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Scl in free products

LVZHOU CHEN

We study stable commutator length (scl) in free products via surface maps into a
wedge of spaces. We prove that scl is piecewise rational linear if it vanishes on each
factor of the free product, generalizing a theorem of Danny Calegari. We further prove
that the property of isometric embedding with respect to scl is preserved under taking
free products. The method of proof gives a way to compute scl in free products which
lets us generalize and derive in a new way several well-known formulas. Finally we
show independently and in a new approach that scl in free products of cyclic groups
behaves in a piecewise quasirational way when the word is fixed but the orders of
factors vary, previously proved by Timothy Susse, settling a conjecture of Alden
Walker.

57M07; 20E06, 20F12, 20F65, 20J06, 52C07

1 Introduction

Let G be a group and g be an element of the commutator subgroup ŒG;G�. The
commutator length of g , denoted by cl.g/, is the minimal number n such that g D

Œa1; b1�Œa2; b2� � � � Œan; bn� for some ai ; bi 2G, and the stable commutator length of g ,
denoted by scl.g/, is the limit limn!1 cl.gn/=n, which always exists by subadditivity.

It is obvious from the definition that scl has the following basic properties:

(1) Monotone For any homomorphism �W G ! H and g 2 ŒG;G�, we have
sclG.g/� sclH .�.g//.

(2) Characteristic For any � 2 Aut.G/ and g 2 ŒG;G�, scl.g/D scl.�.g//.

It follows that the spectrum, the set of values that sclG takes, is a group invariant.
However, scl is notoriously difficult to compute unless it is known to vanish. Thus
many interesting questions about the spectrum are extremely hard to answer.

1.1 Main results

Gromov [13] asked whether the spectrum is rational (or perhaps algebraic) when G is
finitely presented. A counterexample was found by Zhuang [16]. On the other hand,
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Calegari [5] showed that scl is rational and can be computed efficiently in a free group
by interpreting and studying scl in terms of surface maps. He later showed in [6] that
a modification of the geometric argument proves rationality of scl in free products of
abelian groups. We generalize this latter result, substantially weakening the assumption
that the factors are abelian.

Theorem A (rationality) For G D��G� with sclG� � 0 for each �, scl is piece-
wise rational linear in G.

This holds, for example, when all G� are amenable. See Remark 4.10 for a list of
groups having vanishing scl.

A homomorphism �W G!H for which sclH .�.c//D sclG.c/ for all chains c (see
Section 2) is said to be isometric for scl. Injections admitting a retraction are isometric.
It is shown by Calegari and Walker [7] that random homomorphisms between free
groups are isometric for scl. In this paper, we show that isometric embeddings (meaning
injective and isometric) are preserved under taking free products:

Theorem B (isometric embedding) If f�W H�!G� is a family of isometric embed-
dings, then so is the induced map f W ��H�!��G� .

A spin-off of the techniques used in the proof is a new method to compute scl; we give
examples in Section 5.

In particular, these techniques give new insights for scl in families. It was proved
by Calegari and Walker [9] that for free products of free abelian groups, certain
families of words w.n/ (called surgery families) are eventually quasirational in n. A
similar question was studied by Walker. For any fixed rational chain c in Fn and
any o D .o1; o2; : : : ; on/ with oi � 2, let co be the image of w under the natural
homomorphism �W Fn!�i Z=oiZ. How does scl.co/ vary as a function of o?

It was observed experimentally by Walker [15] that scl.co/ exhibits interesting periodic
behavior, and he conjectured that the result is piecewise quasilinear in 1=oi (see
Conjecture 6.1). In Section 6 we give a counterexample, but prove a weaker version:
scl.co/ is piecewise quasirational in o (see Theorem 6.4). It was pointed out by Timothy
Susse that he had proved this weaker version earlier in [14, Corollary 4.14] using a
different approach.
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It is worth mentioning that the method in this paper can be used to generalize and give
a new approach to the spectral gap theorem by Duncan and Howie [12], which will be
discussed in another paper [10].

Contents of the paper

We first give basic definitions in Section 2. Then in Section 3 we introduce a way,
following [6], to use a finite-dimensional polyhedral cone to encode surface maps into a
wedge of spaces with given boundary information. The encoding loses information, so
in Section 4 we study a nonlinear optimization problem on the fibers. This reduces the
computation of scl to a lattice point problem, which we solve, deducing Theorems A
and B. When scl vanishes in each factor, the nonlinearity comes from disk vectors,
which become complicated compared to the abelian case discussed in [6]. In Section 5,
we apply our method to give generalizations and new proofs of old results, where we
also prove a formula conjectured by Alden Walker [15]. Finally in Section 6 we give a
counterexample to Walker’s conjecture and prove a weaker version.
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2 Background

In this section we give the definitions and basic facts about scl that we will use. All of
these can be found in [4].

Definition 2.1 Let S be a compact surface. Define

��.S/D
X

i

min.0; �.Si//;

where the Si are the components of S and � is the Euler characteristic. Equivalently,
��.S/ is the Euler characteristic of S after removing disk and sphere components.

Definition 2.2 Let gj 2 G for 1 � j � k be elements that sum to 0 in H1.GIR/.
Let K be a K.G; 1/. For all j , let j W S1!K be a loop representing the conjugacy
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class of gj and L D
F

j S1 . A compact oriented surface S together with a map
f W S!K is called admissible of degree n.S/� 1 if the following diagram commutes:

@S

@f
��

i
// S

f
��

L

F
j
// K

where i is the inclusion map and @f�Œ@S �D n.S/ŒL�.

Define
scl.g1Cg2C � � �Cgk/D inf

S

���.S/

2n.S/

over all admissible surfaces.

If k D 1, the geometric definition agrees with the algebraic one [4, Proposition 2.10].
We (informally) say a surface map is efficient if ���.S/=2n.S/ is close to scl

�P
gi

�
.

Remark 2.3 A priori the degrees on different components of @S could have opposite
signs. Such an admissible surface can be replaced by another one that is at least as
efficient as S, by taking suitable finite covers and gluing components with opposite
orientations together. Thus one may restrict attention to monotone admissible surfaces,
ie those where @f is orientation-preserving on each component [4, Proposition 2.13].

Recall the complex of real group chains .C�.GIR/; @/ whose homology is H�.GIR/,
the real group homology of G. In the sequel, we write B1.G/ for B1.GIR/, the
1–boundaries. Scl is defined on integral 1–boundaries, and has a unique continuous
linear extension to a pseudonorm on B1.G/, which vanishes on

H.G/ WD spanRhng�gn;g� hgh�1
i � B1.G/;

so scl descends to a pseudonorm on the quotient. See [4] for details.

Definition 2.4 Let BH
1
.G/DB1.G/=H.G/. We say scl is piecewise rational linear

if it is piecewise rational linear on every finite-dimensional rational subspace of BH
1
.G/.

We say a group homomorphism f W G1!G2 is an isometric embedding if f is injective
and the induced map f W BH

1
.G1/!BH

1
.G2/ preserves scl, ie sclG1

.c/D sclG2
.f .c//

for all c 2 BH
1
.G1/.

The simplest isometric embeddings come from retracts.
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Proposition 2.5 If i W H !G and r W G!H are group homomorphisms such that
r ı i D idH , then i is an isometric embedding.

This follows immediately from monotonicity of scl.

Remark 2.6 In particular, the calculation of scl in a free product of infinitely many
groups reduces to computations in the free product of finitely many groups.

3 Encoding surface maps as vectors

In this section, we introduce the method from [6] to encode admissible surface maps
into a wedge of spaces as vectors in a finite-dimensional rational polyhedron.

In the sequel, fix G DA�B to be a free product of two groups A and B . Since every
finite-dimensional rational subspace of BH

1
.G/ is a rational subspace of hZi\BH

1
.G/

for some finite subset Z of nontrivial conjugacy classes in G, we fix such a Z and
study the restriction of scl to hZi \BH

1
.G/. We assume that there are no torsion

elements in Z since ng D gn D 1 in BH
1
.G/ if g is of order n.

Let KA and KB be a K.A; 1/ and K.B; 1/, respectively, and then K DKA _KB is
a K.G; 1/ with wedge point �. By choosing appropriate loops to represent elements
of Z , we get an oriented closed 1–manifold L (one component for each element of Z )
together with a map �W L!K such that, for each component Li ,

(1) either �.Li/ is disjoint from � and thus contained entirely in KA or KB

(referred to as self-loops);

(2) or ��1.�/\Li cuts Li into finitely many intervals, each mapped alternately to
a based loop in one of KA or KB .

Therefore, Ln��1.�/ has finitely many components, each taken to a loop contained
in one of KA and KB (see Figure 1). Let T .A/ and T .B/ be the set of components
taken to KA and KB , respectively.

Now, for any surface f W S ! K without sphere component and admissible for an
integral class in hZi\BH

1
.G/, we may assume up to a homotopy that @f W @S!L is a

(possibly disconnected) covering map, and assume f is transverse to �, ie F WDf �1.�/

is a finite disjoint union of embedded loops and proper arcs. We may also assume (by
Remark 2.3) @f W @S !L is orientation-preserving on each component.
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L

a0

a1

b1

a2b2

a3

b3

Figure 1: The 1–manifold L when Z D fa0; a1b1a2b2a3b3g; the compo-
nent on the left is a self-loop.

We can eliminate loops in F by repeating the following procedure: eliminate all
null-homotopic loops in F by homotopy (innermost first), and then compress an
essential loop in F. This procedure does not increase ���.S/, does not create sphere
components and must terminate after finite repetitions since the number of loops in
F decreases. Each proper arc in F is essential in S since @f is a covering. So, from
now on, we assume that F consists of (essential) proper arcs.

Let SA and SB be f �1.KA/ and f �1.KB/, respectively; we focus on SA in the rest
of this section.

Now SA is a surface that

(1) possibly has corners,

(2) has no sphere component, and

(3) each component of @SA either covers a self-loop mapped to KA or can be
decomposed into arcs alternating between those mapped to � (components of F )
and those mapped to elements in T .A/ (see Figure 2).

Let SA be the set of surface maps to KA satisfying the conditions above.

SA

a2
0

a1a1

a2

a2

a3

a3

1

2

3

4

5

6

SB

b1

b1

b2

b2

b3

b3

1

2

3

4

56

Figure 2: An example of SA and SB ; components of F are labeled by
numbers and arcs with the same label are identified after gluing.
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Note that the corners of SA are exactly F \ @S, so the orbifold Euler characteristic of
SA is

�o.SA/ WD �.SA/�
1
4

#.corners/D �.SA/�
1
2

#.components of F /:

Since S can be obtained by gluing SA and SB along F, we have

�.S/D �o.SA/C�o.SB/:

Also note that each component of F with orientation induced from SA goes from
one element of T .A/ to another, and thus can be encoded as an ordered pair of these
two elements of T .A/. Although elements of T .A/ corresponding to self-loops do
not appear in this way, it is convenient to encode a component of @SA that covers a
self-loop � with degree n as n.�; �/. Thus we define

T2.A/D f.�; �
0/ 2 T .A/2 j � D � 0 if one of them corresponds to a self-loopg:

Let C1.A/ and C2.A/ be the R–vector spaces with bases T .A/ and T2.A/, respec-
tively. Then we can encode the surface SA as a vector v.SA/ in C2.A/ as follows:
each component of F is encoded as an element of T2.A/ described as above, each
component of @SA that covers some self-loop � with degree n is encoded as n.�; �/,
and v.SA/ is defined to be the sum of these vectors in C2.A/.

Obviously, v.SA/ is a nonnegative integer vector in C2.A/, and it satisfies two more
linear constraints. Define a (rational) linear map @W C2.A/! C1.A/ by @.�; � 0/ D
� � � 0. Then @ ı v.SA/D 0 since every boundary component of SA closes up. Define
hW C2.A/!H1.A/˝R by h.�; � 0/D 1

2
.� C � 0/, where H1.A/ is the abelianization

of A. Then h ı v.SA/ is just the image of Œ@SA� in H1.AIR/, which is 0 since it
bounds SA .

Definition 3.1 Let VA be the convex rational polyhedral cone of nonnegative vectors
v 2 C2.A/ satisfying @.v/D 0 and h.v/D 0.

The discussion above shows that v.SA/ is an integer vector in VA for any SA 2 SA .
Conversely, for any integer vector v2VA , since @.v/D0, the sum

P 1
2
.�C� 0/ actually

defines an integral homology class in H1.AIZ/, whose image under H1.AIZ/!

H1.AIZ/˝RŠH1.AIR/ is h.v/D 0. Hence there is a positive integer n such that
the integral homology class given by nv is trivial and thus bounds some (actually many)
surface(s) in SA . The same thing holds for rational vectors in VA . We summarize this
as a lemma for later use.
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Lemma 3.2 (Calegari [6]) The vector v.SA/ is integral in VA . Conversely, for any
rational vector v 2 VA , there is an integer n � 1 such that nv D v.SA/ for some
SA 2 SA .

Such an encoding reduces the huge space of admissible surfaces to a finite-dimensional
space. However, this reduction comes at a cost. There are many different surfaces SA

encoded as the same v.SA/. Thus we are led to the following optimization problem:
given a rational vector v in VA , what is the infimum of ��o.SA/=n.SA/ over all
surfaces SA with v.SA/D n.SA/v for some n? We address this in the next section.

4 Nonlinear optimization

Now we study the optimization problem discussed above. We follow [6], except that
there are significant new issues because the factors are nonabelian. The key observation
is Lemma 4.7.

Definition 4.1 For any rational vector v 2 VA , define

�o;A.v/D sup
�
�o.SA/

n

ˇ̌̌
v.SA/D nv for some n 2N; SA 2 SA

�
:

As we saw in Section 3, �o.SA/D �.SA/�
1
2

#.components of F /. The number of
components of F is a linear function jvj in v.SA/ defined as follows: on the basis,
j.�; � 0/j is 1 if � ¤ � 0, and is 0 if otherwise; then extend by linearity. Notice that jvj
is just the L1 norm if there is no self-loop.

Therefore,

(4-1) �o;A.v/D�
1
2
jvjC sup

�
�.SA/

n

ˇ̌̌
v.SA/D nv for some n 2N

�
:

Note that the second term is quite similar to the definition of �2 scl, but SA could
have disk components and it could be admissible for different chains in BH

1
.A/. We

first deal with disk components.

4.1 Disk vectors

Definition 4.2 We call v 2 VA a disk vector if v encodes some disk. Denote the set of
disk vectors by DA . For v 2 VA , we say v D v0C

P
tidi is an admissible expression

if v0 2 VA , ti � 0 and di 2 DA . Define

�A.v/D sup
nX

ti
ˇ̌
v D v0C

X
tidi is an admissible expression

o
:
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Roughly speaking, �A.v/ is the maximal “number” of disk vectors that can be subtracted
from v . In the case where scl vanishes on BH

1
.A/, we have the following lemma:

Lemma 4.3 If scl vanishes on BH
1
.A/, then �o;A.v/ D �

1
2
jvj C �A.v/ for any

rational vector v 2 VA .

Proof This is equivalent to showing that

sup
�
�.SA/

n

ˇ̌̌
v.SA/D nv for some n 2N

�
D �A.v/

by (4-1). Suppose v.SA/ D nv for some n 2 N , and let D1; : : : ;Dk be the disk
components of SA and SA D S 0

A
t
�F

Di

�
. Then �.SA/ D �

�.SA/C k � k and
v D v.S 0

A
/=nC

P
v.Di/=n is an admissible expression. Then �A.v/� k=n and thus

�.SA/=n� �A.v/. This proves the “�” direction.

Conversely, for any given � > 0, there is an admissible expression v D v0C
P

tidi ,
where

ˇ̌
�A.v/�

P
ti
ˇ̌
< � . We may assume that each ti is rational, and then v0 is

also rational since v is. Hence there is an integer n � 1 such that each nti is an
integer and nv0 D v.S 0

A
/ for some S 0

A
by Lemma 3.2. Now @S 0

A
defines a chain c

in B1.A/ where scl vanishes. Thus we can find some S 00
A

such that @S 00
A
D Nc ,

v.S 00
A
/ D Nv.S 0

A
/ D N nv0 and j���.S 00

A
/=N j < � . Also find disks Di such that

v.Di/D di , and take N nti copies of Di for each i . Finally take SA to be the disjoint
union of all these disks and S 00

A
. Then v.SA/ D N nv0 C N n

P
tidi D N nv and

�.SA/=N nD �.S 00
A
/=N nC

P
ti � �

�.S 00
A
/=N nC .�A.v/� �/� ��=nC �A.v/� � .

Since � is arbitrary, this proves the other direction.

This motivates the study of �A.v/ since jvj is already linear on VA .

Recall the following standard notions that we will use. In a vector space X, the convex
hull of a subset E , denoted by conv.E/, is the smallest convex set containing E . The
Minkowski sum of two subsets E and F is the set

ECF WD fxCy j x 2E and y 2 Fg:

A function f defined on a convex subset E �X is concave if f .�xC .1��/y/�

�f .x/C.1��/f .y/ for any �2 Œ0; 1� and any x;y 2E . Finally, a function f defined
on a cone C � X centered at the origin is homogeneous if f .�x/ D �f .x/ for all
�� 0 and x 2 C.

The following lemma is the same as [6, Lemma 3.10]. The proof is standard, so we
omit it.
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Lemma 4.4 The function �A is a nonnegative concave homogeneous function on VA .
The subset of VA on which �A D 1 is the boundary of conv.DA/CVA in VA .

4.2 Key observation

Now we come to the key observation that makes it possible to generalize the result
in [6] to our rationality theorem.

In [6], essentially using that A is free abelian, DA is determined explicitly as integer
points lying in some open faces of VA . Then conv.DA/C VA , which is a subset
of VA , is shown to be a finite-sided rational convex polyhedron using such an explicit
description of DA , which also produces an effective algorithm to compute scl in that
case. However, the set DA of disk vectors could be very complicated and hard to
determine explicitly in general.

The following example illustrates how complicated DA could be, even when A is the
simplest nonabelian group. The study of this example was initiated in an unpublished
note by Timothy Susse, who did computer experiments and gave conjectural pictures
of the result.

Example 4.5 Let A D H3.Z/ D hx;y; z j z D Œx;y�; Œx; z� D Œy; z� D 1i be the 3–
dimensional Heisenberg group, which is 2–step nilpotent, and ŒA;A�D hzi. Suppose
T .A/ D fa; b; cg for some a; b; c 2 Anfidg such that abc D zm for some m 2 Z,
which occurs if we consider g D a˛bˇc 2 ŒG;G� with G DA�B and ˛ , ˇ and 
in some group B .

Let us look at a 2–dimensional subcone of VA spanned by P D .a; b/C .b; c/C .c; a/

and N D .a; c/C .b; a/C .c; b/, and find all .u; v/ 2 Z2
C such that uP C vN is a

disk vector. For fixed .u; v/, the vector uP C vN is a disk vector if and only if there
is some cyclic word w in a, b and c such that

(1) w represents id in A;

(2) w contains u copies of each of ab , bc , ca and v copies of ac , cb and ba as
subwords.

Notice that since abc D zm , the element a commutes with bc and cb , and similarly
for b and c ; we also have Œa; b�D Œb; c�D Œc; a�D zn for some n. Any cyclic word
with equal number (say, k ) of a; b; c in it can be written uniquely as .abc/k Œa; b�r for
some r 2 Z by moving letters around. One can prove by induction (see the appendix)
that for fixed .u; v/, and the set of cyclic words satisfying the restriction (2) above, the

Algebraic & Geometric Topology, Volume 18 (2018)



Scl in free products 3289
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u
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v v D u2

uD v2

Figure 3: Disk vectors in a subcone of VA with ADH3.Z/

set of r that can appear is

(4-2) Su;v D

8<:
�
�

1
2
v.vC 1/; 1

2
v.v� 3/

�
\Z if uD v;�

�
1
2
v.vC 1/; 1

2
v.v� 1/

�
\Z if u> v;�

�
1
2
u.uC 1/� v; 1

2
u.u� 1/� v

�
\Z if u< v:

Therefore, uP C vN is a disk vector if and only if .abc/uCv Œa; b�r D id for some
r 2 Su;v , or equivalently m.uCv/Cnr D 0 has a solution for r 2 Su;v . For example,
if m

n
D

1
2

, the set of .u; v/ for which uP C vN is a disk vector is

f.u; v/ 2 Z2
C j 1� v � u� v2 or u< v � u2; and u� v mod 2g;

which is the set of integer points in the shaded region in Figure 3, bounded by two
parabolas, such that the two coordinates have the same parity.

Nevertheless, Corollary 4.9, a consequence of our key lemma, Lemma 4.7, shows
that conv.DA/ C VA is always a finite-sided rational convex cone no matter how
complicated DA is. The key reason is that an integer point in a rational cone cannot be
too close to a given face unless it lies on that face.

We first recall some standard definitions.

Definition 4.6 A convex polyhedral cone in Rn is a set C Dfx jfi.x/�0 for all i 2Ig

where each fi W Rn!R is a linear map and I is finite. In addition, C is rational if

Algebraic & Geometric Topology, Volume 18 (2018)
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the fi can be chosen to be rational. We say C is simplicial if the fi can be chosen to
be linearly independent in .Rn/� , or, equivalently, C is the convex cone spanned by
some linearly independent vectors.

Similarly, a convex polyhedron in Rn is a set P D fx j fi.x/� ˛i for all i 2 Ig where
each fi W Rn! R is a linear map, each ˛i is real and I is finite. In addition, P is
rational if the fi and ˛i can be chosen to be rational.

It follows that if C is simplicial and rational, then C is the convex cone spanned by
some linearly independent rational vectors. Here is the key observation.

Lemma 4.7 Let C be a rational polyhedral cone in Rn and let D be a subset of
C \

�
1
L
� Z
�n for some L 2 ZC . Then there is a finite subset D0 of D such that

DCC DD0CC.

Proof The claim is trivially true if D is empty. From now on we assume D to be
nonempty. We first reduce the problem to the case where C is simplicial. Decompose
C D

S
Ci as the union of finitely many simplicial rational cones Ci for i D 1; : : : ; k .

Suppose the claim is true for simplicial rational cones. Letting Di D D \ Ci and
applying the claim to each pair .Ci ;Di/, we get some finite sets D0i such that D0iCCiD

Di CCi . Now let D0 D
S

D0i . It suffices to show that DCC �D0CC. Actually,
for each point d C c 2DCC where d 2D and c 2 C, we have d 2Di for some i

since D D
S

Di . Now Di �Di CCi DD0i CCi , so there exists d 0 2D0i �D0 and
c0 2 Ci � C such that d D d 0C c0, and thus d C c D d 0C .c0C c/ lies in D0CC.

Therefore, we only need to show the claim for any simplicial rational cone C, which
can be further reduced as follows to the case where C is the first orthant of Rn . Let ci

for i D 1; : : : ; k be the linearly independent rational vectors that span C. Extend this
to a rational basis of Rn and take a linear transformation f of Rn by sending ci to ei ,
where feig

n
iD1

is the standard basis. In terms of matrices (with respect to the basis ei ),
f is an n�n matrix with rational entries. Let N be the lcm of the denominators of the
entries. Then the image of

�
1
L
�Z
�n under f lies in

�
1

LN
�Z
�n , so f .D/ is a subset

of
�

1
LN
�Z
�n .

Thus we only need to show the claim for

C D fx D .x1; : : : ;xn/ j xi � 0 for i D 1; : : : ; k; xi D 0 for i > kg:

Up to applying the map v 7!Lv (our statement is irrelevant to the scale), we assume
without loss of generality that LD 1 in the sequel, ie D lies in the integer lattice. Now
we may ignore ei for i > k . Thus we assume without loss of generality that C is
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D0
1

D00
1

D0
2

D00
2

Figure 4: An illustration of our induction argument in the case n D 2 and
C D R2

�0 . The dots are points in D and the crosses on the axes are D1

and D2 ; the red crosses are D0
1

and D0
2

, whose lifts are D00
1

and D00
2

. The
shaded region D00CC contains the majority (black dots) of D, so we can
take D0 to be the red dots.

the first orthant of Rn and proceed by induction on the dimension n (note that n is
actually the dimension of C, not of the underlying space we started with). See Figure 4
for an illustration of our induction in a special case.

The base case nD 1 is obvious. For the inductive step, fix any i 2 f1; : : : ; ng, and let
Fi Dfx 2C j xi D 0g be the i th face of C and pi be the projection from C to Fi . Let
Di Dpi.D/, which lies in the integer lattice and Fi . Thus, by the induction hypothesis
(applied to .Fi ;Di/), there is a finite set D0i �Di such that D0i CFi DDi CFi . For
each x0 2D0i , choose some x00 2D such that pi.x

00/D x0. Hence there is a finite set
D00i �D which projects to D0i under pi . Note the following simple but crucial fact:
for any x;y 2 C, if yi � xi , then y lies in xCC if and only if pi.y/ 2 pi.x/CFi .
Thus, if we take Mi D maxfxi j x 2 D00i g, then for any point y with yi �Mi , we
have y 2D00i CC if and only if pi.y/ 2D0i CFi DDi CFi . Therefore, if yi �Mi

and y 2D, then pi.y/ 2Di �DiCFi , which means y 2D00i CC. In other words, if
y 2Dn.D00i CC /, then 0� yi <Mi .
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Now let i range from 1 to n and take D00D
S

D00i . By what we showed above, if y 2

Dn.D00CC /DDn
�S
.D00i CC /

�
, then 0� yi <Mi for each i . Hence, Dn.D00CC /

is a bounded subset of Zn and therefore finite. Take D0 DD00[ ŒDn.D00CC /�, and
the claim follows.

Corollary 4.8 Let C and D be as in Lemma 4.7. Then conv.CCD/D conv.D/CC

is a (closed) rational polyhedron.

Proof We have conv.C CD/D conv.D/CC since the Minkowski sum commutes
with taking convex hull and C is convex. The same consideration and Lemma 4.7
implies conv.C CD/ D conv.C CD0/ D conv.D0/C C. Now conv.D0/C C is a
rational polyhedron since it is the Minkowski sum of two rational polyhedra (see for
example the proof of [1, Theorem 3.5]).

Applying this to C D VA and D D DA , we get the following corollary:

Corollary 4.9 For any G D A � B and Z as in the setup in Section 3, the set
conv.DA/CVA is a (closed) rational polyhedron. Thus �A is the minimum of finitely
many rational linear functions. If scl vanishes on BH

1
.A/, then �o;A (originally

defined on rational vectors in VA ) has a (unique) continuous extension �A � 1
2
j � j,

which is the minimum of finitely many rational linear functions.

Proof The first assertion follows immediately from Corollary 4.8. Let ffi j i 2 Ig be a
finite subset of rational linear functions defining the rational polyhedron conv.DA/CVA

such that each ffi D 1g contains some top-dimensional face of the boundary of
conv.DA/CVA in VA . Combining with Lemma 4.4, we have �A.x/Dminiffi.x/g.
Combining with Lemma 4.3, we get the last assertion.

4.3 Rationality theorem

Corollary 4.9 generalizes [6, Lemma 3.12] by weakening the assumption “(free) abelian”
to “scl vanishes”. Now, following the argument in [6], we get our first main result:

Theorem A (rationality) If G� (� 2ƒ) is a family of groups where scl vanishes on
each G� , then scl is piecewise rational linear on the free product G D��G� .

Given Corollary 4.9, the proof is the same as that in [6]. We include it for completeness.
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Proof We first focus on the case of G DA�B .

As in Section 3, fix a finite subset Z of nontrivial conjugacy classes in G and define
the 1–manifold L. Also let T2.A/, VA and �o;A be as above, and similarly define
these for B . Let Y � VA � VB be the set of pairs .vA; vB/ that can be “glued
up”: for any .�; � 0/ 2 T2.A/ with � not a self-loop (then neither is � 0 ), there is a
unique .�; � 0/ 2 T2.B/ such that � 0 is the oriented arc in the 1–manifold L following
� , and � 0 follows � ; we require the .�; � 0/–coordinate of vA to equal the .�; � 0/–
coordinate of vB for any such .�; � 0/ and .�; � 0/. Then Y is still a rational cone. Define
�o.vA; vB/D�o;A.vA/C�o;B.vB/ for any .vA; vB/2Y . Then, by Corollary 4.9, �o is
the minimum of finitely many rational linear functions. Finally define d W Y !H1.L/

to be the unique rational linear map such that d.y/D @f�.@S/ in H1.L/ whenever
y D .v.SA/; v.SB// 2 Y for some surface S D SACSB .

Now, for any l 2 H1.L/ that corresponds to a chain z 2 hZi \BH
1
.G/, let Yl D

d�1.l/� Y . Then we have

(4-3) scl.z/D�max
y2Yl

1
2
�o.y/:

Notice that Yl is a finite-sided convex polyhedron since Y is, and it is rational if l is.
Now �o.y/Dminfi.y/ for some finite collection of rational linear functions fi . Then
maximizing �o.y/ for y 2 Yl can be solved by introducing a slack variable z and
maximizing z subject to the rational linear constraints z � fi.y/ and y 2 Yl . This is a
linear programming problem in .y; z/. Then it follows that scl is piecewise rational
linear on hZi \BH

1
.G/. Since Z is arbitrary, the conclusion follows.

For the general case, since every rational subspace only involves finitely many factors,
it suffices to show that the conclusion holds when ƒ is finite according to Remark 2.6.
Now if ƒ is finite, we can build K.G; 1/ by gluing up the K.G�; 1/ so that no three
factors are attached at the same point. This guarantees that the transversality argument
we used to cut the surfaces still applies and that the surfaces SG� are glued up in a
simple way. Then define T2.G�/, VG� and �o;G� as before. Similarly define Y by
writing down the suitable gluing condition. Then the same argument above shows that
scl is piecewise rational linear.

Remark 4.10 Many groups have vanishing scl. There are three main sources:

(1) Small groups such as amenable groups, which include finite groups and solvable
groups.
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(2) Irreducible lattices of higher rank Lie groups (see [4, Theorem 5.26] for a precise
statement).

(3) Some transformation groups such as HomeoC.S1/ [4, Theorem 2.43], subgroups
of PLC.I/ [3, Theorem A], Homeoc.Rn/ and Thompson–Stein groups Tp;q

with gcd.p� 1; q� 1/D 1 (see [16, Lemma 3.6] or [4, Lemma 5.15]).

Remark 4.11 The proof actually gives a method to determine scl in free products
when scl vanishes on each factor. It produces an algorithm as long as one can determine
the vertices of the convex cone conv.VA� CDA�/, which seems hard in general since
it requires some knowledge of DA� . The method, however, is still helpful to study scl
in families.

Remark 4.12 When considering Yl , it is redundant in the following sense to impose
hD 0 in the definition of VA (see Definition 3.1). If we define V 0

A
to be nonnegative

vectors v 2 C2.A/ satisfying @.v/ D 0, then VA is the subpolyhedral cone of V 0
A

on which hD 0. We can similarly define Y and the linear map d using V 0
A

instead
of VA , and denote them by Y 0 and d 0. It turns out that if l 2H1.L/ corresponds to a
homologically trivial chain in B1.G/, then d 0�1.l/� Y 0 coincides with Yl .

Corollary 4.13 Let f�W A�! B� be a family of injective group homomorphisms. If
scl vanishes on each A� and B� , then the induced map f W ��A� ! ��B� is an
isometric embedding with respect to scl. More precisely, for any c 2 BH

1
.��A�/, we

have scl.c/D scl.f .c//.

Proof Again this reduces to the case of finitely many factors. Now run the process
above on both sides using V 0

A�
and V 0

B�
as in Remark 4.12 instead of VA� and VB�.

Then f� induces a bijection between T .A�/ and T .B�/ and similarly between T2.A�/

and T2.B�/. These give rise to an isomorphism .f�/� between C2.A�/ and C2.B�/

that takes V 0
A�

to V 0
B�

isomorphically. The map .f�/� may not restrict to an isomor-
phism between VA� and VB� when the induced map of f� on group homology is not
injective. Injectivity of f� ensures that .f�/� restricts to a bijection between DA�

and DB� , and thus �A� is the pullback of �B� by .f�/� . Then the computation of scl
on two sides are results of the same linear programming problem, so f is isometric
for scl.

The condition that scl vanishes on each A� and B� ensures that each f� is isometric.
Thus it is natural to ask whether it is enough to get the conclusion only assuming
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each f� to be an isometric embedding. Our second main result confirms this. To prove
it, we will reveal how scl in free products is determined when scl does not necessarily
vanish on each factor.

4.4 Scl in general free products

Now we return to the general case. Similar to the special case discussed above, we
need an analog of Lemma 4.3 to reveal the structure of �o;A.v/. Unlike the case where
scl vanishes on factors, the second term on the right-hand side of (4-1) cannot be
computed via �A as in (4-1) any more. With notations as before and DA defined as in
Definition 4.2, we make the following definition:

Definition 4.14 For any rational v 2 VA , define

psclA.v/ WD inf
�
���.SA/

2n

ˇ̌̌
v.SA/D nv for some n 2N

�
:

Let coneQ.DA/ WD
˚P

tidi j ti 2 Q; ti � 0; di 2 DA

	
. Equivalently, coneQ.DA/ is

the set of rational points in cone.DA/. We use the convention that coneQ.DA/D f0g

if DA D∅. For any x 2 coneQ.DA/, define

�A.x/ WD sup
nX

ti

ˇ̌̌
x D

X
tidi with ti 2Q; ti � 0; di 2 DA

o
:

Lemma 4.15 For any rational v 2 VA , we have

�o;A.v/D�
1
2
jvjC supf�2 psclA.v� d/C �A.d/ j d 2 coneQ.DA/; v� d 2 VAg

� �
1
2
jvjC �A.v/:

Proof We first prove the equality in a similar way as we did for Lemma 4.3. Let

LD sup
�
�.SA/

n

ˇ̌̌
v.SA/D nv for some n 2N

�
;

RD supf�2 psclA.v� d/C �A.d/ j d 2 coneQ.DA/; v� d 2 VAg:

By (4-1), we just need to show LDR.

On the one hand, if v.SA/D nv , let D1; : : : ;Dk be the disk components of SA and
SA D S 0

A
t
�F

Di

�
. Then

�.SA/D �
�.S 0A/C k � �2n psclA.v� d/C k � �2n psclA.v� d/C n�A.d/;

where d D
P
v.Di/=n. This proves L�R.
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On the other hand, for any given � > 0, there exists d 2 coneQ.DA/ such that v0 D
v�d 2 VA and �2 psclA.v

0/C�A.d/ >R�� . Then we can write d D
P

tidi with ti

nonnegative rational and di 2DA such that
P

ti>�A.d/�� . There also exist an integer
n� 1 and a surface S 0

A
such that v.S 0

A
/D nv0 and 1

2n
��.S 0

A
/ >�psclA.v

0/�� . Up to
replacing S 0

A
by a bunch of copies of itself, we may assume that each nti is an integer.

Now take disks Di such that v.Di/D di . Take nti copies of Di for each i and let SA

be the disjoint union of these disks together with S 0
A

. Then v.SA/Dnv0Cn
P

tidiDnv

and
�.SA/

n
D
�.S 0

A
/

n
C

X
ti �

��.S 0
A
/

n
C

X
ti >�2 psclA.v

0/C�A.d/�3� >R�4�:

This shows L�R and finishes the proof of the equality part.

To show the inequality, suppose d 2 coneQ.DA/ and v � d 2 VA . For any � > 0,
we can write d D

P
tidi with �A.d/ <

P
ti C � . Thus the admissible expression

v D .v� d/C
P

tidi shows

�A.v/�
X

ti > �A.d/� � � �2 psclA.v� d/C �A.d/� �:

Since � is arbitrary, the desired inequality holds.

Now we can describe how scl is determined in general free products. Let G D�i Gi

be the free product of finitely many groups. Consider a finite set Z of conjugacy
classes (without torsion elements) in G and build the 1–manifold L as before. Define
VGi

, DGi
, �Gi

and psclGi
as above. Then define Y , as in the proof of Theorem A, to

be the rational polyhedron in
Q

VGi
consisting of tuples of vectors from VGi

that can
be “glued up”, and define �o (only for rational points in Y ) to be the sum of �o;Gi

evaluated on the i th coordinate. Now, for any rational l 2H1.L/ that corresponds to a
rational chain z 2 hZi \BH

1
.G/, let Yl D d�1.l/� Y .

Lemma 4.16 With notations as above,

scl.z/D inf
rational y2Yl

�
1
2
�o.y/:

The proof follows exactly as before. By ignoring the contribution from scl in factor
groups, we get the following estimate:

Corollary 4.17 With notations as above,

2 � scl.z/� inf
yD.vGi

/2Yl

X
i

�
1
2
jvGi
j � �Gi

.vGi
/
�
;

and equality holds if sclGi
� 0 for all i .
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Proof The inequality follows from Lemma 4.16 and the inequality in Lemma 4.15
together with the fact that �Gi

has a continuous extension to irrational points (Corollary
4.9). Using Lemma 4.3 instead of Lemma 4.15, we get the equality part.

Using Lemma 4.16, we can generalize Corollary 4.13 to our second main result.

Theorem B (isometric embedding) If f�W H�!G� is a family of isometric embed-
dings with respect to scl, then the induced map f W �H�!�G� is also an isometric
embedding.

Proof The proof is almost the same as that of Corollary 4.13. First reduce to finite
free products, and then apply Lemma 4.16 on both sides accordingly with V 0

Hi
and V 0

Gi

instead as in Remark 4.12 to avoid assuming that fi induces an injective map on
homology. As in the proof of Corollary 4.13, each fi induces an isomorphism of V 0

Hi

and V 0
Gi

that takes DHi
bijectively to DGi

by injectivity of fi , and thus �Hi
is the

pullback of �Gi
. Since fi preserves scl, we see psclHi

is the pullback of psclGi
.

It follows that �o;Hi
is the pullback of �o;Gi

and thus the computations of scl (for
rational chains) on both sides are obtained by solving the same optimization problem.
Hence, f preserves scl.

Remark 4.18 Alternatively, one can prove this theorem in a more direct way. Here is
an outline:

Reduce to finite free products and then to the case A �B ! A0 �B0 by induction.
It suffices to show scl.c/� scl0.c0/ for integral homologically trivial chains c where
c0D f .c/, sclD sclA�B and scl0D sclA0�B0 . Take any surface S 0 mapped into A0�B0

that approximates scl0.c0/ well, and decompose it as in Section 3 into pieces SA0

and SB0 . Disk components of SA0 “factor through” A by injectivity of A!A0. The
boundary of the union of the other components defines a chain on A0 that can be
pulled back to a homologically trivial (for the same reason explained in Remark 4.12)
chain on A with identical scl by assumption. Then find a surface that approximates
the scl of this chain well, take a finite cover if necessary and take the union with
multiple copies of the disk components from S 0

A
, and we obtain a surface SA with

��o.SA/�m.��o.S
0
A
/C �/ and such that v.SA/ corresponds to mv.S 0

A
/, using the

notation in Section 3. Do the same thing for B . Then glue up SA and SB (after taking
suitable finite covers) to get a surface S mapped to A�B that winds around c and is
almost as efficient as S 0. Thus, scl.c/� scl0.c0/.
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5 Applications: generalizations and new proofs of old results

In this section, we apply the isometric embedding theorem and the computational
methods we have developed to get generalizations and new proofs of old results.

We start with a simple corollary of Theorem B.

Corollary 5.1 Let g� 2G� , G D��G� and f�W hg�i!G� be the inclusion. Then
the induced map f W ��hg�i!G is an isometric embedding. In particular, if g� 2G�

has order k� , then the spectrum of sclG contains the spectrum of scl on ��.Z=k�Z/.
Here k�� 2 could be1, in which case Z=k�Z would be Z; and the “spectrum” could
refer to the values scl takes on BH

1
or the commutator subgroups.

Proof Simply note that f� is an isometric embedding even if sclG�.g�/ > 0, be-
cause the definition of an isometric embedding is that fi induces an isometric map
BH

1
.hg�i/!BH

1
.G�/, and BH

1
.hg�i/DBH

1
.Z=k�Z/D 0 since Z=k�Z is abelian.

Remark 5.2 Scl in free products of cyclic groups has been studied in [5; 6; 7]. The
program scallop [8] can compute scl on specific chains.

This allows us to generalize results about the scl spectrum in free groups (or free
products of cyclic groups) to general free products. Here is an example.

Corollary 5.3 Let G D ��2ƒG� with jƒj � 2 and suppose at least two of the G�

contain elements of infinite order. Then the image of ŒG;G� under scl contains elements
congruent to every element of Q mod Z. Moreover, it contains a well-ordered sequence
of values with ordinal type !! .

Proof This follows from [7, Corollary 3.19], which states that the conclusion is true
for nonabelian free groups, and our Corollary 5.1.

Now we give three examples to illustrate how Lemma 4.16 works. We first deduce the
following product formula, which was originally stated not quite correctly in [2] (but
the proof is still valid for elements of infinite order) and later corrected and proved
in [4] for the general case.
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Proposition 5.4 (product formula) Let G D A �B , and let a 2 A and b 2 B be
nontrivial elements. Suppose a and b are of order na and nb (which could be 1, in
which case 1=1D 0 by convention). Then

sclG.ab/D sclA.a/C sclB.b/C
1

2

�
1�

1

na
�

1

nb

�
:

Proof If the image of a in H1.AIR/ is not zero, then both sides are1 by convention,
and similarly for b . Now we assume this is not the case. Using the notations in previous
sections, let Z D fabg; then L is just an oriented circle, VA D ft.a; a/ j t � 0g and
psclA.t.a; a//D sclA.a/ by homogeneity of scl. If na is finite, then sclA.a/D0, DAD

fkna.a; a/ j k 2 ZCg and thus �A.t.a; a// D t=na , �o;A.t.a; a// D �
1
2
t C t=na by

Lemma 4.15. If naD1, then DAD∅ and coneQ.DA/Df0g, and thus �o;A.t.a; a//D

�
1
2
t � 2t sclA.a/ by Lemma 4.15. Then �o;A.t.a; a//D�

1
2
t � 2t sclA.a/C t=na is

valid in both cases. Similarly we get �o;B . Now the “glue-up” condition on VA �VB

simply requires s D t for .t.a; a/; s.b; b//, so Y D f.t.a; a/; t.b; b// j t � 0g. Then
the fundamental class l 2H1.L/ corresponds to the chain ab . Thus, Yl is a singleton
f..a; a/; .b; b//g and �o

�
..a; a/; .b; b//

�
D�1�2 sclA.a/�2 sclB.b/C1=naC1=nb .

Therefore, by Lemma 4.16, we get

sclG.ab/D�
�o

�
..a; a/; .b; b//

�
2

D sclA.a/C sclB.b/C
1

2

�
1�

1

na
�

1

nb

�
:

The following self-product formula is an analog of the product formula. When B D Z

and t is the generator, it is proved in [4].

Proposition 5.5 (generalized self-product formula) Let A and B be groups and
x;y 2A and t 2 B be elements of infinite order. Then

sclA�B.xtyt�1/D sclA.xCy/C 1
2
:

Proof Again both sides are 1 if xC y is not 0 in H1.A/. Thus we assume this
is not the case. The result easily follows from the original self-product formula and
Theorem B by considering idW A!A and the inclusion i W hti ! B . But we prove it
using the computational tool above, which gives a new proof.

We apply Lemma 4.16 to calculate the left-hand side. Using notations as before, if ZD

fxtyt�1g, then L is an oriented circle, and C2.B/ consists of vectors of the form vbD

b11.t; t/Cb12.t; t
�1/Cb21.t

�1; t/Cb22.t
�1; t�1/, where we encode the coefficients

into a 2�2 matrix bD .bij /. Then, by the definition of V 0
B

(Remark 4.12), @.vb/D 0
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requires the sum of entries in the i th row to equal that of those in the i th column for
all i , which is b12D b21 in this case. Similarly, V 0

A
Dfua j a12D a21; aij � 0g, where

ua D a11.x;x/C a12.x;y/C a21.y;x/C a22.y;y/. If .ua; vb/ 2 Y 0, the glue-up
condition requires a11 D b12 , a12 D b11 , a21 D b22 and a22 D b21 . In other words,
b is the matrix we get by interchanging the columns of a. Finally .ua; vb/2Yl requires
in addition that each row of b (and a) sums up to 1. Together with @.vb/D 0, this
implies that b12 D b21 D 1� b11 D 1� b22 .

In summary, Yl D f.uM.˛/; vM.1�˛// j ˛ 2 Œ0; 1�g, where

M.x/D

�
x 1�x

1�x x

�
:

Now psclB.vM.1�˛//D 0 since all t and t�1 will cancel. Since t has infinite order,
DBCV 0

B
D f.t; t�1/C .t�1; t/gCV 0

B
, which implies �B

�
ˇŒ.t; t�1/C .t�1; t/�

�
D ˇ

and, further, �B.vM.1�˛// D ˛ . Thus, �o;B.vM.1�˛// D �1C ˛ by Lemma 4.15.
For �o;A , it is more straightforward to use (4-1). Thus we have

�o.uM.˛/; vM.1�˛//D�2C˛C sup
�
�.SA/

n

ˇ̌̌
v.SA/D n �uM.˛/

�
:

Therefore, by Lemma 4.16, we only need to show

1C 2 sclA.xCy/D inf
˛2Œ0;1�\Q

�
2�˛C inf

�
�
�.SA/

n

ˇ̌̌
v.SA/D n �uM.˛/

��
:

Letting ˛ D 1, we have uM.1/ D .x;x/C .y;y/ and thus

inf
�
�
�.SA/

n

ˇ̌̌
v.SA/D n �uM.1/

�
D 2 sclA.xCy/

since SA has no disk components because x and y have infinite order. This gives the
“�” direction.

Conversely, we just need to show that 2 sclA.xCy/� 1�˛��.SA/=n always holds.
In fact, since v.SA/D nuM.˛/D n.1�˛/Œ.x;y/C .y;x/�Cn˛Œ.x;x/C .y;y/�, there
are 2n.1� ˛/ edges on the boundary of SA , mapped to the wedge point �, that sit
in-between an x and a y . Half of these edges are from x to y (referred to as an .x;y/–
edge) and the other half are from y to x (referred to as a .y;x/–edge). Whenever we
have an .x;y/–edge and a .y;x/–edge that lie on the same boundary component, we
glue a rectangle to the surface with one edge glued to the .x;y/–edge and its opposite
edge glued to the .y;x/–edge, and let f map the rectangle to the wedge point. Such a
surgery increases �� by 1. Repeating the process we get a new surface S 0

A
such that
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��.S 0
A
/D��.SA/C n.1�˛/ and each boundary component either winds around x

several times or around y . This implies that S 0
A

has no disk components since x and y

have infinite order and @S 0
A

winds around each of x and y n times in total. Thus,
1�˛��.SA/=nD���.S 0

A
/=n� sclA.xCy/. This completes the proof.

Finally we prove the following formula, which was conjectured for free products
of cyclic groups and proved for G D Z � .Z=mZ/ by Walker [15]. It was pointed
out by Susse that in the case of free products of cyclic groups, this is equivalent to
[14, Proposition 4.1], which he proved by considering certain amalgams of abelian
groups.

Proposition 5.6 Let G DA�B , a 2Anfidg and b 2 Bnfidg. Then

sclG.Œa; b�/D
1

2
�

1

k
;

where 2� k �C1 is the minimum of the orders of a and b .

Proof By Theorem B, we may assume AD hai and B D hbi. Let ka and kb be the
orders of a and b , respectively.

Similar to the proof of Proposition 5.5, we have

Yl D f.uM.˛/; vM.1�˛// j ˛ 2 Œ0; 1�g;

where

M.x/D

�
x 1�x

1�x x

�
and we get

�A.uM.˛//D 1�˛C
2˛

ka
; �B.vM.1�˛//D ˛C

2.1�˛/

kb

:

Therefore,

��o.uM.˛/; vM.1�˛//D 2� 1�
2˛

ka
�

2.1�˛/

kb

D 1�
2˛

ka
�

2.1�˛/

kb

;

which has maximum 1� 2=k for ˛ 2 Œ0; 1�, and thus

sclG.Œa; b�/D
1

2
�

1

k
:
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6 Walker’s conjecture

Fix a rational chain c in Fn . For any oD .o1; o2; : : : ; on/ with oi � 2; let co be the
image of c under the natural homomorphism �W Fn!�i Z=oiZ. It is natural to ask:
how does scl.co/ depend on o?

Based on computer experiments, Walker conjectured in [15] the following formulas:

c D aba�2b�2
C ab; scl.co/D

2

3
�

˚
2
3
; 1

2

	
min.o1; o2/

if min.o1; o2/� 2;

c D aba�3b�3; scl.co/D
3

4
�

1

o1
�

1

o2
if min.o1; o2/� 7;

c D a2ba�1b�1a�2bab�1; scl.co/D
1

2
�
f2; 1g

o1
if min.o1; o2/� 3;

c D aba2b2a3b3a�5b�5; scl.co/D 1�
1

2o1
�

1

2o2
if min.o1; o2/� 6;

where o1 and o2 are the orders of a and b , respectively, and brackets indicate that
the coefficients depend on congruence classes: for example, f2; 1g=o1 means 2=o1 if
o1 � 0 mod 2 and 1=o1 if o1 � 1 mod 2.

Motivated by this, Walker proposed the following conjecture:

Conjecture 6.1 (Walker [15]) For any fixed chain c in Fn , scl.co/ is piecewise
quasilinear in 1=oi , ie there are some p 2 ZC , and a finite partition of Zn

�2
, such that

on each piece, fixing any congruence class of each oi mod p , scl.co/ is linear in 1=oi .

Computer experiments suggest that this conjecture is false.

Example 6.2 Conjecturally, for nD 2 and c D aba�2b�2a2b2a�1b�1 with 1
2
o2 >

o1 > 10,

scl.co/D

8̂̂̂<̂
ˆ̂:

1� 3.o1� 1/=.o1.o1C 1// if o1 � 1; 3; 5 mod 6;

1� 3=o1 if o1 � 0 mod 6;

1� 15=.5o1C 8/ if o1 � 2 mod 6;

1� 3=.o1C 2/ if o1 � 4 mod 6:

This is verified by the computer program scallop [8] for o2D 100 and 10< o1 < 50.
We see from this example that the denominator could be a higher-degree polynomial
in o1 , and even when it is linear in o1 , it could be inhomogeneous.
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To seriously disprove the conjecture, it suffices to verify a special case of the formula
above:

Proposition 6.3 For n D 2 and c D aba�2b�2a2b2a�1b�1 , there exist constants
r; s � 1 such that when o1 D 6KC3, o2 D 6LC3 with L� rK and K � s , we have

scl.co/D 1�
3.o1� 1/

o1.o1C 1/
:

We prove the “�” direction and give an outline of the proof for the other direction.

Proof Follow the notations in Section 4 and apply our method to G D A �B with
AD Z=o1Z and B D Z=o2Z. Then T .A/D fa; a�2; a2; a�1g. Let

vA D
1

3KC2
Œ.a; a�1/C.a�1; a/�C

1

3KC2
Œ.a2; a�2/C.a�2; a2/�

C
K

.2KC1/.3KC2/
Œ.6KC3/.a; a/�C

1

.6KC3/.3KC2/
Œ.6KC3/.a�1; a�1/�

C
1

3KC2
Œ.a; a2/C3K.a2; a2/C.a2; a/�

C
1

3K.3KC2/
Œ.a�1; a�2/C3K.a�2; a�2/C.a�2; a�1/�

C
9K2�1

K.3KC2/.6KC3/
Œ.2KC1/.a�2; a�1/C.2KC1/.a�2; a�1/�;

where each bracket is a disk vector. In particular, we know vA 2 VA and

�A.vA/�
3

3KC 2
C

K

.2KC 1/.3KC 2/
C

1

.6KC 3/.3KC 2/

C
1

3K.3KC 2/
C

9K2� 1

K.3KC 2/.6KC 3/

D
30KC 12

.3KC 2/.6KC 3/
:

Similarly, let

vB D
3K

3KC 2
Œ.b; b�1/C .b�1; b/�C

3K

3KC 2
Œ.b2; b�2/C .b�2; b2/�

C
1

3KC 2
Œ.b2; b�1/C .b�1; b�1/C .b�1; b2/�

C
1

3KC 2
Œ.b; b�2/C .b�2; b�2/C .b�2; b/C .b; b2/C .b2; b/� 2 VB;
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where each bracket is a disk vector and

�B.vB/� 2�
2

3KC 2
:

One can check that vA and vB satisfy the gluing condition and .vA; vB/2Yl , where l is
the fundamental class of the loop representing the chain c . Therefore, by Corollary 4.17
(the equality part), for any K;L� 0, we have

scl.co/�
1

2
Œ2��A.vA/�C

1

2
Œ2��B.vB/�� 1�

18KC 6

.6KC 3/.6KC 4/
D 1�

3.o1� 1/

o1.o1C 1/
:

For the other direction, we only need to show that .vA; vB/ constructed above achieves
the maximum of the optimization problem

(P0) maximize �A.u/C �B.w/ subject to .u; w/ 2 Yl ;

and that the estimates for �A.vA/ and �B.vB/ above are sharp. The key idea is to use
duality of linear programming. Here is an outline:

(1) We linearize this optimization problem (P0) in a way similar to [11]. On the “A”
side, consider the directed graph (as in [6]) with vertex set T .A/ and directed edge
set T .A/2 . Let SLA be the set of directed simple (ie visiting each vertex at most
once) loops. Each directed loop cyclically visiting vertices a1; : : : ; an corresponds to
a vector

Pn
iD1.ai ; aiC1/ in V 0

A
. Then disk vectors can be written (not uniquely) as

linear combinations of simple loops with nonnegative integral coefficients. One can
enumerate disk vectors that are extremal, ie cannot be written as a convex combination
of other disk vectors plus a nonnegative linear combination of simple loops. It turns
out that there are finitely many (169) extremal disk vectors and each depends linearly
on K , which is compatible with Lemma 6.7 below. Denote the set of extremal disk
vectors by EDA . Obtain SLB and EDB on the “B” side simply by substituting a

and K by b and L, respectively since the two sides have the same structure. Then
(P0) can be linearized as:

(P ) maximize f Tx subject to Cx D b and x � 0 (entrywise);

where x D .xi/ and f D .fi/ are indexed by SLA t EDA t SLB t EDB , fi D 1 if
i 2 EDA t EDB and fi D 0 otherwise, and the constraint Cx D b corresponds to
gluing and normalization conditions.

(2) The way we decompose vA and vB into disk vectors gives rise to a feasible
solution x0 to (P ). Our goal is to show that x0 achieves the maximum. To accomplish
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this, it suffices to find y0 such that

C Ty0 � f (entrywise) and xT
0 C Ty0 D xT

0f:

This proves the maximality because

f Tx D xTf � xT C Ty0 D bTy0 D xT
0 C Ty0 D xT

0f D f
Tx0:

One such y0 (in an explicit formula involving K and L) can be guessed via results
found by computers for small values of K and L (vA and vB are also found in this
way). The constants r and s come into the statement because the author only checked
C Ty0 � f when L=K and K are large enough.

We omit the details since it is tedious and takes too much space to enumerate the
extremal disk vectors and check C Ty0 � f .

Nevertheless, a weaker version of Walker’s conjecture is true:

Theorem 6.4 For any fixed rational chain c in Fn , scl.co/ is piecewise quasirational
in o , ie there are some p 2 ZC and a finite partition of Zn

�2
such that on each piece,

fixing any congruence class of each oi mod p , scl.co/ is in Q.o/.

Susse [14, Corollary 4.14] proved the same result by considering a fixed chain in a
family of amalgamations of free abelian groups whose projection to the free product of
cyclic groups preserves scl. Our proof is independent and new.

We focus on a single factor AD Z=kZ. Using notations as in Section 4, the key is
to show that the vertices of conv.DACVA/ behave nicely as k varies in congruence
classes (see Lemma 6.7). Since H1.AIR/=0, we have hD 0. Thus VA consists of
nonnegative vectors in C2.A/\ f@ D 0g and does not depend on k . However, DA

typically depends on k , and we denote it by Dk to emphasize the dependence.

We first describe Dk . For simplicity, we assume nD 2, and c D a1b1: : : ambm is a
single word, but the proofs of the lemmas are the same for the general case. Consider
the directed graph X.A/ with vertex set T .A/ and edge set T2.A/. Then each v 2 VA

defines nonnegative weights on the directed edges, and its support, supp.v/, is the
subgraph of X.A/ consisting of edges with positive weights.

Let a and b be the generators of F2 giving the free product structure. Then each
ai equals ati for some ti 2 Znf0g. Let zhW C2.A/! R be the linear map such that
zh.ai ; aj /D

1
2
.ti C tj / for any .ai ; aj / 2 T2.A/.
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Then it is easy to see that Dk is the set of integer vectors v in VA such that zh.v/ 2 kZ

and supp.v/ is connected and nonempty (see [6] for details).

We can decompose VA into finitely many simplicial rational open cones, ie each is of
the form � dX

iD1

tivi

ˇ̌̌
ti > 0

�
for some d � 1 and a set of linearly independent rational vectors vi . Moreover, each
simplicial rational cone can be decomposed into finitely many unimodular cones, ie
where we can take the set of vi to be unimodular, by Barvinok’s theorem [1, Chapter 16].
So we first prove the following key lemma, leading to Lemma 6.7 and Theorem 6.4.

Lemma 6.5 Let V DRd
>0

and let f .x/D
P

aixi with ai 2Q be a rational linear
function. Let Vk D f

�1.k/\V and let Ek be the set of integer points in Vk . Then
there are M;p 2 ZC such that:

(1) For each congruence class mod p , there are finitely many points vj .k/ 2 V that
depend linearly on k such that conv.Ek CVk/D conv.fvj .k/gCVk/ for any
k >M in this given congruence class.

(2) For each congruence class mod p , there is a finite set Fk of points depending
linearly on k such that

conv
� [

t2ZC

Etk CV

�
D conv.Fk CV /

for any k >M in the given congruence class mod p . More precisely, we can
take Fk D

Sp
tD1
fvj .tk/g for any k >M.

Lemma 6.5 is similar in spirit to the following special case of the main theorem of [9],
which we will use in our proof.

Lemma 6.6 (Calegari and Walker [9]) Let f�i.k/g be a finite set of points depending
linearly on k ; then there are M;p 2 ZC such that the (finitely many) vertices of the
integer hull of conv.�i.k// depend linearly on k >M in each congruence class mod p .

Proof of Lemma 6.5 We first prove (2) assuming (1). Notice that each vj .k/ depends
linearly on k and stays in V . Thus, if k 0 > k >M and k 0 � k mod p , then vj .k 0/ 2
vj .k/CV . Also notice that any tk is congruent to some t0k with 1� t0 � p . Hence,
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the vertices of conv
�S

t2ZC
EtkCV

�
are contained in Fk D

Sp
tD1
fvj .tk/g, and the

assertion holds.

Now we prove (1). We may assume all the ai are nonzero, otherwise we can do a
dimension reduction. Let P and N be the set of indices such that ai is positive or
negative, respectively. If P D∅, then Ek D∅ and the problem is trivial, so we also
assume P ¤∅ in the sequel. Let feig be the standard basis of Rd. For any i 2 P, let
�i.k/D kei=ai 2 Vk .

If N D∅, ie all ai > 0, then Vk is the interior of the simplex with vertices f�i.k/g
and its set of integer points Ek coincides with that of the polyhedron

�k WD f.x1;x2; : : : ;xd / j xi � 1g\ convf�i.k/g:

When k >
P

i ai , �k is the (compact) simplex with vertices�X
j¤i

ej C
k �

P
j¤i aj

ai
ei

�d

iD1

depending linearly on k , so our assertion follows from Lemma 6.6.

Now also suppose N ¤ ∅. Then Vk D convf�i j i 2 Pg C V0 . We first deal with
integer points in each �i C V0 . Pick p such that p=ai 2 Z. Then, for k D tpC k0

with 0� k0 � p�1 fixed, �iCV0 is t.p=ai/ �eiCC, where C D .k0=ai/ �eiCV0 is
a translate of V0 which does not depend on k . Therefore, in this congruence class, the
integer hull of �i CV0 is just that of C translated by t.p=ai/ei , a vector depending
linearly on k .

If x 2Vk is not contained any �iCV0 (this does not happen for jP j D 1, so we assume
jP j � 2 below), then for each i 2 P, we have xi � k=ai , and hence x lies in

Ck WD Vk \

�\
i2P

n
x
ˇ̌
xi �

k

ai

o�
:

The set of integer points in Ck coincides with that in

Qk WD

n
x 2 Vk

ˇ̌
xi � 1 for all i and xi �

k

ai
for all i 2 P

o
:

Qk is compact since 1� xi � k=ai for any i 2 P and x 2 Vk implies

xj � k
jP j � 1

�aj
for all j 2N:
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To see the vertices of Qk , consider its decomposition into the level sets

Q
.t/

k
WD

�
x 2Qk

ˇ̌̌ X
i2P

aixi D t

�
:

When k.jP j � 1/�
P

j2N .�aj / and k �
Pd

iD1 ai , the set Q
.t/

k
is nonempty if and

only if k �
P

j2N aj � t � kjP j. For such t , one can see that Q
.t/

k
is the product of�

.xi/i2P

ˇ̌̌
1� xi � k=ai for all i 2 P;

X
i2P

aixi D t

�
(combinatorially a level set of a cube) and�

.xj /j2N

ˇ̌̌
xj � 1 for all j 2N;

X
j2N

.�aj xj /D t � k

�
(a simplex).

From this, we can see that the vertices of Qk are of the form�
x
ˇ̌̌
xi D 1 or k

ai
for all i 2 P and, for some l 2N;

xj D 1 for all j 2N �flg and xl D

P
i¤l aixi � k

�al

� 1

�
or�

x
ˇ̌̌
xj D 1 for all j 2N and, for some l 2 P;

xi D 1 or k

ai
for all i 2 P �flg and xl D

k �
P

i¤l aixi

al

2

h
1;

k

al

i�
;

each depending linearly on k , so Lemma 6.6 applies. Since Vk is the union of �iCV0

for i 2 P and Ck , and the integer hull of each part has vertices depending linearly on
k� 1 in a congruence class, our assertion follows.

Now we can prove the following result:

Lemma 6.7 There are M;p 2 ZC such that for each congruence class mod p ,
there exist finitely many points vj 2 VA , each depending linearly on k , such that
conv.Dk CVA/D conv.fvj gCVA/ for any k >M in this given congruence class.

Proof According to the discussion ahead of Lemma 6.5, we can express VA as the
union of top-dimensional faces (denote them by V .i/) of finitely many simplicial
unimodular (Barvinok’s theorem [1, Chapter 16]) rational cones, and the intersection
of Dk with each V .i/ is either empty (when the support is disconnected) or exactly the
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integer points in V .i/\ zh�1.kZ/. Applying Lemma 6.5 to each V .i/ with f D zh and
f D�zh, respectively (together with the set V .i/\zh�1.0/, which does not depend on k ),
we see that there are M;p 2ZC such that for each congruence class mod p , there exist
finitely many points vj .i/ such that conv.Dk \V .i/CV .i//D conv.fvj .i/gCV .i//

for any k >M in this given congruence class. This completes the proof by taking the
union, since there are only finitely many i ’s.

Proof of Theorem 6.4 It follows from Lemma 6.7 that for k� 1 in a fixed congru-
ence class mod p , �A is the minimum of finitely many linear functions each having
coefficients in Q.k/. Here A can be any factor group and k is the corresponding oi .
Therefore, if we fix the congruence classes of oi � 1, combining with the proof of
Theorem A, scl.co/ is determined by minimizing, on a fixed compact convex set C,
the maximum of finitely many linear functions fj each having coefficients in Q.o/.
Thus we can find a finite polyhedral decomposition of C with vertices having Q.o/–
coordinates and maxj ffj g linear on each piece. It follows that scl is the minimum
of finitely many functions in Q.o/, ie the values of maxj ffj g on these finitely many
vertices, and hence scl is piecewise Q.o/.

Appendix

Here we give a proof of (4-2). For convenience, we use #s.w/ to denote the number
of subwords s inside w . Let Wu;v be the set of cyclic words w in a, b and c such
that w contains u copies of each of ab , bc and ca and v copies of ac , cb and ba as
subwords.

For each w 2 Wu;v , let f .w/ be the unique integer such that w can be written
as .abc/k Œa; b�f .w/ by moving letters around and using Œa; b� D Œb; c� D Œc; a�. In
Example 4.5, we defined Su;v to be the image of Wu;v under f .

In order to prove the equation inductively, we first introduce a way to reduce the
computation of Su;v to that of smaller indices.

For each w 2Wu;v , the letter a appears uC v times in w . For convenience, we make
the following definition:

Definition A.1 An a–connecting subword of w is the subword between two consecu-
tive a’s in w .

Algebraic & Geometric Topology, Volume 18 (2018)



3310 Lvzhou Chen

For example, if abcba is a subword of w , then bcb is an a–connecting subword of w .
We classify all a–connecting subwords and divide them into three categories:

(1) Degree 1 b.cb/kc with k � 0.

(2) Degree 0 b.cb/k or c.bc/k with k � 0.

(3) Degree �1 c.bc/kb with k � 0.

Lemma A.2 If there are two degree 1 a–connecting subwords in w 2Wu;v , then we
can find w1; w2 2Wu�1;v such that

f .w1/� f .w/� f .w2/:

Proof Up to a cyclic permutation, w D ab.cb/kcRab.cb/lcT , where R and T are
empty words or subwords starting with a and k; l � 0. Recall that abc is in the center
and a commutes with bc , so we have ab.cb/lc D a�l.abc/lC1 and

Œab.cb/lc;R�D Œa�l ;R�D Œa; b�l.#c.R/�#b.R//:

Thus,
w D ab.cb/kcab.cb/lcRT � Œab.cb/lc;R��1

D ab.cb/kcab.cb/lcRT � Œa; b�l.#b.R/�#c.R//:

Notice that ab.cb/kcab.cb/lcRT is still in Wu;v , and removing the underlined cab

which is followed by c , we will get a word w1 D ab.cb/kClcRT 2 Wu�1;v and
f .w1/D f .w/C l.#b.R/� #c.R//.

Similarly
w DRab.cb/kcab.cb/lcT � Œa; b�k.#c.R/�#b.R//;

so w2 DRab.cb/kClcT 2Wu�1;v and f .w2/D f .w/� k.#b.R/� #c.R//.

Hence, if #b.R/� #c.R/� 0, we are done; otherwise switch w1 and w2 .

Proof of (4-2) Notice the following symmetry: Reading a word w 2Wu;v in reverse
order gives a word r.w/ 2Wv;u and f .r.w//D�f .w/� .uC v/. Thus,

Su;v D�Sv;u�u� v:

According to Lemma A.2, if w 2Wu;v has two degree 1 a–connecting subwords in w ,
then f .w/2Su�1;v assuming that Su�1;v consists of integers in an interval. Similarly,
by the symmetry above, if w 2Wu;v has two degree �1 a–connecting subwords in w ,
then f .w/ 2 Su;v�1 assuming that Su;v�1 consists of integers in an interval.
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First assume we have proved the equation for uD vC1. We induct over u�v to show
that Su;v D SvC1;v whenever u� vC 1. Suppose w 2Wu;v with u> vC 1, notice
that an a–connecting subword w0 has degree d if and only if

Œ#ab.aw0a/C #ca.aw0a/�� Œ#ac.aw0a/C #ba.aw0a/�D 2d:

Also notice that if we sum the left-hand side of the equation above over all a–connecting
subwords, we will get 2.u�v/�4. Hence, we conclude that there exist two degree 1 a–
connecting subwords in w , and thus f .w/ 2 Su�1;v since Su�1;v consists of integers
in an interval by the induction hypothesis. This shows that Su;v � Su�1;v , but the
other inclusion is obvious: adding a copy of abc ahead of a letter a in w 2 Su�1;v

will result in a new word w0 2 Su;v with f .w0/D f .w/.

Therefore, using the symmetry, we only need to prove the equation for Su;v with
ju� vj � 1, and we induct on uC v . The base cases are easy to check. We now show

SvC1;v D
�
�

1
2
v.vC 1/; 1

2
v.v� 1/

�
\Z

assuming (4-2) holds for all Su0;v0 with u0C v0 < 2vC 1 and ju0� v0j � 1.

Consider the family of words in WvC1;v

wk D a.bc/kC1ac.bc/v�k.ac/v�1.ab/v for 0� k � v:

A direct computation shows that f .wk/D
1
2
v.v� 3/C k . This, together with earlier

arguments, shows that Sv;v [
�

1
2
v.v � 3/; 1

2
v.v � 1/

�
� SvC1;v , and hence by the

induction hypothesis, we have�
�

1
2
v.vC 1/; 1

2
v.v� 1/

�
\Z� SvC1;v:

So we only need to show

max.SvC1;v/�
1
2
v.v� 1/ and min.SvC1;v/� �

1
2
v.vC 1/:

Suppose w 2WvC1;v achieves max.SvC1;v/� f .wv/D
1
2
v.v� 1/; we see that:

(1) w does not contain subwords abca, bcab or cabc , otherwise f .w/ 2 Sv;v ,
which has maximum 1

2
v.v� 3/ < 1

2
v.v� 1/ by induction.

(2) w does not contain subwords acba, bacb or cbac , otherwise f .w/2SvC1;v�1 ,
and SvC1;v�1 D Sv;v�1 has maximum 1

2
.v � 1/.v � 2/ � v < 1

2
v.v � 1/ by

induction.

(3) w does not contain the subword abaca, since it can be replaced by acaba to
get a new word w0 2WvC1;v with f .w0/ > f .w/.
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(4) Only one a–connecting subword in w has degree 1 and the others have degree
0, otherwise there will be at least two degree 1 subwords (since the sum of
degrees is 1), which implies (by Lemma A.2 and the induction hypothesis)
f .w/�max.Sv;v/, contradicting maximality.

Therefore, w must be of the form (up to replacing it by another that also achieves the
max)

w D abc.bc/kac.bc/p1a : : : ac.bc/ps acabab.cb/q1ab.cb/qt ;

where s; t � 0, k � 0 and pi ; qj � 0. Since w 2WvC1;v , we see s D t D v� 1 and
kC

P
pi C

P
qj D v . A direct computation shows

w D .abc/.ab/v.bc/v.ab/v Œa; b�e;

where eD vkC
P
.v�i/piC

P
j qj . Maximizing f .w/ is the same as maximizing e ,

which requires pi D qj D 0 and k D v . Therefore, w D wv , as we constructed, and
max.SvC1;v/� f .wv/D

1
2
v.v� 1/.

Similarly, we can show min.SvC1;v/� �
1
2
v.vC 1/. Hence, (4-2) holds for SvC1;v ,

and for Sv;vC1 by symmetry. The inductive step for Sv;v is completely similar, so we
omit it. This completes the proof.
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