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Action dimension of lattices in Euclidean buildings

KEVIN SCHREVE

We show that if a discrete group � acts properly and cocompactly on an n–dimensional,
thick, Euclidean building, then � cannot act properly on a contractible .2n�1/–
manifold. As an application, if � is a torsion-free S –arithmetic group over a number
field, we compute the minimal dimension of contractible manifold that admits a proper
� –action. This partially answers a question of Bestvina, Kapovich, and Kleiner.

20F36, 20F65, 20F55, 57Q35; 20J06

1 Introduction

The action dimension of a discrete group � , denoted by actdim.�/, is the minimal
dimension of contractible manifold M that � acts on properly and discontinuously.
If � is torsion-free, then M=� is aspherical, and hence a model for the classifying
space B� . Therefore, actdim.�/ is the minimal dimension of such a manifold model.
The geometric dimension of � is the minimal dimension of any model for B� . If
we assume that � admits a model B� which is a finite CW–complex, a theorem
of Stallings [21] implies that actdim.�/ is bounded above by twice the geometric
dimension.

The motivation for this paper is a conjecture by Davis and Okun [14], which claims
that nontrivial L2 –Betti numbers of a discrete group should provide a lower bound for
action dimension. This generalizes an older conjecture of Singer concerning vanishing
of the L2 –cohomology of the universal covers of closed aspherical manifolds.

Action dimension conjecture If the i th L2 –Betti number of � is nontrivial, then
actdim.�/� 2i .

For a nice introduction to L2 –cohomology, we refer the reader to Eckmann [17]. If �
is the fundamental group of a closed Riemannian manifold, then the L2 –Betti numbers
of � provide a dimension to the space of square-summable harmonic forms on the
universal cover. A positive solution to the action dimension conjecture has several nice
implications; in particular, it implies a classical conjecture of Hopf and Thurston that
the Euler characteristic of a closed, aspherical 2n–manifold has sign .�1/n .
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Though both L2 –cohomology and action dimension seem difficult to compute, the
conjecture has been verified for many important classes of groups, such as lattices
in Lie groups (Bestvina and Feighn [6]), mapping class groups (Despotovic [15],
McMullen [20], Gromov [18]), Out.Fn/ (Bestvina, Kapovich and Kleiner [7]), and
most Artin groups (Avramidi, Davis, Okun and Schreve [4], Davis and Leary [12],
Davis and Huang [11]).

In this paper, we show the conjecture holds for groups that act properly and cocompactly
on thick Euclidean buildings. The L2 –Betti numbers of such groups are nontrivial
(and concentrated) in the dimension of the building, and we show that their action
dimension is greater than or equal to twice this dimension.

Theorem 1.1 If � is a cocompact lattice in a thick, n–dimensional Euclidean building,
then actdim.�/� 2n. If � is torsion-free, then actdim.�/D 2n.

The second statement follows immediately from Stallings’ theorem, since the geometric
dimension of such � will be n. Our main application of this theorem is to compute
the action dimension of S –arithmetic groups over number fields. These groups act
properly on the product of a symmetric space and a Euclidean building. Bestvina
and Feighn [6] showed that lattices in connected semisimple Lie groups have action
dimension equal to the dimension of the symmetric space, and it was conjectured in [7]
that the action dimension of S –arithmetic groups was equal to the dimension of the
symmetric space plus twice the dimension of the Euclidean building. We confirm the
conjecture in Section 6.

To prove Theorem 1.1, we use the obstructor dimension method introduced by Bestvina,
Kapovich, and Kleiner in [7], which surprisingly is what all of the above computa-
tions of action dimension rely on. This involves finding subcomplexes of the visual
boundary of a Euclidean building that are hard to embed into Euclidean space. In fact,
a cohomological obstruction to embedding into Euclidean space due to van Kampen
must be nontrivial. The visual boundary of a Euclidean building admits the structure of
a spherical building, and the following corollary of our method may be of independent
interest.

Theorem 1.2 Let B be a finite, k –dimensional, spherical building, and fix a cham-
ber C 2 B . Let Opp.C / denote the subcomplex of chambers opposite to C . If
Hk.Opp.C /;Z2/¤ 0, then B does not embed into R2k .
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Therefore, the only way to embed these spherical buildings into Euclidean space is by
appealing to general position. This was shown earlier by Tancer and Worwerk [22] for
type An and certain type Bn buildings. In the general case, we do not know of a thick
spherical building which does not have a chamber C with Hk.Opp.C /;Z2/¤ 0.

In [4], the action dimension of certain right-angled Artin groups was computed. The key
tool was a computation of the van Kampen obstruction for certain simplicial complexes
called octahedralizations. Our computation for spherical buildings relies on finding
embedded octahedralizations based on Opp.C / inside the spherical building.

This paper is structured as follows. In Sections 2 and 3, we review the obstructor meth-
ods of [7] and the computation of the van Kampen obstruction of the octahedralization.
In Section 4, we review spherical buildings and compute their van Kampen obstruction.
In Section 5, we show the action dimension conjecture for lattices in Euclidean buildings,
and in Section 6, we compute the action dimension of S –arithmetic groups.

Acknowledgements I thank Boris Okun for many helpful conversations. The author
is partially supported by NSF grant DMS-1045119. This material is based upon work
supported under NSF grant DMS-1440140 while the author was in residence at the
Mathematical Sciences Research Institute in Berkeley, CA in the Fall 2016 semester.
The author wishes to thank MSRI for hosting him during this time.

2 The van Kampen obstruction

The first cohomological obstruction to embedding a simplicial complex in Rn was
introduced by van Kampen [19]. In this section we review this obstruction and describe
how a coarsening of this obstruction gives a lower bound for the action dimension.

Let K be a simplicial complex, and let ��K�K denote the simplicial neighborhood
of the diagonal:

� WD f.�; �/ j �; � 2K; � \ � ¤∅g:

The complement K �K �� admits a free Z2 –action by flipping the factors. Let
C.K/D .K�K��/=Z2 be the simplicial configuration space of K . So, C.K/ is the
space of unordered pairs of disjoint simplices of K :

C.K/ WD ff�; �g j �; � 2K; � \ � D∅g:
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3260 Kevin Schreve

Definition 2.1 Let K be a k –dimensional simplicial complex, and let f W K!Rn

be a general position map. The images of a pair of disjoint simplices � and � with
dim �Cdim � D n intersect under f in a finite number of points. The Z2 –valued van
Kampen obstruction vkn

Z=2.K/ 2H n.C.K/;Z2/ is defined by

vkn
Z=2.f�; �g/D jf .�/\f .�/j mod 2:

One can show that the class of this cocycle does not depend on f , which implies
that if vkn

Z=2.K/¤ 0, then K does not embed into Rn . In this case, we say K is an
n–obstructor. In fact, such a K cannot embed into any contractible n–manifold; see
[7, Proposition 5].

Example Suppose K3;3 is the Kuratowski graph, the join of 3 points with 3 points.
There is a class in H2.C.K3;3/;Z2/ which consists of all unordered pairs of disjoint
simplices. By mapping K3;3 into R2 with some general position map and counting
intersections, it is easy to see that vk2

Z=2.K3;3/ evaluates nontrivially on this class.

We will now use the van Kampen obstruction to give a lower bound for the action
dimension. This requires the following definition, due to Bestvina:

Definition 2.2 A Z –structure on a group � is a pair . zX ;Z/ of spaces satisfying the
following four axioms:

� zX is a Euclidean retract.

� X D zX �Z admits a covering space action of � with compact quotient.

� Z is a Z –set in zX , ie there exists a homotopy zX � Œ0; 1�! zX such that H0 is
the identity and Ht .X /�X for all t > 0.

� The collection of translates of a compact set in X forms a null-sequence in zX ,
ie for every open cover U of zX all but finitely many translates are contained in
a single element of U .

A space Z is a boundary of � if there is a Z –structure . zX ;Z/ on � . For example, if
� acts properly and cocompactly on a CAT.0/ space X , then compactifying X by
the visual boundary @X gives a Z–structure on � .

Theorem 2.3 [7] Suppose Z is a boundary of a group � , and that K is an embedded
n–obstructor in Z . Then actdim.�/� nC 2.
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Heuristically, if � admits a Z–structure and acts properly on a contractible .nC1/–
manifold M , then there would be an injective boundary map Z ! @M . Since M

is contractible, @M should be an n–sphere. This would contradict K being an n–
obstructor, and hence prove Theorem 2.3. Of course, these optimistic statements are
false in general, and the proof of Theorem 2.3 requires much more work.

Example Let � D F2 � F2 be the direct product of two finitely generated free
groups. Then � acts properly and cocompactly on a product of trees, whose visual
boundary is a product of Cantor sets. This contains the graph K3;3 , so by Theorem 2.3,
actdim.�/ D 4. More generally, Bestvina, Kapovich, and Kleiner showed that the
n–fold product of free groups has actdimD 2n, using the fact that the n–fold join of
3 points has vk2n�2

Z=2 ¤ 0.

When we compute the action dimension of S –arithmetic groups over number fields, we
use the slightly more general concept of obstructor dimension, denoted by obdim.�/.
For simplicity, we only give the definition for type VF groups. We lose no generality
since S –arithmetic groups over number fields are virtually of finite type.

Let K be a simplicial complex, and let Cone.K/ WDK � Œ0;1/=.K � 0/ denote the
infinite cone on K . Given a triangulation of Cone.K/, we set every edge to have
length 1 and equip Cone.K/ with the induced path metric.

Definition 2.4 Let X be a proper metric space and K a simplicial complex. A map
hW Cone.K/!X is expanding if for every � and � in K with � \� D∅, the images
Cone.�/ and Cone.�/ diverge, ie for every D > 0 there exists t 2 RC such that
h.� � Œt;1�/ and h.� � Œt;1�/ are distance>D apart in X .

Definition 2.5 Let � be a discrete group, and assume � acts properly and cocompactly
by isometries on a contractible proper metric space X . Then obdim.�/ is the maximal
nC 2 such that there is a proper expanding map hW Cone.K/! X with K an n–
obstructor.

The following is the main theorem of [7].

Theorem 2.6 obdim.�/� actdim.�/.

Finally, in Section 6 we need the product lemma for obstructor dimension, which
follows immediately from the join lemma in [7].
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Lemma 2.7 Suppose X is a proper cocompact contractible � –complex, and that
f W Cone.J /�Cone.K/!X is a proper expanding map. If J is an n–obstructor and
K is an m–obstructor, then obdim.�/� nCmC 2.

3 Octahedralizations

In this section, we recall the definition of a certain simplicial complex with nontrivial
van Kampen obstruction. This complex was used in [4] to give lower bounds for
the action dimension of right-angled Artin groups. We will show that this complex
also provides lower bounds for the action dimension of groups acting properly and
cocompactly on Euclidean buildings.

Given a finite set V , let �.V / denote the full simplex on V and let O.V / denote the
boundary complex of the octahedron on V . In other words, O.V / is the simplicial com-
plex with vertex set V �f˙1g such that a subset f.v0; "0/; : : : ; .vk ; "k/g of V �f˙1g

spans a k –simplex if and only if its first coordinates v0; : : : ; vk are distinct. Projection
onto the first factor V �f˙1g! V induces a simplicial projection pW O.V /!�.V /.
We will denote the vertices .v;C1/ and .v;�1/ by vC and v respectively, and the
simplices .�; 1/ and .�;�1/ by �C and � respectively,

Any finite simplicial complex L with vertex set V is a subcomplex of �.V /. The
octahedralization O.L/ of L is the inverse image of L in O.V /:

O.L/ WD p�1.L/�O.V /:

We also will say that O.L/ is the result of “doubling the vertices of L”. In particular, an
n–simplex (the n–fold join of a point) in L becomes an n–octahedron (the n–fold join
of two points) in O.L/. Also, inclusions of simplices induce inclusions of octahedra
in a canonical way. We will usually assume that L is a flag complex, which means
that if the 1–skeleton of a simplex is in L, then the entire simplex is in L.

Fix a simplex � in L, and let D�.L/ denote the full subcomplex of O.L/ containing
L and �C . We say that D�.L/ is L doubled over �. See Figure 1 for the example
of L an n–cycle.

In [4], the van Kampen obstruction of D�.L/ was calculated.

Theorem 3.1 If L is a k –dimensional flag simplicial complex, then

vk2k
Z=2.D�.L//¤ 0 () Hk.L;Z2/¤ 0:
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Figure 1: If L is an n–cycle, then D�.L/ is a subdivided K3;3 .

4 Spherical buildings

We will only give a brief description of buildings; the reader is encouraged to refer
to [3] for complete details.

Definition 4.1 A Coxeter group .W;S/ is a group generated by involutions si 2 S ,
with the only other relations being that every pair of elements si and sj generates a
dihedral group (perhaps D1 ). In other words, .W;S/ has a presentation

hs1; s2; : : : ; sn j .sisj /
mij D 1i

with exponents mij 2N [1 such that mii D 1.

For example, proper cocompact reflection groups acting on Sn , En and Hn are all
examples of Coxeter groups. We will assume from now on that jS j<1.

A mirror structure over S on a space X is a family of subspaces fXsgs2S indexed
by S . If .W;S/ is a Coxeter system and X has a mirror structure over S , let
S.x/ WD fs 2 S j x 2 Xsg. Let WS.x/ be the Coxeter subgroup generated by S.x/.
Now, define an equivalence relation � on W �X by .w;x/� .w0;y/ if and only if
x D y and w�1w0 2WS.x/ . Let U.W;X / denote the quotient space

U.W;X /D .W �X /=�;

which is called the basic construction. There is a natural W –action on W �X which
respects the equivalence relation, and hence descends to an action on U.W;X /. One
can think of U.W;X / as pasting together copies of X with the exact gluing given by
the Coxeter group.
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Definition 4.2 Let .W;S/ be a Coxeter group, and let � be a simplex of dimension
jS j � 1. We can label the codimension-one faces of � by the elements of S . The set
of codimension-one faces is a mirror structure on �. The space ˆW WD U.W; �/ is
called the Coxeter complex of .W;S/.

Definition 4.3 A building is a simplicial complex with a distinguished set of sub-
complexes called apartments. This collection of apartments satisfies the following
axioms:

(1) Each apartment is isomorphic to a Coxeter complex.

(2) For any two simplices, there is an apartment containing both of them.

(3) If two apartments contain simplices � and � , then there is an isomorphism
between these apartments fixing � \ � pointwise.

The top-dimensional simplices of a building are called chambers. The codimension-one
simplices are called panels. A building is thick if each panel is contained in at least 3

chambers.

If W is finite, the building is called spherical, since each apartment is homeomorphic
to a sphere. In a spherical Coxeter complex, there is a well-defined notion of opposite
chambers. Note that every chamber � in a Coxeter complex corresponds to a Coxeter
group element w� . Two chambers � and � are opposite if they correspond to Coxeter
group elements w� ; w� such that w� Dw0w� , where w0 is the longest element of W

with respect to the standard generating set S . Opposition naturally extends to spherical
buildings; in fact, two chambers � and � are opposite in one apartment if and only if
they are opposite in each apartment containing them both.

Two chambers in an apartment are opposite if and only if they are on opposite sides of
every wall in that apartment, where a wall is a fixed-point set inside an apartment of
a reflection of W . One can analogously define opposition of simplices: ˛ and ˇ are
opposite in an apartment if they are contained in the same walls and separated by every
wall that does not contain them both, and opposite in a building if they are opposite in
each apartment which contains them.

A spherical building is right-angled if all apartments are isomorphic to an n–octahedron,
which is the Coxeter complex of the right-angled Coxeter group W Š .Z=2/nC1 . In
an octahedron, the vertices v and vC are opposite. More generally, two simplices �
and � in an octahedron are opposite if and only if p.�/D p.�/ and � \ � D∅.
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Example Let P denote the poset of proper nonempty subspaces of Rn . Let Flag(P )
denote the associated flag complex, ie the vertices of Flag(P ) consist of elements of P
and simplices of Flag(P ) correspond to chains of inclusions between these subspaces.
Flag(P ) has a natural structure of a spherical building, where apartments correspond to
choosing a basis of Rn and then considering all subspaces generated by proper subsets
of these basis vectors. In this case, the Coxeter group is the symmetric group Sn , which
acts by permuting the basis vectors. The Coxeter complex can be identified with the
barycentric subdivision of the .n�2/–simplex. A chamber is a maximal chain Œv0��

Œv0; v1��� � �� Œv0; v1; : : : ; vn�2�. Two chambers C and C 0 are opposite in this building
precisely when any two subspaces in C and C 0, respectively, are in general position.

4.1 Convexity

In order to compute the van Kampen obstruction of a spherical building B , we will
embed D�.Opp/ into B and apply Theorem 3.1. In order to define this embedding,
we need to briefly recall convexity in spherical buildings. In order to avoid too much
terminology, we use definitions that are a result of theorems in [3].

A wall in a Coxeter complex ˆW separates ˆW into two halfspaces called roots. These
roots are permuted by the reflection in W corresponding to the wall. A subcomplex †
of ˆW is convex if it is an intersection of roots. For example, any intersection of walls
is a convex subcomplex. The convex hull of two simplices �; � 2† is the intersection
of all roots containing both, and by definition is contained in every convex subcomplex
containing � and � .

In a building B , there is an analogous notion of convex subcomplexes and convex hulls.
We will only need the fact that the convex hull of two simplices in a building is the
same as the convex hull of the two simplices in any apartment that contains them both.
For example, suppose C is a chamber in B , and �; � are two chambers in Opp.C /.
Suppose that † is the convex hull in B of � \ � and its opposite simplex .� \ �/o

in C . If A� and A� are the corresponding apartments in B , then by the above, † is
contained in both A� and A� , and coincides with the convex hull of �\� and .�\�/o

in both apartments. In each apartment, the convex hull is precisely the intersection of
all walls in that apartment containing � \ � and .� \ �/o .

4.2 Bending homeomorphisms

Let B be an n–dimensional spherical building. Let A be an apartment in B , fix a
chamber C in A, and let fH1;H2; : : : ;HnC1g be the set of walls of A that intersect C
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in a codimension-one face. If On is an n–octahedron, then analogously we fix an n–
simplex C 0 in On and consider the set of walls fH 0

1
;H 0

2
; : : : ;H 0

nC1
g that intersect C 0

in a codimension-one face. Let f W On!A be a “bending” homeomorphism which
satisfies the following conditions:

(1) f maps C 0 to C .

(2) f
�T

k H 0ik

�
D
T

k Hik
for any subset of fH 0i g.

More generally, any homeomorphism between Coxeter complexes satisfying (2) is
said to be wall-preserving (where again the Coxeter groups are not necessarily the
same). Now, fix a chamber �C 2 B , and let Opp.�C/ be the simplicial complex of
opposite simplices. For each chamber � 2 Opp.�C/, there is a unique apartment A�

in B containing �C and � . We now fix a chamber � and a bending homeomorphism
f W O.�/!A� , as above, which sends � ! � and �C!�C .

There is also a retraction map ‰W B ! A� which fixes �C . This retraction is
constructed by gluing together the various isomorphisms  � W A� ! A� which are
guaranteed by axiom (3) of a building, where A� is another apartment containing �C .
In particular, by the proof of [3, Proposition 4.33],  � and  � 0 can be made to agree
on A� \A� 0 . Furthermore, each  � is wall-preserving, as  � preserves the bijection
between elements of W and chambers in A� and A� which sends the identity to �C .

The map ‰ restricts to a retraction Opp.�C/! � , and hence induces a retraction
O.‰/W O.Opp.�C//!O.�/. Note that for any chamber ��Opp.�C/, the restriction
O.‰/jO.�/ is also a wall-preserving homeomorphism, which sends �C to � .

We assemble the homeomorphisms  �1
� W A� !A� and f ıO.‰/jO.�/W O.�/!A�

to get a map F W O.Opp.�C//! B . Specifically, define

F.x/D  �1
� ıf ıO.‰/.x/ if x 2O.�/�O.Opp.�C//:

Lemma 4.4 F is a well-defined map.

Proof The map F is illustrated in Figure 2. We need to show that if � and � 0 are
chambers in Opp.�C/ which intersect, and x 2O.�/\O.� 0/, then

 �1
� ıf ıO.‰/.x/D  �1

� 0 ıf ıO.‰/.x/:

Since  � and  � 0 agree on A� \ A� 0 , it suffices to show that f ı O.‰/.x/ is in
‰.A� \A� 0/.
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�

��

�C

�C�C

f

 � O.‰/

F.�/

F.�/F.�/

�C

Figure 2: The bending map F D  �1
� ıf ıO.‰/

In Section 4.1, we noted that A� \A� 0 contains the intersection of all walls containing
.� \ � 0/ and its opposite simplex in �C . Since  � and  � 0 are wall-preserving,
‰.A� \A� 0/ contains the intersection of all walls in A� containing ‰.� \ � 0/ and its
opposite simplex in �C .

Since x 2 O.� \ � 0/, it is contained in each wall of O.�/ and O.� 0/ that contains
.� \ � 0/ and its opposite simplex .� \ � 0/C . Therefore, O.‰/.x/ is contained in each
wall of O.�/ that contains ‰.� \ � 0/ and ‰.� \ � 0/C . Therefore, f ıO.‰/.x/ is
contained in the intersection of all walls in A� which contain ‰.�\� 0/ and its opposite
simplex in �C , which by the above guarantees it is in ‰.A� \A� 0/.

Now, we will show that F restricts to an embedding on D�.Opp.�C//, for some choice
of a chamber � in Opp.�C/. To do this, we need to be more precise about the image
of simplices under F . See Figure 3 for the image of F in the case of the Fano plane.

For a finite Coxeter group .W;S/, we choose a chamber C in the Coxeter complex
which corresponds to the identity element, and identify the vertices of that chamber
with the elements of S . For s 2 S , we say that the s–wall in the Coxeter complex is
the unique wall containing every other vertex in C .

Algebraic & Geometric Topology, Volume 18 (2018)
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�

��

�C

F

F.�/

F.�/F.�/

�C

Figure 3: Embedding D�.Opp.�C// into the Fano plane. The red cycle is
the opposite complex of �C .

Definition 4.5 Let .W;S/ be a Coxeter group, and let w 2W . Then

In.w/D fs 2 S j `.ws/ < `.w/g;

where `.w/ denotes the length of w in W with respect to the generating set S .

In.w/ is precisely the set of letters with which a reduced expression for w can end.
Note that In.w�1/ is precisely the elements s 2S such that `.sw/<`.w/, ie it consists
of w which are separated from the identity chamber by the s–wall.

Definition 4.6 Let ˛ 2D�.Opp.�C// be a simplex. Let V C.˛/ denote the vertices
of ˛ contained in �C and let V .˛/ denote the vertices of ˛ contained in Opp.�C/.

For a chamber � in Opp.�C/, identify O.�/ as the Coxeter complex of .Z=2/nC1 ,
and identify �C with the identity chamber. A chamber ˛ �O.�/ corresponds to an
element w with In.w�1/D V .˛/, ie w is separated from the identity by each s–wall
for s 2 V .�/. Since the homeomorphisms f , O.‰/ and ‰jA� are wall-preserving
and preserve �C , we have the following lemma.

Lemma 4.7 For � 2 Opp.�C/ and ˛ a chamber in O.�/, the image F.˛/ is a union
of chambers in A� corresponding to Coxeter group elements w with In.w�1/D V .˛/.

Now, we can prove our main theorem of this section.

Theorem 4.8 F restricted to D�.Opp.�C// is an embedding.
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Proof It is obvious that F restricted to each simplex is a homeomorphism. Therefore,
it suffices to show that disjoint top dimensional simplices are mapped disjointly under F .
Note that this is obviously true for chambers in Opp.�C/. Let �; � be chambers in
Opp.�C/, and let ˛ and ˇ be disjoint chambers in O.�/ \ D�.Opp.�C// and
O.�/\D�.Opp.�C/, respectively. We must show that F.˛/\F.ˇ/ D ∅. Again,
we identify �C with the identity chamber of W .

If ˛ contains a vertex sC in �C , the chambers in the image of F.˛/ correspond
to Coxeter group elements w with s 62 In.w�1/. On the other hand, since sC 62 ˇ ,
the chambers in F.ˇ/ correspond to elements with s 2 In.w�1/. Therefore, any
intersection between ˛ and ˇ must occur on the s–wall of the respective apartments.

If ˛ contains no other vertices of �C , then the intersection of the image of ˛ with
the s–wall is in Opp.�C/. Therefore, if ˛ and ˇ have nontrivial intersection, ˛ must
contain another vertex in �C . Repeating this argument verbatim would eventually
imply that ˛ D�C , which implies F.˛/\F.ˇ/D∅.

4.3 Homology of Opp.C /

Now that we have embedded D�.Opp.�C// into our spherical building, we would like
to verify the assumptions of Theorem 3.1. Therefore, we need to show that Opp.�C/
is a flag complex with top-dimensional Z2 –homology. The first statement follows
straight from the definitions; we record it as a lemma.

Lemma 4.9 For any chamber C in B , the subcomplex Opp.C / is a flag complex.

Proof We will show that Opp.C / is a full subcomplex. This means that if the vertex
set of a simplex in B is contained in Opp.C /, then the simplex itself is contained
in Opp.C /. It implies that Opp.C / is also a flag complex.

We prove the contrapositive: suppose � is a simplex not in Opp.C /, so there exists a
wall such that � and C lie on the same side. It follows that all the vertices of � are not
opposite to C . Therefore, if a simplex has vertex set in C , then the simplex is in C .

On the other hand, it is not obvious to us that Hk.Opp.C /;Z2/¤ 0 for every thick
spherical building. In the next lemma, we verify that this does occur for infinitely thick
buildings, which suffices for our purposes.

Lemma 4.10 If B has infinite thickness, then there exists a chamber C such that
Opp.C / contains an apartment.
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Proof Let A� B be any apartment and �0 be any chamber. If �0 is opposite to all
chambers in A, then we are done. If not, for each chamber Ai in A, there are only
finitely many chambers that share a panel with �0 and are closer to Ai . Therefore,
we can “push” �0 to a new chamber �1 that is further from each Ai (or perhaps
the same distance if �0 is already opposite to Ai ). Continuing in this way, we find a
chamber C0 opposite to each Ai , and therefore Ai 2 Opp.C0/.

Example If k is an infinite field and Flag(P ) the associated spherical building, then
it is easy to construct an apartment in Opp.C / for any chamber C . Any chamber C

corresponds to a flag of subspaces C D Œv0� � Œv0; v1� � � � � � Œv0; v1; : : : ; vn�2�.
The opposite apartment is determined by choosing another basis in general position
(eg choose all ek to not lie in Œv0; v1; : : : ; vn�2�).

Remark For the finite thickness case, there are some obvious cases where we can find
cycles in Opp. If the thickness of each panel is odd, then Opp is itself a Z2 –cycle. Note
that this implies that Opp has nontrivial homology if the spherical building contains
a spherical subbuilding of odd thickness. Also, for large enough thickness, a simple
counting argument shows that Opp has top homology as it contains more n–simplices
than .n�1/–simplices.

In general, we do not know if there always exist chambers such that Opp has top-
dimensional homology. This may be subtle: in [2], Abramenko constructs examples of
infinitely thick 1–dimensional buildings where for certain chambers Opp is a disjoint
union of trees. However, other chambers inside these buildings have opposite complexes
which contain apartments by Lemma 4.10. Note that higher rank spherical buildings
have been fully classified by Tits [23]. It seems likely that one can construct top-
dimensional cycles in the opposite complexes for each list in the classification, but the
calculations were too hard for the author.

5 The action dimension conjecture for lattices in Euclidean
buildings

The following theorem is classical. In [10], an alternate proof is given which also
computes the L2 –cohomology of arbitrary buildings in terms of the weighted L2 –
cohomology of an apartment.

Algebraic & Geometric Topology, Volume 18 (2018)



Action dimension of lattices in Euclidean buildings 3271

Theorem 5.1 If � acts properly and cocompactly on an n–dimensional Euclidean
building, then the L2 –cohomology of � is concentrated in dimension n and is non-
trivial if the building is thick.

Therefore, the following confirms the action dimension conjecture in this case.

Theorem 5.2 If � acts properly and cocompactly on a thick Euclidean building of
rank n, then actdim.�/� 2n. If � is torsion-free, actdim.�/D 2n.

Proof It is well known that the visual boundary of a thick Euclidean building admits
the structure of a thick spherical building of rank n � 1 with infinite thickness [3,
Section 11.8]. By Theorem 2.3, Theorem 3.1, and Lemmas 4.8–4.10, it follows that
actdim.�/ � 2n. If � is torsion-free, then equality follows from Stallings’ theorem
since the geometric dimension of � is n.

5.1 More general buildings

For general buildings, the above strategy fails as we lose the spherical building at
infinity. However, there are some specific examples where the action dimension is
known. For example, Dymara and Osajda [16] have shown that the boundary of a thick,
n–dimensional right-angled hyperbolic building is the universal Menger space (these
only exist in low dimensions, as for n > 4 there are no right-angled Coxeter groups
that act properly and cocompactly on Hn ). For non right-angled buildings, this was
shown for n D 2 by Benakli [5]. Therefore, for cocompact lattices acting on such
buildings the action dimension is at least twice the dimension of the building. It would
be nice to extend Theorem 5.2 to all hyperbolic buildings, where we suspect the same
bounds on action dimension should hold. The link of each vertex in a thick, locally
finite, hyperbolic building B is a thick, finite, spherical building. The difficulty here is
pushing this link in a compatible way to the building to get a proper expanding map
Cone.Lk/! B .

For general buildings, the geometric dimension of lattices can be less than the dimension
of the building, so by Stallings’ theorem, the action dimension must sometimes be less
than twice the dimension of the building. For example, let L be an .n�1/–dimensional
flag complex such that Hn�1.L;Z2/D 0. Form any graph product GL such that every
vertex group Gs is finite with jGsj> 2. Then GL acts properly and cocompactly on an
n–dimensional thick, locally finite right-angled building XL ; see [13]. The geometric
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dimension of GL is the same as the geometric dimension of the underlying Coxeter
group, which has been explicitly computed and with these assumptions is less than n;
see [9]. We conjecture that if � acts properly and cocompactly on a locally finite, thick
building, then actdim.�/� 2 gdim.�/.

6 S –arithmetic groups

In this section, we describe our main application of Theorem 5.2. Let k be a number
field, ie a finite-degree extension of Q. Let G.k/ be a semisimple linear algebraic
group over k . For each finite place p let �pW k!Z denote the corresponding valuation.
Let S be a set of finite places of k , including the set of infinite places. Let kp be the
completion of k with respect to the norm induced by �p . The ring of S –integers is
defined by

OS WD fx 2 k j �p.x/� 0 for all p 62 Sg:

A subgroup of G.k/ is an S –arithmetic subgroup if it is commensurable with G.OS /.

Example Let S D fp1;p2; : : : ;pmg be a finite set of primes. Each prime determines
a p–adic valuation Q!Z which sends u! n if uD pnx and neither the numerator
nor the denominator of x is divisible by p . The ring of S –integers in this case is
ZS WDZ

�
1

p1
; 1

p2
; : : : ; 1

pm

�
. An S –arithmetic subgroup � of G.Q/ is commensurable

with G.ZS /.

For simplicity, we will pass to a torsion-free finite-index subgroup � of G.OS /, which
always exists in this setting [8]. If S consists of only infinite places, then � is an
arithmetic subgroup and acts on a symmetric space X1 . If S has finite places, then
for each finite place � there is a thick Euclidean building X� associated to G.k�/, and
� acts properly on X1 �

Q
�p

X�p . Furthermore, there is a partial compactification
of X1 due to Borel and Serre, which we denote by X BS

1 . By [8], the � –action extends
to a proper and cocompact action on X BS

1 �
Q
�p

X�p . It will be important for us that if
we fix a vertex v in

Q
�p

X�p and restrict to the � –action on
Q
�p

X�p , the stabilizer
of v in � is an arithmetic subgroup �1 .

Bestvina and Feighn construct a proper, expanding map f from a coned .dim.X1/�2/–
obstructor Cone.J / into X1 that is bounded distance from a �1–orbit. Theorem 5.2
gives a proper, expanding map g from a coned

�
2 dim

�Q
�p

X�p
�
�2
�
–obstructor

Cone.K/ into
Q
�p

X�p .
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We take the product embedding into X1 �
Q
�p

X�p and then compose with the
inclusion into the Borel–Serre partial compactification:

h WD f �gW Cone.J /�Cone.K/!X BS
1 �

Y
�p

X�p :

We will now show that h is proper and expanding with respect to a proper � –invariant
metric on X BS

1 �
Q
�p

X�p . We first show that such a metric exists. Since X BS
1 is a

manifold with corners, it is separable and metrizable, and hence so is X BS
1 �

Q
�p

X�p .
Therefore, the following general theorem applies.

Theorem 6.1 [1, Theorem 4.2] Suppose X is � –compact. If the action of � on X

is proper and X is metrizable, then there is a � –invariant proper metric d� on X that
induces the topology of X .

Suppose � acts by isometries on two metric spaces X and Y , and suppose the diagonal
action of � on X �Y is proper. Suppose that X admits a partial compactification yX
such that the � –action extends to a proper and cocompact action on yX � Y . Let
dX and dY respectively denote the left � –invariant metrics on X and Y , and let d�

be a left � –invariant metric on yX �Y as in Theorem 6.1. We shall prove the following
general theorem in the next section.

Theorem 6.2 Suppose that there are proper expanding maps f W Cone.J /!X and
gW Cone.K/! Y . Let .x;y/D .f .0/;g.0//, and suppose Cone.J / maps a bounded
distance in the dX –metric from the Stab�.y/–orbit of .x;y/. For any �–invariant
proper metric on yX �Y , the product map hD f �gW Cone.J /�Cone.K/! yX �Y

is proper and expanding.

By the above remarks and Theorem 2.6 this theorem implies the following:

Corollary 6.3 If � is an S –arithmetic group over a number field, then the map
hW Cone.J /�Cone.K/!X BS

1 �
Q
�p

X�p defined as above is proper and expanding,
and hence actdim.�/� dim.X1/C

PjS j
iD1

2 dim.X�/.

6.1 Proof of Theorem 6.2

We first need the following two lemmas.

Lemma 6.4 Suppose that .xi ;yi/ and .x0i ;y
0
i/ are a pair of sequences in yX �Y . If

dY .yi ;y
0
i/!1, then d�..xi ;yi/; .x

0
i ;y
0
i//!1.
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Proof By contradiction: suppose there exist subsequences .xi ;yi/; .x
0
i ;y
0
i/ with

d�..xi ;yi/; .x
0
i ;y
0
i// uniformly bounded. Since the � –action on yX �Y is cocompact,

there exist i 2 � such that .ixi ; iyi/, and hence .ix
0
i ; iy

0
i/, are contained in a

compact set K . We still have dY .iyi ; iy
0
i/!1 since dY .yi ; y0i/D dY .yi ;y

0
i/.

Since K projects to a compact set in Y , this is a contradiction.

Lemma 6.5 Let .xi ;yi/ and .x0i ;y
0
i/ in X �Y be a pair of sequences. Assume that

yi remains a bounded dY –distance from a basepoint y0 . Suppose that xi and x0i are
bounded dX –distance from the Stab�.y0/–orbit of a basepoint x0 . If dX .xi ;x

0
i/!1,

then d�..xi ;yi/; .x
0
i ;y
0
i//!1.

Proof Assume for the sake of contradiction there exist subsequences .xi ;yi/ and
.x0i ;y

0
i/ with d�..xi ;yi/; .x

0
i ;y
0
i// uniformly bounded. Choose i in Stab�.y0/ such

that dX .ixi ;x0/ is uniformly bounded. Since we assume the yi are in a compact set
of Y , we know that dY .iyi ;y0/ is uniformly bounded. The sequence .ixi ; iyi/

is contained in a compact set in X � Y , which implies d�..ixi ; iyi/; .x0;y0// is
uniformly bounded. Therefore by assumption d�..ix

0
i ; iy

0
i/; .x0;y0// is uniformly

bounded.

We have dX .ix
0
i ;x0/!1 since dX .ixi ; ix

0
i/!1 and dX .ixi ;x0/ is uniformly

bounded. Choose  0i in Stab�.y0/ such that dX .
0
i x0i ;x0/ is uniformly bounded.

Then the sequence d�..i.
0
i /
�1x0;y0/; .x0;y0// is uniformly bounded. Now since

dX .xi ;x
0
i/!1, we have that the distance in the word metric of � between i and  0i

goes to 1, which contradicts the properness of the � –action on yX �Y .

Proof of Theorem 6.2 We show that f � g is proper and expanding. We will let
.j ; k/ denote points in Cone.J /�Cone.K/.

Proper Let .f .j0/;g.k0// be the image of the cone point. Suppose that f � g

is not proper. Then there is a sequence .ji ; ki/ which leaves every compact set
of Cone.J /�Cone.K/ and is such that h.ji ; ki/ is contained in a compact set C of
yX �Y . Since C projects to a compact set in Y and g is proper, the ki are contained in

a compact subset of Cone.K/. Therefore, the ji leave every compact set in Cone.J /,
and since f is proper, this implies that dX .f .j0/; f .ji//!1, which contradicts
Lemma 6.5.

Expanding Assume � � � and � 0� � 0 are disjoint simplices in Cone.J /�Cone.K/.
Suppose f � g is not expanding. It follows that there are sequences .ji ; ki/ in
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Cone.�/�Cone.�/ and .j 0i ; k
0
i/ in Cone.� 0/�Cone.� 0/ which leave every compact

set and have d�.h.ji ; ki/; h.j
0
i ; k
0
i// uniformly bounded. By Lemma 6.4, this implies

that dY .ki ; k
0
i/ is uniformly bounded. Since g is expanding, this implies that ki and k 0i

are contained in a compact set. Therefore, ji and j 0i leave every compact set, and since
f is expanding we have dX .f .ji/; f .j

0
i //!1, which contradicts Lemma 6.5.

Example Let � D SL2

�
Z
�

1
2

��
. In this case, � acts properly on H2�T , where T is

a trivalent tree. The obstructor complex we want to use is

Cone.K3;3/Š Cone.3 points/�Cone.3 points/:

In the trivalent tree, we map Cone.3 points/ by choosing 3 disjoint rays emanating
from a fixed base point. In H2 , which we identify with the upper half-plane, we send
Cone.3 points/ to the orbit of i under the following matrices:nh

1 t
0 1

i ˇ̌
t 2R

o
[

nh
1 0
t 1

i ˇ̌
t 2RC

o
:

Unfortunately, the product embedding Cone.3 points/ � Cone.3 points/! H2 � T

cannot be used immediately. This map is obviously proper and expanding, and if the
image was bounded distance from an SL2

�
Z
�

1
2

��
–orbit we could take a neighborhood

of the orbit to see that obdim
�
SL2

�
Z
�

1
2

���
D 4. The difficulty here is that the image

is not bounded distance from any orbit. It seems in this case that one could perturb
the product embedding to stay within a bounded distance of an orbit, but for the
general case we chose to keep our simple definition of the product embedding and
lose the nice structure of the product metric on H2 �T by passing to the Borel–Serre
compactification.

Remark These obstructor methods also apply for certain S –arithmetic groups over
function fields. Let K be the function field of an irreducible projective smooth curve C

defined over a finite field k WD Fq . Let S be a finite nonempty set of (closed) points
of C , and let OS <K be the ring of functions that have no poles except possibly at
points in S . If S is a single point p , it determines a valuation �pW K ! Z which
assigns to a function its order of vanishing at p .

If G is a linear algebraic group over K , then any group commensurable with G.OS / is
an S –arithmetic subgroup. Similarly, as in the number field case, to each S –arithmetic
group there is a corresponding Euclidean building XS , and in this case G.OS / acts
properly on XS , with no symmetric space factor. In the general setting, the action is
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not cocompact, and we cannot conclude anything from Theorem 5.2. However, we do
have the following theorem:

Theorem 6.6 For K and S as above, if G.OS / acts cocompactly on XS , then
actdim.G.OS //� 2 dim XS .this is true exactly when the K–rank of G is 0/.
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