
msp
Algebraic & Geometric Topology 18 (2018) 3339–3362

Alternating links have representativity 2

THOMAS KINDRED

We prove that if L is a nontrivial alternating link embedded (without crossings) in a
closed surface F � S3, then F has a compressing disk whose boundary intersects L

in no more than two points. Moreover, whenever the surface is incompressible and
@–incompressible in the link exterior, it can be isotoped to have a standard tube at
some crossing of any reduced alternating diagram.

57M25; 57M50

1 Introduction

Following Ozawa [10], the representativity r.L/ of a link L� S3 is

r.L/D max
F2FL

min
X2XF

j@X \Lj;

where FL is the set of positive genus, closed surfaces F � S3 containing L, and
a “closed surface” is compact and connected without boundary; XF is the set of
compressing disks for F in S3 ; and j@X \Lj is the number of connected components
(ie points) of @X \L. That is, letting r.F;L/ WDminX2XF

j@X \Lj for each F 2FL ,
the representativity of L is r.L/DmaxF2FL

r.F;L/. This notion extends the earlier
notion of representativity from graph theory. In 2011, Pardon [13] applied representa-
tivity (although he did not use this term) to answer a question posed by Gromov [4]
in 1983 regarding knot distortion. The distortion of an embedded circle 
 in R3 is
defined to be

ı.
 /D sup
p;q2


d
 .p; q/

dR3.p; q/
;

where d
 is arclength along 
 and dR3 is Euclidean distance in R3. Gromov asked
whether there exists a uniform upper bound on distortion for all isotopy classes of knots,
or at least for torus knots. Specifically, Gromov asked, does every isotopy class of
knots have a representative with distortion less than, say, 100? To answer this question,
Pardon showed that every knot isotopy class K satisfies

ı.K/ WD min
representatives 
 of K

ı.
 /� 1
160

r.K/;
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where r.K/ denotes representativity. In particular, since the representativity of any
.p; q/–torus knot is r.Tp;q/ D minfp; qg (more to the point and easier to check is
r.Tp;q/�minfp; qg), so that ı.Tp;q/!1 as p; q!1, Pardon was able to answer
Gromov’s question in the negative. Current work of Blair, Campisi, Taylor and Tomova
provides a lower bound for ı.K/ in terms of bridge distance and bridge number [2];
they construct an infinite family of knots for which their bound is arbitrarily stronger
than Pardon’s by applying our main result to certain highly twisted plat projections;
see Johnson and Moriah [5].

By showing that bridge number is an upper bound for representativity, Ozawa [11]
proves that 2–bridge knots L have representativity r.L/ D 2. This result and his
results on the representativity of algebraic knots and 3–stranded pretzel knots in [12]
lead Ozawa to conjecture that r.L/ D 2 holds for alternating knots in general (see
[11, Conjecture 4]). Our main result confirms Ozawa’s conjecture:

Main theorem Every nontrivial, nonsplit alternating link L has representativity
r.L/D 2.

The main theorem implies that the only alternating torus links are the 2–braids T2;q ,
again since r.Tp;q/Dminfp; qg. Murasugi first proved this fact in the case of knots,
using the Alexander polynomial (see [9, Theorem 3.2]); Menasco and Thistlethwaite
later provided a geometric proof (see [8, Corollary 1.2]).

Corollary 1.0.1 The only alternating torus links are the 2–braids T2;q .

Thank you to Colin Adams for pointing out the following additional corollary:

Corollary 1.0.2 If F is a closed surface in S3 and L is a hyperbolic alternating link
with L� F, then F nL is not isotopic to a totally geodesic surface in the hyperbolic
structure on S3 nL.

Proof Let F be a closed surface in S3 containing a hyperbolic alternating link L,
with X a compressing disk for F in S3 realizing j@X \Lj D r.F;L/. Suppose that,
under the covering H3! S3 nL, the surface F nL lifts to a union zF of geodesic
planes in H3. Consider a component zX0 of the lift of X, whose boundary consists of
j@X \Lj ideal points and as many arcs on zF. Because X is a compressing disk for F,
@ zX0 cannot lie entirely on one geodesic plane, and each of its arcs must have distinct
(ideal) endpoints. Yet, from the main theorem, @ zX0 consists of at most two arcs, and
two geodesic planes in H3 share at most one point of tangency on @H3.

Algebraic & Geometric Topology, Volume 18 (2018)



Alternating links have representativity 2 3341

To prove the main theorem, we employ the crossing ball structures introduced by
William Menasco [6; 7]. Roughly, the idea is to insert a ball Ct at each crossing of a
given diagram D on S2, to perturb L to lie on .S2 nC /[@C, where C D

F
Ct , and

then to isotope a given closed surface F �L (fixing L and the crossing ball structure
S2[C ) so as to minimize its intersections with C and S2 away from L. We show
that whenever F is essential (incompressible and @–incompressible in the link exterior
S3 n int.�L/), there exists an isotopy of F which produces a standard tube near some
crossing (see Figure 5). This crossing tube lemma not only provides a compressing
disk for F whose boundary intersects L in two points; it also provides a possible
inductive move, in the tradition of Adams and Kindred [1] and Gabai [3], albeit one
still awaiting application.

Crossing tube lemma Given a nontrivial, reduced alternating diagram of a link L

and a closed, essential surface F �L, there exists an isotopy of F after which some
crossing has a standard tube.

Outline Section 2 describes the crossing ball setup in more detail; Section 3 develops
convenient technical moves; Section 4 establishes several lemmas; Section 5 proves the
main theorem. Everything in Sections 2, 3 and 4.1 works regardless of alternatingness
and is intended to be a useful reference.

Acknowledgements Thank you to Seungwon Kim for discussing representativity
during a visit to Iowa; to Colin Adams for introducing the author to Menasco’s
techniques; to Maggy Tomova and Ryan Blair for helpful discussions; to Charlie
Frohman for patient and inspired coaching; and to the referee for suggesting several
improvements and clarifications.

2 Initial setup

2.1 Link diagrams and crossing balls

A link diagram D�S2 is the image of an immersion of one or more circles in S2�S3

in which all self-intersections are double points at which the two intersecting arcs are
transverse in S2 and are labeled with opposite normal directions relative to S2. Thus,
a link diagram D can also be seen as a smoothly embedded 4–valent graph in S2 with
over-under information at each vertex. An embedding of the underlying link L can
be obtained by perturbing the two arcs of D near each crossing point in the indicated
normal directions.
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Figure 1: A link near a crossing ball (center) with SC (left) and S� (right)

A link diagram D is called alternating if, for each edge of D (seen as a 4–valent
graph), the crossing points at its two ends are labeled with opposite normal directions.
A link is called alternating if it has an alternating diagram. A link diagram D is called
reduced if it lacks nugatory crossings, which means that every crossing point is incident
to four distinct components of S2 nD. A link L is called split if S3 nL is reducible,
ie if there is an embedded 2–sphere in S3 nL which does not bound a ball in S3 nL.

Let D be a diagram of a link L (later, we will assume further that D is reduced
and alternating) with crossing points ct for t D 1; : : : ; n. Insert small, mutually
disjoint (closed) crossing balls Ct centered at the respective crossing points ct . Denote
C D

Fn
tD1 Ct . Construct an embedding of L in .S2 nC /[@C by perturbing the two

arcs in which D intersects each crossing ball Ct in their indicated normal directions
from S2\Ct to @Ct , while fixing D\S2 n int.C /.

Call each resulting component of L\S2 an edge of L — note that L\S2DL\DD

D n int.C / — and call each component of L\ @C an overpass or an underpass of L,
according to which side of S2 it lies on. Near each crossing, this looks like Figure 1,
center.

2.2 The regular neighborhood �L

Let �L � S3 be a closed regular neighborhood of the link L, viewed as (the total
space of) a disk bundle � W �L!L for which the restrictions �j@C , �jS2nint.C / are
also bundle maps onto their images (each with fiber a closed interval). Thus, each
component of �L intersects .S2 nC /[ @C in an annular neighborhood of its core.

Let BC and B� be the two components into which S2 [C [ �L cuts S3 ; ie B˙

are the closures of the components of S3 n .S2 [ C [ �L/. Let SC D @BC and
S� D @B�. Near each crossing, SC and S� appear as in Figure 1, left and right.
As a quick exercise, check that SC [ S� D .S2 n .C [ �L// [ @.C [ �L/, that
SC\S�D S2 n int.C [�L/, and that, for each point p 2L\S2\@C, the boundary
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Figure 2: Two views of (the upper half of) an edge of @�L from an alternating
link diagram

of the disk ��1.p/ is a meridian on @�L which consists of an arc of @�L\ @C \S˙

glued to an arc of @�L\S� nC at the two points of ��1.p/\ @�L\SC\S�.

Use this setup to extend the terminology of edges, overpasses, and underpasses from L

to @�L as follows. Call each component of ��1.L\ @C /\ @�L\SC an overpass
of @�L, call each component of ��1.L\ @C /\ @�L\S� an underpass of @�L and
call each component of ��1.L\S2/\ @�L an edge of @�L. Each edge of @�L is a
cylinder that intersects S2 in two arcs of @�L\SC\S�.

This terminology gives @�L the following cell decomposition (see Figures 1 and 2).
The 0–cells are the points of @�L\S2\ @C, eight on the boundary of each crossing
ball. There are several types of (closures of) 1–cells:

� arcs of @�L\SC\S�, two running along each edge of @�L;

� arcs of @�L\ @C \SC, two along each overpass of @�L;

� arcs of @�L\ @C \S�, two along each underpass of @�L; and

� arcs of ��1.L\S2\ @C /\S˙, eight near each crossing ball Ct :

– four in @�L\ @Ct ,

– two in SC\@�Ln@C, joining the overpass of @�L at Ct with edges of @�L,
and

– two in S�\@�Ln@C, joining the underpass of @�L at Ct with edges of @�L.

Finally, the 2–cells’ closures are overpasses of @�L, underpasses of @�L, components
of @�L\C and bands obtained by cutting each edge of @�L along the two arcs in
which it intersects S2.

2.3 Essentiality and minimal complexity for the closed surface F � L

So far, the link L� .S2 nC /[ @C follows a link diagram D � S2 ; �L is a closed
regular neighborhood of L in S3, seen as a disk bundle � W �L! L; and B˙ are
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the components into which S2[C [ �L cuts S3, with S˙ D @B˙. Now also let F

be any closed surface in S3 of positive genus that contains L. (Recall that a closed
surface is assumed to be compact and connected without boundary.) Fixing L � F,
S2 and C, isotope F so that

� F is transverse to SC and S� ;

� the restriction �jF is a bundle map (so that F \ �L is a regular neighborhood
of L in F and each component of F \ @�L is the image of a section of
� W �L!L); and

� F \C \ @�LD¿ (so that F intersects each overpass and underpass of @�L
in precisely two arcs).

Perform such isotopy so as to minimize lexicographically the numbers of components
of F \ @C n �L and of F \SC\S�, ie to minimize the complexity

.jF \ @C n �Lj; jF \SC\S�j/;

where bars count connected components. Note that the first and last conditions listed
above ensure that F \ @C n �L will consist only of simple closed curves, since the
endpoints of any arc of F \ @C n �L would lie on @C \ @�L.

The surface F is said to be compressible in the link exterior EDS3nint.�L/ if there is
a disk X �E with X\F D@X a simple closed curve (a “circle”) that does not bound a
disk in F. The surface F is compressible in E if and only if r.F;L/D 0. In particular,
every split link L has representativity r.L/ D 0. Indeed, given a closed surface F

that contains a split link L, isotope F in the link exterior E so that F intersects
the splitting sphere Q transversally in the smallest possible number of components.
Because F is connected, it must intersect Q, and any innermost circle 
 of F \Q

bounds a disk in Q which is a compressing disk for F, by the minimality of F \Q.

The surface F is said to be @–compressible in the link exterior E if there is an arc ˛
on @�L which is parallel to F through E — say, through a disk X, with ˇ denoting
the parallel arc @X \F — but not through @�L. In this case, ˛ is also parallel through
a bigon Y � �L to an arc ˛0 � F \ �L which intersects L in one point. Gluing
X and Y along ˛ produces a compressing disk Z for F in S3 whose boundary
@Z D ˛0 [ ˇ intersects L in one point. Thus, if F is @–compressible in E , then
r.F;L/� 1, and conversely.

In particular, the trivial knot L has representativity r.L/D 1, since any positive genus,
closed surface containing L must be compressible or @–compressible. A closed surface
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F �L is called essential if it is neither compressible nor @–compressible in the link
exterior.

Any nontrivial knot L is contained in some positive genus, closed surface F with
r.F;L/D 2, namely the interpolating surface for any incompressible Seifert surface
for L, or more generally for any algebraically essential spanning surface for L. (A
spanning surface V for L is an embedded unoriented surface with boundary @V DL

in S3 ; the interpolating surface for a spanning surface V is the boundary of a regular
neighborhood of V in the link exterior; and V is called algebraically essential if its
interpolating surface is incompressible and @–incompressible in the link exterior.)
Is this also true of nonsplit links L? Is r.L/ � 2 if and only if L is nonsplit and
nontrivial? This is true for all nonsplit, nontrivial links with an algebraically essential,
connected spanning surface, using the interpolating surface. Does every nonsplit link
have such a span?

At least in the alternating case, the answer is yes (in fact, all spanning surfaces for
nonsplit alternating links are connected [1]). Thus, an alternating link L in a reduced
alternating diagram D obeys

r.L/D 0 () L is split () D is disconnected;

r.L/D 1 () L is the unknot () D is the trivial diagram.

The main theorem states that whenever L is alternating, nontrivial and nonsplit,
r.L/D 2.

2.4 A preliminary consequence of the initial setup

As in Sections 2.1–2.3, assume that a link L� .S2 nC /[ @C follows a link diagram
D � S2 ; that �L is a regular neighborhood of L, seen as a disk bundle � W �L!L;
that B˙ are the components of S3 –cut–along–.S2[C [�L/, with S˙ D @B˙ ; and
that a closed essential surface F � L has been isotoped — subject to the conditions
that F t S˙, �jF is a bundle map and F \C \ @�LD ¿ — so as to minimize its
complexity .jF \ @C n �Lj; jF \SC\S�j/. This setup implies:

Proposition 2.4.1 All components of F n .SC[S�[ �L/ are disks.

Proof The nC 2 components of S3 n .SC [S� [ �L/, namely int.BC/, int.B�/
and int.Ct n �L/ for t D 1; : : : ; n, are all topological 3–balls, and their boundaries
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are the 2–spheres SC, S� and @.Ct n �L/. These spheres intersect F transversally,
hence in circles. Each such circle bounds a disk in the corresponding ball.

The incompressibility of F implies that each of these circles also bounds a disk in F.
Minimal complexity then implies that this disk in F must lie entirely in the appropriate
ball, as claimed. Specifically, each circle of F \S˙ bounds a disk of F \B˙, and
each circle of F \ @Ct n �L bounds a disk of F \Ct n �L.

3 Technical conveniences

Throughout Section 3, maintain all setup from Sections 2.1–2.3, but replace the assump-
tion that the complexity of F is minimized with the assumption that all components
of F n .SC[S�[ �L/ are disks. Proposition 2.4.1 implies that this setting is more
general than the initial setup.

3.1 Preliminary consequences in the broader setting: arcs and balls

Proposition 3.1.1 All components of F\@�L\S˙, F\@C \S˙ and F\SC\S�

are arcs.

Proof Every component of �L contains an overpass and an underpass, or else L

would be a split link, and F (assumed to be connected) would be compressible, contrary
to assumption. Therefore, each component of F \ @�L, which is (the image of) a
section of � W �L!L by assumption, must intersect SC\S�. Hence, no component
of F \ @�L\S˙ is a circle; instead, each must be an arc.

All components of @C \SC, @C \S� and SC\S� are disks. If F intersected one
of these disks in a circle, 
 , then, since all components of F n .SC[S�[ �L/ are
disks, 
 would bound disks of F in both components of F n .SC[S�[ �L/ whose
boundaries contain 
 . This contradicts the assumption that F is connected.

Proposition 3.1.1 implies that the number of components of F \SC\S� equals half
the number of points of F \ @.SC \S�/, which will be more convenient to count.
Also, the conclusions of Propositions 2.4.1 and 3.1.1 together imply that F n int.�L/
has a cell decomposition in which the 0–cells are the points of F \ @.SC\S�/; the
(closures of the) 1–cells are the arcs of F\SC\S�, F\@C\S˙ and F\@�L\S˙ ;
and the 2–cells are the components of F \BC, F \B� and F \C n �L.
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˛ ˛ ˛

Figure 3: A bigon move pushes an arc ˇ � F \ B˙ past a parallel arc
˛ � S˙ n ��1.C / , provided ˛ is not parallel to F through S˙ n C and
j˛\SC\S�j D 1 . There are three types of bigon moves, depending on how
many endpoints of ˛ are on @�L . The middle one, with one such endpoint,
is also illustrated in Figure 4.

Proposition 3.1.2 All components of B˙ nF are 3–balls.

Proof All components of F \ B˙ are properly embedded disks, by assumption.
Cutting a 3–ball along a collection of disjoint, properly embedded disks produces a
collection of 3–balls.

3.2 Bigon moves

Several proofs in Sections 4–5 will use an isotopy move which pushes an arc ˇ�F\B˙

past a parallel arc ˛ � S˙ nF and into B�, through a disk Z with Z \F D ˇ �

@Z D ˛[ˇ . One type of this bigon move is illustrated in Figure 4; all three types are
diagrammed in Figure 3. More precisely, a bigon move follows an arc ˛ � S˙ that

� intersects F precisely on its endpoints, which lie on the same circle 
 of F\S˙ ;

� is not parallel in S˙ nC to F ;

� is disjoint from ��1.C /, ie from crossing balls and over/underpasses; and

� intersects SC\S� in exactly one component.

Think of ˛ , which initially is not “part of the diagram”, as a marker which joins two
points that lie on the same circle 
 of F \S˙ in a way that is “locally nonobvious”,
in the following sense. If R0 is the component of SC \ S� that ˛ intersects and

˛

ˇ

isotopy

Figure 4: Bigon moves will often prove useful, even when they increase the
complexity of F.
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R is the union of R0 with its incident edges of @�L, then ˛ �R\S˙ � S ˙nC ;
“locally nonobvious” refers to the fact that the endpoints of ˛ lie on distinct arcs of

 \R\S˙, or else ˛ would be parallel in S˙ nC to F.

Because the circle 
 bounds a disk Y � F \B˙, there is an arc ˇ � Y with the same
endpoints as ˛ . The circle ˛[ˇ lies on the boundary of some component of B˙ nF,
a ball, and therefore bounds a disk Z � B˙ whose interior is disjoint from F. The
disk Z is a bigon in the sense that @Z D ˛[ˇ .

Bigon move Given an arc ˛ � S˙ satisfying the four conditions above, it is possible
to isotope F near a parallel arc ˇ � F \B˙ through a bigon Z past ˛ into B�.

All bigon moves take place away from the crossing balls, and thus preserve both the
number of components of F \ @C n �L and the fact that each of these components
bounds a disk of F \C n �L. Not all bigon moves, however, preserve the fact that all
components of F n .SC[S�[ �L/ are disks. At least:

Lemma 3.2.1 Performing a bigon move preserves the fact that all components of
F n .SC[S�[ �L/ are disks whenever ˛\ @�L¤¿ and whenever the complexity
of F is minimized.

Proof As noted, any bigon moves preserves the fact that all components of F\C n�L

are disks. In order for a bigon move to upset the fact that all components of F \BC

and F \B� are disks, a necessary condition is that the endpoints of ˛ lie on the
same circle of F \S˙ and also on the same circle of F \S�. For this to be the case,
both endpoints of ˛ must lie in SC \ S�, as must all of ˛ , since ˛ \ SC \ S� is
connected by assumption. Thus, the condition ˛\ @�L¤¿ in the statement of the
lemma suffices, as claimed.

Suppose instead that, with the complexity of F minimized, a bigon move follows an
arc ˛ � SC \S� whose endpoints lie both on the same circle 
 D @Y of F \S˙

and on the same circle 
 0 D @Y 0 of F \S�. Letting Y and Y 0 denote the disks of
F \BC and F \B� respectively bounded by 
 and 
 0, there are arcs ˇ � Y and
ˇ0 � Y 0 with the same endpoints as ˛ . Further, ˛[ˇ and ˛[ˇ0 respectively bound
disks Z � B˙ and Z0 � B� whose interiors are disjoint from F. Gluing Z and Z0

along ˛ produces a disk Z [Z0 with boundary ˇ [ ˇ0 � F n �L whose interior is
disjoint from F ; since F is incompressible in the link exterior, ˇ[ˇ0 must bound a
disk X � F n �L. Since L is nonsplit, the 2–sphere Z [Z0[X � S3 n �L bounds
a 3–ball W � S3 n �L, through which X is parallel to Z [Z0.
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Since the complexity of F is minimized, the disk X, like Z [Z0, must be disjoint
from C and must intersect SC\S� in a single arc, ı . From X \C D¿, it follows
that @W \ C D ¿. This and the fact that W \ �L D ¿ imply that W is disjoint
from C [ �L, and in particular from @.SC\S�/. Therefore, contrary to assumption,
W intersects SC\S� in a single disk through which ˛ is parallel to the arc ı � F :

@.W \SC\S�/D .@W \ .SC\S�//[ .W \ @.SC\S�//D ˛[ ı:

Note that a bigon move along ˛ fixes the number of components of F \SC\S� —
which equals half the number of points of F\@.SC\S�/ — if and only if ˛\@�LD¿;
otherwise, a bigon move increases this number, and thus the complexity of F. In
particular:

Lemma 3.2.2 If a sequence of bigon moves begins with the complexity of F mini-
mized and if all bigon moves in this sequence along arcs disjoint from @�L precede all
other bigon moves in this sequence, then this sequence of bigon moves preserves the
fact that all components of F n .SC[S�[ �L/ are disks.

Proof Because bigon moves along arcs disjoint from @�L fix the complexity of F,
all such moves in this sequence are performed while the complexity of F is still
minimized. Satisfying the second sufficient condition from Lemma 3.2.1, these bigon
moves preserve the fact that all components of F n .SC [S� [ �L/ are disks. All
remaining bigon moves follow arcs that intersect @�L, meeting the first sufficient
condition from Lemma 3.2.1. Therefore, these moves too preserve the fact that all
components of F n .SC[S�[ �L/ are disks.

3.3 A key lemma

Several proofs in Sections 4–5 will use the following lemma:

Lemma 3.3.1 If ˛ � @�L\S˙ is an arc whose endpoints @˛D ˛\F lie on distinct
circles of F \ @�L, then these endpoints also lie on distinct circles of F \S˙.

Proof Let ˛ � @�L\S˙ be an arc whose endpoints @˛ D ˛ \F lie on the same
circle 
 of F \S˙. We claim that these endpoints must also lie on the same circle of
F \ @�L. Since 
 bounds a disk Y � F \B˙, there is an arc ˇ � Y with the same
endpoints as ˛ . The circle ˛[ˇ lies on the boundary of some component of B˙ nF,
a ball, and therefore bounds a disk Z � B˙ whose interior is disjoint from F. The
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˛on

˛tw �L

F \SC\ @�L

F \SC\S�

F \S�\ @�L

Figure 5: A tube near a crossing ball Ct features two arcs ˛1; ˛2�F\SC\S�

parallel through SC\S� nF to Ct whose endpoints are (among) the points of
F \ @�L\SC\S� closest to Ct in each direction along @�L . In a minimal
crossing link diagram, such a tube gives a compressing disk Z for F in S3

with j@Z\LjD 2 (see Lemma 3.4.1), implying that r.F;L/� 2 . Compressing
F along Z changes �L and F as shown.

arc ˛ � @�L is thus parallel in the link exterior through Z to F ; @–incompressibility
implies that ˛ must also be parallel in @�L to F, and in particular that the endpoints
of ˛ must lie on the same component of F \ @�L, as claimed.

The following special case is particularly noteworthy:

Lemma 3.3.2 The two arcs of F \ @�L traversing each over/underpass lie on distinct
circles of F \S˙.

Proof This follows immediately from Lemma 3.3.1.

3.4 Crossing tubes

Say that F has a standard tube near a crossing ball Ct if there are two arcs ˛1; ˛2 �

F \ SC \ S� such that (1) for r D 1; 2, there is an isotopy of .˛r ; @˛r / through
.SC\S�nF;SC\S�\@�L/ to .@Ct ;S

C\S�\@�L\@Ct / — ie for rD1; 2, ˛r is
parallel through SC\S� to Ct , allowing the endpoints to slide along SC\S�\@�L —
and (2) the endpoints of ˛1 and ˛2 are also endpoints of the four arcs of F\@�L\S˙

that traverse the overpass and underpass at Ct — ie these endpoints are (among) the
points of F \ @�L\SC\S� closest to Ct in each of the four directions along @�L,
in the sense of the disk bundle � W �L!L.

Up to symmetry, this appears as in Figure 5 — the arcs ˛1 and ˛2 must be in opposite
quadrants relative to Ct , not adjacent ones. The reason for this is that the only other
possibility (see Figure 13, second from left) contradicts the essentiality of F in the
link exterior, using Lemma 3.3.1, or more specifically Lemma 3.3.2.
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A crossing tube sets up a surgery move on F and L as follows. Each of the two arcs
˛1 and ˛2 associated with a crossing tube near Ct has one endpoint on an edge of @�L
incident to the overpass at Ct and the other on an edge incident to the underpass
at Ct . The two endpoints on edges incident to the overpass at Ct can be joined by
an arc ˇ1 � @�L \ .S

� [ Ct / n F ; likewise, the two endpoints on edges incident
to the underpass at Ct can be joined by an arc ˇ2 � @�L \ .S

C [ Ct / n F. The
circle ˛1 [ ˇ1 [ ˛2 [ ˇ2 bounds a disk X whose interior lies in S3 n .F [ �L/.
Both ˇ1 and ˇ2 are parallel through disks Y1;Y2 � �L to arcs ˇ0

1
; ˇ0

2
� F, each

of which intersects L in a single point. Thus, the disk Z WD X [ Y1 [ Y2 satisfies
Z\F D @Z D ˛1[ˇ

0
1
[˛2[ˇ

0
2

with j@Z\Lj D 2. Moreover, the arcs ˇ0
1

and ˇ0
2

can be isotoped so that the two points in which they intersect L are the endpoints of
the vertical crossing arc in Ct , one on the overpass and the other on the underpass.

The surgery move associated to the crossing tube near Ct (see Figure 5) consists of (1)
cutting F along @Z , while cutting L at the two points of @Z \L, and (2) gluing in
two parallel copies of the disk Z , while joining each pair of endpoints of L on the
boundary of the glued-in copy of the disk Z with an arc in that disk. This surgery
move is a compression of F in S3 unless @Z bounds a disk in F, in which case the
surgery move yields a surface with two components, one of them a sphere. The effect
of the surgery move on L is the same as one of two possible “smoothings” near Ct , in
the traditional sense from skein relations. After the surgery move, the resulting link is
again embedded in the resulting surface.

Lemma 3.4.1 Given a crossing tube in a minimal crossing diagram of a nonsplit link,
the associated surgery move is a compression — the boundary of the surgery disk Z

does not bound a disk in F.

In particular, a crossing tube in a reduced alternating link diagram contains a “genuine”
compressing disk Z for F in S3 with j@Z \Lj D 2. This lemma will round off the
proof of the main theorem in Section 5.

Proof Let Ct be the crossing ball with the tube in question. Construct the disk Z as
before, and suppose for contradiction that @Z bounds a disk Y in F. Since j@Y \Lj D

j@Z \ Lj D 2 and L is nonsplit, Y \ L consists of a single arc, call it ı . From
.Y [Z/\LD ı it follows that the two 2–spheres on the boundary of a thin regular
neighborhood of Y [Z intersect L in a total of two points; hence, one of these
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2–spheres is disjoint from L. Since L is nonsplit, this implies that the disks Y and Z

are parallel through a ball W in S3 whose interior is disjoint from L.

The arc ı D Y \L is parallel through the ball W to any arc ı0 in Z that joins the
overpass and underpass of L at Ct . Taking ı0 to be the vertical arc in Ct that joins the
overpass and underpass of L, isotope the arc ı �L to ı0, while fixing the rest of L.
This isotopy eliminates all crossings incident to ı , including the one at Ct , without
creating any new ones. We assumed this was impossible.

3.5 Height

In the broader setting of Section 3, construct graphs G˙ (they will be trees) whose
vertices correspond to the components of S˙–cut–along–F and whose edges corre-
spond to the components of F \S˙, such that the edge corresponding to each circle

 � F \ S˙ joins the vertices corresponding to the two components of S˙–cut–
along–F whose boundaries contain 
 . Assign heights to the edges of G˙ and to the
corresponding circles of F \S˙, as follows.

Leaves of G˙, corresponding to innermost circles of F\S˙, have height 0. Let G˙
1

be
the graph obtained from G˙ by deleting all leaves; the edges of G˙ corresponding to
the leaves of G˙

1
, and their corresponding circles in F\S˙, have height 1. Recursively,

define each G˙
k

to be the graph obtained from G˙
k�1

by deleting all leaves; the edges
of G˙ corresponding to the leaves of G˙

k
, and their corresponding circles in F \S˙,

have height k . Thus, innermost circles of F \S˙ have height 0, noninnermost circles
which enclose (to one side) innermost circles and no others have height 1, and so on.

Observation 3.5.1 Either all circles of F \S˙ have height 0 or F \S˙ contains a
circle with height 1.

Figure 6 shows an example — a torus F containing the knot LD T3;4 in an almost
alternating diagram, with the associated graph GC. (A reduced link diagram is called
almost alternating if all but exactly four of its edges join an overpass to an underpass.)
The torus is difficult to visualize directly, but one can verify its homeomorphism type
by computing Euler characteristic.

The reader may also find the example in Figure 6 instructive going forward: as r.L/D

r.F;L/D 3> 2, the example illustrates the extent to which the arguments in the sequel
hold, or fail, without the assumption of alternatingness. Namely, the configuration in
Figure 6 satisfies the conclusions of all propositions and lemmas in Section 4.1, but
escapes those from Section 4.2.
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Figure 6: A torus F containing the knot T3;4 in an almost alternating dia-
gram. The edges of the graph GC correspond to the circles of F \SC.

4 Consequences of essentiality and minimal complexity

To review the setup and preliminary results, a link L� .S2 nC /[ @C follows a link
diagram D�S2 with n crossings; �L is a regular neighborhood of L, seen as (the total
space) of a disk bundle � W �L!L; balls B˙ are the closures of the two components
of S3n.S2[C[�L/, with S˙D@B˙ and SC\S�DS2nint.C[�L/; and a closed
surface F, which contains L and is essential (ie incompressible and @–incompressible
in the link exterior, ie r.F;L/� 2), has been isotoped so that

� the restriction �jF is a bundle map;

� F is transverse to SC, S� ;

� F \C \ @�LD¿;

and, subject to these conditions, the complexity of F is minimized, specifically

� the numbers of components of F \ @C n �L and of F \SC\S� have lexico-
graphically been minimized.
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Figure 7: No arc of F \@�L\S˙ is parallel in @�L to SC\S� (left) and
no arc of F \ @C \S˙ is parallel in @C to SC\S� (right).

This initial setup implies that all components of F \BC, F \B� and F \ C are
disks. In the more general setting where the assumption of minimal complexity is
replaced with the assumption that F \BC, F \B� and F \C are comprised of disks,
Section 3 established such technical conveniences as bigon moves, crossing tubes and
height.

Section 4 delimits which local configurations are consistent with the initial setup,
where F is essential and its complexity is minimized. Most results address the arcs of
F \ @�L\S˙, F \ @C \S˙ and F \SC\S�, and many extend to the case where
F is incompressible but @–compressible in the link exterior. (One way to extend the
proofs, roughly, is to isotope F so as to push any @–compressing disks into �L, and
then to slide these disks along the link away from the local area under consideration.)

Several of the proofs require disrupting the condition of minimal complexity by creating
new components of F \SC\S�, usually through a sequence of bigon moves. There
are several valid reasons to do this. In the proof of Lemma 4.1.6, a temporary increase
in complexity enables the removal of a component of F \ @C n �L, lessening the
complexity of F, a contradiction. One case in the proof of Lemma 4.2.4 increases
complexity in order to reveal a @–compressing disk, thus contradicting essentiality.
The other case in the proof of Lemma 4.2.4 and the proof of the crossing tube lemma
in Section 5 both increase complexity in order to procure a crossing tube. In such cases,
Lemma 3.2.1 will confirm that the bigon moves, while disrupting the condition of
minimal complexity, preserve at least the fact that all components of F \BC, F \B�

and F \C are disks, and thus the more general setting of Section 3. In particular, this
will validate further bigon moves and applications of Lemma 3.3.1.

4.1 Local possibilities, regardless of alternatingness

Assume throughout Section 4.1 that D is a diagram of a nontrivial, nonsplit link L,
and that L is contained in a closed surface F � S3 (compact and connected without
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Figure 8: An arbitrary crossing ball: disjoint from F (left), intersecting F

in a single component (center) and intersecting F in at least two components
(right); see Lemma 4.1.3.

boundary). Establish all setup from Sections 2.1–2.3. Assume in particular that F is
essential and its complexity .jF \ @C n �Lj; jF \SC\S�j/ has been minimized.

Proposition 4.1.1 No arc of F\@�L\S˙ has both endpoints on the same component
of @�L\SC\S�.

Proposition 4.1.2 No arc of F\@C \S˙ has both endpoints on the same component
of @C \SC\S�.

See Figure 7. Recall that F \ @�L\C D¿ by assumption.

Proof of Propositions 4.1.1 and 4.1.2 Any arc ˛1 of F\@�L\S˙ with endpoints on
the same component of @�L\SC\S� must be parallel through a disk X � @�L\S˙

to an arc ˇ1 � @�L\SC\S� ; but, then, isotoping F near ˛1 through X past ˇ1

(Figure 7, left) would reduce the complexity of F, contrary to assumption.

Likewise, any arc ˛2 of F \ @C \ S˙ with endpoints on the same component of
@C \ SC \ S� must be parallel through a disk Y � @C \ S˙ to an arc ˇ2 �

@C \SC\S� ; but, then, isotoping F near ˛2 through Y past ˇ2 (Figure 7, right)
would reduce the complexity of F, contrary to assumption.

Lemma 4.1.3 Every component of F \C n �L is a disk whose boundary consists of
four arcs, alternately on SC\ @C and S�\ @C, none of which is parallel in @C n �L
to @C \SC\S�.

That is, each component of F \C n �L looks like a saddle, as in Figure 8, center, and
each crossing ball looks like one of the pictures in Figure 8, depending on the number
of components in which it intersects F.

Proof Lemma 4.1.3 is an immediate consequence of Propositions 2.4.1, 3.1.1 and 4.1.2.
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Figure 9: No arc of F \SC\S� is parallel in SC\S� to @�L (left) or to
@C (right).

Proposition 4.1.4 No arc of F\SC\S� has both endpoints on the same component
of @�L\SC\S�.

Proof If both endpoints of some arc of F \SC\S� were on the same component of
@�L\SC\S� then, applying Proposition 4.1.1, an outermost such arc in SC\S�

would appear as in Figure 9, left, contradicting the assumed @–incompressibility of F

in the link exterior, eg by Lemma 3.3.1.

Proposition 4.1.5 No arc of F \SC\S� has both endpoints on the same crossing
ball.

Proof Suppose ˛0 is an arc of F\SC\S� with both endpoints on the same crossing
ball Ct , and assume that ˛0 is outermost in SC\S�, ie parallel through SC\S�nF

to Ct , as in Figure 9. Push F near ˛0 through SC\S� past @Ct . This attaches two
saddle-shaped disks in the interior of Ct , lessening the complexity of F, contrary to
assumption.

Lemma 4.1.6 No arc ˛0 � F \SC\S� has one endpoint on a crossing ball and the
other on an incident edge of @�L.

Proof Suppose that ˛0 is an arc of F \SC \S� with one endpoint on a crossing
ball Ct and the other on an incident edge of @�L. Assume that ˛0 is outermost in
SC\S�, ie parallel through SC\S� nF to �L[C. Consider the circle of F \@�L

that contains an endpoint of ˛0 . Moving along this circle from that endpoint toward Ct ,
there is at most one more point on SC\S�, by Proposition 4.1.1 and the assumption
that ˛0 is outermost. There are thus two cases up to symmetry (see Figure 10).

In either case, begin with a sequence of (up to) three bigon moves, through the arcs
labeled ˛1 , ˛2 , ˛3 in Figure 10, in that order. Any of the arcs ˛r can be parallel in
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˛0

˛1
˛2

˛3

ˇ0

ˇ

˛0 ˛1

˛2 ˛3

ˇ0

ˇ

Figure 10: No arc ˛0 of F \SC\S� has one endpoint on a crossing ball
and the other on an incident edge of @�L .

S˙ nC to F ; in this case, omit the bigon move along ˛r . In all cases, this sequence
of bigon moves fits the hypotheses of Lemma 3.2.2 and thus preserves the fact that all
components of F n .SC[S�[ �L/ are disks.

Now an arc ˇ � @�L\F is parallel through a disk Y � @�L with Y \F D ˇ to
a second arc ˇ0 � @�L\ S˙ with ˇ0 \ F D @ˇ0. This arc ˇ0 is parallel to an arc
ˇ00 � F \B˙ through a disk Z � B˙ with Z \ F D ˇ00. Further, ˇ00 is parallel
to ˇ through a disk X � F, which contains an entire disk of F \C n �L. Finally, the
2–sphere X [Y [Z bounds a ball W in the link exterior.

Isotope .X; ˇ/ through .W;Y / to .Z; ˇ0/, while fixing ˇ00D @X \@Z . This removes
the disk of X \C and thus a component of F \ @C n �L. Since bigon moves always
fix jF \@C n�Lj, this contradicts the initial assumption that the complexity of F was
minimized.

4.2 Consequences of alternatingness

Maintain all setup from Section 4.1, with the additional assumption that D is alternating.
That is, assume throughout Section 4.2 that D is a nontrivial, reduced alternating dia-
gram of a link L, and that L is contained in a closed essential surface F �S3 (compact
and connected without boundary) whose complexity .jF \ @C n �Lj; jF \SC\S�j/

has been minimized.

Lemma 4.2.1 Every edge of @�L appears as in Figure 11.

Proof This follows immediately from Propositions 3.1.1 and 4.1.1 and the alternating-
ness of D.

Algebraic & Geometric Topology, Volume 18 (2018)



3358 Thomas Kindred

: : : : : :

Figure 11: The types of edges of @�L when D is alternating (see Lemma 4.2.1)

Proposition 4.2.2 If 
 is an innermost circle of F \S˙, then 
 \ @C D¿.

Proof Let 
0 be an innermost circle of F \ SC (without loss of generality), and
suppose 
0\ @C ¤¿. Then the disk X � SC nF with @X D 
0 intersects @C ; let
Y be a component of X \ @C. There are now three cases, using Lemma 4.1.3: in one
case (Figure 12, left), @Y contains two arcs of 
0\ @C, so that a bigon move yields
an arc of F \SC\S� with both endpoints on Ct , contradicting the minimality of
F \ @C n �L (recall Figure 9, right, and the proof of Proposition 4.1.5).

In the two remaining cases, @Y contains an arc of @�L\ @Ct . This arc runs either
along the boundary of the overpass of @�L at Ct (right) or along the boundary of
an edge of @�L which is incident to the underpass at Ct (center). In either case, the
arc is incident to an edge of @�L. Crucially, this edge of @�L contains endpoints of
F \SC\S�, by Lemma 4.2.1, which uses alternatingness. Moreover, in both cases,
the closest of these endpoints to Ct along this edge of @�L must lie on 
0 , since 
0 has
height 0. Therefore, in both these cases, a bigon move yields an arc of F \SC\S�

with one endpoint on Ct and the other on an incident edge of @�L. In the underpass
case (center), this immediately contradicts the assumption of minimal complexity.

In the case that Y was incident to the overpass at Ct , the bigon move from Figure 12
increases complexity, but we can still perform the sequence of bigon moves from
Figure 10, top (omitting any trivial ones as usual), to set up the final isotopy move from
that sequence. This final move is valid here too, since the preceding sequence of bigon
moves meets the conditions of Lemma 3.2.2. This final move eliminates a component
of F \ C n �L. Since bigon moves always fix jF \ @C n �Lj, this contradicts the
initial assumption that the complexity of F was minimized.

Proposition 4.2.3 If 
 is an innermost circle of F \ S˙, so that 
 bounds a disk
X � S˙ nF, then at least one component of 
 \ @�L traverses an over/underpass.

Proof Lemma 4.2.1 implies that the only arcs of F \ @�L with endpoints on the
same component of �L\ S2 nC look like the arcs of this type in Figure 11, up to
reflection — there is one far left in Figure 11, one second from right, and two far right.
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Y


0


0

˛

bigon
move Y


0


0

˛
bigon
move Y


0 
0

˛

bigon
move

Figure 12: Every innermost circle 
0 � F \S˙ is disjoint from @C (see Proposition 4.2.2).

If such an arc lies on an innermost circle 
 of F \SC (without loss of generality),
then, since 
 is innermost and 
 \ @C D ¿ by Proposition 4.2.2, 
 must traverse
the overpass at the crossing where the edge of @�L containing this arc of 
 meets an
underpass. This is evident in Figure 11, using Lemma 3.3.1.

Lemma 4.2.4 If both circles of F \ S˙ traversing a given over/underpass have
height 0 (to one side), ie are innermost, then F can be isotoped to have a standard tube
near that crossing.

Proof Let Ct be the ball at the crossing in question. By Lemma 3.3.2, the two arcs
traversing the overpass (without loss of generality) at Ct lie on distinct circles, 

and 
0 , of F \SC. Consider the two edges of @�L incident to the underpass at Ct ,
each of which contains endpoints of F \ SC \ S�, using Lemma 4.2.1. Of these
endpoints, consider one (on each of these two edges of @�L) that is nearest to Ct

along @�L. Up to symmetry, there are two cases, depending on which sides of D these
two points lie on, relative to each other (see Figure 13).


 
 
0 
0

bigon
moves

˛

see Lemma 3.3.1


 



0
0

bigon
moves

˛tw

˛on
crossing

tube

Figure 13: If both circles 
 and 
0 of F \ S˙ traversing a given
over/underpass, say at Ct , have height zero, then F can be isotoped to
have a standard tube near Ct .
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If these two points lie in adjacent quadrants near Ct (Figure 13, left), perform two bigon
moves (unless the associated arc is parallel in S˙ nC to F ). Since each (possible)
bigon move follows an arc with an endpoint on @�L, Lemma 3.2.1 implies that these
moves preserve the fact that SC[S�[�L cuts F into disks. Moreover, these moves
produce a diagram in which an arc ˛ � @�L\S� has endpoints on the same circle of
F \S� but on distinct circles of F \ @�L, which Lemma 3.3.1 states is impossible.

Therefore, these two points must lie in opposite quadrants F nD near Ct (Figure 13,
right). In this case, a pair of bigon moves (to be omitted if trivial) immediately fashions
a standard tube near Ct . Lemma 3.2.2 implies that these moves preserve the fact that
SC[S�[ �L cuts F into disks.

5 Main results

Crossing tube lemma Given a nontrivial, reduced alternating diagram of a link L

and a closed, essential surface F � L, there exists an isotopy after which F has a
standard tube near some crossing.

Proof As in Section 2, let L� .S2 nC /[ @C follow a reduced alternating diagram,
with �L a closed regular neighborhood of L seen as (the total space of) a disk bundle
� W �L! L, B˙ the components of S3 n .S2 [ int.C [ �L// and S˙ D @B˙. Let
F be a closed, essential surface containing L. Fixing L� F, S2 and C, isotope F —
subject to the requirements that F t S˙, �jF be a bundle map and F\C\@�LD¿ —
so as to minimize lexicographically the numbers of components of F \ @C n �L and
F \SC\S�.

Consider F \SC. If all circles have height 0, apply Lemma 4.2.4 at any overpass, and
we are done. Otherwise, by Observation 3.5.1, there exists a circle 
1 of F \SC with
height 1. Let 
0 be any (innermost) circle enclosed by 
1 . Apply Proposition 4.2.3
to consider an overpass which 
0 traverses. Let 
 denote the other circle of F \SC

traversing this overpass. Note that 
 ¤ 
0 by Lemma 3.3.1, or more specifically
Lemma 3.3.2. If 
 has height 0, then Lemma 4.2.4 completes the proof. Otherwise, 

must equal 
1 . See Figure 14.

Next, consider the circle 
 0 of F\SC from Figure 14, which must exist and be distinct
from 
0 , due to Lemmas 4.2.1 and 3.3.1 and the assumption that 
0 has height 0.
If 
 0 also has height 0, then Lemma 3.3.1 implies that the edge of @�L in question
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bigon
move


 
 0

bigon
move

isotopy

Figure 14: The final sequence of moves in the proof of the crossing tube lemma

must appear as in Figure 11, third from right; thus, 
0 and 
 0 must traverse a common
overpass, completing the proof, using Lemma 4.2.4. Otherwise, 
 0 D 
1 D 
 . This
allows the sequence of isotopy moves shown in Figure 14, yielding the desired crossing
tube. (Again, omit either isotopy move if the associated arc is parallel in S˙ n C

to F ; Lemma 3.2.2 applies since each bigon move is along an arc with an endpoint
on @�L.)

Main theorem Every nonsplit, nontrivial alternating link L has representativity
r.L/D 2.

Proof Given a closed surface F containing L and a reduced alternating diagram of L,
apply the crossing tube lemma to obtain a standard tube at some crossing. Then apply
Lemma 3.4.1 to conclude that the crossing tube contains a disk Z with Z \F D @Z ,
such that @Z intersects L in two points and does not bound a disk in F.
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