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The universal quantum invariant
and colored ideal triangulations

SAKIE SUZUKI

The Drinfeld double of a finite-dimensional Hopf algebra is a quasitriangular Hopf
algebra with the canonical element as the universal R—matrix, and one can obtain a
ribbon Hopf algebra by adding the ribbon element. The universal quantum invariant
of framed links is constructed using a ribbon Hopf algebra. In that construction, a
copy of the universal R—matrix is attached to each crossing, and invariance under the
Reidemeister III move is shown by the quantum Yang—Baxter equation of the universal
R-matrix. On the other hand, the Heisenberg double of a finite-dimensional Hopf
algebra has the canonical element (the S—tensor) satisfying the pentagon relation. In
this paper we reconstruct the universal quantum invariant using the Heisenberg double,
and extend it to an invariant of equivalence classes of colored ideal triangulations
of 3—manifolds up to colored moves. In this construction, a copy of the S—tensor is
attached to each tetrahedron, and invariance under the colored Pachner (2,3) moves
is shown by the pentagon relation of the S—tensor.

16T25, 57M27, 81R50

1. Introduction 3364
2. Universal quantum invariant 3369
3. Drinfeld double and Heisenberg double 3372
4. Reconstruction of the universal quantum invariant 3379

5. Extension of the universal quantum invariant to an invariant for

colored diagrams 3385
6. Three-dimensional descriptions: colored diagrams and colored

singular triangulations 3390
7. Octahedral triangulation of tangle complements 3396
References 3400

Published: 18 October 2018 DOI: 10.2140/agt.2018.18.3363


http://msp.org
http://www.ams.org/mathscinet/search/mscdoc.html?code=16T25, 57M27, 81R50
http://dx.doi.org/10.2140/agt.2018.18.3363

3364 Sakie Suzuki

1 Introduction

The universal quantum invariant (see Lawrence [21; 22] and Ohtsuki [28]) associated
to a ribbon Hopf algebra is an invariant of framed tangles in a cube which has the
universal property over Reshetikhin—Turaev invariants [29]. The relationship between
the universal quantum invariant and 3—dimensional, global, topological properties of
tangles is not well understood, mainly because of the 2—dimensional definition using
link diagrams. In this paper, we give a reconstruction of the universal quantum invariant
using colored ideal triangulations of tangle complements and give an extension of
the universal quantum invariant to an invariant of equivalence classes of colored ideal
triangulations of 3—manifolds up to colored moves. We expect that our framework will
become a new method to study the quantum invariants in a 3—dimensional way.

1.1 Reconstruction and extension of the universal quantum invariant

In the theory of quantum groups there are two doubles of a finite-dimensional Hopf alge-
bra A. One is the Drinfeld double D(A) and the other is the Heisenberg double H(A).
They are both isomorphic to 4* ® A as vector spaces.

The Drinfeld double D(A) is a quasitriangular Hopf algebra with a canonical element
R € D(A)®? as the universal R—matrix, which satisfies the quantum Yang—Baxter
equation

Ri2R13R23 = Ra3Ri3R12;

see eg Drinfel’d [11] and Majid [24; 25]. One can obtain a ribbon Hopf algebra D(A)G
by adding the ribbon element 6. In what follows we assume that the universal quantum
invariant is associated to D(A4)? for a finite-dimensional Hopf algebra A.

The Heisenberg double H(A) is a generalization of the Heisenberg algebras; see
Kapranov [15], Lu [23] and Semenov, Tian and Shansky [30]. Baaj and Skandalis [1]
and Kashaev [18] showed that a canonical element S € H(A4)®?, which we call the
S—tensor, satisfies the pentagon relation

S12813823 = §23512.

Kashaev [18] also constructed an algebra embedding ¢: D(A4) - H(A) ® H(A)P
such that the image of the universal R—matrix is a product of four variants of the
S—tensor:

(1-1) d®2(R) = S1,5135248}; € (H(A) ® H(A)P)®2,
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The universal quantum invariant and colored ideal triangulations 3365

where S’, S” and S are the images of S by maps constructed from the antipode; see
Theorem 3.4.

The situation (1-1) reminds us of the situation of an octahedral triangulation (see
Cho, Kim and Kim [10], Weeks [33] and Yokota [34]) of the complement of a link in
S3\ {£00}, where an octahedron consisting of four tetrahedra is associated to each
crossing of a link diagram.! Actually, corresponding to the formula (1-1), Kashaev [17]
constructed the R-matrix consisting of four quantum dilogarithms defined by Faddeev
and Kashaev [12], and gave a link invariant. Baseilhac and Benedetti [5] also constructed
the R-matrix consisting of four quantum dilogarithms, each of which is associated to
tetrahedron in a singular triangulation of a 3—manifold, and they recovered Kashaev’s
R-matrix. Hikami and Inoue [13; 14] constructed the R—matrix consisting of four
mutations in a cluster algebra. Here a mutation is associated to a flip of triangulated
surface, where a flip is obtained by attaching a tetrahedron to the surface. They also
recovered Kashaev’s R—matrix up to a gauge transformation.

In this context, it is natural to ask if we can reconstruct the universal quantum invariant
of a tangle using an octahedral triangulation of its complement, where a copy of the
S—tensor is associated to each tetrahedron in the octahedral triangulation.

The answer is yes, and in this paper we give such a reconstruction. Here, we would
like to stress that we can construct the universal quantum invariant using the S—tensor
by simply rewriting the universal R—matrix by (variants of) the S—tensor using ¢®2.
However, an important result is that we give a way to relate a copy of the S—tensor to
an ideal tetrahedron in an octahedral triangulation, and a way to read these copies of
the S—tensor to obtain the universal quantum invariant. The framework of the above
reconstruction enables us to extend the universal quantum invariant to an invariant for
colored singular triangulations of 3—-manifolds up to colored moves.>

1.2 Universal quantum invariant as a state-sum invariant with weights in

a noncommutative ring

Let us explain the nature of the coloring on a singular triangulation from a viewpoint
of state-sum constructions.

I'Throughout this paper we consider only topological ideal triangulations, and we do not consider
geometric structures on them.

2The universal quantum invariant of a tangle is an isotopy invariant, while the extended universal
quantum invariant of the complement of the tangle is not a topological invariant. That is because there is a
canonical coloring for the complement of a tangle, and the universal quantum invariant of a tangle is equal
to the extended universal quantum invariant of its complement with the canonical coloring.
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One can obtain a state-sum invariant of tangles and 3—manifolds by associating a
6 j—symbol to each tetrahedron in a triangulation of a 3—manifold, where the values of
the 6j—symbol on colors on the edges of a tetrahedron give a weight of the state sum;
see Ocneanu [27] and Turaev and Viro [32].

In the context of hyperbolic geometry, there are several attempts to construct a state-sum
invariant of hyperbolic links and hyperbolic 3—-manifolds such that, to each tetrahedron,
one associates Faddeev and Kashaev’s quantum dilogarithm, and the values of them
on the cross ratio moduli of hyperbolic ideal triangulation give weights of the state
sum. It seems that the first relation between quantum state sums and hyperbolic
geometry is by Kashaev [16]. For an odd integer N > 1, he proposed a state sum for
triangulations of pairs (M, L) of a closed oriented 3—manifold M and a link L in M
using the cyclic 6j—symbol R(p, q,r) of the Borel subalgebra of Uy (sly). He also
showed that R(p, ¢, r) is obtained from certain operators .S and ¥, , , on cNecCh,
where § satisfies a certain pentagon relation and W, , , satisfies a version of the
quantum dilogarithm identity. A semiclassical limit of this identity gives Rogers’s
identity for Euler’s dilogarithm, and this fact seems to lead Kashaev [19] to his famous
conjecture about the relationship between his invariant and the hyperbolic volumes of
link complements.

Murakami and Murakami [26] showed that Kashaev’s R—matrix is conjugate (up to
scalar multiplication) to that of the colored Jones polynomial Jy with g = exp 2—1’\5’
and an N—dimensional irreducible representation of Uy (sly). This result also showed
that, in the case of links in the three-sphere, the Kashaev state sums lead to well-
defined invariants. Murakami and Murakami’s construction could be seen as a state-
sum invariant with a weight associated to a crossing, consisting of four quantum
dilogarithms.

Baseilhac and Benedetti [2; 3; 4; 5] constructed quantum hyperbolic invariants (QHI)
for triples (M, L, r), where M is a compact oriented 3—manifold, L is a nonempty link
in M, and r is a flat principal bundle over M with structure group PSL(2, C). These
invariants are obtained by adapting and generalizing the constructions of Kashaev, and in
the case where M is the three-sphere and r is the trivial flat bundle, they recovered the
Kashaev invariants. In [6], they reorganized QHI as invariants for tuples (M, L, r, k),
where « is a family of cohomological classes called weights. In this version, the QHI
are defined by state sums, where tensors called matrix dilogarithms (related to the
cyclic 6 j—symbols R(p,q,r)) are associated to tetrahedra in a singular triangulation.
The arguments of the matrix dilogarithms are certain special systems of N roots
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of hyperbolic shape parameters on the tetrahedra, encoding the flat bundle » and the
weights «.

On the other hand, the universal quantum invariant could be seen as a state-sum invariant
with weights being tensors of a ribbon Hopf algebra; a weight is associated to each
fundamental tangle (see Figure 2), in particular, a copy of the universal R-matrix is
associated to each crossing, and one takes products of the weights in the order following
the orientations of strands of a tangle (see Section 2.2 for the precise definition). We
would like to apply this framework to a state-sum construction using triangulations; ie
our motto (framework) is:

Using an element S satisfying a pentagon relation in a (noncommutative)
algebra, construct a state-sum invariant of 3—manifolds by associating a
copy of S to each tetrahedron of a (singular) triangulation.

The state-sum invariants using 6j—symbols (resp. quantum dilogarithms) could be
treated in this framework as functions, rather than as their values in C, on colors on
edges of tetrahedra (resp. cross ratio moduli of ideal tetrahedra [6]), and we expect
to obtain those invariants from the universal quantum invariant naturally keeping this
framework.

In the above framework one does not need to fix colors on the edges of a tetrahedron
or cross ratio modulus of an ideal tetrahedron, and for the proof of invariance of state
sums, instead of the pentagon identity of 6;j—symbols or of quantum dilogarithms, one
would work with an algebraic pentagon relation. Moreover, we expect that such an
invariant involves combinatorial information of a triangulation in its noncommutative
algebra structure, including the consistency and the completeness conditions of ideal
triangulations when we fix cross ratio moduli.

When we use a (singular) triangulation, we do not have a canonical order on the set
of weights on tetrahedra in the triangulation. Thus we need to fix an order; then we
naturally come to a notion of the colored singular triangulation:3 Each tetrahedron
is attached to two strands, and strands are connected globally in the triangulation.
Then a copy of the S—tensor is associated to the two strands of each tetrahedron, and

3The notion of colored singular triangulations can be interpreted by the notion of branchings; see
Baseilhac and Benedetti [6; 7], Benedetti and Petronio [8; 9] and Remark 6.1. In this paper we keep
the former one since it is defined combinatorially and fit to our purpose. When one would like to see
geometric properties of state sums, then the latter one would make more sense.
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we can read the copies of the S—tensor in the order following the orientations of the
strands. Corresponding to the Pachner (2,3) move and the (0,2) move of singular
triangulations, we define colored Pachner (2, 3) moves and colored (0,2) moves of
colored singular triangulations. The extension of the universal quantum invariant is an
invariant of colored singular triangulations up to certain colored moves. In this paper
these strands first arise from a tangle diagram, and then we consider strands more
generally in singular triangulations of topological spaces.

Organization

Section 2 is devoted to the definition of the universal quantum invariant associated
to a ribbon Hopf algebra. In Section 3 we recall the Drinfeld double D(A) and the
Heisenberg double H(A) of a finite-dimensional Hopf algebra 4, where the universal
R-matrix in D(A)®? and the S—tensor in H(A)®? satisfy the quantum Yang—Baxter
equation and the pentagon equation, respectively. We also recall from [18] how these
elements are related via an embedding of D(A4) into H(A)® H(A)P. In Section 4 we
give a reconstruction of the universal quantum invariant using the Heisenberg double.
In Section 5 we define colored diagrams and extend the universal quantum invariant to
an invariant of colored diagrams up to colored moves. Sections 6 and 7 are devoted
to 3—dimensional descriptions of the reconstruction and the extension of the universal
quantum invariant. In Section 6 we define colored singular triangulations of topological
spaces. The universal quantum invariant can be considered as an invariant of the
colored singular triangulations. In Section 7 we define colored ideal triangulations of
tangle complements* arising from octahedral triangulations, which have been studied
in eg [10; 34] in the context of the hyperbolic geometry.
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Figure 1: A tangle and its diagram

2 Universal quantum invariant

In this paper, a fangle means a proper embedding in a cube [0, 1]* of a compact, oriented
I-manifold, whose boundary points are on the two parallel lines [0, 1] x {0, 1} x {%}
A tangle diagram is obtained from the projection p: (x,y,z) — (x,y,0) to the
(x, y)-plane; see Figure 1. A framed tangle is a tangle equipped with a trivialization of
its normal tangent bundle, which is presented in a diagram by the blackboard framing.

2.1 Ribbon Hopf algebras

Let (A, n4,m4,€4, A4, Y4) be a finite-dimensional Hopf algebra over a field k, with
k-linear maps

Na:k—>A, e A—k, my AQA—>A, Agf:A—>AQRA, yq4. A— A,

which are called unit, counit, multiplication, comultiplication, and antipode, respectively.
We will omit the subscript 4 of each map above when there is no confusion.

For distinct integers 1 < ji,...,jm <l and x =) x| ®--- ® x;, € A®™, we write
/
1) X =3 ) (Ym)j, € A,
h

where (x;);; denotes the element in A®! obtained by placing x; on the jl.t tensorand, ie

(x)j; =1® - ®x; Q- ®1,

where x; is at the j;™ position. For example, for x = > X1 ® x5 ® x3, we have

xé?)z =) X, ® x3 ®x. Abusing the notation, we will omit the superscript of xj(f) im

and write Xj, .. j,, -
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For k—modules V, W, we define the symmetry map
(2-2) ww: VW ->WQRV, a®b—bRa.

A quasitriangular Hopf algebra (A, n,m, e, A,y, R) is a Hopf algebra (A,n,m,e, A,y)
with an invertible element R € A®2, called the universal R—matrix, such that

AP(x)=RA(x)R™! for xed, (A®1)(R)=Ri3R2;, (I®A)(R)=Ri3R;,,
where AP =14 40A.

A ribbon Hopf algebra (4,n,m,e, A,y, R,r), see eg [17], is a quasitriangular Hopf
algebra (A, n,m, e, A, y, R) with a central, invertible element r € A, called the ribbon
element, such that

rP=uy@), y@)=r. er)=1 A@r)=RuR'(rer),
where
(2-3) u=y S(Ba,
with R=Ya® .

2.2 Universal quantum invariant for framed tangles

In this section, we recall the universal quantum invariant [28; 21; 22] for framed tangles
associated to a ribbon Hopf algebra (A4, n,m,e, A,y, R,r).

Let T =T7U---UT, be an n—component, framed, ordered tangle.

Set
N = Spang{ab—ba|a,be A} C A.
Fori=1,...,n,let
4 AT # o,
"7 \4/N if OT; = 2.

We define the universal quantum invariant J(7) € A1 ® --- ® A, in three steps as
follows. We follow the notation in [31].

\\ /\/U/\

Figure 2: Fundamental tangles, where the orientation of each strand is arbitrary
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Figure 3: How to place labels on the fundamental tangles

Step 1 (choose a diagram) We choose a diagram D of T which is obtained by
pasting, horizontally and vertically, copies of the fundamental tangles depicted in
Figure 2.

Step 2 (attach labels) We attach labels on the copies of the fundamental tangles in
the diagram, following the rule described in Figure 3, where each 3’ should be replaced
with y if the string is oriented upwards, and with the identity otherwise. We do not
attach any label to the other copies of fundamental tangles, ie to a straight strand and
to a local maximum or minimum oriented from right to left.

Step 3 (read the labels) We define the i tensorand of J(D) as the product of the
labels on the i™ component of D, where the labels are read off along 7; reversing the
orientation, and written from left to right. Here, if 7; is a closed component, then we
choose arbitrary point p; on 7; and read the label from p;. The labels on the crossings
are read as in Figure 4.

As is well known [28], J(T') := J(D) does not depend on the choice of the diagram
and the basepoints p;, and thus defines an isotopy invariant of tangles.

' ®y)(R)

AN

X\ = ) y’(a‘)//\/\y/(ﬂ‘)

o' ®yR™

Z y’(a)\.\ Y'(B)
AN

Figure 4: How to read the labels on crossings, where R™! = o~ ® B~
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G
N (y® DR
C =
1®y)R
\ \( ®Y)

Figure 5: A tangle diagram C (left) and the label placed on C (right)

For example, for the tangle C = C; U C; shown in Figure 5, we have

(2-4) J(C) =) y@yB)edB.

where R=) a®pB=> o' Qp.

3 Drinfeld double and Heisenberg double

Let (4,n,m,e, A, y) be a finite-dimensional Hopf algebra. Let A* = Homy (4, k).
Define the pairing

(3-1) () A"®A—k, [fRx+— f(x),

and extend it to
() (AH®" R A®" &
for n > 1 by

(1®® fu, X1 ®-+-®xn) = (f1,X1) -+ (fn, Xn).
Then the dual Hopf algebra
A* = (A% nge=e*mar =A% e 4x=0", A gr=m", ygr=y")

is defined using the transposes of the morphisms of A4, ie is defined uniquely by

(¥ (a), x) = as(x), ack, xe A,
(A*(f®g).x)=(f®g Ax))., f.ged” xecA,
n*(fa = (f.n(a)), feA*, ack,

(m*(f),x®y)=(fim(x®y), [fed* x,yeA,
(y* (). x) = {fiy(x), fed* xed.
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3.1 Drinfeld double and Yang-Baxter equation

For any finite-dimensional Hopf algebra with invertible antipode, the Drinfeld quantum
double construction gives a quasitriangular Hopf algebra [11]. Here, we follow the
notation in [20].

Let (A,n,m,e, A, y, y_l) be a finite-dimensional Hopf algebra with invertible an-
tipode, A°? = (A,n,m°®, e, A,y~!,y) the opposite Hopf algebra and (A°)* =
(A*, &%, A*, n*, (m°P)*, (y~1)*, ¥*) the dual of the opposite Hopf algebra, where
m® =mo 1ty 4. For simplicity, we set

y=y"

Let AQ =id and A™ = (A®1®""1)A”=D for n > 1. In what follows, for x € 4
or x € A*, we use the notation

A(X) — A(l)(X) — Zx/ ®x// — Zx(l) ®X(2),
(AQ1)A(x) = A(Z)(x) — Zx/ x"@x" = ZX(I) ®x(2) ®X(3),

A(n)(X) — Zx(l) ®R® x(n—H)
for n > 3. We have

M) =AP() =) "> f
for f € (A°P)* .3
There is a unique left action

A® (AP)* — (AP)*, a® fra- [,
such that
(a- f.x) =D (f.7@"xd),
for a,x € A and f € (A°P)*, which induces the left A-module coalgebra structure on
(A°P)*. Also, there is a unique right action
AR (A®)* > A, a® fral,
such that
af — Z f()7(a’”)a’)a"

fora € A and f € (A°P)*, which induces the right (A°P)*~module coalgebra structure
on A.

3In [20], Kassel uses the notation AP(f) =3 f'® f”.
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The Drinfeld double

D(A) = (AP)* @A, np(4y. MD(4): ED(A)s AD(4): YD(4): R)

is the quasitriangular Hopf algebra defined as the bicrossed product of 4 and (A4°P)*.
Its unit, counit and comultiplication are given by those of (4A°P)* ® A; ie we have

(D)= nuryea(l) =11,
ep(a)(f ®a) = e(qmpa(f ®a) = f()e(a),
Apay(f ®a) = Agnyrpa(f ®a) =Y ["®d ® [/ ®d"
for a € A and f € (A°P)*. Its multiplication is given by
(3-2) mpy(f®a)®(g®b) = f(d-g")®d"€'b=>" fe(¥(a")2d)®a"b

for a,b € A and f, g € (A°P)*, where the question mark ? denotes the place of the
variable. Its antipode is given by

(S ®a)=) y@) -7 (/) ®ya) V"
fora € A and f € (A°P)*.

Fix a basis {e;}se7 of A and its dual basis {¢?},e7 of A*. The universal R—matrix
is defined as the canonical element

R=) (1®es) ® (" ®1) € D(A) ® D(A).

3.2 Heisenberg double and pentagon relation

Let A be a finite-dimensional Hopf algebra with an invertible antipode as in the previous
section. The Heisenberg double

H(A) = (A*®A. NH(4). MH(4))

is the algebra with the unit ng(4)(1) = n4+g4(1) = 1 ® 1 and the multiplication

(3-3) mpa(f®a)®(g®b) =) fg(?)®d"b
for a,b € A and f, g € (A°P)*.

Kashaev showed the following.

Algebraic & Geometric Topology, Volume 18 (2018)



The universal quantum invariant and colored ideal triangulations 3375

Theorem 3.1 [18] The canonical element

S=) (18e)® (" ®1) € H(A)® H(A)

satisfies the pentagon relation

(3-4) S12813823 = 823512 € H(4)®.

3.3 Drinfeld double and Heisenberg double

Let
H(A®) = (AQ® A™, N (4*). MH(4%))

be the Heisenberg double of the dual Hopf algebra A* of A, where we identify (A4*)*
and A in the standard way.

Set A%PP = (A, n,m, &, A°,y,y~1). We have the following lemma.

Lemma 3.2 The algebras H(A*) and H(A)P are isomorphic via the unique isomor-
phism I' o T such that

=14 4. H(AY) > HAPP)P xQ f— fQx,
F=y*"®@y: HA®P)? > HA)®, [fQx—y*(f)Qy(Xx).

Proof We have

T(X® /) H(aorcoryn T(y ® &) = (f ® X) * F (Aorcoryor (& @ »)
= (g ® ) H(4mweor) (f ®x)
= Z goaryr (224w ¥') @ ' - gon X
=Y (/¥ Ng®x)
=Y (g @xy
=Y ["g@xy'(f".y")
= (e fg)
=Y t(x(2/. ) ® ["9)
=t(x® f) Hur) (Y ®)),
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and

T(f ®x) 5 T(€®y) = F* (/) ®y(X) H» 7 () @y (1)

=7 @y ) T (/) ®y(x)
=Y 7@ () ey (v (x)

=Y 7 @7 TN v () vy (x)
=Y 7V Uy @)y ()
=Y TSy g ®@xy")
=Y T e/ ¥ Ng®x))
= Z I'(g *(A*)op (/.74 y”) ® J// “4op X)
=T((g® ¥) H(arr) (f ® X))

=T'((f ®X) B (gorcor)or (& ® p)),
which completes the proof. |

Set
35  Pl®e) =) 1®e®1®y(e) € H(A)® H(A)™,
36 P =) ()17 (")) ®1 € H(A) & H(A)™.

Kashaev [18] stated without proof that the Drinfeld double D(A) can be realized as
a subalgebra in the tensor product H(A4) ® H(A)°P of the Heisenberg double H(A)
and its opposite algebra H(A)° as follows.®

Theorem 3.3 [18] There is a unique algebra homomorphism
3-7) ¢: D(A) — H(A) ® H(A)*
extending (3-5) and (3-6).
Proof We define ¢p: D(A) - H(A) ® H(A)P by
¢ =munerr o (18MN2* QMNP o (187 * ®18y) o (AP Q A);
ie, for f € A* and x € A, we have
¢(f@x) =) (7N y ") X @7 () @ y(x")
=Y (XX @7 (M @y ().

6In [18] Kashaev uses H(A*) instead of H(A)°P.
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The map ¢ is an algebra homomorphism as shown by

p(10x)p(187) = (Y 18x' @187 (") neum (Y 18V @187(")
= 1®x"y' @18y (x") 4y (")
=) 18 (x») @18y ((x»)")
=¢((1®x)pa)(1®Y)),

p(f@Dpea D=} /@187 (/1®1) nencm () g'8107 () o1)
=Y /7" ®R1RY () (a7 (g ®1
=> (/9)"®1’7*((f3))®!
=¢((f®1)'p(g®1)),

p(foDp(18x) =Y /@187 (/@) nuenr () 18x @18y (")
=YX TSy () @y (x")!
=X S Rx @ T (S @y (x)
=¢(f®x)
=¢((f®1)pay(1®x)),

and

p18X)P(/®1)
= (X 1exP@107() nenum (3 /P @107 (/") 1)

=2 (/PN P ex? et (M) ey )

=2 (P aDe(f D) P @xP @7 (fP) @y (x?)

=) (PP FEN) P ex? @7 (fP) @y (x?)

=Y (xS FEONSP O P @xP @7 (S @y (x?)
= (/P NP x V) P @ x?)

=¢((1®x)pay (f® 1)),

where the fourth identity follows from m°P(1 ® y)A = ne.
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The map ¢ satisfies (3-5) and (3-6) as follows:
pl®ea) =) (leg)1®e@1Ry(e) =) 1®e®1@y(eg) =p(1®ca).
P @1) =) (). 1)(e)" ®1® (7*())®1

= (' Q17 (¢D)) @1 =9 ®1). O

Set
R=9¢P*(R) =) ¢(1®es)@p(e"®1)

= Z 1®e, @10y (e!)®(e?)"@17*((e?))®1 € (H(A)RH(A4)P)®?

Since ¢®2 is an algebra homomorphism, the element R also satisfies the quantum
Yang—Baxter equation

(3-8) Ri2R13Ry3 = Ry3Ri3 R,

where we use the notation (2-1) treating H(A) ® H(A)°P as one algebra. If we treat
H(A) ® H(A)°P as the tensor of H(A) and H(A)°P, we have

Ri234R1256 R3456 = R3456 R1256 R1234-
Set
~ ~b ._ = b
eai=yl(eqa), € :=y%(e’),

and set
S'=>"(18%)® (" ®1) € HA)®® H(A),

§"=) (18e)® @ ®1) € H(4)® H(A)™,
5= (1®%)®E°®1)c HA)™® H(A)™.

Kashaev showed the following.

Theorem 3.4 [18] We have

(3-9) R=15",5135,4S}5 € (H(A) ® H(A)P)®2,

Proposition 3.5 [18] The quantum Yang—Baxter equation (3-8) in (H(A)®H(A)°?)®3
is a consequence of the following variations of the pentagon equation for the tensors
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S,S’,S" and S :

(3-10) S23812 = 812813823, S2387, = 51,513 523,
(3-11) §33812 = 12573835, 3381, = 815513553,
and

(3-12) 55351351/2251/2*%3’ 5535135122512533’
(3-13) $2381381, = 81,855, 823813812 = S12523.

4 Reconstruction of the universal quantum invariant

Let D(A) be the Drinfeld double of A. Recall from (2-3) the element u =Y _ y(B)a =
Y y*(e?)®e, with R=) a®pB=>(1Re;) ® (¢? ®1). We have a ribbon Hopf
algebra

D(A)? = D(A)[6]/(6° —uy (w))
with the ribbon element 6 (see eg [20]).
We also consider the algebra
(H(A) ® H(A)®) = (H(A) @ H(A))[B]/ (82— ¢ (uy )))
and extend ¢ to the map
¢: D(A)? — (H(4) ® H(A)")°
by ¢(0) =6.

In this section, we define tangle invariant J” using (H(A) @ H (A)Op)g, which turns
out to be the image of tensor power of ¢ of the universal invariant associated to D(A)9
(Theorem 4.1).

In what follows, for simplicity, we use the notation
fx=fQ®xeA*®4

for f € A* and x € A. In particular we have

S=Ze“®ea, S'=ZEa®ea, S"=Ze“®é},, §=ZE“®Ea.
a a a
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4.1 Reconstruction of the universal quantum invariant using the
Heisenberg double

Let T =T, U---UT, be an n—component, framed, ordered tangle. Similarly to
Section 2.2, set

N o mome = Spangtab—ba|a,b € (H(4) ® H(A)Op)é} C(H(A)® H(A)Op)a.
Fori=1,...,n,let
_ op\0 ; .
@1) (H(4)® HA)®) = {(H(A) ° H(A)Op)g won 7o
(H(A) ® H(A)®P) /N(H(A)®H(A)op)§ if 0T; = @.

Take a diagram D of 7. We define an element J'(D) € Q),;(H(A4) ® H(A)Op)?
modifying the definition of J(T') as follows.

We duplicate D and thicken the left strands following the orientation, and denote the
result by ¢(D). See Figures 6, left, and 7, right, for examples.

Then we put labels on crossings as in Figure 8, where each ¥’ and each (¥*)" should
be replaced with y and ¥*, respectively, if the string is oriented upwards, and with the
identities otherwise.

We define the (2i—1)* and the 2i™ tensorands of J’(D) as the product of the labels
on the thin and the thick strands, respectively, obtained by duplicating 7;, where the
labels are read off reversing the orientation, and written from left to right. Here, if 7;
is a closed component, then we choose a point p on 7; and denote by p’ (resp. p”)
the image of p by the duplicating procedure on the thin (resp. thick) strand. We read
the labels of the thin (resp. thick) strand from p’ (resp. p”).

/—>

-/

Figure 6: A tangle C (left), the diagram {(C) (middle) and parameters for
¢(C) (right)
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q

Figure 7: A tangle T4 (left), the diagram (7T4;) (middle), and parameters
for ¢(T4y) (right)

Let
4-2) (<-): {tangle diagrams} — {tangle diagrams}, D D,

where D is the diagram obtained from D by respectively replacing each of /"

and \_/ with
N
Q and 6
/ .

For i =1,...,n, let D; be the subdiagram of D corresponding to 7;. We define
d(D;) as the number of /" \ minus the number of \/ in D;.

(' ®[F*))(S) YRFIES)  RFNES) ¢ ®F))S)

Y'®F)ES™ eFEINESH™) eE)NS)™) e F)N(S)™)

/X
AKX

Figure 8: Labels on crossings
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Set _
J"(D) = (H ;' ‘D")) J'(Diey) € QHA) ® HA™)],

where 6; is defined following the notation (2-1).

Theorem 4.1 We have

$®" 0 J(T) = J"(D) € QH(A) ® H(A)™)E.

1

If moreover T is a braid, which is a O—framed tangle with no maxima or minima, then

we have D = D) and []; 5;1([)") = 1. Thus we have the following.

Corollary 4.2 If T is a braid, then we have
$®" 0 J(T) = J'(D) € RQY(H(A) ® H(A)™);,

l
where (H(A) ® H(A)P); is defined similarly to (4-1) using H(A) @ H(A)P instead
of (H(A) ® H(A)°P)?.

Let f(D;) = #{positive self-crossings of D; } —#{negative self-crossings of D;} be
the framing of D;. Set

1

nf(Di op\ 0
(D) = (]‘[ 5/ ))J’(D) e QH(A) ® H(A)™!.
i
We use the following lemma to prove Theorem 4.1.

Lemma 4.3 Let T be an n—component framed tangle, and let T° denote T with
O0—framing. Let D be a diagram of T. We have

$" 0 J(T°) = J°(D(cy) € RH(A) ® H(A)?)!.

1

Proof For a positive (resp. negative) crossing ¢ = c; Uc;,, where ¢ is the understrand,
let c® be a tangle obtained by inserting a negative (resp. positive) kink into the bottom

AN /
R
N W eV
v ¥
Figure 9: How to insert a kink to a crossing
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d
a /\/4_' N
N\ S

Figure 10: Labels on the colored diagrams {(c4+) associated to positive and

negative crossings ¢4+
of ¢y ; see Figure 9 for examples. We take a diagram D° of T'° obtained from D)
by replacing each self-crossing ¢ by ¢° so that the framings vanish.

Since the labels on Dy to define J' are only on crossings (since there are no /" \
and \_/), in order to prove the assertion it is enough to show

(1) ¢®20J(cx) = J'(cx).
@ ¢ 0J(c)) = 07" T (cx),
for a positive (resp. negative) crossing c4 (resp. c—) with each strand oriented arbitrar-
ily.
Assume that each strand of ¢4 is oriented downwards. Then (1) follows from
¢®20 J(c+) = Rizaq = SV, 81352455,

= Z eap ®Tge. ® P ® 2% = J'(cq),
a,b,c.d

¢®2 0 J(c=) = RTJy, = (S53) 7 (S22) 71 (S13) 71 (ST, ™!

= Z Uptie @ flatig ® u®ub @ ¢ = J'(c_),
a,b,c,d

where ug, u?, g, u® are defined by

Y ua®ut =S5 =3 yle)®e?, Y d@ut=()" =) y@E) @,
a a a a

Y ua®it = (S =Y v ® YT =5 =3 y@) e
a a a a

see Figure 10.

Since the universal invariant of a positive (resp. negative) kink is equal to = (resp. 6),
we have J (ci) = 91il J(c+). Thus (2) follows from

$®? 0 J(cQ) = ¢®2(07 I (ca)) = 01 (9B 0 ) (cx) = 071 T (cu),

where the last identity follows from (1).
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For a crossing c4 with other orientations, (1) and (2) follow similarly from

$®20 (ypy @ DR = Y ¥(@)y(@Ca) ®y(ep)y(ea) ® ePe @292,

a,b,c,d
P20 (1R ypa)(R) = Y eaep ®E42. @ 7*(@)7* (@) @ 7* ()7 ().

a,b,c,d

220 (ypy ® DR = D y(iia)y(iia) ® y(ue)y (up) ® uu® @ i,
a,b,c,d

220 (1@ yp) (R = D upug ®iiaiiq ® P*@)7* @) ® y* @) y* ),
a,b,c,d

which completes the proof. a

Proof of Theorem 4.1 By Lemma 4.3 we have

¢®n o J(T) — ¢®n ((l_[ Ql_f(Dz))J(TO)) — (1—[ gi_f(Di))((p@n o J(TO))

4 4

—_ £(D;
(T )0
i
— . — F((De));
_ (1—[ ) f(D,)) (1—[ g/ (P ))J,(D(<—))
i i
—4(D;
i
For the example with C, with the parameters as in Figure 6, right, we have
Je = )R CR I CHIACLPACL
LaslbslesldsJasJbsJcsJd Q V(gih)y(gia)V* (ng)V* (Ejb)
®ej, ejbeibeic X gjd 51'@ glagia,

For the example with T4, with the parameters as in Figure 7, right, summing over all
i, j, k and [, we have

Tp = > V@O @)y (uj,)y (uj,)e' e e, e,
X ulaulb g, u; ¥ (*)7* (eka)y (er, )y (er,)
® P* (@) y* @)y (i), )y (@, ) e ey &,

x WG @, 11, 7 (@) 7 @)y (@, v @,)-
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5 Extension of the universal quantum invariant to an
invariant for colored diagrams

In this section we define colored diagrams and extend the map J’ to an invariant for
colored diagrams up to colored moves.

5.1 Colored diagrams and an extension of J’
In what follows, we consider also a virtual crossing as in Figure 11, which we call a

symmetry. By a crossing we mean only a real crossing.

A colored diagram Z is a virtual tangle diagram consisting of thin strands and thick
strands, which is obtained by pasting, horizontally and vertically, copies of fundamental
tangle diagrams in Figure 2 and copies of the symmetry, where the thickness of each
strand are arbitrary.

Let CD be the set of colored diagrams. For = (it1,..., Un),v=(v1,..., ) € {L}",
we denote by

CD(u;v) CCD
the set of n—component colored diagrams Z = Z; U---U Z, such that

Ziisthin <= u; =+, Z;isthick <= u; =—,

0Z;i £ 0 < v =+, VZi=0 < v =—.
Fori=1,...,n,set
H(A)f = H(A), H(A); = H(A)/Ng (4,

(H(A)™) = HA®, (H(A)®); = H(A)®/ Ny (-
We define the map
J':CD(u;v) — ® H(A4)," ® ® (H(A)Op);j
wi=+ Hj==

in a similar way to the definition of J’ in Section 4, ie by putting the labels on the
crossings as in Figure 8, not putting label for other fundamental tangle diagrams, and
by taking the product of the labels.

Figure 11: A symmetry, where the orientation of each strand is arbitrary
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Figure 12: The colored Pachner (2, 3) moves, where the orientation and the
thickness of each x—marked strand are arbitrary

N

*

/

Figure 13: The colored (0, 2) moves, where the orientation and the thickness
of each strand are arbitrary

5.2 Colored moves

We define several moves on colored diagrams as follows.

The colored Pachner (2,3) moves are defined in Figure 12. Note that each colored
Pachner (2, 3) move involves a symmetry, and thus is not the Reidemeister III move
on tangle diagrams.

The colored (0, 2) moves are defined in Figure 13.
The symmetry moves are defined in Figure 14.
The planar isotopies are defined in Figure 15.”
We call each of the above move a colored move.

Let ~. be the equivalence relation on the set of colored diagrams generated by all
colored moves.

Similarly, let ~¢ be the equivalence relation on the set of colored diagrams generated

by colored moves except for the moves in Figure 16.

Theorem 5.1 The map J' is invariant under ~.. If y*> = 1, then the map J' is also
invariant under ~..

Proof Let Z and Z’ be two colored diagrams.

"It is known that if two tangle diagrams D and D’ are planar isotopic to each other, then D and D’
are related by a sequence of the moves defined in Figure 15; see eg [17].
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Figure 14: The symmetry moves, where the orientation and thickness of each
strand are arbitrary

If Z and Z' are related by a colored Pachner (2,3) move with strands oriented
downwards, then J'(Z) = J'(Z’) follows from the pentagon relations (3-10)—(3-13).
If some *—marked strands are upwards, then J'(Z) = J'(Z’) follows from the pentagon
relations, after applying the antipode on each tensorand corresponding to an upward
strand.

If Z and Z’ are related by a colored (0,2) move, then J'(Z) = J'(Z’) follows from
the invertibility of S, S’, S” and S.

If Z and Z’ are related by a symmetry move, or by a planar isotopy which does not
involve a crossing, then it is easy to see J'(Z) = J'(Z').

Let us assume that Z and Z’ are related by a planar isotopy which involves a crossing.
Recall that S € H(A) ® H(A), S’ € H(A)*®* ® H(A), S”" € H(A) ® H(A)°P and
S € H(A)*® ® H(A). If the planar isotopy is not in Figure 16, then J'(Z) = J/(Z’)
follows from
(y®D(S)=5"", 1®yHES™H=S  Fey)Es)=Ss,
(yeDE)=()" AeyHSHH=5. FerHs)=s
(yeDE) =" AerH(sHH=5" yer)s")=Ss"
(y® (&) =35" 1e7HSH=5  eyH@ =S

N X=X X=[X] X=X

Figure 15: The planar isotopies, where the orientation and thickness of each
strand are arbitrary
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K X=X

Figure 16: The colored moves which are not in generators for ~¢, where the
orientation and the thickness of each x—marked strand are arbitrary

*

If the planar isotopy is in Figure 16, then we have J'(Z) = J'(Z’) if y2 =1, by
1®7")(S)=5"", (ye(s™)=s,
1@y)(S)=6"""  eh(s)H=ys,
1@y =" (yeh(s") ™) =s",

178 =57 yenE™H =S

If Z and Z’ are related by a colored Pachner (2, 3) move in Figure 16, ie a colored
Pachner (2, 3) move with middle strands oriented upwards, then Z and Z’ are related
by planar isotopy and the colored Pachner (2, 3) move with middle strands oriented
downwards. Thus we have J/(Z) = J'(Z’) by the above argument.

Thus we have the assertion. O

5.3 Tangles and colored diagrams

Recall from Section 4.1 the diagram (D) associated to a tangle diagram D. Actually
£(D) is nothing but a colored diagram and ¢ defines a map

¢: {tangle diagrams} — {colored diagrams}.

Let ~grym be the regular isotopy, ie the equivalence relation of tangle diagrams
generated by Reidemeister II, III moves and planar isotopies of tangle diagrams. We
have the following.

Theorem 5.2 Let D and D’ be two diagrams such that D ~gy,1 D’. Then we have

§(D) ~c §(D).
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<

| A

4

Figure 17: A realization of a Reidemeister II move using colored moves

Proof Let D and D’ be two tangle diagrams related by a Reidemeister IT move.
We can transform ¢ (D) to ¢(D’) by applying colored (0,2) moves four times; see
Figure 17 for the case that each strand is oriented downwards.

Let D and D’ be two tangle diagrams related by a Reidemeister III move. We can
transform ¢(D) to {(D’) by applying colored Pachner (2, 3) moves eight times; see
Figure 18 for the case that each strand is oriented downwards.

Let D and D’ be two tangle diagrams that are related by the planar isotopy. Then we can
also transform ¢ (D) to {(D’) by the planar isotopies; see Figure 19 for examples. O

Note that the diagrammatic transformations in Figure 18 induce algebraic equations
via the universal invariant J’, which gives a proof of Proposition 3.5. See Table 1 for
the situation.

N 3
k ) ‘
) Y
N\
Figure 18: A realization of a Reidemeister III move using colored moves
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-
< hgh - X -0

Figure 19: Realizations of planar isotopies using colored moves

[
Y

topological situation algebraic situation
Reidemeister III move quantum Yang—Baxter equation
colored Pachner (2, 3) moves pentagon relations

Figure 18 (colored (2, 3) move = RIII move) | Proposition 3.5 (pentagon relation
= quantum Yang—Baxter equation)

Table 1: The correspondence between transformations and equations, induced
by the universal invariant J’

6 Three-dimensional descriptions: colored diagrams and
colored singular triangulations

In this section, we associate a colored tetrahedron to each crossing of a colored
diagram Z and define a colored cell complex associated to Z . Using a colored cell
complex we define a colored singular triangulation of a topological space. As a result,
the universal quantum invariant J' turns out to be an invariant of colored singular
triangulations, where a copy of the S—tensor is attached to each colored tetrahedron.

6.1 Colored tetrahedra

Consider a tetrahedron T in the oriented space R3 with an ordering of its 2—faces
f1, /2, f3, fa. We stick I' by two strands going into " at f; (resp. f3) and out
of T at f5 (resp. f4). Note that there are two types of such tetrahedra up to rotation
as in Figure 20, where such a tetrahedra is presented by a crossing so that the strand
piercing f; and f3 is over. We consider two types of strands, depicted by thick and
thin strands, and then there are eight types of such tetrahedra, which we call colored
tetrahedra, presented by eight types of crossings as in Figure 21.
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\ i 3 1 / 1 3

T, 13 /
NeAl y S o \
X N NG K

N 2 4 v 4 2

Figure 20: Two types of tetrahedra which are attached to two ordered strands

6.2 Colored diagrams and colored cell complexes

We define a colored cell complex C(Z) associated to a colored diagram Z as follows.

Recall that Z consists of fundamental tangles and symmetries. Let {cy,...,cr} be
the set of crossings in Z . To each crossing ¢;, associate a colored tetrahedron I'; as in
Section 6.1. See Figure 22 for an example.

We define C(Z) to be the cell complex obtained from colored tetrahedra I'y, ..., [y
by gluing them along their 2—faces as follows:

(1) 2-faces F and F’ of 'y, ...,y are glued if and only if F and F’ are adjacent
along Z.

(2) We mark by = the vertex of each 2—face of 'y, ..., Iy asin Figure 23 depending
on the thickness of strands and the order of the faces in a tetrahedron, and glue
adjacent faces F and F’ so that the *—marked vertices are attached.

6.3 Colored singular triangulations and colored ideal triangulations

For a space X, a singular triangulation (see eg [32; 2]) of X consists of a finite-index
set I, afunction d: I — N, and continuous maps f;: AW s X fori eI, where A"
is the standard n simplex, such that (1, d, { fi}ier) is a finite cell decomposition of X,

AN AN X
N

Figure 21: Colored tetrahedra

/

N
N/
N\ /

/

N
N
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Figure 22: How to associate tetrahedra on a colored diagram
and for each i € I and a face F in A9® | the restriction f;| is the composition Jfiog
of an affine isomorphism g: F — A90) and Jj forsome jel.

Let C(Z) be the colored cell complex of a colored diagram Z, which we can naturally
regard a singular triangulation. Consider

X =C(Z)/(er =e/1,...,ek=e;€, U1 =v’1,...,v1=v;)

to be a singular triangulation obtained from C(Z) by identifying some pairs of edges
(e1.e})..... (e, e;c), where k > 0, and some pairs of vertices (v, v)). ..., (v, v;),
where [ > 0,1in C(Z). We call X a colored singular triangulation (coloring) of type Z .
In particular, if X is an ideal triangulation of some topological space X, then we call
it a colored ideal triangulation of X.

Let CT(Z) be the set of colored singular triangulations of type Z and set

cT= | cT(2).

ZeCD

Remark 6.1 In this remark, we assume 3-manifolds are connected, compact, oriented,
and with nonempty boundary.

In [9; 6; 7], Benedetti—Petronio and Baseilhac-Benedetti used so-called N—graphs to
represent branched ideal triangulations of a 3—manifolds and dual oriented standard

(f A/\ |f3
ZAN A O O

Figure 23: How to mark a vertex of each triangle by *
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branched spines of them. In this remark we consider abstract A/—graphs, ie we do not
take planar immersions of them.

Let BTR the set of branched ideal triangulations of 3—manifolds, BSP the set of
oriented standard branched spines of 3—manifolds, and NG the set of N'—graphs with
the color 0 € Z /37 on every edge.

We have the bijections

NG — BSP, G+ BSP(G),
NG — BTR, G BTR(G),
where BSP(G) is obtained from G [6] so that a 4—valent vertex encodes a branched

tetrahedron, and BTR(G) is the branched ideal triangulation, which is the dual of the
oriented standard branched spine BSP(G).

Let CCD be the set of equivalence classes of closed colored diagrams up to planar
isotopies and symmetry moves. We have the surjective map

p:CCD —-> NG, Zw p(Z),

where p(Z) is the N—graph obtained from Z by reversing the orientation of thick
strands.

It is not difficult to check that the branched ideal triangulation BTR(p(Z)) is the colored
singular triangulation of type Z obtained from C(Z) by identifying some edges and
vertices so that BSP(p(Z)) becomes a standard spine, ie so that the complement of
the vertices in the singular set of BSP(p(Z)) is a union of segments, and that the
complement of the singular set in BSP(p(Z)) is a union of disks. For an example with
link complements, see the proof of Proposition 7.1.

6.4 Colored moves and colored singular triangulations

We can translate colored moves on the set CD of colored diagrams defined in Section 5.2
to moves on the set CT of colored singular triangulations as follows.

For colored diagrams Z and Z’, let X and X’ be colored singular triangulations of
types Z and Z’, respectively. Let

v:C(Z2)—= X, vy:Cc(Z)— X

be the projections. We say that X and X are related by a colored Pachner (2, 3) move if
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(1) the colored diagrams Z and Z’ are related by a colored Pachner (2, 3) move, and

(2) ¥ =1y’ on the exteriors C(Z)\ W =C(Z')\ W', where W (resp. W') is the
subcomplex of C(Z) (resp. C(Z’)) consisting of the three (resp. two) tetrahedra
corresponding to the three (resp. two) crossings of Z (resp. Z') involved in the
colored Pachner (2, 3) move.

We define other colored moves on colored singular triangulations similarly.

Then the colored Pachner (2, 3) move on C7 turns out to be the Pachner (2, 3) move
on singular triangulations, defined in Figure 24, left, replacing two tetrahedra sharing
one face with three tetrahedra, or its inverse. See Figure 25 for an example, where
we color overstrands red and understrands blue so that we can distinguish them in
3—spaces in the lowest picture.

The colored (0, 2) move on C7 turns out to be the (0, 2) move on singular triangula-
tions, defined in Figure 24, right, replacing two adjacent 2—faces with two tetrahedra,
or its inverse.

Correspondingly to the equivalence relations ~. and ~; on CD, we define the equiva-
lence relations ~¢ and ~¢ on CT ; ie ~¢ is generated by all colored moves, and ~¢
is generated by colored moves except for the moves in Figure 16.

Let m: CT — CD be the map such that 7(X) = Z for X e CT(Z).

For wu=(u1,..., um) and v=(v1,..., V) in {£}'" for m >0, recall from Section 5.1
the subset CD(u; v) C CD. Let CT (u; v) be the set of colored singular triangulations
of types in CD(u; v). Note that CT = (U, pegrym m=0 CT (145 V).

Proposition 6.2 The composition

Jom: CT(u:v) — R) HAY ® Q) (HA)™))

iely jel-

of the restriction of 7w to CT (u;v) and the universal quantum invariant J' is invariant
under ~L;. If )/2 =1, then J’ o 7 is also invariant under ~.

V-9 5-0

Figure 24: The Pachner (2, 3) move (left) and the (0, 2) move (right)
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colored Pachner (2, 3) move

AN \\

§< - >) LI» pentagon relation
AW X

32 1 32 1

ABD ACD  AEC
ABD  ACD AEC \A

N =€
X ADE A .+ E
/ "'A A D ‘;
ABC: B - XD {CDE
A SNE
S B
B\ | L
ABE BEC BCD ABE BEC

3 2 1 3 )

Figure 25: A colored Pachner (2, 3) move of colored diagrams and a Pachner
(2, 3) move of colored cell complexes, whose image under J' turns out to be
the pentagon relation S3S12 = S12.513523

Proof Note that the projection map 7 induces the map
CT/~e —CD/~c (resp. CT/~q — CD/~¢),

which shows the invariance of J' o under ~¢; (resp. ~¢ if )/2 =1). O

We call J' o 7 the universal quantum invariant of colored singular triangulations. The
invariance of J'omr under colored Pachner (2, 3) moves is shown by pentagon relations.
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P, P, P,
00 - o

N1

0 1 —00

Figure 26: A punctured disk (left) and its leaves-ideal triangulation (right)

7 Octahedral triangulation of tangle complements

In this section we define ideal triangulations of tangle complements, and construct
examples called the octahedral triangulations. We will show that the octahedral
triangulation associated to a tangle diagram D naturally admits a structure of a colored
ideal triangulation of type (D).

7.1 Ideal triangulations of tangle complements

Let M be a compact manifold of dimension # < 3, possibly with nonempty boundary.
Let F be an (n—1)-submanifold of dM . Let Fy, ..., F} be the connected components
of F.Let M /F denote the topological space obtained from M by collapsing each F;
into a point. An ideal triangulation of the pair (M, F) is defined to be a singular
triangulation of M // F such that each vertex of the singular triangulation is on a point
arising from F.

Let D, =[0,1]*\ (P; U---U Py) be a punctured disk, where Pj,..., P, are small
disks with the centers arranged on the line [0, 1] x { %} as in Figure 26, left. We
define the leaves-ideal triangulation [, of D, to be the ideal triangulation of the
pair (Dn, ([0, 1] x{0,1hHUaP  U---U 8Pn) as in Figure 26, right, where —oo, 400,
P1s-- -, pn denote the vertices corresponding to [0, 1]x {0}, [0, 1] x {1}, 0Py, ..., 0Py,
respectively. Here we formally define /oy as a segment having {400} as its vertices. In
particular we call /; a leaf.

Let T =Ty U---U T, be an n—component tangle. Let £ = [0,1]3 \ N(T') be the
complement of 7" in the cube, where N(T') is a tubular neighborhood of T in the
cube. Let Fp be the intersection dE N N(T'), which consists of annuli and tori. Then
an ideal triangulation of the tangle complement E of T in the cube is defined to be
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an ideal triangulation of (E, F7 U F,—oU F,—1), where F,—o = [0, 1] x[0, 1] x {0}
and F,—1 =[0, 1] x[0, 1] x {1}, such that its restriction to each boundary component
[0,1] x {0, 1} x [0, 1] is a leaves-ideal triangulation. The vertices corresponding to
F,—¢, and F,—; are denoted by —oco and +o0, respectively.

7.2 Colored ideal triangulations for octahedral triangulations of tangle
complements

A tangle diagram D is called nonsplitting if

(1) the 4-regular plane graph giving the diagram D is connected, and

(2) thereis notacomponent of D such that crossings along the path of the component
are only overpassing or only underpassing.

Let T be a tangle and D its nonsplitting diagram which has at least one crossing. We
define a cell complex O(D), which we call the octahedral triangulation associated
to D, which is an ideal triangulation of the tangle complement E. If in addition D
is a link diagram, then O(D) is nothing but the octahedral triangulation studied in eg
[10; 34] in the context of the hyperbolic geometry.

Step 1 Take a colored diagram. Recall from Section 4 the colored diagram ¢ (D)
obtained from D by duplicating and thickening the left strands following the orientation.

Step 2 (preparing and placing octahedra) Let {cy,...cx} be the set of crossings of
the diagram D. In a neighborhood of ¢(c;), there are four crossings ¢/, zé, té, tﬁ as
in Figure 27, where tf is the right crossing when we see strands oriented downwards,

and té, t;, t"; are defined one by one in a counterclockwise order. As in Figure 27,

for j = 1,2,3,4, we associate a tetrahedron A’ = nJ eJ’ J”s to each t’ Then we

glue the four tetrahedra Al Aiz’ Ai Ai together to obtaln an octahedron 0; =
1Y) el

12€53€34€4; AR —1.j° %j.j+1
respectively, where the index j should be con51dered modulo 4 We place o; between

n'e s' so that n; , and s are going to n' e' and s*,
the two original strands of ¢; so that n’ and s’ are placed on the overstrand and the

understrand, respectively.
Step 3 (gluing octahedra) We glue the octahedra o1, ..., 0 as follows.

For each pos1t1ve (resp. negative) crossing c¢;, we pull the vertices e23 and e’ 41 (resp.
612 and e3 4) upwards put them on 400, and glue the two edges nt ez3 and n'—ey
(resp. n* e1 , and n'—es4). Similarly, pull the vertices el , and e3 4 (resp 623 and e41)
downwards, put them on —oo, and glue the two edges s’ 612 and s'—e34 (resp. s —e2 3
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Figure 27: Octahedral triangulation around a crossing

and s‘—e4;); see Figure 28. Note that the boundary of the octahedron o; consists of
four leaves corresponding to the four edges of ¢;; see Figure 29. We glue the octahedra
01, ...,0 along the pairs of leaves which are adjacent on D so that oo are attached
compatibly. We call the result the octahedral triangulation of the complement of T'
associated to a diagram D, and denote it by O(D).

It is not difficult to check that O(D) is an ideal triangulation of the complement of 7.

Moreover, we have the following.

Proposition 7.1 The octahedral triangulation O(D) associated to a tangle diagram D
admits a colored ideal triangulation of type (D).

Figure 28: How to glue the edges in an octahedron
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+00 +00
AN /
—00 —00
—l—oo@ \®+oo
—00 —00

Figure 29: Leaves corresponding to the four edges of a crossing

Proof Recall that in Step 2 of the definition of O(D), we associate an octahedron o0; to
each crossing ¢;, where the octahedron is obtained from four tetrahedra as in Figure 27.
Actually we can obtain o; also as the colored cell complex C(¢(c;)) as depicted in
Figure 30. In Step 3, we glued the octahedra and triangles as in Figure 31, which
follows the gluing rule of the colored tetrahedra and triangles defined in Section 6.2.
As the result we have C(¢(D)), and finally we identify the edges of each octahedron
as in Figure 28, which gives O(D), a colored ideal triangulation of type {(D). This
completes the proof. a

Remark 7.2 A tangle complement could admit more than one colored ideal triangula-
tions up to the equivalence relation ~¢, and the universal quantum invariant J’ could
give different values on them. We expect that the universal quantum invariant is an

i
)

o ¥
ci A

i i
€34 eh

Figure 30: The colored ideal triangulation and the octahedron at a crossing
of a tangle
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Sakie Suzuki
B
- |
L...|....I...k
W
W i

Figure 31: How we glued the octahedra in the octahedral triangulations,
where the black dots are attached to +oo and the white dots are attached
to —oo

invariant of pairs of 3—manifolds and some geometrical inputs obtained from the color,

which we will study in future work.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

S Baaj, G Skandalis, Unitaires multiplicatifs et dualité pour les produits croisés de
C*—algébres, Ann. Sci. Ecole Norm. Sup. 26 (1993) 425-488 MR

S Baseilhac, R Benedetti, Quantum hyperbolic invariants of 3—manifolds with
PSL(2, C)—characters, Topology 43 (2004) 1373-1423 MR

S Baseilhac, R Benedetti, Classical and quantum dilogarithmic invariants of flat
PSL(2, C)—bundles over 3—manifolds, Geom. Topol. 9 (2005) 493-569 MR

S Baseilhac, R Benedetti, Quantum hyperbolic geometry, Algebr. Geom. Topol. 7
(2007) 845-917 MR

S Baseilhac, R Benedetti, The Kashaev and quantum hyperbolic link invariants,
J. Gokova Geom. Topol. 5 (2011) 31-85 MR

S Baseilhac, R Benedetti, Analytic families of quantum hyperbolic invariants, Algebr.
Geom. Topol. 15 (2015) 1983-2063 MR

S Baseilhac, R Benedetti, Non ambiguous structures on 3—manifolds and quantum
symmetry defects, Quantum Topol. 8 (2017) 749-846 MR

R Benedetti, C Petronio, Branched standard spines of 3—manifolds, Lecture Notes in
Math. 1653, Springer (1997) MR

Algebraic & Geometric Topology, Volume 18 (2018)


http://dx.doi.org/10.24033/asens.1677
http://dx.doi.org/10.24033/asens.1677
http://msp.org/idx/mr/1235438
http://dx.doi.org/10.1016/j.top.2004.02.001
http://dx.doi.org/10.1016/j.top.2004.02.001
http://msp.org/idx/mr/2081430
http://dx.doi.org/10.2140/gt.2005.9.493
http://dx.doi.org/10.2140/gt.2005.9.493
http://msp.org/idx/mr/2140989
http://dx.doi.org/10.2140/agt.2007.7.845
http://msp.org/idx/mr/2336244
http://gokovagt.org/journal/2011/basebene.html
http://msp.org/idx/mr/2872550
http://dx.doi.org/10.2140/agt.2015.15.1983
http://msp.org/idx/mr/3402335
http://dx.doi.org/10.4171/QT/101
http://dx.doi.org/10.4171/QT/101
http://msp.org/idx/mr/3737277
http://dx.doi.org/10.1007/BFb0093620
http://msp.org/idx/mr/1470454

The universal quantum invariant and colored ideal triangulations 3401

(9]

(10]

(11]

(12]

(13]

(14]

[15]

[16]

(17]

(18]

[19]

(20]

(21]

(22]

(23]

[24]

[25]

R Benedetti, C Petronio, Spin structures on 3—manifolds via arbitrary triangulations,
Algebr. Geom. Topol. 14 (2014) 1005-1054 MR

J Cho, H Kim, S Kim, Optimistic limits of Kashaev invariants and complex volumes
of hyperbolic links, J. Knot Theory Ramifications 23 (2014) art. id. 1450049 MR

V G Drinfel’d, Quantum groups, from “Proceedings of the International Congress of
Mathematicians, I’ (A M Gleason, editor), Amer. Math. Soc., Providence, RI (1987)
798-820 MR

L D Faddeev, RM Kashaev, Quantum dilogarithm, Modern Phys. Lett. A 9 (1994)
427-434 MR

K Hikami, R Inoue, Braiding operator via quantum cluster algebra, J. Phys. A 47
(2014) art. id. 474006 MR

K Hikami, R Inoue, Braids, complex volume and cluster algebras, Algebr. Geom.
Topol. 15 (2015) 2175-2194 MR

M Kapranov, Heisenberg doubles and derived categories, J. Algebra 202 (1998)
712-744 MR

R M Kashaev, Quantum dilogarithm as a 6 j—symbol, Modern Phys. Lett. A 9 (1994)
3757-3768 MR

RM Kashaev, A link invariant from quantum dilogarithm, Modern Phys. Lett. A 10
(1995) 1409-1418 MR

RM Kashaev, The Heisenberg double and the pentagon relation, Algebra i Analiz 8
(1996) 63—-74 MR In Russian; translated in St. Petersburg Math. J. 8 (1997) 585-592

RM Kashaev, The hyperbolic volume of knots from the quantum dilogarithm, Lett.
Math. Phys. 39 (1997) 269-275 MR

C Kassel, Quantum groups, Graduate Texts in Math. 155, Springer (1995) MR

R J Lawrence, A universal link invariant using quantum groups, from “Differential
geometric methods in theoretical physics” (AT Solomon, editor), World Scientific,
Teaneck, NJ (1989) 55-63 MR

R J Lawrence, A universal link invariant, from “The interface of mathematics and
particle physics” (D G Quillen, GB Segal, S T Tsou, editors), Inst. Math. Appl. Conf.
Ser. New Ser. 24, Oxford Univ. Press (1990) 151-156 MR

J-H Lu, On the Drinfel’d double and the Heisenberg double of a Hopf algebra, Duke
Math. J. 74 (1994) 763-776 MR

S Majid, Quantum double for quasi-Hopf algebras, Lett. Math. Phys. 45 (1998) 1-9
MR

S Majid, Double-bosonization of braided groups and the construction of U, (g), Math.
Proc. Cambridge Philos. Soc. 125 (1999) 151-192 MR

Algebraic & Geometric Topology, Volume 18 (2018)


http://dx.doi.org/10.2140/agt.2014.14.1005
http://msp.org/idx/mr/3180826
http://dx.doi.org/10.1142/S0218216514500497
http://dx.doi.org/10.1142/S0218216514500497
http://msp.org/idx/mr/3268985
https://www.mathunion.org/fileadmin/ICM/Proceedings/ICM1986.1/ICM1986.1.ocr.pdf
http://msp.org/idx/mr/934283
http://dx.doi.org/10.1142/S0217732394000447
http://msp.org/idx/mr/1264393
http://dx.doi.org/10.1088/1751-8113/47/47/474006
http://msp.org/idx/mr/3279997
http://dx.doi.org/10.2140/agt.2015.15.2175
http://msp.org/idx/mr/3402338
http://dx.doi.org/10.1006/jabr.1997.7323
http://msp.org/idx/mr/1617651
http://dx.doi.org/10.1142/S0217732394003610
http://msp.org/idx/mr/1317945
http://dx.doi.org/10.1142/S0217732395001526
http://msp.org/idx/mr/1341338
http://mi.mathnet.ru/eng/aa/v8/i4/p63
http://msp.org/idx/mr/1418255
http://dx.doi.org/10.1023/A:1007364912784
http://msp.org/idx/mr/1434238
http://dx.doi.org/10.1007/978-1-4612-0783-2
http://msp.org/idx/mr/1321145
http://msp.org/idx/mr/1124415
http://msp.org/idx/mr/1103138
http://dx.doi.org/10.1215/S0012-7094-94-07428-0
http://msp.org/idx/mr/1277953
http://dx.doi.org/10.1023/A:1007450123281
http://msp.org/idx/mr/1631648
http://dx.doi.org/10.1017/S0305004198002576
http://msp.org/idx/mr/1645545

3402

(26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

[34]

Sakie Suzuki

H Murakami, J Murakami, The colored Jones polynomials and the simplicial volume
of a knot, Acta Math. 186 (2001) 85-104 MR

A Ocneanu, Chirality for operator algebras, from “Subfactors” (H Araki, Y Kawahi-
gashi, H Kosaki, editors), World Scientific, River Edge, NJ (1994) 39-63 MR

T Ohtsuki, Colored ribbon Hopf algebras and universal invariants of framed links,
J. Knot Theory Ramifications 2 (1993) 211-232 MR

N'Y Reshetikhin, V G Turaev, Ribbon graphs and their invariants derived from quan-
tum groups, Comm. Math. Phys. 127 (1990) 1-26 MR

M A Semenov-Tian-Shansky, Poisson Lie groups, quantum duality principle, and
the quantum double, from “Mathematical aspects of conformal and topological field
theories and quantum groups” (PJ Sally, Jr, M Flato, J Lepowsky, N Reshetikhin,
GJ Zuckerman, editors), Contemp. Math. 175, Amer. Math. Soc., Providence, RI (1994)
219-248 MR

S Suzuki, On the universal sl, invariant of boundary bottom tangles, Algebr. Geom.
Topol. 12 (2012) 997-1057 MR

V G Turaev, OY Viro, State sum invariants of 3—manifolds and quantum 6 j—symbols,
Topology 31 (1992) 865-902 MR

J Weeks, Computation of hyperbolic structures in knot theory, from “Handbook of knot
theory” (W Menasco, M Thistlethwaite, editors), Elsevier, Amsterdam (2005) 461—480
MR

Y Yokota, On the complex volume of hyperbolic knots, J. Knot Theory Ramifications
20 (2011) 955-976 MR

Department of Mathematical and Computing Science, Tokyo Institute of Technology
Tokyo, Japan

sakie@c.titech.ac.jp

Received: 24 August 2017 Revised: 17 April 2018

Geometry € Topology Publications, an imprint of mathematical sciences publishers :.msp


http://dx.doi.org/10.1007/BF02392716
http://dx.doi.org/10.1007/BF02392716
http://msp.org/idx/mr/1828373
http://msp.org/idx/mr/1317353
http://dx.doi.org/10.1142/S0218216593000131
http://msp.org/idx/mr/1227011
http://projecteuclid.org/euclid.cmp/1104180037
http://projecteuclid.org/euclid.cmp/1104180037
http://msp.org/idx/mr/1036112
http://dx.doi.org/10.1090/conm/175/01845
http://dx.doi.org/10.1090/conm/175/01845
http://msp.org/idx/mr/1302020
http://dx.doi.org/10.2140/agt.2012.12.997
http://msp.org/idx/mr/2928903
http://dx.doi.org/10.1016/0040-9383(92)90015-A
http://msp.org/idx/mr/1191386
http://dx.doi.org/10.1016/B978-044451452-3/50011-3
http://msp.org/idx/mr/2179268
http://dx.doi.org/10.1142/S021821651100908X
http://msp.org/idx/mr/2819177
mailto:sakie@c.titech.ac.jp
http://msp.org
http://msp.org

	1. Introduction
	1.1. Reconstruction and extension of the universal quantum invariant
	1.2. Universal quantum invariant as a state-sum invariant with weights in a noncommutative ring
	Organization
	Acknowledgements

	2. Universal quantum invariant
	2.1. Ribbon Hopf algebras
	2.2. Universal quantum invariant for framed tangles

	3. Drinfeld double and Heisenberg double
	3.1. Drinfeld double and Yang–Baxter equation
	3.2. Heisenberg double and pentagon relation
	3.3. Drinfeld double and Heisenberg double

	4. Reconstruction of the universal quantum invariant
	4.1. Reconstruction of the universal quantum invariant using the Heisenberg double

	5. Extension of the universal quantum invariant to an invariant for colored diagrams
	5.1. Colored diagrams and an extension of J'
	5.2. Colored moves
	5.3. Tangles and colored diagrams

	6. Three-dimensional descriptions: colored diagrams and colored singular triangulations
	6.1. Colored tetrahedra
	6.2. Colored diagrams and colored cell complexes
	6.3. Colored singular triangulations and colored ideal triangulations
	6.4. Colored moves and colored singular triangulations

	7. Octahedral triangulation of tangle complements 
	7.1. Ideal triangulations of tangle complements
	7.2. Colored ideal triangulations for octahedral triangulations of tangle complements

	References

