled
Artin groups.

Definition 1.7 Let � be a simplicial graph. Let V.�/ (resp. E.�/) denote its set
of vertices (resp. edges). Then, we define the right-angled Artin group A.�/ by the
presentation

A.�/D hv 2 V.�/ j Œu; v�D 1; .u; v/ 2E.�/i:

Determining for which graph � the right-angled Artin group A.�/ is a diagram group
is a wide-open problem. However, Guba and Sapir proved the following results:

Theorem 1.8 [17, Theorem 7.8] Let T be a finite tree. Then A.T / is a diagram
group.

Theorem 1.9 [15, Theorem 30] Let Cn be a cycle of length n. Then A.Cn/ is not
a diagram group when n� 5 is odd.
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Figure 1: P5 is an interval graph.

However, it is not even known whether A.Cn/ is a diagram group when n� 6 is even.
In fact, Guba and Sapir asked [15, Problem 7] whether A.Cn/ may be a subgroup of a
diagram group; we answer the question below.

In our application, we will be interested in the following specific family of graphs:

Definition 1.10 To any collection C of intervals on the real line is associated a
graph �.C/ whose set of vertices is C and whose edges link two intersecting intervals.
We say that �.C/ is an interval graph.

For example, the graph Pn , which denotes a path of length n, is an interval graph.
Figure 1 gives a collection of intervals whose associated interval graph is P5 .

In the following, we will be interested in complements of interval graphs. Given a
graph � , we define its complement � as the graph whose vertices are the same as
those of � and whose edges link two vertices not linked by an edge in � . Therefore,
the complement of �.C/ will be the graph whose set of vertices is C and whose edges
link two disjoint intervals.

Theorem 1.11 Let � be a finite interval graph. Then the right-angled Artin group
A.�/ is a diagram group.

It is not difficult to prove that the graph � cannot contain an induced path of length
three, so that Theorems 1.11 and 1.8 essentially apply to different cases. Below, we
mention several consequences of Theorem 1.11. It is worth noticing that it follows
from Guba and Sapir [17, Theorem 5.2] that the right-angled Artin groups considered
by Theorem 1.11 are subgroups of diagram groups, so that our next corollaries also
follow from [17]. First of all, we answer [15, Problem 7].

Corollary 1.12 For all n� 1, A.Cn/ is a subgroup of a diagram group.
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Proof Since P7 is an interval graph, we deduce from Theorem 1.11 that A.P7/ is a dia-
gram group. Then, according to Casals-Ruiz, Duncan and Kazachkov [8, Corollary 4.4],
A.Cn/ embeds into A.P7/ for all n � 5, so that the conclusion follows in this case.
Finally, if n� 4, A.Cn/ is a diagram group.

From the fact that A.P2.6// (see Example 5.17) embeds into a diagram group, it is
deduced in Crisp, Sageev and Sapir [10, Section 8] that a diagram group may contain a
hyperbolic surface group. This result is of interest because it proves that a diagram
group may contain a subgroup whose first homology group has torsion or a hyperbolic
subgroup which is not free; these are natural questions appearing in [16]. Here, we are
able to prove:

Corollary 1.13 The fundamental group of a compact surface of even Euler character-
istic at most �2 embeds into a diagram group.

Proof According to [8, Corollary 4.5], such a fundamental group embeds into A.C5/.
We conclude thanks to Corollary 1.12.

In particular, every orientable surface group embeds into a diagram group, answering
a question of Guba and Sapir [14, Section 17.3]. Finally, we are able to give new
counterexamples to the subgroup conjecture, ie examples of subgroups of diagram
groups which are not diagram groups themselves (see Guba and Sapir [15] for the first
known counterexamples).

Corollary 1.14 For all odd n� 5, A.Cn/ embeds into a diagram group but is not a
diagram group itself.

Proof This is a consequence of Corollary 1.12 and Theorem 1.9.

Corollary 1.15 The fundamental group of a hyperbolic closed surface of even Euler
characteristic at most �2 embeds into a diagram group but is not a diagram group
itself.

Proof We already saw that such a fundamental group embeds into a diagram group.
Moreover, it is a nonfree hyperbolic group, so that it cannot be a diagram group
according to [13].

The paper is organized as follows. In Section 2, we expose the preliminaries needed in
the rest of the article; they concern diagram groups and cube complexes. In Section 3,
we describe hyperplanes in Squier complexes and we prove Theorem 1.2. In Section 4,
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we define the relation �, and we show how to use it to define the rank of a hyperplane
in the finite-dimensional case in order to finally prove Theorem 1.6. In Section 5, we
define left hyperplanes and exhibit a decomposition of the Squier complexes as graphs
of spaces. As an application, we prove Theorem 1.11. Finally, we conclude our article
with some open questions in Section 6.

Acknowledgements I am grateful to my advisor, Peter Haïssinsky, for our discussions
and his suggestions; and to the anonymous referee, for his/her careful reading.

2 Preliminaries

2.1 Diagram groups

We refer to [14, Sections 3 and 5] for a detailed introduction to semigroup diagrams
and diagram groups.

For an alphabet †, let †C denote the free semigroup over †. If P D h† j Ri is
a semigroup presentation, where R is a set of pairs of words in †C, the semigroup
associated to P is the one given by the factor semigroup †C=�, where � is the
smallest equivalence relation on †C containing R. For convenience, we will assume
that if uD v 2R then v D u …R; in particular, uD u …R.

A semigroup diagram over P is the analogue for semigroups of van Kampen diagrams
for group presentations. Formally, it is a finite connected planar graph � whose edges
are oriented and labelled by the alphabet †, satisfying the following properties:

� � has exactly one vertex-source � (which has no incoming edges) and exactly
one vertex-sink � (which has no outgoing edges).

� The boundary of each cell has the form pq�1 , where p D q or q D p 2R.

� Every vertex belongs to a positive path connecting � and � .

� Every positive path in � is simple. In particular, � is bounded by two positive
paths: the top path, denoted by top.�/, and the bottom path, denoted by bot.�/.
By extension, we also define top.�/ and bot.�/ for every subdiagram � . In
the following, the notations top. � / and bot. � / will refer to the paths and to their
labels. Also, a .u; v/–cell (resp. a .u; v/–diagram) will refer to a cell (resp. a
semigroup diagram) whose top path is labelled by u and whose bottom path is
labelled by v .
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Figure 2: The semigroup diagram � and a diagram isotopic to it

Two words w1 and w2 in †C are equal modulo P if their images in the semigroup
associated to P coincide. In particular, there exists a derivation from w1 to w2 , ie
a sequence of relations of R allowing us to transform w1 into w2 . To any such
derivation is associated a semigroup diagram, or more precisely a .w1; w2/–diagram,
whose construction is clear from the example below. As in the case for groups, the
words w1 and w2 are equal modulo P if and only if there exists a .w1; w2/–diagram.

Example 2.1 Let P D ha; b; c j abD ba; acD ca; bcD cbi be a presentation of the
free abelian semigroup of rank 3. In particular, the words a2bc and caba are equal
modulo P , with the following possible derivation:

aabc
.a;ab!ba;c/
���������! abac

.ab;ac!ca;∅/
����������! abca

.a;bc!cb;a/
���������! acba

.∅;ac!ca;ba/
����������! caba:

Then, the associated .a2bc; caba/–diagram � is given by Figure 2.

On such a graph, the edges are oriented from left to right. Here, the diagram �

has 9 vertices, 12 edges and 4 cells; notice that the number of cells of a diagram
corresponds to the length of the associated derivation. The paths top.�/ and bot.�/
are labelled by a2bc and caba , respectively.

Since we are only interested in the combinatorics of semigroup diagrams, we will not
distinguish isotopic diagrams. For example, the two diagrams given by Figure 2 will
be considered as equal.

If w 2†C, we define the trivial diagram �.w/ as the semigroup diagram without cells
whose top and bottom paths, labelled by w , coincide. Any diagram without cells is
trivial. A diagram with exactly one cell is atomic.

If �1 is a .w1; w2/–diagram and �2 a .w2; w3/–diagram, we define the concatenation
�1 ı�2 as the semigroup diagram obtained by identifying the bottom path of �1 with
the top path of �2 . In particular, �1 ı�2 is a .w1; w3/–diagram. Thus, ı defines
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�1

�2 �1 �2

Figure 3: The concatenation �1 ı�2 (left) and the sum �1C�2 (right)

a partial operation on the set of semigroup diagrams over P . However, restricted to
the subset of .w;w/–diagrams for some w 2 †C, it defines a semigroup operation;
such diagrams are called spherical with base w . We also define the sum �1C�2 of
two diagrams �1 and �2 as the diagram obtained by identifying the rightmost vertex
of �1 with the leftmost vertex of �2 . See Figure 3.

Notice that any semigroup diagram can be viewed as a concatenation of atomic diagrams.
In the following, if �1 and �2 are two diagrams, we will say that �1 is a prefix
(resp. a suffix) of �2 if there exists a diagram �3 satisfying �2 D �1 ı�3 (resp.
�2D�3 ı�1 ). Throughout this paper, the fact that � is a prefix of � will be denoted
by �� � .

Suppose that a diagram � contains a .u; v/–cell and a .v; u/–cell such that the top
path of the first cell is the bottom path of the second cell. Then, we say that these two
cells form a dipole. In this case, we can remove these two cells by first removing their
common path, and then identifying the top path of the first cell with the bottom path
of the second cell; thus, we reduce the dipole. A diagram is called reduced if it does
not contain dipoles. By reducing dipoles, a diagram can be transformed into a reduced
diagram, and a result of Kilibarda [22, Theorem 2.1] proves that this reduced form
is unique. If �1 and �2 are two diagrams for which �1 ı�2 is well defined, let us
denote by �1 ��2 the reduced form of �1 ı�2 .

If w 2 †C, we define the diagram group D.P; w/ to be the set of reduced .w;w/–
diagrams endowed with the product � we defined above. If � is a .w1; w2/–diagram,
let ��1 denote the .w2; w1/–diagram obtained from � by a mirror reflection with
respect to top.�/. It can be noticed that, if � is a spherical diagram, then ��1 is the
inverse of � in the associated diagram group.

Although this definition of D.P; w/ does not seem to give much information on its
group structure, it allows us to define a class of canonical subgroups. If � is a .w; u/–
diagram and if we write uD x1u1 � � � xnunxnC1 , where the xi and ui are (possibly
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empty) subwords of u, then the map

.U1; : : : ; Un/ 7! � � .�.x1/CU1C � � �C �.xn/CUnC �.xnC1// ��
�1

defines an embedding from D.P; u1/� � � � �D.P; un/ into D.P; w/.

2.2 Special cube complexes

A cube complex is a CW–complex constructed by gluing together cubes of arbitrary
(finite) dimension by isometries along their faces. Furthermore, it is nonpositively
curved if the link of any of its vertices is a simplicial flag complex (ie nC1 vertices span
a n–simplex if and only if they are pairwise adjacent), and CAT.0/ if it is nonpositively
curved and simply connected. See [6, page 111] for more information.

A fundamental feature of cube complexes is the notion of hyperplane. Let X be a
nonpositively curved cube complex. Formally, a hyperplane J is an equivalence class
of edges, where two edges e and f are equivalent whenever there exists a sequence
of edges e D e0; e1; : : : ; en�1; en D f where ei and eiC1 are parallel sides of some
square in X. Notice that a hyperplane is uniquely determined by one of its edges, so if
e 2 J, we say that J is the hyperplane dual to e . Geometrically, a hyperplane J is
rather thought of as the union of the midcubes transverse to the edges belonging to J.
See Figure 4.

Similarly, one may define oriented hyperplanes as classes of oriented edges. If J is
the hyperplane dual to an edge e and if we fix an orientation Ee , we will denote by EJ
the oriented hyperplane dual to Ee . It may be thought of as an orientation of J, and we
will denote by � EJ the opposite orientation of J.

Definition 2.2 Let J be a hyperplane with a fixed orientation EJ . We say that J is

� 2–sided if EJ ¤� EJ ;

� self-intersecting if there exist two edges dual to J which are nonparallel sides
of some square;

� self-osculating if there exist two oriented edges dual to EJ with the same initial
points or the same terminal points, but which do not belong to a same square.

Moreover, if H is another hyperplane, then J and H are

� transverse if there exist two edges dual to J and H respectively which are
nonparallel sides of some square;

Algebraic & Geometric Topology, Volume 18 (2018)
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Figure 4: A hyperplane (in red) and the associated union of midcubes (in green)

� interosculating if they are transverse, and if there exist two edges dual to J
and H, respectively, with one common endpoint, but which do not belong to a
common square.

Sometimes, one refers to 1–sided, self-intersecting, self-osculating and interosculating
hyperplanes as pathological configurations of hyperplanes. The last three configurations
are illustrated by Figure 5.

Definition 2.3 A hyperplane is clean if it is 2–sided and is neither self-intersecting
nor self-osculating. A nonpositively curved cube complex is special if its hyperplanes
are clean and if it does not contain interosculating hyperplanes.

Therefore, roughly speaking, special cube complexes are the cube complexes in which
hyperplanes are “well-behaved”. They include CAT.0/ cube complexes, in which
hyperplanes satisfy the following properties.

Theorem 2.4 Let X be a CAT.0/ cube complex. Then:

� [20, Example 3.3] X is a special cube complex.

� [30, Theorem 4.10] Every hyperplane separates X into two pieces, called
halfspaces.

Figure 5: Self-intersection (left), self-osculation (centre) and interosculation (right)
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3216 Anthony Genevois

An important property of special cube complexes is that their fundamental groups
embed into a right-angled Artin group. More precisely, we first define the graph we
are interested in:

Definition 2.5 The transversality graph of a cube complex X is defined as the graph
whose vertices are the hyperplanes of X and whose edges link two transverse hyper-
planes.

Let X be a special cube complex and let � denote its transversality graph. Then, we
can define a combinatorial map from X to the Salvetti complex S.�/ of A.�/ (roughly
speaking, it is the CW–complex associated to the canonical presentation of A.�/ with
additional cubes of dimensions � 3; it is a classifying space of A.�/) as follows:
First, we fix an orientation of the hyperplanes of X ; because these hyperplanes are
2–sided, it induces a well-defined orientation on the edges of X. Then, to any edge e
of X is associated an oriented hyperplane, which is also a vertex of � , a generator
of A.�/, and so naturally an (oriented) edge of the Salvetti complex S.�/; whence a
map ‰ from the edges of X to the edges of S.�/. In fact, ‰ may be extended into a
combinatorial map ‰W X ! S.�/ so that:

Theorem 2.6 [20, Lemma 4.1] The cube complex X is special if and only if ‰ is a
local isometry.

Because local isometries between nonpositively curved cube complexes are �1–injective,
we deduce:

Corollary 2.7 [20, Theorem 4.4] The fundamental group of a special cube complex
embeds into a right-angled Artin group.

In particular, we deduce that such a fundamental group is necessarily residually finite.
In fact, when the cube complex is compact, it is possible to say more about separability
properties.

Definition 2.8 Let G be a group acting on a CAT.0/ cube complex. A subgroup
H �G is convex–cocompact if there exists an H –invariant convex subcomplex Y �X
such that the action H Õ Y is cocompact.

Theorem 2.9 [20, Corollary 7.9] Any convex–cocompact subgroup of the fundamen-
tal group of a compact special cube complex is separable.

Recall that a subgroup H �G is separable provided that, for all g 2GnH, there exists
a finite-index subgroup K �G containing H but not containing g .

Algebraic & Geometric Topology, Volume 18 (2018)
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2.3 Cubulation

We now describe a method introduced by Sageev [30; 31], called cubulation, to construct
CAT.0/ cube complexes, which will be useful in Section 4.

Definition 2.10 A pocset .†;<;� / is a partially ordered set .†;</ endowed with
an involution � satisfying:

� For all A 2†, A and A� are not comparable (in particular, A� ¤ A).

� For all A;B 2†, A < B if and only if B� < A� .

Definition 2.11 Let .†;<;� / be a pocset. An ultrafilter ˛ is a set of subsets of †
satisfying:

� For all A 2†, ˛ contains exactly one element of fA;A�g.

� For all A;B 2†, if B < A and B 2 ˛ then A 2 ˛ .

Furthermore, ˛ is a DCC ultrafilter if every infinite descending chain in ˛ is eventually
constant.

Let .†;<;� / be a pocset. We define a cube complex X.†/ as follows:

� The vertices are the DCC ultrafilters.

� Two ultrafilters are linked by an edge if they differ by two subsets of †.

� We add n–cubes inductively as soon as possible, ie we add 3–cubes as soon as
the boundary of a 3–cube appears in the 2–skeleton, then we add 4–cubes as
soon as the boundary of a 4–cube appears in the 3–skeleton, and so on.

We say that X.†/ is the cube complex constructed by cubulating †. The following
statement is explained in [31, Section 2.2].

Theorem 2.12 Every connected component of X.†/ is a CAT.0/ cube complex.

All the examples of pocsets we will consider come from the following one:

Example 2.13 Let X be a CAT.0/ cube complex and H a collection of hyperplanes
of X. The set † of halfspaces delimited by the hyperplanes of H defines a pocset with
respect to the inclusion � and the complementary operation c . Then, an ultrafilter ˛
may be thought of as the choice of a halfspace for each hyperplane in H . In particular,
if v 2X is a vertex, then the set of halfspaces of † containing v defines an ultrafilter,
called principal. Note that principal ultrafilters are DCC.

Algebraic & Geometric Topology, Volume 18 (2018)
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In general, there is no canonical choice of a connected component of the cube complex
constructed by cubulation. However, in the context of the previous example, we usually
choose the connected component containing the principal ultrafilters (it can be shown
that they all belong to the same component).

Although a CAT.0/ cube complex X can be endowed with a CAT.0/ metric, it
is often more convenient to introduce a more “combinatorial” distance. We define
the combinatorial distance dc on the set of vertices X .0/ of X as the graph metric
associated to the 1–skeleton X .1/ . In fact, the combinatorial metric and the hyperplanes
are linked together: it can be proved that the combinatorial distance between two vertices
corresponds exactly to the number of hyperplanes separating them [19, Theorem 2.7].
This point of view allows us to link X to the complexes constructed by cubulation
from a collection of hyperplanes.

Proposition 2.14 Let X be a CAT.0/ cube complex and H a collection of hyper-
planes, and let X.H/ denote the cube complex constructed by cubulation with respect
to the pocset of halfspaces delimited by the hyperplanes of H . Finally, let

'W X .0/!X.H/.0/

be the natural map sending a vertex of X to the principal ultrafilter it defines. Then,
for any vertices x; y 2X, the combinatorial distance in X.H/ between '.x/ and '.y/
corresponds to the number of hyperplanes of H separating x and y in X.

2.4 Squier and Farley complexes

Let P D h† j Ri be a semigroup presentation and w 2 †C a base word. One way
of obtaining information about the diagram group D.P; w/ is to describe it as the
fundamental group of a cube complex.

More precisely, we define the Squier complex S.P/ as the cube complex whose vertices
are the words in †C ; whose (oriented) edges can be written as .a; u! v; b/, where
uD v or v D u belongs to R, linking the vertices aub and avb ; and whose n–cubes
similarly can be written as .a1; u1! v1; : : : ; an; un! vn; anC1/, spanned by the
set of vertices fa1w1 � � � anwnanC1 j wi D vi or uig.

Then, there is a natural morphism from the fundamental group of S.P/ based at w
to the diagram group D.P; w/. Indeed, a loop in S.P/ based at w is just a series of
relations of R applied to the word w such that the final word is again w , and such
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aabc aacb

abac acab

acbaabca

a a b c

c
a
c b

b
c

b
a

a

b
a

c

Figure 6: A semigroup diagram associated to a loop in Squier’s complex

a sequence may be encoded into a semigroup diagram. Figure 6 shows an example,
where the semigroup presentation is P D ha; b; c j abD ba; bcD cb; acD cai. Thus,
this defines a map from the set of loops of S.P/ based at w to the set of spherical
semigroup diagrams. In fact, the map extends to a morphism which turns out to be an
isomorphism:

Theorem 2.15 [14, Theorem 6.1] D.P; w/' �1.S.P/; w/.

For convenience, S.P; w/ will denote the connected component of S.P/ containing w .
Notice that two words w1; w2 2†C are equal modulo P if and only if they belong to
the same connected component of S.P/. Therefore, a consequence of Theorem 2.15
is:

Corollary 2.16 If w1; w2 2 †C are equal modulo P , then there exists a .w2; w1/–
diagram � and the map

� 7! � �� ���1

induces an isomorphism from D.P; w1/ to D.P; w2/.

Another morphism between diagram groups which will be useful in Section 5 is:

Lemma 2.17 Let u; v 2†C be two words. Then the application

� 7! �.u/C�

induces a monomorphism from D.P; v/ into D.P; uv/.

It can be proved that S.P; w/ is nonpositively curved, so that its universal cover is
CAT.0/. In [12], Farley gives a construction of this cover.

A semigroup diagram is thin whenever it can be written as a sum of atomic diagrams.
We define the Farley complex X.P; w/ as the cube complex whose vertices are the
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reduced semigroup diagrams � over P satisfying top.�/Dw , and whose n–cubes are
spanned by the vertices f� �P j P � �g for some vertex � and some thin diagram �

with n cells. In particular, two diagrams �1 and �2 are linked by an edge if and only
if there exists an atomic diagram A such that �1 D�2 �A.

Theorem 2.18 [12, Theorem 3.13] X.P; w/ is a CAT.0/ cube complex. Moreover,
it is complete, ie there is no increasing sequence of cubes in X.P; w/.

There is a natural action of D.P; w/ on X.P; w/, namely .g;�/ 7! g ��. Then:

Proposition 2.19 [12, Theorem 3.13] The action D.P; w/ÕX.P; w/ is free. More-
over, it is properly discontinuous if P is a finite presentation, and it is cocompact if
and only if the class Œw�P of words equal to w modulo P is finite.

It is not difficult to prove that P may be supposed to be a finite presentation whenever
D.P; w/ is finitely generated. Therefore, the action D.P; w/ Õ X.P; w/ is often
properly discontinuous.

To conclude, we notice that the map � 7! bot.�/ induces the universal covering
X.P; w/! S.P; w/ and that the action of �1.S.P; w// on X.P; w/ coincides with
the natural action of D.P; w/. Precisely:

Lemma 2.20 [13, Lemma 2] The map � 7! bot.�/ induces a cellular isomorphism
from the quotient X.P; w/=D.P; w/ to S.P; w/.

3 Specialness

3.1 Hyperplanes in Squier complexes

In this section, we fix a semigroup presentation P D h† jRi and a base word w 2†C.
If .a; u! v; b/ is an edge in the Squier complex S.P; w/, Œa; u! v; b� will denote
the hyperplane dual to it. Below, we show how to use this notation to completely
characterize the hyperplanes in S.P; w/ and we determine when two of them are
transverse.

Lemma 3.1 Let .p; a! b; q/ and .r; c! d; s/ be two edges in S.P/. Then the
(oriented) hyperplanes Œp; a! b; q� and Œr; c! d; s� coincide if and only if aD c
and b D d in †C and p D r and q D s modulo P .
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paq D x1ay1 x2ay1 xnay1 xnay2 xnaym D ras

pbq D x1by1 x2by1 xnby1 xnby2 xnbym D rbs

Figure 7: Chain of squares

Proof First, suppose that Œp; a!b; q�D Œr; c!d; s�. We show the desired equalities
by induction on the length ` of a path of parallel edges between .p; a! b; q/ and
.r; c! d; s/. If `D 0, then .p; a! b; q/D .r; c! d; s/ and there is nothing to
prove. Suppose `D nC1. By the induction hypothesis, the nth edge of our path can be
written as .p0; a! b; q0/ for some words p0; q0 2†C satisfying p0 D p and q0 D q
modulo P ; furthermore, this edge is parallel to .r; c! d; s/, ie these edges belong to
a square

.x; u! v; y; a! b; q0/ or .p0; a! b; x; u! v; y/;

where xuyDp0 modulo †C in the first case, and xuyD q0 modulo †C in the second
case. Consequently, .r; c! d; s/ equals

.xvy; a! b; q0/ or .p0; a! b; xvy/:

Thus, r D p0 D p and s D q0 D q modulo P , and c D a and d D b in †C.

Conversely, we show that the edges .p; a! b; q/ and .r; a! b; s/ are dual to the
same hyperplane provided that p D r and q D s modulo P . In this situation, there
exist two sequences

p D x1; x2; : : : ; xn D r and q D y1; y2; : : : ; ym D s;

where the relations xi DxiC1 and yi DyiC1 belong to R. We deduce the configuration
illustrated by Figure 7. Therefore, Œp; a! b; q�D Œr; a! b; s�.

Lemma 3.2 Let .a; u! v; b/ and .c; p! q; d/ be two edges in S.P/. Then, the
hyperplanes Œa; u! v; b� and Œc; p! q; d � are transverse if and only if there exists
y 2†C satisfying �

c D auy;

b D ypd;
or

�
d D yub;

aD cpy;

modulo P .

Proof Suppose that such a word y exists. Then, we deduce one of the two configura-
tions illustrated by Figure 8, proving that the considered hyperplanes are transverse.
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cpd auypd avypd

avyqd

avbaub

auyqdcqd

aub cpyub cqyub

cqyvb

cqdcpd

cpyvbavb

Figure 8: Transversality of hyperplanes

Conversely, suppose the mentioned hyperplanes are transverse. Two cases happen. If the
hyperplanes meet inside a square .x; p! q; y; u! v; z/ where Œx; p! q; yuz�D

Œc; p! q; d � and Œxpy; u! v; z�D Œa; u! v; b�, then we deduce from Lemma 3.1
that c D x , d D yuz , aD xpy and b D z modulo P , hence d D yub and aD cpy
modulo P . If the hyperplanes meet inside a square .x; u! v; y; p! q; z/ where
Œx; u! v; ypz� D Œa; u! v; b� and Œxuy; p ! q; z� D Œc; p ! q; d �, then we
deduce from Lemma 3.1 that aD x , b D ypz , c D xuy and d D z modulo P , hence
b D ypd and c D auy modulo P .

J

@�J

@CJ

Figure 9: A hyperplane, its neighbourhood and the components of its boundary
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Remark 3.3 Using the relation � introduced in Section 4, we have proved more
precisely that Œa; u! v; b� � Œc; p ! q; d � if and only if there exists some word
y 2†C satisfying �

c D auy;

b D ypd;

modulo P .

In the sequel, the following notation will be convenient:

Definition 3.4 We denote by S.P; a/uS.P; b/ the image in S.P/ of the combinatorial
map

S.P; a/�S.P; b/! S.P/; .˛; ˇ/ 7! ˛uˇ:

Let J D Œa; u! v; b� be an oriented hyperplane in S.P; w/ and let zJ denote a lift
of J in the Farley complex X.P; w/. The neighbourhood N. zJ / of the hyperplane zJ
is defined as the union of the cubes intersecting zJ, and we denote by @ zJ the union of
the cubes of N. zJ / disjoint from zJ ; this subcomplex has two connected components,
denoted by @C zJ and @� zJ following the natural orientation of zJ induced by J. By
extension, we will write N.J /, @J, @�J and @CJ as the images in S.P; w/ of N. zJ /,
@ zJ, @� zJ and @C zJ, respectively. See Figure 9.

Our last lemma is a direct consequence of [13, Lemmas 4 and 2].

Theorem 3.5 Let J D Œa; u ! v; b� be a hyperplane in S.P/. Then, @�J D
S.P; a/uS.P; b/ and @CJ D S.P; a/vS.P; b/. In particular, if J is a clean hyper-
plane, then J is naturally isometric to S.P; a/�S.P; b/.

3.2 Pathological configurations

A semigroup presentation P D h† j Ri and a base word w 2 †C being fixed, we
determine exactly when pathological configurations of hyperplanes appear in the Squier
complex S.P; w/. Our main result is:

Theorem 3.6 Let P D h† j Ri be a semigroup presentation and w0 2 †C a base
word. Then, the following assertions are equivalent:

(i) S.P; w0/ is clean.

(ii) S.P; w0/ has no self-intersecting hyperplanes.

(iii) There are no words a; b; p 2 †C such that w0 D ab , a D ap and b D pb

modulo P with Œp�P ¤ fpg.
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Moreover, S.P; w0/ is special if and only if it satisfies the conditions above and the
following one:

(iv) There are no words a; u; v; w; b; p; q; � 2 †C such that w0 D auvwb , au D
au.v�/ and wb D .�v/wb modulo P and uv D p; vw D q 2R.

A simplified criterion, often sufficient, is the following:

Corollary 3.7 If there are no words a; b; p 2 †C satisfying w0 D ab , a D ap and
b D pb modulo P , then S.P; w0/ is special. In particular, if Œw0�P is finite, then
S.P; w0/ is special.

Proof Suppose that S.P; w0/ is not special. Thus, at least one of the points (iii)
and (iv) of Theorem 3.6 does not hold. The negation of the point (iii) implies that there
exist words a; b; p 2†C satisfying w D ab , aD ap and b D pb modulo P ; and the
negation of the point (iv) implies w0D .au/.vwb/, auDau.v�/ and vwbD .v�/vwb
modulo P . Therefore, this proves the first assertion of our corollary.

The second assertion follows from the following observation: if there exist some words
a; b; p 2†C satisfying w0 D ab , aD ap and b D pb modulo P , then w0 D apnb
modulo P for every n� 1, and Œw0�P is infinite.

Essentially, Theorem 3.6 will be a consequence of the following three lemmas:

Lemma 3.8 Every hyperplane in S.P/ is 2–sided.

Proof If there were a 1–sided hyperplane in S.P/, there would exist some words
a; x; y; b 2†C with Œa; x! y; b�D Œa; y! x; b�. But such an equality contradicts
Lemma 3.1, because R does not contain the relation x D x .

Lemma 3.9 A hyperplane J in S.P/ is self-intersecting if and only if JD Œa;p!q;c�

for some words a; p; q; b; c 2†C satisfying aD apb and c D bpc modulo P .

Proof Let J be a hyperplane with J D Œa; p! q; c� for some words a; b; p; q 2†C

satisfying aD apb and cD bpc modulo P . Then, according to Lemma 3.1, J is dual
to the edges .a; p! q; bpc/ and .apb; p! q; c/; since these edges are nonparallel
sides of the square .a; p! q; b; p! q; c/, we deduce that J is self-intersecting.
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w0 D auvwb

w1 D apwb

w2 D aupb

Figure 10: A self-osculating hyperplane in Squier’s complex

Conversely, suppose that S.P; w/ contains a self-intersecting hyperplane J. Then,
there exists a square

.a; u! v; b; p! q; c/;

where Œa; u! v; bpc� D J D Œaub; p! q; c�. From Lemma 3.1, we deduce that
u D p and v D q in †C, and that a D aub and c D bpc modulo P . Therefore,
J D Œa; p! q; c� with the desired equalities modulo P .

Lemma 3.10 A hyperplane J in S.P/ is self-osculating if and only if

J D Œa; .kh/nk! p; b�

for some n� 1 and a; k; h; p; b 2†C satisfying aD akh and b D hkb modulo P .

Proof Let J be a self-osculating hyperplane in S.P/. Then, S.P/ contains the
configuration illustrated by Figure 10. Indeed, the words w1 and w2 have to be
obtained from w0 by applying a same relation of R on two intersecting subwords.
Thus, uv D vw in †C. Let n� 0 be the greatest integer such that un is a prefix of v ,
ie v D unk for some word k 2†C. Then, the equality uv D vw becomes uk D kw
in †C. Since u is not a prefix of k , by definition of n, necessarily lg.k/ < lg.u/,
hence lg.w/D lg.u/ > lg.k/; therefore, k is a suffix of w ; ie w D hk for some word
h 2 †C. Thus, u D kh, v D .kh/nk and w D hk in †C, and so J is dual to the
edges .a; .kh/nC1k ! p; hkb/ and .akh; .hk/nC1k ! p; b/. From Lemma 3.1,
we deduce that J D Œa; .kh/nk! p; b� with aD akh and b D hkb modulo P .

Conversely, let J be a hyperplane such that J D Œa; .kh/nk! p; b� for some n� 1
and a; k; h; p; b 2 †C satisfying a D akh and b D hkb modulo P . In particu-
lar, according to Lemma 3.1, J is dual to the edges .a; .kh/nk ! p; hkb/ and
.akh; .kh/nk! p; b/; since these edges have a.kh/nC1kb as a common vertex and
do not belong to a common square (because n� 1), we deduce that J is self-osculating.
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Proof of Theorem 3.6 The implication (i)D) (ii) is clear.

Now, we prove (ii)D) (iii). Suppose that there exist some words a; b; p 2†C satisfy-
ing w0Dab , aDap and bDpb modulo P with Œp�P ¤fpg. In particular, there exist
some words x; y; r; s 2†C such that pD xry in †C and r D s 2R. Thus, the hyper-
plane Œax; r ! s; yb� self-intersects inside the square .ax; r ! s; yx; r ! s; yb/.
A fortiori, the Squier complex S.P; w/ contains a self-intersecting hyperplane.

Now, we prove (iii)D) (i). The equivalences between (i), (ii) and (iii) will follow.

If S.P; w0/ contains a self-intersecting hyperplane, we deduce from Lemma 3.9 there
exist a; b; p; c 2†C such that w0D .ap/c , apD .ap/.bp/ and cD .bp/c modulo P
because Œbp�P ¤ fbpg (since this class contains bq ).

If S.P; w0/ contains a self-osculating hyperplane, we deduce from Lemma 3.10
the existence of n � 1 and a; k; h; b 2 †C such that w0 D akb , a D a.kh/nC1

and kb D .kh/nC1kb modulo P with Œ.kh/nC1�P ¤ f.kh/
nC1g (since this class

contains ph).

Now, we prove that S.P; w0/ is special if and only if conditions (iii) and (iv) are
satisfied.

Suppose that S.P; w0/ is not special. If S.P; w0/ is not clean, we already know
that it implies that (iii) is not satisfied. Now, suppose that S.P; w0/ contains two
interosculating hyperplanes J1 and J2 . Two cases may happen: J1 and J2 are
respectively dual to edges either of the form .a; uv! p; wb/ and .au; vw! q; b/,
or of the form .au; v! p; wb/ and .a; uvw! q; b/. In the first case, we deduce
from Lemma 3.2 that there exists a word � satisfying either�

auD auv�;

wb D �vwb;

modulo P , in which case we have w0 D .au/.vwb/, au D .au/.v�/ and vwb D
.v�/vwb modulo P with uv D p; vw D q 2R, so (iv) does not hold; or�

b D �uvwb;

aD auvw�;

modulo P , in which case we have w0 D a.uvwb/, a D a.uvw�/ and uvwb D

.uvw�/.uvwb/ modulo P with Œuvw��P ¤ fuvw�g (since this class contains pw�
and uq� ), so (iii) does not hold. In the second case, we deduce from Lemma 3.2 that
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there exists a word � satisfying either�
aD auv�;

wb D �uvwb;

in which case we have w0 D .auv/.wb/, auv D .auv/.�uv/ and wb D .�uv/.wb/
modulo P with Œ�uv�P ¤ f�uvg (since this class contains �pv ), so (iii) does not hold;
or �

b D �vwb;

auD auvw�;

modulo P , in which case we have w0 D .au/.vwb/, auD .au/.vw�/ and vwb D
.vw�/.vwb/ modulo P with Œvw��P ¤ fvw�g (since this class contains pw� ), so
(iii) does not hold.

Conversely, we already know that, if (iii) does not hold, then S.P; w0/ is not clean,
and a fortiori, is not special. Now, suppose that (iv) does not hold, ie suppose there exist
some words a; u; v; w; b; p; q; � 2 †C satisfying w0 D auvwb , au D au.v�/ and
wbD .�v/wb modulo P with uvDp; vwDq 2R. Then, the edges .a; uv!p; wb/

and .au; vw ! q; b/ have auvwb as a common endpoint but they do not be-
long to a same square, and the hyperplanes they define intersect inside the square
.a; uv ! p; �; vw ! q; b/: these two hyperplanes interosculate. A fortiori, the
Squier complex S.P; w/ is not special.

From the classical theory associated to special cube complexes [20], we deduce the
following corollaries from Theorem 3.6:

Corollary 3.11 If

� there are no words a; b; p 2 †C such that w D ab , a D ap and b D pb

modulo P with Œp�P ¤ fpg,

� there are no words a; u; v; w; b; p; q; � 2 †C such that w0 D auvwb , au D
au.v�/ and wb D .�v/wb modulo P and uv D p; vw D q 2R,

then the diagram group D.P; w/ embeds into a right-angled Artin group. In particular,
it is linear (and so residually finite).

Proof The conclusion follows from Theorem 3.6 and Corollary 2.7.

Corollary 3.12 If Œw�P is finite, then the convex–cocompact subgroups of D.P; w/
are separable. In particular, its canonical subgroups are separable.
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Proof The first assertion follows from Theorem 2.9. Then, let H be a canonical
subgroup, ie there exist u1; : : : ; un 2 †C such that w D u1 � � �un modulo P and
D.P; u1/� � � � �D.P; un/'H. Let � be a .w; u1 � � �un/–diagram. Then

.�1; : : : ; �n/ 7! � � .�1C � � �C�n/ ��
�1

defines an isometric embedding X.P; u1/� � � � �X.P; un/ ,!X.P; w/, whose image
is a convex subcomplex on which H acts geometrically, since the actions D.P; uk/Õ
X.P; uk/ are geometric themselves by finiteness of the classes Œuk�P . Consequently,
H is a convex–cocompact subgroup, and so is separable.

Finally, we are able to deduce the following Tits alternative, since it already holds for
(the subgroups of) right-angled Artin groups [4]:

Corollary 3.13 Suppose that the conditions of Corollary 3.11 are satisfied. Then any
subgroup of D.P; w/ is either free abelian or contains a nonabelian free group.

Remark 3.14 Although Corollary 3.13 does not completely cover the case where
S.P; w/ is finite-dimensional, it is worth noticing that, using [3, Section 4] almost
verbatim combined with the relation � we introduce in Section 4, it can be proved that
the conclusion of Corollary 3.13 holds whenever S.P; w/ is finite-dimensional. An
explicit example where Corollary 3.13 does not apply is

P D

* a; b; u; v; w; �;
p1; p2; p3;

q1; q2; q3

ˇ̌̌̌ auD auv�;

wb D �vwb;

uv D p1; vw D q1;

p1 D p2; p2 D p3; p3 D p1;

q1 D q2; q2 D q3; q3 D q1

+
:

Indeed, S.P; auvwb/ is a two-dimensional cube complex which is not special, since
it contains two interosculating hyperplanes; however, using the argument previously
mentioned, it can be proved that the associated diagram group

D.P; auvwb/' ha; h; t j Œt; ah
n

�D 1; n� 1i

satisfies the Tits alternative.

3.3 Explicit embedding

Corollary 3.11 proves that some diagram groups embed into right-angled Artin groups;
more precisely, it proves that the morphism of Theorem 2.6 is injective. In this section,
we show how to describe this morphism explicitly. That is to say, given a precise
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example of a semigroup presentation P D h† j Ri and a base word w 2 †C (such
that the Squier complex S.P; w/ is special), we want to be able to draw a graph �
such that there exists an embedding D.P; w/ ,! A.�/, and to write down the images
in A.�/ of some generating set of D.P; w/.

Definition 3.15 Let A.P; w/ be the right-angled Artin group associated to the graph
�.P; w/ whose vertices are the (unoriented) hyperplanes of the Squier complex S.P; w/
and whose edges link two distinct intersecting hyperplanes.

When S.P; w/ has no self-intersecting hyperplanes, �.P; w/ is the transversality graph
of the Squier complex S.P; w/.

Fix an orientation of the edges of S.P; w/. Then, the map sending each positive
edge .a; u! v; b/ of S.P; w/ to Œa; u! v; b� 2 A.P; w/, and each negative edge
.a; u! v; b/ of S.P; w/ to Œa; u! v; b��1 2 A.P; w/, induces a morphism from
�1.S.P; w/; w/ to A.P; w/, and so a morphism

ˆDˆ.P; w/W D.P; w/! A.P; w/:

Notice that the isomorphism between the fundamental group �1.S.P; w/; w/ and the
diagram group D.P; w/ is made explicit by the discussion preceding Theorem 2.15,
so that ˆ can be described explicitly.

In fact, when S.P; w/ is special, the morphism ˆ is exactly the one used to prove
Theorem 2.6, so:

Proposition 3.16 If S.P; w/ is special, then ˆW D.P; w/! A.P; w/ is injective.

Example 3.17 Let us consider the semigroup presentation

P D
�
a1; a2; a3;

b1; b2; b3;
p
ˇ̌̌
a1 D a2; a2 D a3; a3 D a1;

b1 D b2; b2 D b3; b3 D b1;

a1 D a1p;

b1 D pb1

�
:

The diagram group D.P; a1b1/ is denoted by Z � Z in [14, Section 8]; it is a group
which is finitely generated but not finitely presented, with

ha; b; z j Œa; bz
n

�D 1; n� 0i

as a presentation (see [14, Lemma 8.5] or Example 5.10).

According to Theorem 3.6, the Squier complex S.P; a1b1/ is special, so that Z � Z is
embeddable into a right-angled Artin group. Using the discussion above, now we want
to describe explicitly such an embedding.
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a1
a2
a3
a1

b1

�1

a1 b1
b2
b3

b1

�2

a1 b1
a1 p

b1

�3

Figure 11: Generators of Z � Z

Using Lemma 3.1, we find that S.P; a1b1/ has eight hyperplanes:

Ai D Œ1; ai ! aiC1; b1�; C D Œ1; a1! a1p; b1�;

Bi D Œa1; bi ! biC1; 1�; D D Œa1; b1! pb1; 1�:

Using Lemma 3.2, we find that �.P; a1b1/ is a complete bipartite graph K4;4 , where
each vertex of fA1; A2; A3; C g is linked by an edge to each vertex of fB1; B2; B3;Dg.
In particular, A.P; a1b1/' F4 �F4 .

Then, using [14, Theorem 9.8] or Example 5.10, we find that Z � Z is generated by
the three diagrams illustrated by Figure 11. For instance, according to Theorem 2.15,
the first diagram corresponds to a loop of edges .1; a1! a2; b1/, .1; a2! a3; b1/,
.1; a3! a1; b1/, so that ˆ.�1/DA1A2A3 . In the same way, we find that ˆ.�2/D
B1B2B3 and ˆ.�3/D CD�1 .

We conclude that the subgroup hA1A2A3; B1B2B3; CD�1i of

F4 �F4 D hA1; A2; A3; C j i � hB1; B2; B3;D j i

is isomorphic to Z � Z.

Setting ADA1A2A3 and B D B1B2B3 , it is clear that the subgroup hA;B;C;Di �
F4 � F4 decomposes as hA;C i � hB;Di ' F2 � F2 . Consequently, our embedding
ˆW Z � Z ,! F4 �F4 may be simplified into the embedding illustrated by Figure 12.
Therefore, if

F2 �F2 D ha; b j i � hx; y j i D hx; y; a; b j Œx; a�D Œx; b�D Œy; a�D Œy; b�D 1i;

then the subgroup ha; x; byi is isomorphic to Z � Z.

A B

C D

Z �Z ,! A.�/' F2 �F2;

8<:
�1 7! A;

�2 7! B;

�3 7! CD�1:

Figure 12: A simple embedding Z � Z ,! F2 �F2
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4 Quasi-isometric embeddability into a product of trees

4.1 Rank of a hyperplane

In this section, we fix a semigroup presentation P D h† jRi and a base word w 2†C.

Definition 4.1 Let J1 and J2 be two hyperplanes in the Squier complex S.P; w/. If
they meet inside a square .a; u! v; b; p! q; c/ so that Œa; u! v; bpc�D J1 and
Œaub; p! q; c�D J2 , we write J1 � J2 .

It is worth noticing that, although we think of � as a partial order, in full generality it
is just a transitive relation (transitivity will be proved below by Corollary 4.3). Another
consequence of Corollary 4.3 is that � is irreflexive if and only if S.P; w/ does not
contain self-intersecting hyperplanes; if so, the relation � turns out to be a strict
partial order. In general, the relation � may be neither reflexive nor irreflexive. For
instance, consider S.P; x/ where P D hx j x D x2i; if J1 D Œ1; x ! x2; 1� and
J2 D Œx; x! x2; x�, then J1 ˜ J1 but J2 � J2 . Remark 3.3 gives a necessary and
sufficient condition for two hyperplanes J1 and J2 to satisfy J1 � J2 .

Lemma 4.2 Let J1; : : : ; Jn be n hyperplanes satisfying Ji �JiC1 for all 1� i�n�1.
Then there exists an n–cube

.a1; u1! v1; a2; u2! v2; : : : ; an; un! vn; anC1/

such that Œa1u1 � � � ak�1uk�1ak; uk! vk; akC1ukC1 � � � anunanC1�D Jk .

Proof We prove the lemma by induction on n. By definition of �, the result is true
for nD 2. Now, let J1; : : : ; JnC1 be nC 1 hyperplanes satisfying Ji � JiC1 for all
1� i � n. By our induction hypothesis, there exists an n–cube

.a1; u1! v1; a2; u2! v2; : : : ; an; un! vn; anC1/

such that Œa1u1 � � � ak�1uk�1ak; uk ! vk; akC1ukC1 � � � anunanC1� D Jk for all
1� k � n. Then, because Jn � JnC1 , there exists a square

.a; un! vn; b; p! q; c/

such that Œa; un! vn; bpc�D Jn and Œaunb; p! q; c�D JnC1 . Because we also
have Jn D Œa1u1 � � � an�1un�1an; un! vn; anC1�, we deduce from Lemma 3.1 that
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aD a1u1 � � � an�1un�1an and bpc D anC1 modulo P . This proves the existence of
the .nC1/–cube

.a1; u1! v1; a2; u2! v2; : : : ; an; un! vn; b; p! q; c/

Noticing that

Œa1u1 � � � ak�1uk�1ak; uk! vk; akC1ukC1 � � � anunbpc�

D Œa1u1 � � � ak�1uk�1ak; uk! vk; akC1ukC1 � � � anunanC1�

D Jk

and Œa1u1 � � � anunb; p! q; c�D Œaunb; p! q; c�D JnC1 proves our lemma.

Corollary 4.3 The relation � satisfies the following properties:

� If J1 � J2 and J2 � J3 , then J1 � J3 .

� J1 and J2 are comparable with respect to � if and only if they intersect.

� maxfn� 0 j there exist J1; : : : ; Jn such that J1 � � � � � Jng D dimS.P; w/.

Proof Let J1 , J2 and J3 be three hyperplanes such that J1 � J2 and J2 � J3 .
According to Lemma 4.2, there exists a cube

.a; u! v; b; p! q; c; x! y; d/

such that Œa; u!v; bpcxd�DJ1 , Œaub; p!q; cxd�DJ2 and Œaubpc; x!y; d �DJ3 .
By considering the square

.a; u! v; bpc; x! y; d/;

we prove the first point.

The second point is clear by definition of �.

Let us prove the third point. If there exist n hyperplanes J1; : : : ; Jn satisfying J1 �
� � � � Jn , Lemma 4.2 yields an n–cube, hence dimS.P; w/� n. If n� dimS.P; w/,
there exists an n–cube

.a1; u1! v1; a2; u2! v2; : : : ; an; un! vn; anC1/

in S.P; w/. Let Jk D Œa1u1 � � � ak�1uk�1ak; uk ! vk; akC1ukC1 � � � anunanC1�.
Then, it is clear that J1 � � � � � Jn . Therefore, we have proved the equality

maxfn� 0 j there exist J1; : : : ; Jn such that J1 � � � � � Jng D dimS.P; w/:

The proof is complete.
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It is worth noticing that the relation � gives restrictions on the geometry of Squier
complexes, namely on their transversality graphs.

Definition 4.4 The transversality graph of a cube complex X is defined as the graph
whose vertices are the hyperplanes of X and whose edges link two transverse hyper-
planes.

Corollary 4.5 The transversality graph of S.P; w/ has no induced cycles of odd
length greater than 3.

Recall that � �ƒ is an induced subgraph of ƒ if any vertices x; y 2 � are linked by
an edge in ƒ if and only if they are linked by an edge in � .

Proof Let n� 5 be an odd integer. Suppose for contradiction that there exist n hyper-
planes J1; : : : ; Jn such that Ji and Jk are transverse if and only if kD i˙1 (modulo n).
Suppose that J1 � J2 ; the case J2 � J1 will be completely symmetric.

Since J2 and J3 are transverse, either J2 � J3 or J3 � J2 . But we already know
that J1 � J2 , so that J2 � J3 would imply J1 � J3 and a fortiori that J1 and J3 are
transverse. Therefore, J3� J2 . Similarly, we deduce that J3� J4 , J5� J4 , and so on.
Thus, J2kC1 � J2k for all 0� k � 1

2
.n� 1/. In particular, Jn � Jn�1 since n is odd.

Then, because Jn and J1 are transverse, either J1 � Jn or Jn � J1 . In the first case,
we deduce from Jn � Jn�1 that J1 and Jn�1 are transverse, a contradiction. In the
second case, we deduce from J1�J2 that Jn and J2 are transverse, a contradiction.

Remark 4.6 Corollary 4.5 does not hold for induced cycles of even length. For every
even integer n� 2, it is possible to find a Squier complex whose transversality graph
contains an induced cycle of length n.

At least in the finite-dimensional case, the relation � allows us to distinguish families
of hyperplanes according to their ranks:

Definition 4.7 Let J be a hyperplane in the Squier complex S.P; w/. We define its
rank as

rank.J /D supfn� 0 j there exist J1; : : : ; Jn with J1 � � � � � Jn � J g:

By extension, we define the rank of a hyperplane in the Farley complex X.P; w/ by
the rank of its image by the covering map X.P; w/! S.P; w/.
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Mainly, we will be interested in the case where the rank of any hyperplane is finite, ie
when there does not exist an infinite sequence � � � � J2 � J1 . For instance, it happens
when S.P; w/ is finite-dimensional, or more generally, when S.P; w/ does not contain
an infinite family of pairwise intersecting hyperplanes. Notice also that the rank of
a self-intersecting hyperplane is always infinite, so that our cube complexes will be
always clean when we will want the hyperplanes’ ranks to be well defined.

Lemma 4.8 Let J1 and J2 be two hyperplanes in the Farley complex X.P; w/ of
finite rank. If rank.J1/D rank.J2/, then J1 and J2 are disjoint.

Proof Suppose that J1 and J2 are transverse. Then they are comparable with respect
to �, say J1 � J2 . If r D rank.J1/, let H1; : : : ;Hr be r hyperplanes such that
H1 � � � � �Hr � J1 . Then,

H1 � � � � �Hr � J1 � J2;

hence rank.J2/ > rank.J1/. In particular, rank.J2/¤ rank.J1/.

Let J denote the set of hyperplanes of the Farley complex X.P; w/, and, for every k�0,
let Jk denote the subset of hyperplanes of rank k . As a consequence of the previous
lemma, we deduce that Jk induces an arboreal structure on X.P; w/, ie the graph
whose vertices are the connected components of X.P; w/nJk and whose edges link
two adjacent components is a tree. Equivalently, the cube complex constructed by
cubulation from the pocset defines by the halfspaces delimited by the hyperplanes of Jk
is a tree ƒk .

There is a natural map X.P; w/.0/!ƒ
.0/

k
, sending every vertex of X.P; w/ to the prin-

cipal ultrafilter it defines, which extends to a combinatorial map ˆk W X.P; w/!ƒk .

Let

ˆDˆ0 �ˆ1 � � � � W X.P; w/!ƒ0 �ƒ1 � � � �

be the product of these maps.

4.2 Property B

We define below Property B, as introduced in [2].
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Definition 4.9 Let D.P; w/ be a diagram group with a finite generating set S ; j � j will
denote the word length function associated to S and #. � / the number of cells of a
semigroup diagram. We say that D.P; w/ satisfies Property B if there exist C1; C2 >0
such that

C1 � #.�/� j�j � C2 � #.�/

for all spherical diagram � 2D.P; w/.

Property B is used in [2] to compute the equivariant uniform Hilbert space compression
of some diagram groups.

Definition 4.10 Let G be a finitely generated group with j � j a word length function
associated to some finite generating set. The uniform Hilbert space compression of G
is defined as the supremum of the ˛ ’s such that there exist a Hilbert space H , an
embedding f W G!H and some constants C1; C2 > 0 satisfying

C1 � d.x; y/
˛
� kf .x/�f .y/k � C2 � d.x; y/

for all x; y 2G.

Similarly, the equivariant uniform Hilbert space compression of G is defined by
requiring f to furthermore be G–invariant.

Theorem 4.11 [2, Theorem 1.13] The equivariant uniform Hilbert space compression
of a finitely generated diagram group with Property B is a east 1

2
.

In [2], it is proved that Thompson’s group F and the lamplighter group Z oZ satisfy
Property B. In fact, the following problem is mentioned [2, Question 1.6]:

Question 4.12 Do all finitely generated diagram groups satisfy Property B?

Below, we give an equivalent characterization of Property B, so that we will be able
to give an alternative proof of Theorem 4.11 and new examples of diagram groups
satisfying Property B.

Lemma 4.13 Let P D h† j Ri be a semigroup presentation and w 2 †C a base
word. Suppose that the diagram group D.P; w/ is finitely generated. Then D.P; w/
satisfies Property B if and only if the canonical map D.P; w/!X.P; w/, sending a
spherical diagram to the vertex of X.P; w/ it defines, is a quasi-isometric embedding
with respect to the combinatorial metric.
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Proof According to [13, Corollary 3],

.A;B/ 7! #.A�1 �B/;

where A;B 2X.P; w/, coincides with the combinatorial distance on X.P; w/, so that
the conclusion follows.

Corollary 4.14 Let P D h† j Ri be a semigroup presentation and w 2 †C a base
word. If Œw�P is finite, then D.P; w/ satisfies Property B.

Proof Since Œw�P is finite, the action of D.P; w/ on X.P; w/ is properly discon-
tinuous and cocompact (Proposition 2.19). Therefore, according to the Milnor–Švarc
lemma, the map

D.P; w/!X.P; w/; � 7!� � �.w/;

is a quasi-isometry. But it coincides with the canonical map D.P; w/!X.P; w/, so
that D.P; w/ satisfies Property B according to Lemma 4.13.

Below is the sketch of an alternative proof of Theorem 4.11.

Proof of Theorem 4.11 Let J denote the set of hyperplanes in the Farley complex
X.P; w/. For every vertex � 2X.P; w/, we define the map

w�W J! f0; 1g; J 7!

�
1 if J separates � and �.w/;
0 otherwise:

Now, following [27], the map

f W X.P; w/.0/! `2.J/; � 7!
X
J2J

w�.J / � ıJ ;

where
ıJ W H 7!

�
1 if J DH;
0 otherwise,

is D.P; w/–invariant and satisfies

kf .x/�f .y/k`2.J/ D
p
dc.x; y/

for all x; y 2X.P; w/.0/ . Now, since D.P; w/ satisfies Property B, from Lemma 4.13
we deduce that this group quasi-isometrically embeds into X.P; w/.0/ with respect to
the combinatorial distance dc , so that f induces an equivariant uniform embedding
D.P; w/ ,! `2.J/ whose associated compression is 1

2
.
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We conclude this section with a last example of a finitely generated diagram group
satisfying Property B.

Lemma 4.15 Z � Z satisfies Property B.

Here, the group Z � Z, which admits

Z � ZD ha; h; t j Œa; ht
n

�D 1; n� 0i

as a presentation, is canonically interpreted as the diagram group given in Example 3.17.
In particular, the class of the base word modulo the semigroup presentation is infinite,
so that Corollary 4.14 does not apply.

Proof of Lemma 4.15 The embedding Z � Z ,! F2 �F2 found in Example 3.17 is
quasi-isometric if Z � Z is endowed with #. � /. (Indeed, our embedding is constructed
from the map provided by Theorem 2.6, which is a local isometry; such a map induces
an isometric embedding between the universal covers, and the conclusion follows
from [13, Corollary 3], which states the induced metric of a diagram group obtained
from the universal cover of the Salvetti complex coincides with #. � /.) Otherwise
put, the metric induced by #. � / on Z � Z coincides with the metric induced by
F2 � F2 D hA;D j i � hB;C j i on hA;B;CDi. Consequently, our diagram group
satisfies Property B if and only if hA;B;CDi is undistorted in F2 �F2 .

It follows from the construction [5, Section 2] that the subgroup hA;B;CDi can be
written as f.u; v/ 2 F2 �F2 j '1.u/D '2.v/g, where '1 and '2 are two morphisms
F2 ! Z. Next, a beautiful result due to Olshanskii and Sapir (see the proof of
[28, Theorem 2]) states that the distortion of hA;B;CDi in F2 �F2 is equivalent to
the Dehn function of Z, which is linear. This concludes the proof.

4.3 Embeddings into a product of trees

Theorem 4.16 Suppose there does not exist any infinite descending chain of hyper-
planes of S.P; w/ with respect to �. Then, the combinatorial map

ˆW X.P; w/!ƒ0 �ƒ1 � � � �

is an isometric embedding with respect to the combinatorial metrics.

Proof The set of hyperplanes of ƒ D ƒ0 � � � � may be written as the disjoint
union H0 t H1 t � � � , where Hk corresponds to the set of hyperplanes transverse
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to the factor ƒk . Because the combinatorial distance corresponds to the number of
hyperplanes separating two given vertices, we deduce that

dƒ.x; y/D
X
k�0

#fJ 2 Hk separating x and yg

for all x; y2ƒ. On the other hand, according to Proposition 2.14, for all x; y2X.P; w/,

dƒk
.ˆk.x/;ˆk.y//D #fJ 2 Jk separating x and yg:

However, there is a natural bijection Jk! Hk , so that

dƒ.ˆ.x/;ˆ.y//D d.x; y/

for all x; y 2X.P; w/.

Remark 4.17 Theorem 4.16 always applies when the Squier complex S.P; w/ is
finite-dimensional, because of Corollary 4.3. However, there are also interesting infinite-
dimensional examples when it applies. For instance, let us consider the semigroup
presentation

P D hx; a; b; c j x D ax; aD b; b D c; c D ai:

Then, the Squier complex S.P; x/ is infinite-dimensional (notice that x D anx mod-
ulo P , with D.P; a/¤ f1g, and apply Proposition 4.21 below), but it does not contain
any infinite descending chain of hyperplanes with respect to � (use Remark 3.3). The
diagram group D.P; x/ is the free abelian group Z1 of infinite (countable) rank.

From the previous theorem, we now deduce the following result:

Theorem 4.18 Let P D h† j Ri be a semigroup presentation and w 2 †C a base
word. Suppose that S.P; w/ is finite-dimensional and D.P; w/ finitely generated.
If D.P; w/ satisfies Property B, then it quasi-isometrically embeds into a product of
dimS.P; w/ trees.

Proof Because D.P; w/ satisfies Property B, it quasi-isometrically embeds into
X.P; w/ with respect to the combinatorial distance (Lemma 4.13). Therefore, the
conclusion follows from Theorem 4.16.

As direct consequences of Theorem 4.18, we have:
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Corollary 4.19 Let P D h† j Ri be a semigroup presentation and w 2 †C a base
word. Suppose that S.P; w/ is finite-dimensional and D.P; w/ finitely generated.
If D.P; w/ satisfies Property B, then its asymptotic dimension is bounded above by
dimS.P; w/.

Corollary 4.20 Let P D h† j Ri be a semigroup presentation and w 2 †C a base
word. Suppose that S.P; w/ is finite-dimensional and D.P; w/ finitely generated. If
D.P; w/ satisfies Property B, then its uniform Hilbert space compression is 1.

We conclude this section with the following remark. Theorem 4.18 applies when the
Squier complex S.P; w/ is finite-dimensional, so a natural question is: Given P and w ,
how can we determine whether or not S.P; w/ is finite-dimensional? And, if it is the
case, what is its dimension? A simple criterion is given by the proposition below.

Proposition 4.21 Let n � 1. Then S.P; w/ has dimension at least n if and only
if there exist some words u1; : : : ; un 2 †C such that w D u1 � � �un modulo P with
Œui �P ¤ fuig for all 1� i � n.

Proof If dimS.P; w/� n, then S.P; w/ contains an n–cube

.a1; p1! q1; : : : ; an; pn! qn; anC1/:

Then, wD .a1p1/ � � � .an�1pn�1/.anpnanC1/ modulo P with Œaipi �P¤faipig since
aiqi 2 Œaipi �P , and ŒanpnanC1�P ¤ fanpnanC1g since anqnanC1 2 ŒanpnanC1�P .

Conversely, suppose there exist some words u1; : : : ; un 2†C such that w D u1 � � �un
modulo P with Œui �P ¤ fuig for all 1 � i � n. For each 1 � i � n, there exist
xi ; yi ; pi ; qi 2†

C such that ui D xipiyi in †C and pi D qi 2R. Then

.x1; p1! q1; y1x2; p2! q2; : : : ; yn�1xn; pn! qn; yn/

defines an n–cube in S.P; w/, hence dimS.P; w/� n.

Corollary 4.22 Z � Z quasi-isometrically embeds into a product of two trees.

Proof We interpret Z � Z as the diagram group D.P; a1b1/ given by Example 3.17.
According to Lemma 4.15 and Theorem 4.18, Z � Z quasi-isometrically embeds into a
product of dimS.P; a1b1/ trees.

Now, noticing that Œa1b1�P D faipnbj j i; j 2 f1; 2; 3g; n� 0g and that a subword w
of aipnbj satisfies Œw�P ¤ fwg if and only if it contains ai or bj , we deduce from
Proposition 4.21 that dimS.P; a1b1/D 2.
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Remark 4.23 An alternative proof of Corollary 4.22 can be deduced from Example
3.17 by noticing that Z � Z is an undistorted subgroup of F2 �F2 (it can be proved
using the normal form associated to the decomposition of Z � Z as an HNN extension
given in Example 5.10).

5 Squier complexes as a graph of spaces

For convenience, we begin this section by giving the precise definitions of graphs of
spaces and graphs of groups. For more information, see [32].

Definition 5.1 A graph of spaces is a graph � such that

� each vertex v 2 V.�/ is labelled by a space Sv ,

� each edge e 2E.�/ is labelled by a space Se ,

� for each edge e D .e�; eC/, there are two �1–injective gluing maps

p˙e W Se! Se˙ :

Often, a graph of spaces is identified with its geometric realization� [
v2V.�/

Sv [
[

e2E.�/

Se � Œ0; 1�

�.
�;

where � identifies Se � f0g with the image of pe� and Se � f1g with the image
of peC .

Definition 5.2 A graph of groups is a graph � such that

� each vertex v 2 V.�/ is labelled by a group Gv ,

� each edge e 2E.�/ is labelled by a group Ge ,

� for each edge e D .e�; eC/, we have two monomorphisms

'˙e W Ge ,!Ge˙ :

Then, we define its fundamental group as� ©
v2V.�/

Gv �E.�/
�ı
hhE.T /; 'e�.g/

�1t'eC.g/t
�1 for all g 2Geii;

where T � � is a maximal subtree. According to [33, Proposition I.5.1.20], the group
does not depend on the choice of T .
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Notice that, to any graph of spaces, is naturally associated a graph of groups with the
same underlying graph, where the vertex-groups and edge-groups are respectively the
fundamental groups of the vertex-spaces and edge-spaces. Then:

Theorem 5.3 Let X be a connected graph of spaces. The fundamental group of X
and the fundamental group of the associated graph of groups coincide.

5.1 Decomposition theorem

We fix a semigroup presentation P D h† jRi and a base word w 2†C.

Definition 5.4 A hyperplane J D Œa; u! v; b� in S.P; w/ is left if D.P; a/D f1g
but D.P; au/¤ f1g.

Notice that S.P; w/ contains a left hyperplane whenever the diagram group D.P; w/
is not trivial. In this section, we will use Corollary 2.16 and Lemma 2.17 intensively,
without mentioning them explicitly.

The following two lemmas show that left hyperplanes have good intersection properties.

Lemma 5.5 A left hyperplane does not self-intersect nor self-osculate, ie is clean.

Proof Let J D Œa; u! v; b� be a left hyperplane. If J self-intersects, we deduce
from Lemmas 3.9 and 3.1 that there exists c 2†C such that the equalities aD auc
and b D cub hold modulo P . Therefore,

f1g ¤D.P; au/ ,!D.P; auc/'D.P; a/D f1g;

a contradiction. Then, if J self-osculates, we deduce from Lemmas 3.10 and 3.1 that
there exist n� 1 and h; k 2†C such that the equality uD .kh/nk holds in †C and
the equalities aD akh and b D hkb hold modulo P . Similarly, we get

f1g ¤D.P; au/DD.P; a.kh/nk/ ,!D.P; a.kh/nC1/'D.P; a/D f1g;

a contradiction.

Lemma 5.6 Two left hyperplanes do not intersect.
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Proof Let J1 and J2 be two left hyperplanes. If they intersect, there exists a square

.a; u! v; b; p! q; c/

such that, say, J1 D Œa; u! v; bpc� and J2 D Œaub; p! q; c�. We deduce that

f1g ¤D.P; au/ ,!D.P; aub/D f1g;

because J1 and J2 are left, whence a contradiction.

If J D Œa; u! v; b� is a left hyperplane, let pJ ; sJ 2†C be two words and `J 2† a
letter satisfying uD pJ `J sJ in †C, with D.P; apJ /D f1g and D.P; apJ `J /¤ f1g.
Notice that pJ is just the maximal prefix of u satisfying D.P; apJ /D f1g, so that
pJ , sJ and `J are uniquely determined. We define similarly v D qJmJ rJ , where
qJ ; rJ 2†

C and mJ 2†, so that D.P; qJ /D f1g and D.P; qJmJ /¤ f1g.

This notation is motivated by the following technical lemma:

Lemma 5.7 Let J D Œa; u! v; b� be a left hyperplane. Let x; y; p; q 2 †C be
such that aub D xpy in †C and p D q 2R. Then, H D Œx; p! q; y� is not a left
hyperplane if and only if p , as a subword of aub , is included into apJ or sJ b .

Proof If p is included into apJ , then

D.P; xp/ ,!D.P; apJ /D f1g;

so H is not a left hyperplane. If p is included into sJ b , then apJ `J is included
into x , hence

f1g ¤D.P; apJ `J / ,!D.P; x/;

so H is not a left hyperplane.

Conversely, suppose that p is included neither into apJ nor into sJ b . Then p contains
the letter `J , viewed as a subword of u; as a consequence, x is included into apJ ,
hence

D.P; x/ ,!D.P; apJ /D f1g

and

f1g ¤D.P; apJ `J / ,!D.P; xp/:

Therefore, H is a left hyperplane.
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Now, we are ready to state and prove the main theorem of this section. Roughly
speaking, we find a graph of spaces by cutting S.P; w/ along its left hyperplanes.

Theorem 5.8 Let J denote the set of left hyperplanes of S.P; w/. Let G.P; w/ be
the graph of spaces defined by:

� The set of vertex-spaces is

fS.P; apJ /`JS.P; sJ b/; S.P; aqJ /mJS.P; rJ b/ j J D Œa; u! v; b� 2 Jg:

� To each left hyperplane Œa; u! v; b� 2 J is associated the edge-space

S.P; a/�S.P; b/:

� The edge-maps are the canonical maps

S.P; a/�S.P; b/! S.P; a/uS.P; b/;

S.P; a/�S.P; b/! S.P; a/vS.P; b/:

Then G.P; w/ defines a decomposition of S.P; w/ as a graph of spaces.

Remark 5.9 We emphasize that, if two distinct left hyperplanes define two identical
vertex-spaces, then these spaces define only one vertex in the graph of spaces. However,
if two distinct left hyperplanes define two identical edge-spaces, then these spaces
define two edges in the graph of spaces.

Proof of Theorem 5.8 Let S.P; w/ denote the subcomplex

S.P; w/n
[
J2J

.N.J /n@J /:

Then, since left hyperplanes are clean according to Lemma 5.5, S.P; w/ is constructed
from the connected components of S.P; w/ by taking a copy of N.J / ' J � Œ0; 1�
for each left hyperplane J 2 J and gluing J � f0g and J � f1g along @�J and @CJ,
respectively, via the natural isometries J ! @�J and J ! @CJ given by Theorem 3.5.
Notice that, as a consequence of the criterion [11, Theorem 1(2)], these gluings are
local isometries, and a fortiori �1–injective. So the cube complex S.P; w/ may be
decomposed as the graph of spaces defined by:

� The vertices are the connected components of S.P; w/.

� To each left hyperplane J is associated an edge linking the two (not necessarily
distinct) connected components adjacent to J.

Algebraic & Geometric Topology, Volume 18 (2018)



3244 Anthony Genevois

� If J D Œa; u! v; b� is a left hyperplane, the gluing maps J � f0g ! @�J and
J � f1g ! @CJ are given by

J ' S.P; a/�S.P; b/! S.P; a/uS.P; b/D @�J;

J ' S.P; a/�S.P; b/! S.P; a/vS.P; b/D @CJ;

respectively, following Theorem 3.5.

Therefore, to conclude the proof, it is sufficient to prove that, if J D Œa; u! v; b� is a
left hyperplane and Cu (resp. Cv ) the connected component of S.P; w/ containing aub
(resp. avb ), then CuDS.P; apJ /`JS.P; sJ b/ (resp. CvDS.P; aqJ /mJS.P; rJ b/).
In fact, by symmetry, we only have to prove the claim for Cu .

Let e be an oriented edge of Cu . We prove by induction on the combinatorial
distance d between aub 2 Cu and the initial point e� of e that e belongs to
S.P; apJ /`JS.P; sJ b/. If d D 0, then e� D aub , so that e D .x; p ! q; y/ for
some words x; y; p; q 2†C satisfying xpy D aub in †C. Because e belongs to Cu ,
by definition Œx; p! q; y� cannot be a left hyperplane, so, according to Lemma 5.7,
p is included into apJ or sJ b . It follows that e is an edge of S.P; apJ /`JS.P; sJ b/.
Now, let d � 1. If we consider a path of edges linking aub to e , by the induction
hypothesis, we know that the penultimate edge belongs to S.P; apJ /`JS.P; sJ b/, so
e� D ˛`Jˇ for some words ˛; ˇ 2†C satisfying ˛ D apJ and ˇ D sJ b modulo P .
Let x; y; p; q 2†C be such that eD .x; p! q; y/; in particular, xpy D e� D ˛`Jˇ
in †C. If p , considered as a subword of ˛`Jˇ , contains the letter `J , then

D.P; x/ ,!D.P; ˛/'D.P; apJ /D f1g

and
f1g ¤D.P; apJ `J /'D.P; ˛`J / ,!D.P; xp/;

so e is dual to a left hyperplane, a contradiction with e�Cu . Therefore, p is included
into ˛ or ˇ , so that e D .x; p! q; y/ belongs to S.P; apJ /`JS.P; sJ b/.

Thus, we have proved that Cu � S.P; apJ /`JS.P; sJ b/. Conversely, we deduce from
Lemma 5.7 that no edge of S.P; apJ /`JS.P; sJ b/ is dual to a left hyperplane, so that
the inclusion S.P; apJ /`JS.P; sJ b/� Cu holds.

Example 5.10 Let

P D
�
a1; a2; a3;

b1; b2; b3;
p
ˇ̌̌
a1 D a2; a2 D a3; a3 D a1;

b1 D b2; b2 D b3; b3 D b1;

a1 D a1p;

b1 D pb1

�
:
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a2S.P; b1/
S.P; b1/

a1S.P; b1/ S.P; b1/

S.P; b1/
a3S.P; b1/

S.P; b1/

Figure 13: Decomposition of S.P; a1b1/ as a graph of spaces

Then S.P; a1b1/ contains four left hyperplanes: Œ1; a1! a2; b1�, Œ1; a2! a3; b1�,
Œ1; a3 ! a1; b1� and Œ1; a1 ! a1p; b1�. Thus, the vertex-spaces of our graph of
spaces will be a1S.P; b1/, a2S.P; b1/ and a3S.P; b1/. The graph of spaces given
by Theorem 5.8 is given by Figure 13.

The maps associated to the loop are induced by w0 7! a1w0 and w0 7! a1pw0 . On
the other hand, the Squier complex S.P; b1/ is easy to draw, as illustrated by Figure 14.
In particular, its fundamental group is isomorphic to F1 D hx1; x2; : : : j i. Thus,
D.P; a1b1/ may be decomposed as the graph of groups given by Figure 15, where
the maps associated to the three edges on the left are identities, and where the two
maps associated to the loop are the identity and the morphism induced by xi 7! xiC1 .
Finally, this graph of groups may be simplified into the graph of groups illustrated by
Figure 16, where the maps associated to the loop on the left are identities, and where
the two maps associated to the loop on the right are the identity and the morphism
induced by xi 7! xiC1 . Thus, a presentation of D.P; a1b1/ is

hx1; x2; : : : ; t; h j txi t
�1
D xi ; hxih

�1
D xiC1 .i � 1/i:

Noticing that xiC1 D xh
i

1 , we simplify the presentation above into

Z � ZD ha; t; h j Œt; ah
i

�D 1 .i � 0/i:

Example 5.11 Let P D ha; b; c j ab D ba; ac D ca; bc D cbi. For convenience, let
U.l;m; n/ denote the diagram group D.P; albmcn/. We gave in [13, Example 2] a

b1 pb1 p2b1

b2 b3 pb2 pb3 p2b2 p2b3

Figure 14: The Squier complex S.P; b1/
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F1
F1

F1 F1

F1
F1

F1

Figure 15: Decomposition of D.P; a1b1/ as a graph of groups

F1 F1 F1

Figure 16: Simplified decomposition of D.P; a1b1/ as a graph of groups

criterion to determine whether or not a given diagram group is free, and we noticed
that U.l;m; n/ is free whenever l , m or n is 1. However, this method did not give
any information on the rank of the free group. Using Theorem 5.8, we are now able
to prove that U.1;m; n/ is a free group of rank mn. (This result is also proved in
[14, Example 10.2].) Our discussion relies on the fact that U.l;m; n/ is trivial if
lmnD 0, as proved in [14, Example 10.2].

The left hyperplanes of S.P; abmcn/ are:

� J b
kl
D Œbkcl ; ab! ba; bm�k�1cn�l � with 0� k �m� 1 and 1� l � n.

� J c
kl
D Œbkcl ; ac! ca; bm�kcn�l�1� with 1� k �m and 0� l � n� 1.

� H b
k
D Œabk; bc! cb; bm�k�1cn�1� with 0� k �m� 1.

� H c
k
D Œack; bc! cb; bm�1cn�k�1� with 0� k � n� 1.

It is worth noticing that H b
0 DH

c
0 is the only hyperplane appearing more than once in

the list above, so that there are 2mnCmCn� 1 left hyperplanes. Then, in our graph
of spaces,

� J b
0l

links S.P; acl/bS.P; bm�1cn�l/ to S.P; bcl/aS.P; bm�1cn�l/,

� J b
kl

links S.P; bkcl/aS.P; bm�kcn�l/ to S.P; bkC1cl/aS.P; bm�k�1cn�l/
if k � 1,

� J c
k0

links S.P; abk/cS.P; bm�kcn�1/ to S.P; bkc/aS.P; bm�kcn�1/,

� J c
kl

links S.P; bkcl/aS.P; bm�kcn�l/ to S.P; bkclC1/aS.P; bm�kcn�l�1/
if l � 1,

� H b
0 links S.P; ab/cS.P; bm�1cn�1/ to S.P; ac/bS.P; bm�1cn�1/,
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� H b
k

links S.P; abkC1/cS.P; bm�k�1cn�1/ to S.P; abk/cS.P; bm�kcn�1/
if k � 1,

� H c
k

links S.P; ackC1/bS.P; bm�1cn�k�1/ to S.P; ack/bS.P; bm�1cn�k/ if
k � 1.

In the list above, mnCmCn vertex-spaces appear.

Now, since S.P; w/ is simply connected when the word w has at most two different
letters, we deduce that all the vertex-spaces and edge-spaces are simply connected, so
that the vertex-groups and edge-groups in the associated graph of groups are trivial.
Thus, U.1;m; n/ is the fundamental group of a simplicial graph with mnCmC n
vertices and 2mnCmCn� 1 edges; it is a free group of rank

.2mnCmCn� 1/� .mnCmCn� 1/Dmn:

Remark 5.12 Similarly, right hyperplanes may be defined: a hyperplane Œa; u!v; b�

is right whenever D.P; b/ D f1g but D.P; ub/ ¤ f1g. Then Theorem 5.8 has an
equivalent statement for right hyperplanes. For example, the decomposition of the
Squier complex S.P1; x/, with the semigroup presentation

P1 D hx; a; b; c j x D ax; aD b; b D c; c D ai;

is more efficient with respect to right hyperplanes: it allows us to prove that the diagram
group D.P1; x/ is a free abelian group of infinite (countable) rank. Compare with the
example given in Remark 4.17.

5.2 Application: right-angled Artin groups and interval graphs

This section is dedicated to the proof of Theorem 1.11.

Let � be a finite interval graph. Since it is finite, we may suppose without loss
of generality that � is associated to a collection C of intervals on f1; : : : ; ng for
some n� 1. For convenience, if I D .i1; : : : ; ir/, we will write xI D xi1 � � � xir . Then,
to the collection C , we associate the semigroup presentation

P.C/Dhx1; : : : ; xn; aI ; bI ; cI .I 2 C/ j xI D aI ; aI D bI ; bI D cI ; cI D aI .I 2 C/i:

The main result of this section is:

Theorem 5.13 The diagram group D.P.C/; x1 � � � xn/ is isomorphic to the right-
angled Artin group A.�/.
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xI

aI

bI

cI

aI

xI

Figure 17: The semigroup diagram �I

Proof For convenience, let P D P.C/. For all I 2 C , let �I 2D.P; x1 � � � xn/ be the
spherical diagram illustrated by Figure 17. Notice that, if I and J are disjoint, then
�I and �J commute. Thus, there is a natural morphism

ˆW A.�/!D.P.C/; x1 � � � xn/; I 7!�I :

We want to prove by induction on the number of vertices of � that ˆ is an isomorphism.
If � has no vertex, ie if C is empty, then the two groups are trivial and there is nothing
to prove.

From now on, suppose that � has at least one vertex, ie C contains at least one
interval. If I1; I2 2 C are two disjoint intervals and if I1 is at the left of I2 , we
will write I1 � I2 ; furthermore, an interval I 2 C will be left if I is minimal in C
with respect to �. Finally, for all I 2 C , let gI ; dI 2 †C be the words satisfying
the equality gIxIdI D x1 � � � xn in †; notice that I is a left interval if and only if
ŒgI ; xI ! aI ; dI � is a left hyperplane.

We want to decompose the Squier complex S.P; x1 � � � xn/ as a graph of spaces thanks
to Theorem 5.8. The left hyperplanes are

� XI D ŒgI ; xI ! aI ; dI �,

� AI D ŒgI ; aI ! bI ; dI �,

� BI D ŒgI ; bI ! cI ; dI �,

� CI D ŒgI ; cI ! aI ; dI �,

for all left intervals I. Let xI D pI `I sI be the decomposition used in Theorem 5.8, ie
pI ; sI 2†

C and `I 2† satisfy D.P; gIpI /D f1g and D.P; gIpI `I /¤ f1g. Then,
in our graph of spaces,

� XI links S.P; gIpI /`IS.P; sIdI / and S.P; gI /aIS.P; dI /,
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� AI links S.P; gI /aIS.P; dI / and S.P; gI /bIS.P; dI /,
� BI links S.P; gI /bIS.P; dI / and S.P; gI /cIS.P; dI /,
� CI links S.P; gI /cIS.P; dI / and S.P; gI /aIS.P; dI /.

Notice that S.P; gIpI / D fgIpI g and S.P; gI / D fgI g. Indeed, if it were not the
case, there would exist a xJ included into gIpI or gI and we would deduce that
D.P; gIpI / ¤ f1g or D.P; gI / ¤ f1g, which is in contradiction with the fact that
ŒgI ; xI ; dI � is a left hyperplane. Therefore,

� XI links gIpI `IS.P; sIdI / and gIaIS.P; dI /,
� AI links gIaIS.P; dI / and gIbIS.P; dI /,
� BI links gIbIS.P; dI / and gI cIS.P; dI /,
� CI links gI cIS.P; dI / and gIaIS.P; dI /.

Thus, our vertex-spaces are gIpI `IS.P; sIdI /, gIaIS.P; dI /, gIbIS.P; dI / and
gI cIS.P; dI / when I runs over the set of left intervals of C . However, according
to Remark 5.9, we have to compare these spaces. The only nontrivial question is to
determine whether or not gIpI `IS.P; sIdI / and gJpJ `JS.P; sJdJ / are different.

We want to prove that the equalities gIpI `I D gJpJ `J and sIdI D sJdJ hold in †C

for any left hyperplanes I and J. As a consequence, we will deduce that the spaces
gIpI `IS.P; sIdI / and gJpJ `JS.P; sJdJ / define only one vertex in our graph of
spaces. Notice first that, because

gIpI `I sIdI D x1 � � � xn D gJpJ `J sJdJ

in †C, it is sufficient to prove that gIpI `I D gJpJ `J ; the second equality then
follows.

If gIpI `I ¤ gJpJ `J then either gIpI `I is a proper prefix of gJpJ `J or gJpJ `J
is a proper prefix of gIpI `I . In the first case, we would have

f1g ¤D.P; gIpI `I / ,!D.P; gJpJ /D f1g;

and, similarly, in the second case we would have

f1g ¤D.P; gJpJ `J / ,!D.P; gIpI /D f1g:

Therefore, we conclude that gIpI `I D gJpJ `J .

In particular, we may write gD gIpI `I and d D sIdI so that g and d do not depend
on I. Let I1; : : : ; Ir be the left intervals of C . Now, our graph of spaces is illustrated
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gS.P; d /

S.P; dI1
/

S.P; dIr /

gI1
aI1
S.P; dI1

/

gIraIrS.P; dIr /

S.P; dI1
/

S.P; dI1
/

S.P; dIr /

S.P; dIr /

gI1
bI1
S.P; dI1

/

S.P; dI1
/

gI1
cI1
S.P; dI1

/

gIr bIrS.P; dIr /

S.P; dIr /

gIr cIrS.P; dIr /

Figure 18: Decomposition of our Squier complex as a graph of spaces

by Figure 18. Notice that, using the morphism of Theorem 2.15, �Ik
defines a loop

starting from x1 � � � xn 2 gS.P; d / and passing through the kth loop of our graph of
spaces; the �Ik

will define the stable letters of the HNN extensions.

Noticing that the edge-maps of the graph of spaces are all natural inclusions, we
deduce that D.P; x1 � � � xn/ is an HNN extension of �1.gS.P; d /; x1 � � � xn/ over the
subgroups

�1.gIk
xIk

S.P; dIk
/; x1 � � � xn/

with stable letter �Ik
.

Because d is a subword of x1 � � � xn , there exists an interval J � f1; : : : ; ng such
that d D xJ . Now, notice that a diagram � satisfying top.�/D d can contain a cell
corresponding to a relation of P of the form xI ! aI if and only if I � J. Therefore,
if we introduce the semigroup presentation

Pd D
�

aI ; bI ; cI ; xk
.k 2 J; I 2 C and I � J /

ˇ̌̌
aI D bI ; bI D cI ; cI D aI ; xI D aI

.I � J and I 2 C/

�
;

then gS.P; d /D S.Pd ; gd/. By our induction hypothesis, if �0 is the subgraph of �
generated by the vertices corresponding to the intervals of C which are not left, then
the map

A.�0/!D.Pd ; gd/; I 7!�I ;

defines an isomorphism. Similarly, the fundamental group of

gIk
xIk

S.P; dIk
/D gIk

xIk
S.Pd ; dIk

/
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coincides with the subgroup of the fundamental group of S.Pd ; gd/ generated by
f�J j J \ Ik D∅g.

Consequently, the fundamental group of the Squier complex S.P; x1 � � � xn/, ie the dia-
gram group D.P; x1 � � � xn/, is an HNN extension over the subgroup h�I jI is not lefti,
which is isomorphic to the right-angled Artin group A.�0/, where the stable letters
are f�I j I is leftg D f�I1

; : : : ; �Ik
g and where each �Ik

has to commute with
f�I j I \ Ik D∅g. This description exactly means that the morphism ˆ, from A.�/

to D.P; x1 � � � xn/, is an isomorphism.

Remark 5.14 The semigroup presentation P.C/ used above is complete, so that it
is possible to apply the algorithm [14, Theorem 9.8] to find a presentation of the
diagram group D.P.C/; x1 � � � xn/. The presentation we find is exactly the canonical
presentation of A.�/, ie

hAI .I 2 C/ j ŒAI ; AJ �D 1 .I \J D∅/i:

Thus, this gives an alternative proof of Theorem 5.13.

Of course, a natural question follows from Theorem 5.13: When is a finite graph the
complement of an interval graph? A simple criterion is given in [25, Theorem 3.5].

Definition 5.15 Let � be a graph and let V.�/ (resp. E.�/) denote the set of vertices
(resp. edges) of � . The graph � is transitively orientable if it admits an orientation
satisfying the following property: for any vertices x; y; z 2 V.�/, if .x; y/ 2 E.�/
and .y; z/ 2E.�/, then .x; z/ 2E.�/.

Theorem 5.16 A graph is the complement of an interval graph if and only if it does
not contain C4 as an induced subgraph and if it is transitively orientable.

Recall that � �ƒ is an induced subgraph of ƒ if any vertices x; y 2 � are linked by
an edge in ƒ if and only if they are linked by an edge in � .

Example 5.17 As a consequence, we may deduce that the graphs given by Figure 19
are the complements of interval graphs, so that the associated right-angled Artin groups
are diagram groups according to Theorem 5.13. (The blue arrows induce a transitive
orientation on the graphs.) The first of the three graphs above is denoted by P2.6/ in
[10, Section 7]; it is proved in [10, Section 8] that A.P2.6// embeds into a diagram
group. Thus, Theorem 5.13 gives a stronger conclusion: it is a diagram group itself.

Algebraic & Geometric Topology, Volume 18 (2018)



3252 Anthony Genevois

Figure 19: Examples of complements of interval graphs

6 Some open questions

In Section 3.3, we constructed a morphism ˆD ˆ.P; w/W D.P; w/! A.P; w/ for
every diagram group D.P; w/, where A.P; w/ is some right-angled Artin group (see
Definition 3.15), and we proved that ˆ is injective whenever the Squier complex
S.P; w/ is special (Proposition 3.16). It is worth noticing that the specialness of
S.P; w/ depends on the semigroup presentation P and is not an algebraic invariant of
the diagram group D.P; w/: if

P1Dha; b; p; q jaDap; bDpb; pD qi and P2Dha; b; c jaD b; bD c; cDai;

then D.P1; ab/' Z'D.P2; a/, whereas S.P1; ab/ is not a special cube complex
but S.P2; a/ is. However, both ˆ.P1; ab/ and ˆ.P2; a/ are injective. In fact, we
suspect that the injectivity of ˆ depends only on the isomorphic class of the diagram
group, ie is an algebraic invariant; and we hope to deduce a proof of the following
result:

Conjecture 6.1 A diagram group is embeddable into a right-angled Artin group if
and only if it does not contain Z oZ.

This conjecture is motivated by Theorem 3.6, and by [15, Theorem 24], which proves
that the diagram group D.P; w/ contains Z oZ if and only if there exist some words
a; b; p 2†C satisfying wD ab , aD ap and bD pb modulo P with D.P; p/¤ f1g.
Notice also that a corollary would be that any simple diagram group contains Z oZ;
this result is indeed true, and can be deduced from [17, Theorem 7.2; 15, Corollary 22].

Algebraic & Geometric Topology, Volume 18 (2018)



Hyperplanes of Squier’s cube complexes 3253

A positive answer to Conjecture 6.1 would have several nice corollaries on diagram
groups; in particular, it would give a simple criterion of linearity (and a fortiori of
residual finiteness). However, such a criterion cannot be necessary, since Z oZ is linear.
However, we ask the following (possibly naive) question:

Question 6.2 Is a diagram group not containing Thompson’s group F linear or
residually finite?

According to [20, Theorem 4.2], a group is embeddable into a right-angled Artin group
if and only if it is the fundamental group of a special cube complex. Another interesting
question is to know when a diagram group is the fundamental group of a compact
special cube complex, in order to apply [20, Corollary 7.9] and thus deduce separability
of convex–cocompact subgroups. Of course, a necessary condition is to be finitely
presented. We ask whether this condition is sufficient:

Question 6.3 Let G be a diagram group embeddable into a right-angled Artin group.
If G is finitely presented, is it the fundamental group of a compact special cube
complex?

A solution could be to find an interesting hierarchy of such diagram groups by studying
their actions on their associated Farley complexes.

Conversely, we wonder which right-angled Artin groups are embeddable into a diagram
group. Corollary 1.12 proves that the best candidates we had as right-angled Artin
groups not embeddable into a diagram group turn out to embed in such a group.

Question 6.4 Does any (finitely generated) right-angled Artin group embed into a
diagram group?

A positive answer would follow from the fact that any (finitely generated) right-angled
Artin group embeds into a right-angled Artin group whose defining graph is the com-
plement of a finite interval graph. For example, according to [8], we already know
that

� A.Cn/ ,! A.C5/ ,! A.P7/ for every n� 1,

� A.T / ,! A.C5/ ,! A.P7/ for any finite tree T ,

where P7 is an interval graph.
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Finally, it is worth noticing that the results proved in this paper depend on the chosen
semigroup presentation P associated to the diagram group D.P; w/. Therefore, an
interesting problem would be to find algebraic properties allowing us to choose P with
suitable finiteness properties. For example:

Question 6.5 Let G be a diagram group. When does there exist a semigroup presen-
tation P D h† jRi and a base word w 2†C such that G 'D.P; w/ with Œw�P finite
or S.P; w/ finite-dimensional?

We suspect that the problem above could be solved by considering cohomological
finiteness conditions. In particular, we do not know examples of finitely presented
diagram groups of finite algebraic dimension which cannot be expressed as D.P; w/
with Œw�P finite. (Without the hypothesis of being finitely presented, F1 and Z � Z

would be counterexamples, although the associated Squier complexes may be chosen
of finite dimension.)
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