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Dynamic characterizations of quasi-isometry
and applications to cohomology

XIN LI

We build a bridge between geometric group theory and topological dynamical systems
by establishing a dictionary between coarse equivalence and continuous orbit equiva-
lence. As an application, we show that group homology and cohomology in a class
of coefficients, including all induced and coinduced modules, are coarse invariants.
We deduce that being of type FPn (over arbitrary rings) is a coarse invariant, and that
being a (Poincaré) duality group over a ring is a coarse invariant among all groups
which have finite cohomological dimension over that ring. Our results also imply that
every coarse self-embedding of a Poincaré duality group must be a coarse equivalence.
These results were only known under suitable finiteness assumptions, and our work
shows that they hold in full generality.
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1 Introduction

The philosophy of geometric group theory is to study groups not merely as algebraic
objects but from a geometric point of view. There are two ways of developing a
geometric perspective, by viewing groups themselves as geometric objects (for instance
with the help of their Cayley graphs, which leads to the notion of quasi-isometry) or by
studying groups by means of “nice” group actions on spaces which carry some topology
or geometry. Once a geometric point of view is taken, an immediate question is: How
much of the original algebraic structures is still visible from our new perspective? Or:
Which algebraic invariants of groups are quasi-isometry invariants?
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Our goals in this paper are twofold. First, we want to connect the two geometric
perspectives mentioned above by giving dynamic characterizations of quasi-isometry, or
more generally, coarse equivalence. It turns out that for topological dynamical systems,
the concept corresponding to coarse equivalence is given by (modified versions of)
continuous orbit equivalence, as introduced in Li [32; 31]. The latter means that we
can identify the orbit structure of our dynamical systems in a continuous way. The idea
of developing dynamic characterizations of coarse equivalence goes back to Gromov’s
notion of topological couplings and has been developed further in Sauer [49] and
Shalom [51]. Recently, independently from the author, a dynamic characterization of
bilipschitz equivalence for finitely generated groups was obtained in Medynets, Sauer
and Thom [36], which is a special case of our result.

Secondly, we want to study the behaviour of algebraic invariants of groups under coarse
equivalence. More precisely, inspired by a refined, more concrete version of our dynamic
characterizations, we produce many new coarse invariants of (co)homological nature.
Although the proofs of the latter results — which we present here in their final form —
do not rely on the first part of this paper, our dynamic characterizations played a crucial
role since they provided the geometric intuition behind our arguments. We generalize
the result in Gersten [21] that among groups G satisfying the finiteness condition Fn (ie
there exist models for Eilenberg–Mac Lane spaces with finite n–skeleton), the cohomol-
ogy groups Hn.G;RG/ are coarse invariants for all commutative rings R with unit. We
show that for a class of coefficients (called res–invariant modules), including all induced
and coinduced modules, group homology and cohomology are coarse invariants. In
particular, H�.G;RG/ is always a coarse invariant. This answers a question in Mosher,
Sageev and Whyte [41] (see [41, Questions after Theorem 2.7]). Our results imply that
being of type FPn over R (ie the trivial RG–module R admits a projective resolution
which is finitely generated up to level n) is a coarse invariant. This is a partial general-
ization of Shalom [51, Theorem 1.7]. A different approach is mentioned in Drut,u and
Kapovich [17, Theorem 9.61], and the case RDZ has been treated in Alonso [2]. As a
consequence, we obtain that for an arbitrary commutative ring R with unit, the property
of being a duality or Poincaré duality group over R is a coarse invariant among all groups
which have finite cohomological dimension over R . A group G is called a duality group
over R if there is a right RG–module C and an integer n�0 with natural isomorphisms
Hk.G;A/ Š Hn�k.G; C ˝R A/ for all k 2 Z and all RG–modules A (see Bieri
[5, Section 9.2; 4] and Brown [10, Chapter VIII, Section 10]). G is called a Poincaré
duality group over R if C ŠR as R–modules. C is called the dualizing module; note
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that we must have C ŠHn.G;RG/ as right RG–modules. Our result generalizes [21,
Corollary 3], as we do not need the finiteness condition F1 (ie Fn for all n) and can
work over arbitrary rings. Examples of groups which are not duality groups over Z but
over some other ring can be found in Davis [14], and examples of (Poincaré) duality
groups which are not of type F1 appear in [14] and Leary [29]. We should also point
out that a notion of coarse Poincaré duality group has been introduced in Mosher, Sageev
and Whyte [40; 41], based on Kapovich and Kleiner [27]. However, these groups have
to be finitely presented, while our results apply to arbitrary (Poincaré) duality groups
(see [14; 29] for examples of Poincaré duality groups which are not finitely presented).
Moreover, combined with Sauer’s result [49, Theorem 1.2(ii)], we obtain that among
amenable groups, being a (Poincaré) duality group over a divisible ring is a coarse
invariant. This generalizes [49, Theorem 3.3.2]. We also prove a rigidity result for
coarse embeddings into Poincaré duality groups. If a group G with hdRG < 1

coarsely embeds into a Poincaré duality group H via a coarse embedding which is
not a coarse equivalence, then hdRG < cdRH. In particular, coarse self-embeddings
of Poincaré duality groups over an arbitrary ring must be coarse equivalences. Such
a coarse co-Hopfian property has been studied in Kapovich and Lukyanenko [26] and
Merenkov [37], but it has not been established for general Poincaré duality groups.

Let us now formulate and explain our main results in more detail. At the same time,
we fix some notation. Throughout this paper, all our groups are countable and discrete.
First, we recall the notion of coarse maps (see Roe [48, Definition 2.21]). Note that
coarse embeddings in our sense are called uniform embeddings in [49; 51].

Definition 1.1 A map 'W G!H between two groups G and H is called a coarse
map if '�1.fyg/ is finite for all y 2H, and for every S �G�G with fst�1 W .s; t/2Sg
finite, f'.s/'.t/�1 W .s; t/ 2 Sg is finite.

Further, 'W G ! H is called a coarse embedding if for every subset S � G � G,
fst�1 W .s; t/ 2 Sg is finite if and only if f'.s/'.t/�1 W .s; t/ 2 Sg is finite.

Two maps '; �W G!H are called close if f'.x/�.x/�1 W x 2Gg is finite. We write
' � � in that case.

A coarse map 'W G!H is called a coarse equivalence if it is coarsely invertible, ie
there is a coarse map  W H !G such that  ı' � idG and ' ı � idH .

We say that two groups G and H are coarsely equivalent if there is a coarse equivalence
G!H.
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Clearly, coarse embeddings are coarse maps. Examples of coarse embeddings are
subgroup embeddings and quasi-isometric embeddings. For finitely generated groups,
coarse equivalences coincide with quasi-isometries (see [51]). Unlike in [51; 49], in
our definition, we use st�1 and not s�1t (see Remark 2.1).

Let us explain our dynamic characterizations of coarse embeddings and equivalences.
Let GÕX and H Õ Y be topological dynamical systems, where the groups act by
homeomorphisms on locally compact Hausdorff spaces. A continuous orbit couple is
a pair of continuous maps pW X ! Y and qW Y ! X, which both preserve orbits in
a continuous way, such that p and q are inverses up to orbits (ie q.p.x// lies in the
same G–orbit of x and similarly for p ıq ). “Preserving orbits in a continuous way” is
made precise by continuous maps aW G�X!H such that p.g:x/D a.g; x/:p.x/ for
all g 2G and x 2X. If p and q are actual inverses (ie q ıpD idX and p ıq D idY ),
then our dynamical systems are called continuously orbit-equivalent.

Our first main result establishes the following dictionary: The existence of a coarse
embedding G ! H corresponds to the existence of a continuous orbit couple for
topologically free systems GÕX and H Õ Y , where X is compact. The existence
of a coarse equivalence G ! H corresponds to the existence of a continuous orbit
couple for topologically free systems GÕX and H Õ Y , where both X and Y are
compact, and we can find a bijective coarse equivalence G!H if and only if we can
find a continuous orbit equivalence for GÕX and H Õ Y . We refer to Theorem 2.17
for precise statements.

It turns out that for compact X, the existence of a continuous orbit couple for GÕX

and H Õ Y is equivalent to saying that GÕX and H Õ Y are Kakutani-equivalent,
ie there are clopen subspaces A�X and B � Y which are G– and H–full such that
the partial actions GÕ A and H Õ B are continuously orbit-equivalent (in the sense
of [31]). This implies that the transformation groupoids of GÕX and H Õ Y are
Morita equivalent. Building on this observation, we give conceptual explanations for
the results in [51; 49] on coarse invariance of (co)homological dimension and Shalom’s
property HFD .

The dynamic characterizations we described so far are abstract as the dynamical systems
are not specified. It is striking that even such abstract characterizations suffice to derive
the results in [51; 49]. However, to show coarse invariance of group (co)homology in
particular coefficients, we need more concrete versions of our dynamic characterizations.
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Inspired by Špakula and Willett [54], we first observe that in place of abstract dynamical
systems, we may always take the canonical action G Õ ˇG of groups G on their
Stone–Čech compactifications ˇG. The appearance of G Õ ˇG is not surprising
because of its universal property. But, now, our crucial observation is that we can
go even further and consider the actions GÕ G of groups acting on themselves by
left multiplication. By doing so, it seems that we are losing all the information as
any two actions G Õ G and H Õ H are continuously orbit-equivalent as long as
G and H have the same cardinality. The problem is that the spaces on which our
groups act are no longer compact. However, we can replace compactness by asking for
finiteness conditions on the maps a , which — as in the definition of continuous orbit
couples — make precise that orbits are preserved in a continuous way: We require that
for every g 2G, the map a.g; � / should have finite image. It is this finiteness condition
which singles out “controlled” orbit equivalences which behave well in (co)homology.
The point is that every coarse equivalence G!H gives rise to a “controlled” orbit
equivalence between G Õ G and H ÕH. This change of perspective, putting the
emphasis on this finiteness condition, turns out to be crucial.

These ideas lead to the following results: Let R be a commutative ring with unit and W
an R–module. The set C.G;W / of functions G!W carries a natural RG–module
structure. An RG–submodule L�C.G;W / is called res–invariant if for every f 2L
and A�G, the restriction of f to A (viewed as a function on G by extending it by 0)
still lies in L. Examples include C.G;W /, the submodule Cf .G;W / of f 2C.G;W /
taking only finitely many values; RG˝RW ; and, for W DRDR or C ,

c0.G;W /D
˚
f W G!W W lim

x!1
jf .x/jD 0

	
;

`p.G;W /D
n
f W G!W W

P
x2G

jf .x/jp <1
o

.0<p�1/;

H s;p.G;W /Dff W G!W Wf � .1C `/s 2 `p.G;W /g .s 2R[f1g; 1�p <1/;

where G is finitely generated, ` is the word length on G and H1;p.G;W / DT
s2RH

s;p.G;W /. We show that a coarse equivalence 'W G!H induces a one-to-
one correspondence L 7!'�L between res–invariant submodules of C.G;W / and res–
invariant submodules of C.H;W /, together with isomorphisms H�.'/W H�.G;L/Š
H�.H; '�L/ for all L. Similarly, ' induces a one-to-one correspondence between
res–invariant submodules of C.H;W / and res–invariant submodules of C.G;W /,
say M 7! '�M, together with isomorphisms H�.'/W H�.H;M/ŠH�.G; '�M/ for
all M. In particular, we obtain:
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Corollary 4.41 Among all countable discrete groups G, the following (co)homology
groups are coarse invariants:

H�.G; C.G;W //; H�.G; Cf .G;W //; H�.G; Cf .G;W //; H�.G;RG˝RW /

for every commutative ring R with unit and every R–module W ;

H�.G; c0.G;R//; H�.G; c0.G;R//; H�.G; c0.G;R//; H�.G; c0.G;R//I

H�.G; `
p.G;R//; H�.G; `p.G;R//; H�.G; `

p.G;R//; H�.G; `p.G;R//

for all 0 < p �1; and, for finitely generated groups G,

H�.G;H
s;p.G;R//; H�.G;H s;p.G;R//;

H�.G;H
s;p.G;R//; H�.G;H s;p.G;R//

for all s 2R[f1g and 1� p �1, where RDR or C .

Some of these (co)homology groups can be identified with existing (co)homology
theories (for classes of groups where the latter are defined): H�.G;RG/ is coarse
cohomology [48, Section 5.1], H�.G; Cf .G;Z// and H�.G; `1.G;R// coincide with
uniformly finite homology (see Blank and Diana [6], Block and Weinberger [7] and
Brodzki, Niblo and Wright [9]), and for `p coefficients, we obtain Lp–cohomology
(see Elek [18], Gersten [21] and Pansu [43]). Actually, we show that every coarse map
'W G ! H induces a map H�.'/W H�.G;L/ ! H�.H; '�L/ such that H�.'/ D
H�.�/ if ' � � and H�. ı '/ D H�. / ıH�.'/. It is then evident that coarse
equivalences induce isomorphisms as they are precisely those coarse maps which
are invertible modulo �. A similar remark applies to cohomology. Thus, not only
these (co)homology groups, but, by functoriality, the actions of the groups of coarse
equivalences (modulo �) on these (co)homology groups are coarse invariants as well.
We obtain analogous results for coarse embeddings in the setting of topological res–
invariant modules and reduced (co)homology.

The aforementioned results on coarse invariance of type FPn and being a (Poincaré) du-
ality group are immediate consequences, as is our rigidity result for coarse embeddings
into Poincaré duality groups. We also deduce that vanishing of `2–Betti numbers is a
coarse invariant, as observed in Mimura, Ozawa, Sako and Suzuki [38], Oguni [42]
and Pansu [43], and generalized by Sauer and Schrödl [50] to all unimodular locally
compact second countable groups.

As far as our methods are concerned, we use groupoid techniques as in [51; 49; 42],
but instead of working with abstract dynamical systems, we base our work on concrete
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dynamic characterizations of coarse equivalence. The difference between our work
and [21] is that we do not work with descriptions of group (co)homology in terms of
Eilenberg–Mac Lane spaces, as these descriptions require finiteness conditions (like Fn
or F1 ) on our groups and have to be modified whenever we change coefficients. Instead,
since coarse embeddings automatically lead to “controlled” orbit equivalences satisfying
the finiteness condition mentioned above, we can work directly with complexes coming
from bar resolutions.

Acknowledgements I thank Andreas Thom for informing me about [36], Roman
Sauer for explaining certain parts of his work [49] to me, and for informing me
about [50; 38], and Sauer and Clara Löh for very helpful comments.

This research was supported by EPSRC grant EP/M009718/1.

2 Dynamical characterizations of quasi-isometry

2.1 Preliminaries

The central notions of coarse maps, embeddings and equivalences have been introduced
in Section 1. We remark that it is easy to see that a coarse embedding 'W G!H is
coarsely invertible if and only if H can be covered by finitely many translates of '.G/,
ie there is a finite set F �H such that H D

S
h2F h'.G/.

Remark 2.1 Unlike in [51], our definition of coarse maps is right-invariant, not left-
invariant (ie we use st�1 instead of s�1t ). For finitely generated groups, this amounts
to considering right-invariant word lengths and word metrics. We do so because in the
following, we will consider left actions of groups, in particular the action of a group by
left multiplication on itself. Of course, this is merely a matter of convention.

The following concept, due to Gromov, builds a bridge between geometric group theory
and topological dynamical systems.

Definition 2.2 For two groups G and H, a .G;H/ topological coupling consists of
a locally compact space � with commuting free and proper left G– and right H–
actions which admit clopen H– and G–fundamental domains X and Y . Our .G;H/
topological coupling is called G–cocompact if Y is compact, H–cocompact if X is
compact, and cocompact if it is both G– and H–cocompact. It is called topologically
free (or free) if the combined action G �H Õ� is topologically free (or free).
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All our spaces are Hausdorff. Also, being only concerned with the topological setting,
we simply write “coupling” (without the prefix “topological”). To keep track of all the
relevant data, we often write GÕ Y�X ÔH.

The following result goes back to ideas of Gromov and is proven in [51; 49].

Theorem 2.3 Let G and H be countable discrete groups.

(i) There exists a coarse embedding G ! H if and only if there exists a H–
cocompact .G;H/ coupling.

(ii) There exists a coarse equivalence G!H if and only if there exists a cocompact
.G;H/ coupling.

(iii) There is a bijective coarse equivalence G!H if and only if there is a cocompact
.G;H/ coupling GÕ Y�X ÔH with X D Y .

Proof For (i), see [49, Theorem 2.2 (i)() (ii)]. For (ii), see [49, Theorem 2.2
(iii)() (iv)]. For (iii), see [51, Remark after Theorem 2.1.2].

Remark 2.4 The proofs in [49; 51] show that the underlying space � of the .G;H/
couplings can be chosen to be second countable and totally disconnected in the above
statements.

Let us now isolate an idea from [36] which will be useful later on.

Lemma 2.5 If there exists a .G;H/ coupling G Õ � Ô H, then there exists a
topologically free .G;H/ coupling GÕ�0ÔH. If GÕ�ÔH is G–cocompact,
H–cocompact or cocompact, G Õ �0 ÔH may be chosen with the same property.
If � is second countable and totally disconnected, we may choose �0 with the same
property.

Proof The idea of the proof appears in the proof of [36, Theorem 3.2]. Let G�HÕZ
be a free action on the Cantor space Z . It is easy to see that �0D��Z with diagonal
G– and H–actions is a .G;H/ coupling which is topologically free (even free). As Z
is compact and totally disconnected, our additional claims follow.

2.2 Topological couplings and continuous orbit couples

We explain the connection between topological couplings and continuous orbit couples.
First of all, a topological dynamical system GÕX consists of a group G acting on a
locally compact space X via homeomorphisms. We write g:x for the action.
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Definition 2.6 Let GÕX and H Õ Y be topological dynamical systems.

A continuous map pW X!Y is called a continuous orbit map if there exists a continuous
map aW G �X !H such that p.g:x/D a.g; x/:p.x/ for all g 2G and x 2X.

A continuous orbit couple for G Õ X and H Õ Y consists of continuous orbit
maps pW X! Y and qW Y !X such that there exist continuous maps gW X!G and
hW Y !H such that q.p.x//Dg.x/:x and p.q.y//Dh.y/:y for all x 2X and y 2Y .

Definition 2.7 A .G;H/ continuous orbit couple consists of topological dynamical
systems GÕX and H Õ Y and a continuous orbit couple for GÕX and H Õ Y . If
GÕX and H Õ Y are topologically free, then the .G;H/ continuous orbit couple is
called topologically free. We call X the G–space and Y the H–space of our .G;H/
continuous orbit couple.

Remark 2.8 In this language, a continuous orbit equivalence for GÕX and H Õ Y

in the sense of [32] is the same as a continuous orbit couple for GÕX and H Õ Y

with g � e and h� e , ie p D q�1 .

Definition 2.9 A .G;H/ continuous orbit equivalence consists of topological dynam-
ical systems GÕX and H Õ Y and a continuous orbit equivalence for GÕX and
H Õ Y .

Theorem 2.10 Let G and H be groups. There is a one-to-one correspondence
between isomorphism classes of topologically free .G;H/ couplings and isomorphism
classes of topologically free .G;H/ continuous orbit couples, with the following
additional properties:

(i) A .G;H/ coupling GÕ Y�X ÔH corresponds to a .G;H/ continuous orbit
couple with G–space homeomorphic to X and H–space homeomorphic to Y .

(ii) A .G;H/ coupling G Õ Y�X Ô H with X D Y corresponds to a .G;H/
continuous orbit equivalence.

Here, the notions of isomorphisms are the obvious ones: Topological couplings GÕ

Y 1
�1X1

Ô H and G Õ Y 2
�2X2

Ô H are isomorphic if there exists a G�H–
equivariant homeomorphism �1Š�2 sending X1 to X2 and Y 1 to Y 2 . Continuous
orbit couples .pi ; qi / for GÕ Xi and H Õ Yi for i D 1; 2 are isomorphic if there
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exist G– and H–equivariant homeomorphisms X1 ŠX2 and Y1 Š Y2 such that we
obtain commutative diagrams

X1

Š

��

p1 // Y1

Š

��

X2
p2 // Y2

Y1

Š

��

q1 // X1

Š

��

Y2
q2 // X2

For the proof of Theorem 2.10, we now present explicit constructions of continuous
orbit couples out of topological couplings and vice versa. The constructions are really
the topological analogues of those in [19, Section 3] (see also [51; 49]). In the following,
we write gx (for g 2G and x 2�) and xh (for x 2� and h 2H ) for the left G–
and right H–actions in topological couplings, and g:x and h:y for the actions GÕX

and H Õ Y from continuous orbit couples.

2.2.1 From topological couplings to continuous orbit couples Let GÕY�XÔH
be a .G;H/ coupling. Set X WDX and Y WD Y . Define a map pW X! Y by requiring
Gx \ Y D fp.x/g for all x 2 X. The intersection Gx \ Y , taken in �, consists of
exactly one point because Y is a G–fundamental domain. By construction, there is a
map 
 W X !G such that p.x/D 
.x/x . For g 2G, 
 takes the constant value g on
X \g�1Y . As X \g�1Y is clopen, because X and Y are, 
 is continuous. Also p
is continuous as it is so on X \g�1Y for all g 2G.

We now define a G–action, denoted by G �X ! X, .g; x/ 7! g:x , as follows: For
every g2G and x2X, there exists a unique ˛.g; x/2H such that gx2X˛.g; x/. For
fixed g 2G and h 2H, we have ˛.g; x/D h for all x 2X \g�1Xh. As X \g�1Xh
is clopen because X is, ˛W G �X !H is continuous. Set g:x WD gx˛.g; x/�1 . It is
easy to check that ˛ satisfies the cocycle identity ˛.g1g2; x/D ˛.g1; g2:x/˛.g2; x/.
Using this, it is easy to see that G �X !X, .g; x/ 7! g:x , defines a (left) G–action
on X by homeomorphisms.

Similarly, we define a continuous map qW Y ! X by requiring X \ yH D fq.y/g
for all y 2 Y , and let �W Y ! H be the continuous map satisfying q.y/ D y�.y/.
To define an H–action on Y , let ˇ.y; h/ 2 G be such that yh 2 ˇ.y; h/Y . Again,
ˇW Y �H !G is continuous. Set h:y WD ˇ.y; h�1/�1yh�1 . It is easy to check that
ˇ satisfies ˇ.y; h1h2/D ˇ.y; h1/ˇ.h�11 :xh2/. Using this, it is again easy to see that
H �Y ! Y , .h; y/ 7! h:y , defines an H–action on Y by homeomorphisms.
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Let us check that .p; q/ is a .G;H/ continuous orbit couple. We need to identify
Ggx˛.g; x/�1\Y in order to determine p.g:x/D p.gx˛.g; x/�1/. We have

Ggx˛.g; x/�1 3 ˇ.
.x/x; ˛.g; x/�1/�1
.x/x˛.g; x/�1 2 Y;

so

p.g:x/Dˇ.
.x/x; ˛.g; x/�1/�1
.x/x˛.g; x/�1D˛.g; x/:.
.x/x/D˛.g; x/:p.x/:

Similarly, in order to identify q.h:y/D q.ˇ.y; h�1/�1yh�1/, we need to determine
X \ˇ.y; h�1/�1yh�1H. As

X 3 ˇ.y; h�1/�1y�.y/˛.ˇ.y; h�1/�1; y�.y//�1 2 ˇ.y; h�1/�1yh�1H;

we deduce

q.y:h/D ˇ.y; h�1/�1y�.y/˛.ˇ.y; h�1/�1; y�.y//�1 D ˇ.y; h�1/�1:.y�.y//

D ˇ.y; h�1/�1:q.y/:

Finally, qp.x/D q.
.x/x/D 
.x/x˛.
.x/; x/�1D 
.x/:x and pq.y/Dp.y�.y//D
ˇ.y; �.y//�1y�.y/D �.y/�1:y . All in all, we see that p and q give rise to a contin-
uous orbit couple for GÕX and H Õ Y , with g.x/D 
.x/ and h.y/D �.y/�1 .

Note that our coupling does not need to be topologically free for this construction.
However, it is clear that G Õ � Ô H is topologically free (ie G � H Õ � is
topologically free) if and only if GÕX and H Õ Y are topologically free.

Remark 2.11 Our notation differs slightly from that in [51; 49]. Our ˛.g; x/ is
˛.g�1; x/�1 in [51, Section 2.2, Equation (3)] and [49, Section 2.2, Equation (2.2)].
This is closely related to Remark 2.1.

Remark 2.12 The dynamical system GÕX we constructed above can be canonically
identified with G Õ �=H. Similarly, our system H Õ Y can be identified with
Gn�ÔH in a canonical way.

2.2.2 From continuous orbit couples to topological couplings Let G Õ X and
H Õ Y be topologically free systems on locally compact spaces X and Y . Assume
that we are given a continuous orbit couple for GÕX and H Õ Y , and let p , q , a ,
g and h be as in Definition 2.6, and let bW H � Y ! G be a continuous map with
q.h:y/D b.h; y/:q.y/ for all h 2H and y 2 Y . Define commuting left G– and right
H–actions on X �H by g.x; h/D .g:x; a.g; x/h/, .x; h/h0D .x; hh0/. Furthermore,
define commuting left G– and right H–actions on G �Y by g0.g; y/D .g0g; y/ and
.g; y/hD .gb.h�1; y/�1; h�1:y/.
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A straightforward computation, using the cocycle identities [32, Lemma 2.8] for a
and b , shows that ‚W X�H!G�Y , .x; h/ 7!

�
g.x/�1b.h�1; p.x//�1; h�1:p.x/

�
,

is a G– and H–equivariant homeomorphism with inverse ‚�1W G � Y ! X �H,
.g; y/ 7!

�
g:q.y/; a.g; q.y//h.y/

�
. Thus, the G�H–space �DX�H, together with

X D X � feg and Y D ‚�1.feg � Y /, yields the desired topologically free .G;H/
coupling GÕ Y�X ÔH.

Note that topological freeness of G Õ X and H Õ Y ensures that a and b satisfy
the cocycle identities (as in [32, Lemma 2.8]), which are needed in the preceding
computations.

2.2.3 One-to-one correspondence

Proof of Theorem 2.10 It is straightforward to check that the constructions described
in Sections 2.2.1 and 2.2.2 are inverse to each other up to isomorphism. If we start with
a topologically free .G;H/ coupling GÕ Y�X ÔH, construct a continuous orbit
couple and then again a .G;H/ coupling, we end up with a .G;H/ coupling of the
form GÕ zY z� zXÔH, where z�DX�H ŠG�Y , zX DX�feg and zY Šfeg�Y . It is
then obvious that z�DX �H !�, .x; h/ 7! xh, is an isomorphism of the couplings
G Õ zY

z� zX Ô H and G Õ Y�X Ô H. Conversely, if we start with a continuous
orbit couple for topologically free systems GÕX and H Õ Y , construct a .G;H/
coupling and then again a .G;H/ continuous orbit couple, we end up with a continuous
orbit couple for G Õ zX and H Õ zY , where zX D X � feg and zY Š feg � Y . The
canonical isomorphisms X ŠX �feg and Y Š feg�Y yield an isomorphism between
the original .G;H/ continuous orbit couple and the one we obtained at the end.

Additional property (i) is clear from our constructions. For (ii), take X D Y in the
construction of Section 2.2.2. Then it is clear that our maps p and q become the
identity map on X D Y , and that 
 becomes the constant function with value e 2G
and � the constant function with value e 2H. Hence it is obvious that our construction
yields a .G;H/ continuous orbit equivalence (see also Remark 2.8).

Remark 2.13 The maps p and q constructed in Section 2.2.1 are open. Thus the
maps p and q appearing in a continuous orbit couple (Definition 2.6) are automatically
open. This is also easy to see directly from the definition.

2.3 Continuous orbit couples and Kakutani equivalence

Definition 2.14 (compare also [35, Definition 4.1]) Topological dynamical systems
GÕX and H Õ Y are Kakutani-equivalent if there exist clopen subsets A�X and
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B � Y such that G:AD X, H:B D Y and .X ÌG/jAŠ .Y ÌH/jB as topological
groupoids. Here .X ÌG/jAD s�1.A/\ r�1.A/ and .Y ÌH/jB D s�1.B/\ r�1.B/.

Remark 2.15 .X ÌG/jA is (isomorphic to) the transformation groupoid attached to
the partial action G Õ A which is obtained by restricting G Õ X to A. Similarly,
.Y ÌH/jB is (isomorphic to) the transformation groupoid attached to the partial
action H Õ B which is obtained by restricting H Õ Y to B . In view of this, two
topologically free systems GÕX and H Õ Y are Kakutani-equivalent if and only
if there exist clopen subsets A�X and B � Y with G:ADX, H:B D Y such that
the partial actions GÕ A and H Õ B are continuously orbit-equivalent in the sense
of [31]. This follows from [31, Theorem 2.7].

The reader may find more about partial actions in [31, Section 2].

Theorem 2.16 Let GÕX and H Õ Y be topologically free systems. There exists
a continuous orbit couple for G Õ X and H Õ Y with p.X/ closed if and only if
GÕX and H Õ Y are Kakutani-equivalent.

Here pW X ! Y is as in Definition 2.6. The assumption that p.X/ is closed always
holds if X is compact. This will be the case of interest later on.

Proof By Remark 2.15, we have to show that there exists a continuous orbit couple
for GÕX and H Õ Y if and only if there exist clopen subspaces A�X and B � Y
with X D G:A and Y DH:B such that the partial actions GÕ A and H Õ B are
continuously orbit-equivalent.

For “D)”, suppose we are given a continuous orbit couple for GÕX and H Õ Y ,
and let p , q , a , b , g and h be as in Definition 2.6 and Section 2.2.2. For g 2G, let
Ug D fx 2X W g.x/D gg. Then Ug is clopen, and X D

F
g2G Ug . For every g 2G,

the image Vg WD p.Ug/ is clopen, and pW Ug ! Vg is a homeomorphism, whose
inverse is given by Vg ! Ug , y 7! g�1:q.y/. Set B WD p.X/. By assumption, B is
closed, hence clopen. We have B D

S
g2G Vg . As G is countable, this is a countable

union. Hence, by inductively choosing compact open subspaces Bg of Vg , we can
arrange that B is the disjoint union B D

F
g2G Bg . Let Ag WD Ug \p�1.Bg/ and

A WD
F
g2G Ag . As every Ag is clopen, AD

F
g2G Ag is clopen in X D

F
g2G Ug .

Set ' WD pjA D
F
g2G pjAg

. By construction, ' is a homeomorphism with inverse
'�1 D

F
g2G.pjAg

/�1 D
F
g2G.g

�1:q/jBg
.
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We have '.g:x/ D p.g:x/ D a.g; x/:p.x/ for all x 2 A and g 2 G with g:x 2 A.
Moreover, take y 2Bg1

and h 2H with h:y 2Bg2
. Then '�1.h:y/D g�12 :q.h:y/D

g�12 b.h; y/:q.y/ D g�12 b.h; y/g1:'
�1.y/. Define a map b0 by setting b0.h; y/ D

g�12 b.h; y/g1 if y 2Bg1
\h�1:Bg2

. Then b0 is continuous, and we have '�1.h:y/D
b0.h; y/:'�1.y/ for all y 2 B and h 2H with h:y 2 B . This shows that ' gives rise
to a continuous orbit equivalence for GÕ A and H Õ B . To see that G:ADX, take
for x0 2X an x 2 A such that p.x/D p.x0/. Then g.x/:x D q.p.x//D q.p.x0//D
g.x0/:x0, and therefore x0 2 G:x . To see H:B D Y , take y 2 Y arbitrary. Then
p.q.y//D h.y/:y shows that y D h.y/�1:p.q.y// 2H:B . This shows “D)”.

For “ D)”, suppose that G Õ X and H Õ Y are Kakutani-equivalent, ie there are
clopen subsets A�X and B �Y with X DG:A and Y DH:B and the partial actions
GÕA and HÕB are continuously orbit-equivalent via a homeomorphism 'W AŠB .
By definition of continuous orbit equivalence (see [31]), there exist continuous maps a0

and b0 satisfying '.g:x/D a0.g; x/:'.x/ and '�1.h:y/D b0.h; y/:'�1.y/ whenever
this makes sense. As X DG:A, we can find clopen subsets X
 � 
:A for 
 2G such
that X D

F

2G X
 and Xe DA. Define pW X! Y by setting p.x/ WD '.
�1:x/ for

x 2X
 . Then p is continuous, and p.X/D B is clopen. Similarly, there are clopen
subsets Y� � �:B such that Y D

F
�2H Y� and Ye D B . We define qW Y ! X by

setting q.y/D '�1.��1:y/ if y 2 Y� . By construction, q is continuous.

We have

p.g:x/D '.
�12 g:x/D '.
�12 g
1:.

�1
1 :x//D a0.
�12 g
1; 


�1
1 :x/:'.
�11 :x/

D a0.
�12 g
1; 

�1
1 :x/:p.x/

for x 2X
1
and g 2G with g:x 2X
2

. Set

aW G �X !H; a.g; x/D a0.
�12 g
1; 

�1
1 :x/ for x 2X
1

\g�1:X
2
:

Then a is continuous and '.g:x/D a.g; x/:'.x/ for all g 2G and x 2X.

For y 2 Y�1
and h 2H such that h:y 2 Y�2

, we have

q.h:y/D '�1.��12 h:y/D '�1.��12 h�1.�
�1
1 :y//D b0.��12 h�1; �

�1
1 :y/:'�1.��11 :y/

D b0.��12 h�1; �
�1
1 :y/:q.y/:

Define bW H �Y !G by b.h; y/D b0.��12 h�1; �
�1
1 :y/ for y 2 Y�1

\h�1:Y�2
. Then

b is continuous and '�1.h:y/D b.h; y/:'�1.y/ for all h 2H and y 2 Y .

Moreover, q.p.x// D q.'.
�1:x// D '�1.'.
�1:x// D 
�1:x for x 2 X
 . Define
gW X ! G by g.x/D 
�1 if x 2 X
 . Then g is continuous and q.p.x//D g.x/:x
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for all x 2 X. For y 2 Y� \ �:'.X
 /, we have p.q.y// D p.'�1.��1:y// D

'.
�1:'�1.��1:y//D'.
�1b0.��1; y/:'�1.y//Da0.
�1b0.��1; y/; '�1.y//:y . Let
hW Y !H be given by h.y/ WDa0.
�1b0.��1; y/; '�1.y// if y 2Y�\�:'.X
 /. Then
h is continuous and p.q.y//D h.y/:y for all y 2 Y .

So p and q give a continuous orbit couple for G Õ X and H Õ Y . This shows
“ D)”.

2.4 Dynamic characterizations of coarse embeddings, equivalences and
bijections

Putting together Theorem 2.3, Lemma 2.5 and Theorems 2.10 and 2.16, we obtain the
following:

Theorem 2.17 Let G and H be countable discrete groups.

� The following are equivalent:

– There exists a coarse embedding G!H.

– There exist Kakutani-equivalent topologically free G Õ X and H Õ Y ,
with X compact.

– There is a continuous orbit couple for topologically free GÕX and HÕY ,
with X compact.

� The following are equivalent:

– There is a coarse equivalence G!H.

– There are Kakutani-equivalent topologically free GÕ X and H Õ Y on
compact spaces X and Y .

– There is a continuous orbit couple for topologically free GÕX and HÕY ,
with X and Y compact.

� There is a bijective coarse equivalence G ! H if and only if there exist con-
tinuously orbit-equivalent topologically free systems G Õ X and H Õ Y on
compact spaces X and Y .

In all these statements, the spaces X and Y can be chosen to be totally disconnected
and second countable.

This is a generalization of [36, Theorem 3.2], where the authors independently prove
the last item of our theorem in the special case of finitely generated groups.
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Remark 2.18 The last observation in Theorem 2.17 says that we can always choose
our spaces X and Y to be totally disconnected. In that case, Theorem 3.2 of [11] tells
us that we can replace Kakutani equivalence in the theorem above by stable continuous
orbit equivalence. Two topological dynamical systems GÕX and H Õ Y are called
stably continuously orbit-equivalent if Z �G Õ Z �X and Z �H Õ Z � Y are
continuously orbit-equivalent. Here the integers Z act on themselves by translation.

2.5 Dynamic characterizations of coarse embeddings, equivalences and
bijections in terms of actions on Stone–Čech compactifications

Inspired by [54], we characterize coarse embeddings, equivalences and bijections in
terms of Kakutani equivalence (or stable continuous orbit equivalence) and continuous
orbit equivalence of actions on Stone–Čech compactifications.

Let G and H be two countable discrete groups. Let 'W G!H be a coarse embedding.
Consider the Stone–Čech compactification ˇG of G. It is homeomorphic to the
spectrum Spec.`1.G//, and can be identified with the space of all ultrafilters on G. We
will think of elements in ˇG as ultrafilters on G. Given any subset X �G, we obviously
have the identification fF 2ˇG WX 2FgŠˇX given by F 7!F\X WDfF\X WF 2Fg.

Now suppose that X �G is a subset such that 'jX is injective. Setting Y WD'.X/�H,
we obtain a bijection X Š Y , x 7! '.x/, which we again denote by ' . Let us consider
the topological dynamical systems GÕ ˇG and H Õ ˇH. We identify ˇX and ˇY
with clopen subsets of ˇG and ˇH, respectively, in the way explained above. ' induces
a homeomorphism ˇ'W ˇX Š ˇY , F 7! '.F/. The dynamical systems GÕ ˇG and
H Õ ˇH restrict to partial dynamical systems GÕ ˇX and H Õ ˇY .

Proposition 2.19 ˇ' induces a continuous orbit equivalence between GÕ ˇX and
H Õ ˇY , in the sense of [31, Definition 2.6].

Proof For all g 2 G, we need to find a continuous map aW fgg �Ug�1 ! H with
ˇ'.g:F/D a.g;F/:ˇ'.F/. Here Ug�1 D ˇX \g�1:ˇX D fF 2 ˇX W g:F 2 ˇXg D
fF 2 ˇG W X 2 F and g�1X 2 Fg Š ˇ.X \ g�1X/. For x 2 X \ g�1X, define
the ultrafilter Fx by saying that Z 2 Fx if and only if x 2 Z . Define a map
zaW fgg � fFx W x 2X \g�1Xg !H by setting za.g;Fx/ WD '.gx/'.x/�1 . Then

(1) za.g;Fx/:ˇ'.Fx/D '.gx/'.x/�1:ˇ'.Fx/

D '.gx/'.x/�1:F'.x/ D F'.gx/ D ˇ'.Fgx/D ˇ'.g:Fx/
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for all g 2G, x 2X \g�1X. Let us fix g 2G. Set S D f.gx; x/ W x 2Gg. As ' is a
coarse embedding and fst�1 W .s; t/ 2 Sg D fgg is finite, f'.s/'.t/�1 W .s; t/ 2 Sg D
f'.g; x/'.x/�1 W x 2 Gg is finite. Hence, im.za/ � f'.gx/'.x/�1 W x 2 Gg is finite,
hence a compact subset of H. By the universal property of ˇ.X \g�1X/, there exists
a continuous extension of za to fgg �Ug�1 , which we denote by a . We claim that
ˇ'.g:F/D a.g;F/:ˇ'.F/ for all F 2 Ug�1 . Let xi 2X \g�1X be a net such that
limi Fxi

DF. Then a.g;Fxi
/D '.gxi /'.xi /

�1 converges to a.g;F/ by construction.
Hence,

a.g;F/:ˇ'.F/D lim
i
a.g;Fxi

/:ˇ'.Fxi
/

(1)
D lim

i
ˇ'.g:Fxi

/

D ˇ'.lim
i
g:Fxi

/D ˇ'.g:F/:

The following observation will be used several times:

Lemma 2.20 Let 'W G ! H be a coarse embedding. Set Y WD '.G/. For every
y 2 Y , choose xy 2G with '.xy/D y . Set X WD fxy W y 2 Y g.

Then ' restricts to a bijection X Š Y , and there is a finite subset F � G with
G D

S
g2F gX.

Proof Clearly, the restriction of ' to X is a bijection onto Y . To prove that G can
be covered by finitely many translates of X, set S WD f.g; x'.g// W g 2 Gg. Then
f'.s/'.t/�1 W .s; t/ 2 Sg D feg, where e is the identity in H. Since ' is a coarse
embedding, fgx�1

'.g/
W g 2 Gg D fst�1 W .s; t/ 2 Sg must be finite. Hence, there is a

finite subset F �G with G D
S
g2F gX.

We now obtain the following characterizations of coarse embeddings, equivalences and
bijections:

Corollary 2.21 Let G and H be countable discrete groups.

(i) The following are equivalent:
– There is a coarse embedding G!H.
– There is an open, dense, H–invariant subspace zY � ˇH such that GÕ ˇG

and H Õ zY are Kakutani-equivalent.
– There is an open, dense, H–invariant subspace zY � ˇH such that there is a

continuous orbit couple for GÕ ˇG and H Õ zY .
– There is an open, dense, H–invariant subspace zY � ˇH such that GÕ ˇG

and H Õ zY are stably continuously orbit-equivalent.
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(ii) There is a coarse equivalence G ! H if and only if zY D ˇH works in the
statements in (i).

(iii) There is a bijective coarse equivalence G ! H if and only if G Õ ˇG and
H Õ ˇH are continuously orbit-equivalent.

Proof (i) Let 'W G!H be a coarse embedding. Let Y and X be as in Lemma 2.20.
As the restriction of ' to X is a bijection onto Y , Proposition 2.19 yields that GÕˇX

and H Õ ˇY are continuously orbit-equivalent. As there is a finite subset F �G with
G D

S
g2F gX, we have ˇG DG:ˇX. Let zY WDH:ˇY . Then GÕ ˇG and H Õ zY

are Kakutani-equivalent. zY is H–invariant by construction, and it is easy to see that zY
is open and dense. Now (i) follows from Theorems 2.17 and 2.16 and Remark 2.18.

(ii) A coarse embedding 'W G ! H is coarsely invertible if and only if there is a
finite subset F �H such that H D

S
h2F h'.G/. This happens if and only if in the

proof of (i) we get zY D ˇH.

(iii) If 'W G ! H is a bijective coarse equivalence, then we can take X D G and
Y DH in the above proof of (i) and obtain that GÕˇG and HÕˇH are continuously
orbit-equivalent. The reverse implication “ D)” in (ii) is proven in Theorem 2.17.

Remark 2.22 In combination with [54], Corollary 2.21 implies that nuclear Roe
algebras have distinguished Cartan subalgebras, as explained in [33].

Remark 2.23 A result analogous to Corollary 2.21 is valid in the more general setting
of uniformly locally finite metric spaces. In that case, transformation groupoids of
Stone–Čech dynamical systems have to be replaced by coarse groupoids as constructed
in [52, Section 3.2].

Remark 2.24 Corollary 2.21 shows that quasi-isometry rigidity can be interpreted as
a special case of continuous orbit equivalence rigidity (in the sense of [32]), applied to
actions on Stone–Čech compactifications. This points towards an interesting connection
between these two types of rigidity phenomena and would be worth exploring further.

3 Applications to (co)homology, I

We now show how the results in [51; 49] on coarse invariance of (co)homological
dimensions and property HFD follow from Morita invariance of groupoid (co)homology.
Let us first define groupoid (co)homology. We do this in a concrete and elementary
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way which is good enough for our purposes. We refer to [12] for a more general and
more conceptual approach, and for more information about groupoids. Let G be an
étale locally compact groupoid with unit space X D G.0/ and R a commutative ring
with unit. A G–sheaf of R–modules is a sheaf A of R–modules over X, ie we have a
locally compact space A with an étale continuous surjection � W A�X whose fibres
are R–modules, together with the structure of a right G–space on A. In particular,
every 
 2 G induces an isomorphism of R–modules Ar.
/!As.
/ , a 7! a � 
 . To
pass from right to left actions, we write 
:a WD a � 
�1 if �.a/D s.
/.

Let G.n/ D f.
1; : : : ; 
n/ 2 Gn W s.
i / D r.
iC1/ for all 1 � i � n � 1g, and set
r.
1; : : : ; 
n/ D r.
1/. We write E
 for elements in G.n/ . Given a G–sheaf of R–
modules A with projection � W A�X, let �c.G.n/;A/ be the R–module of continuous
functions f W G.n/ ! A with compact support such that �.f .E
// D r.E
/. Now we
define a chain complex

� � �
dnC1
��! �c.G.n/;A/

dn
�! �c.G.n�1/;A/

dn�1
��! � � �

d2
�! �c.G;A/

d1
�! �c.X;A/! 0;

with d1.f /.x/D
P

2G; s.
/Dx 


�1:f .
/�
P

2G; r.
/Dx f .
/ for f 2�c.G;A/, and,

for n� 1, dn.f /D
Pn
iD0.�1/

id
.i/
n .f / for f 2 �c.G.n/;A/, where

d .0/n .f /.
1; : : : ; 
n�1/D
X

02G

s.
0/Dr.
1/


�10 :f .
0; 
1; : : : ; 
n�1/;

d .i/n .f /.
1; : : : ; 
n�1/D
X
�;�2G
��D
i

f .: : : ; 
i�1; �; �; 
iC1; : : : / for 1� i � n� 1;

d .n/n .f /.
1; : : : ; 
n�1/D
X

n2G

r.
n/Ds.
n�1/

f .
1; : : : ; 
n�1; 
n/:

We then define the nth homology group Hn.G;A/ WD ker.dn/= im.dnC1/. In the
case R D Z and where A is a constant sheaf with trivial G–action, we recover
[35, Definition 3.1].

Let us also introduce cohomology. Let G, R and A be as above, and let �.G.n/;A/
be the R–module of continuous functions f W G.n/! A with �.f .E
//D r.E
/. We
define a cochain complex

0! �.X;A/ d
0

�! �.G;A/ d
1

�! � � �
dn�1

��! �.G.n/;A/ d
n

�! �.G.nC1/;A/ d
nC1

��! � � �

with d0.f /.
/D 
:f .s.
//�f .r.
//, and, for n� 1, dn.f /D
PnC1
iD0 .�1/

idn
.i/
.f /,
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where
dn.0/.f /.
0; : : : ; 
n/D 
0:f .
1; : : : ; 
n/;

dn.i/.f /.
0; : : : ; 
n/D f .
0; : : : ; 
i�1
i ; : : : ; 
n/ for 1� i � n;

dn.nC1/.f /.
0; : : : ; 
n/D f .
0; : : : ; 
n�1/:

We set Hn.G;A/ WD ker.dn/= im.dn�1/.

In the proof of Theorem 3.1, we will need Morita invariance of groupoid (co)homology.
Morita invariance for groupoid cohomology is established in [24; 39] (see also the
explanations in the introduction of [12]). For groupoid homology, Morita invariance is
proven in [12, Corollary 4.6].

Now let GÕX be a topological dynamical system. For notational purposes, and to keep
the conventions in the literature, let us pass to the right action X ÔG, x:g D g�1:x ,
and consider the corresponding transformation groupoid X ÌG with source and range
maps given by s.x; g/ D x:g and r.x; g/ D x . We note that the transformation
groupoid G ËX attached to the original action, as in [32; 31], is isomorphic to X ÌG
via G ËX ! X ÌG, .g; x/ 7! .g:x; g/. It is easy to see that an .XÌG/–sheaf of
R–modules is nothing but a sheaf A of R–modules over X, � W A�X, together with
a left G–action on A via homeomorphisms (denoted by G �A!A, .g; a/ 7! g:a)
such that � becomes G–equivariant, and Ax!Ag:x , a 7! g:a , is an isomorphism
of R–modules. We call these G–sheaves of R–modules over X.

3.1 Isomorphisms in homology and cohomology

First of all, let us prove:

Theorem 3.1 Let G Õ X and H Õ Y be topologically free systems, where G
and H are countable discrete groups. Suppose that G Õ X and H Õ Y are
Kakutani-equivalent. Then there is an equivalence of categories between G–sheaves
of R–modules over X and H–sheaves of R–modules over Y , denoted by SX 7!
SY on the level of objects, such that H�.G; �c.X;SX // Š H�.H; �c.Y;SY // and
H�.G; �.X;SX //ŠH�.H; �.Y;SY //.

Here � stands for continuous sections and �c for those with compact support.

Proof It is easy to see that H�.G; �c.X;A//ŠH�.XÌG;A/ and H�.G; �.X;A//Š
H�.X ÌG;A/ for topological dynamical systems GÕX and G–sheaves A of R–
modules over X.
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Now, by assumption, there are clopen subspaces A�X and B �Y with X DG:A and
Y DH:B and an isomorphism of topological groupoids �W .X ÌG/jAŠ .Y ÌH/jB .
Let �AW .XÌG/jA ,!XÌG and �B W .Y ÌH/jB ,!Y ÌH be the canonical inclusions.
As A is G–full and B is H–full, �A and �B induce equivalences of categories of sheaves
(see [39, Section 2.2]). So we obtain an equivalence of categories between G–sheaves
of R–modules over X and H–sheaves of R–modules over Y , denoted by SX 7! SY
on the level of objects, such that SY is uniquely determined by ��.SY jB/D SX jA.
Our theorem now follows from Morita invariance of groupoid (co)homology.

By the definitions of homological and cohomological dimensions, we have

supfn WHn.G; �c.X;A//© f0gg � hdR.G/;

supfn WHn.G; �.X;A//© f0gg � cdR.G/

for every topological dynamical system GÕX. Here the suprema are taken over all
G–sheaves A of R–modules over X.

Definition 3.2 A .G;H/ continuous orbit couple is called H�;RG–full if

supfn WHn.G; �c.X;A//© f0gg D hdR.G/

holds for its topological dynamical system GÕX. It is called H�;RG–full if its topo-
logical dynamical system GÕX satisfies supfn WHn.G; �.X;A//©f0ggD cdR.G/.

The following is an immediate consequence of Theorem 3.1:

Corollary 3.3 If there exists an H�;RG–full topologically free .G;H/ continuous
orbit couple, then hdR.G/ � hdR.H/. If there exists an H�;RG–full topologically
free .G;H/ continuous orbit couple, then cdR.G/� cdR.H/.

Remark 3.4 Together with Theorem 2.17, Corollary 3.3 can be viewed as an expla-
nation and generalization of the results in [51; 49] concerning coarse invariance of
(co)homological dimension. In our terminology, the conditions from [51; 49] that the
topological dynamical system G Õ X of a .G;H/ continuous orbit couple admits
a G–invariant probability measure and Q � R ensure that the .G;H/ continuous
orbit couple is H�;RG–full and H�;RG–full (see [51, Section 3.3; 49, Section 4]).
Existence of a G–invariant probability measure is guaranteed if G is amenable and the
G–space of our continuous orbit couple is compact. Moreover, again in our terminology,
it is shown in [49, Section 4] that a .G;H/ continuous orbit couple with compact
G–space is H�;RG–full if hdR.G/ <1 and H�;RG–full if cdR.G/ <1. Once we
know this, Theorem 1.5 of [51] and Theorem 1.2 of [49] are immediate consequences
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of Theorem 2.17 and Corollary 3.3. In Section 4.4, we present an alternative approach
to these results.

3.2 Isomorphisms in reduced cohomology

Let G be an étale locally compact groupoid and LD .�;H; L/ a (unitary) representation
of G as in [47, Chapter II, Definition 1.6]. Here � is a quasi-invariant measure on G.0/ ,
H a Hilbert bundle over .G.0/; �/, and L a representation of G, ie for each 
 2 G, L.
/
is a unitary Hs.
/ ŠHr.
/ , and the conditions in [47, Chapter II, Definition 1.6] are
satisfied (� in [47, Chapter II, Definition 1.6] is the trivial cocycle in our case). Let D
be the modular function attached to �, as in [47, Chapter I, Definition 3.4]. In particular,
we are interested in the case G D X ÌG of a transformation groupoid attached to a
topological dynamical system GÕX on a compact space X. A representation L of
X ÌG gives rise — through its integrated form — to a �–representation of C.X/ÌG,
which in turn corresponds in a one-to-one way to a covariant representation .�L; �L/
of GÕX (or rather of .C.X/;G/).

Now let G D X ÌG and L be as above. We define cohomology groups Hn.G;L/
and reduced cohomology groups Hn.G;L/. Let us write LD .�;H; L/. Let G.n/ D
f.
1; : : : ; 
n/ 2 Gn W s.
i /D r.
iC1/ for all 1 � i � n� 1g, and set r.
1; : : : ; 
n/D
r.
1/. We will write E
 for elements in G.n/ . Let �.G.n/;H/ be the set of all Borel
functions f W G.n/ ! H with f .E
/ 2 Hr.E
/ such that for every compact subset
K � G.n/ ,

R
G.0/

P
E
2K; r.E
/Dx kf .E
/k

2 d�.x/ < 1, where we identify two Borel
functions f1 and f2 if

R
G.0/

P
E
2K; r.E
/Dx kf1.E
/ � f2.E
/k

2 d�.x/ D 0 for every
compact subset K � G.n/ . The topology on �.G.n/;H/ is given by the following
notion of convergence: a net .fi /i converges to an element f in �.G.n/;H/ if
limi!1

R
G.0/

P
E
2K; r.E
/Dx kf .E
/ � fi .E
/k

2 d�.x/ D 0 for every compact subset
K � G.0/ . We define a cochain complex 0! �.G.0/;H/ d

0

�! �.G.1/;H/ d
1

�! � � � with
d0.f /.
/DD�1=2.
/L.
/f .s.
//�f .r.
//, and, for n�1, dnD

PnC1
iD0 .�1/

idn
.i/

,
where

dn.0/.f /.
0; : : : ; 
n/DD
�1=2.
0/L.
0/f .
1; : : : ; 
n/;

dn.i/.f /.
0; : : : ; 
n/D f .
0; : : : ; 
i�1
i ; : : : ; 
n/ for 1� i � n;

ın.nC1/.f /.
0; : : : ; 
n/D f .
0; : : : ; 
n�1/:

It is easy to check that dn ıdn�1D 0 for all n� 1. Thus, im.dn�1/� ker.dn/. Since
all the dn are continuous, we also have im.dn�1/ � ker.dn/. We set Hn.G;L/ WD
ker.dn/= im.dn�1/ and Hn.G;L/ WD ker.dn/=im.dn�1/.
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To see that these cohomology groups are Morita invariant (which we need in the
proof of Theorem 3.5), it is straightforward to construct concrete cochain homotopies
analogous to the ones in the proof of [35, Proposition 3.5], which lead to Morita
invariance of groupoid cohomology as in the proof of [35, Theorem 3.6]. This yields
Morita invariance of reduced groupoid cohomology as well, because the maps arising
from a Morita equivalence not only induce homomorphisms in groupoid cohomology
which are inverse to each other, but they also induce homomorphisms (and hence
isomorphisms) in reduced groupoid cohomology.

Our goal is to prove the following:

Theorem 3.5 Suppose there is a continuous orbit couple for topological dynamical
systems GÕX and H Õ Y on compact spaces X and Y . Then there is a one-to-one
correspondence between representations of X ÌG and Y ÌH, denoted by L$M,
with H�.G; �L/ŠH�.H; �M/ and H�.G; �L/ŠH�.H; �M/.

For the definition of reduced cohomology H� , we refer to [23, Chapitre III]. Also,
recall that we write .�L; �L/ for the covariant representation corresponding to the
integrated form of a representation L of G.

Proof Clearly, H�.X ÌG;L/ŠH�.G; �L/ and H�.X ÌG;L/ŠH�.G; �L/.

Now, if there is a continuous orbit couple for topological dynamical systems GÕX

and H Õ Y on compact spaces X and Y , then by Theorem 2.16, GÕX and H Õ Y

are Kakutani-equivalent. So there exist clopen subspaces A � X and B � Y with
G:A D X and H:B D Y , together with an isomorphism of topological groupoids
�W .X ÌG/jA Š .Y ÌH/jB . As A is G–full and B is H–full, we get one-to-one
correspondences L$ LjA and M$MjB between representations of X ÌG and
.X ÌG/jA, and between representations of Y ÌH and .Y ÌH/jB , respectively. Thus
we obtain a one-to-one correspondence between representations of X ÌG and Y ÌH,
denoted by L$M, where M is uniquely determined by ��.MjB/ D LjA. The
theorem now follows from Morita invariance of groupoid (co)homology.

Remark 3.6 If the topological dynamical system GÕX is on a second countable
space X, then every �–representation of Cc.XÌG/ on a Hilbert space is the integrated
form of a representation of X ÌG. Actually, �–representations of Cc.X ÌG/ and
representations of X Ì G are in one-to-one correspondence (see [47, Chapter II,
Theorem 1.21 and Corollary 1.23]). Thus we obtain a reformulation of Theorem 3.5:
Suppose there is a continuous orbit couple for topological dynamical systems GÕX
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and H Õ Y on second countable compact spaces X and Y . By Theorem 2.16, GÕX

and H Õ Y are Kakutani-equivalent, so there exist clopen subspaces A � X and
B � Y with G:AD X and H:B D Y , together with an isomorphism of topological
groupoids �W .X ÌG/jAŠ .Y ÌH/jB . Let ˆW C �..X ÌG/jA/Š C �..Y ÌH/jB/
be the corresponding isomorphism of groupoid C �–algebras. Then the one-to-one
correspondence L$M from Theorem 3.5 translates to a one-to-one correspondence
.�; �/$ .�; �/ between covariant representations of G Õ X and H Õ Y , where
.�; �/ is uniquely determined (up to unitary equivalence) by the requirement that
.�Ì � jC�..YÌH/jB// ıˆD � Ì � jC�..XÌG/jA/ . Here we view C �..Y ÌH/jB/ and
C �..X Ì G/jA/ as full corners in C.Y / ÌH and C.X/ Ì G. We write .�; �/ D
Indˆ�1.�; �/ and .�; �/D Indˆ.�; �/.

Corollary 3.7 Let GÕX and H Õ Y be topological dynamical systems on second
countable compact spaces X and Y , and assume that there is a continuous orbit couple
for G Õ X and H Õ Y . Let .�; �/$ .�; �/ be as in Remark 3.6. Then we have
H�.G; �/ŠH�.H; �/ and H�.G; �/ŠH�.H; �/.

Remark 3.8 Theorem 3.5 and Corollary 3.7 have natural analogues in homology, ie
for H� and H� .

3.3 Coarse invariance of property HFD

As a consequence of Theorem 3.5, we discuss coarse invariance of Shalom’s property
HFD from [51]. In this section (Section 3.3), we assume that our spaces are second
countable. Let us start with the following:

Lemma 3.9 Let G Õ Y�X Ô H be a topological coupling, let ˛ and ˇ be as in
Section 2.2.1, let GÕ Y and H ÕX be the actions given by g:xD gx˛.g; x/�1 and
h:y D ˇ.y; h�1/�1xh�1 , and let X ÌG and Y ÌH be the corresponding transforma-
tion groupoids. Then

X ÌG! .�Ì .G �H//jX; .x; g/ 7! .x; g; ˛.g�1; x/�1/;

Y ÌH ! .�Ì .G �H//jY ; .y; h/ 7! .y; ˇ.y; h/; h/;

are isomorphisms of topological groupoids.

Proof As
r.x; g/D x D r.x; g; ˛.g�1; x/�1/;
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s.x; g/D x:g D g�1:x D g�1x˛.g�1; x/�1 D s.x; g; ˛.g�1; x/�1/;

.x; g; ˛.g�1; x/�1/.g�1x˛.g�1; x/�1; xg; ˛.xg�1; g�1x˛.g�1; x/�1/�1/

D .x; gxg; ˛..gxg/�1; x/�1/;

the map X ÌG ! .� Ì .G �H//jX, .x; g/ 7! .x; g; ˛.g�1; x/�1/, is a groupoid
homomorphism. It is clearly continuous, and .�Ì .G�H//jX!X ÌG, .x; g; h/ 7!
.x; g/, is its continuous inverse. The proof of the second claim is analogous.

Given a topologically free .G;H/ continuous orbit couple which corresponds to the
.G;H/ coupling GÕ Y�X ÔH with compact X and Y , the proof of Theorem 2.17
provides a concrete way to construct Kakutani-equivalent dynamical systems GÕX

and HÕY together with clopen subspaces A�X and B �Y such that .XÌG/jAŠ
.Y ÌH/jB . We need the following:

Lemma 3.10 We can modify our .G;H/ continuous orbit couple above, without
changing its topological dynamical system GÕX, so that the described process yields
a topological coupling and subspaces A and B with AD B as subspaces of �.

Proof In the proof of Theorem 2.16, we had constructed A and B as disjoint unions
A D

F
g Ag and B D

F
g Bg . Following the construction of the continuous orbit

couple out of our topological coupling in Section 2.2.1, we see that these subspaces
Ag and Bg were related by gAg DBg in �. Set Y 0 WD .Y nB/tA. Then X and Y 0

are still fundamental domains for the H– and G–actions on �. So we obtain a new
topologically free .G;H/ coupling GÕ Y 0�XÔH. The construction in Section 2.2.1
yields a continuous orbit couple with new continuous orbit map p0W X! Y 0 satisfying
p0.X/DA. Hence, our construction in the proof of Theorem 2.16 gives us the subspaces
A � X and A � Y 0 implementing the Kakutani equivalence between G Õ X and
H Õ Y 0.

Let G Õ Y�X Ô H and G Õ X, H Õ Y be as above, with a clopen subspace
A � X \ Y such that G:A D X, H:A D Y and .X Ì G/jA Š .Y ÌH/jA. Let
ˆW C �..X ÌG/jA/Š C �..Y ÌH/jA/ be the induced C �–isomorphism. Lemma 3.9
yields an isomorphism of C �–algebras

C.X/ÌG Š C �.X ÌG/Š C �..�Ì .G �H//jX/Š 1X
�
C �.�Ì .G �H//

�
1X

Š 1X .C0.�/Ì .G �H//1X :

Here the second isomorphism is provided by Lemma 3.9. The argument that the
third isomorphism is not only an identification (of dense subalgebras) on an algebraic
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level but also preserves C �–norms is the same as in the proof of [30, Lemma 5.22
and Corollary 5.23]. Since 1X is in addition a full projection, C.X/ÌG is Morita
equivalent to C0.�/ Ì .G � H/, and a C.X/ÌG�C0.�/Ì.G�H/–imprimitivity
bimodule is given by XD 1X .C0.�/Ì .G �H// (with respect to the identification
C.X/ÌGŠ1X .C0.�/Ì.G�H//1X provided by Lemma 3.9). We obtain (up to unitary
equivalence) bijections between representations of C.X/ÌG and representations of
C0.�/Ì.G�H/ and also between covariant representations of GÕX and G�HÕ�.
We denote both of them by IndX . Also, let Y be the C.Y /ÌH�C0.�/Ì.G�H/–
imprimitivity bimodule given by 1Y .C0.�/Ì.G�H// with respect to the identification
C.Y / ÌH Š 1Y .C0.�/ Ì .G �H//1Y provided by Lemma 3.9. We define IndY
similarly as IndX . Now we have two ways to go from covariant representations
of G Õ X to covariant representations of H Õ Y , namely Indˆ�1 , introduced in
Remark 3.6, and Ind�1Y IndX . It turns out that they coincide.

Proposition 3.11 In the situation described above, Ind�1Y IndX.�; �/ is unitarily equiv-
alent to Indˆ�1.�; �/ for every covariant representation .�; �/ of GÕX.

In the following, we write �u for unitary equivalence.

Proof Let Indˆ�1.�; �/D .�; �/, and let Ind�1Y IndX.�; �/D .�0; � 0/. Let

iX W C �..X ÌG/jA/ ,! C.X/ÌG;

iY W C �..Y ÌH/jA/ ,! C.Y /ÌH

be the canonical embeddings. Also, let iX W C.X/ Ì G ,! C0.�/ Ì .G �H/ and
iY W C.Y / ÌH ,! C0.�/ Ì .G �H/ be the embeddings obtained with the help of
Lemma 3.9. Then .�; �/ is uniquely determined by .� Ì�/ı iX ıˆ�1 �u .�Ì �/ı iY .
We want to show that �0Ì � 0 has the same property. .�0; � 0/ is uniquely determined by
the existence of a representation … of C0.�/Ì .G �H/ with … ı iX �u � Ì � and
…ı iY �u �

0Ì � 0. Hence, .�0Ì � 0/ı iY �u…ı iY ı iY . On the groupoid level, iY ı iY

is given by

Y ÌH jB! Y ÌH !�Ì .G �H/; .y; h/ 7! .y; ˇ.y; h/; h/;

where ˇ is as defined in Section 2.2.1. At the same time, iX ıiX ıˆ�1 on the groupoid
level is given by

.Y ÌH/jB! .X ÌG/jA!X ÌG!�Ì .G �H/;

.y; h/ 7! .y; b.h�1; y/�1/ 7!
�
y; b.h�1; y/�1; ˛.b.h�1; y/; y/�1

�
;
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where b comes from the groupoid isomorphism .X Ì G/jA Š .Y Ì H/jA (see
Remark 2.15 and [31, Definition 2.6]) and ˛ is as defined in Section 2.2.1. We
have ˛.b.h�1; y/; y/D h�1 by [32, Lemma 2.10] (or rather its analogue for partial
actions). Hence, iY ı iY D iX ı iX ıˆ�1 , so that .�0 Ì � 0/ ı iY �u … ı iY ı iY D
… ı iX ı i

X ıˆ�1 �u .� Ì �/ ı iX ıˆ�1 . Our claim follows.

Let G Õ Y�X Ô H and G Õ X and H Õ Y be as above. Let A � X \ Y

be a clopen subspace with G:A D X, H:A D Y and .X Ì G/jA Š .Y Ì H/jA.
Let ˆW C �..X ÌG/jA/ Š C �..Y ÌH/jA/ be the induced C �–isomorphism. Let
…D .…X ;…G/ be a covariant representation of GÕX on the Hilbert space H . Let �
be a unitary representation of G on H� . It is clear that .1˝…X ; �˝…G/ is a covariant
representation of GÕX on H� ˝H . Let Indˆ�1.�;…/ be the unitary representation
of H which is part of the covariant representation Indˆ�1.1˝…X ; �˝…G/. Moreover,
let � be a unitary representation of H on H� . Let ‚D .‚Y ; ‚H /D Indˆ�1.…X ;…G/.
Denote by Indˆ.‚; �/ the unitary representation of G which is part of the covariant
representation Indˆ.‚Y ˝ 1;‚H ˝ �/.

Lemma 3.12 .1˝…X˝1; �˝Indˆ.‚; �//D Indˆ.1˝‚Y ˝1; Indˆ�1.�;…/˝�/.

Proof We have to show that

.1˝…X ˝ 1/Ì .� ˝ Indˆ.‚; �//jC�..XÌG/jA/

D .1˝‚Y ˝ 1/Ì .Indˆ�1.�;…/˝ �/jC�..YÌH/jB/ ıˆ:

Fix g 2 G and h 2 H. Let f be the characteristic function of a compact subset of
.X�fgg/\.XÌG/jA whose image under � lies in .Y �fhg/\.Y ÌH/jB . It suffices
to consider such f as they span a dense subset in C �..X ÌG/jA/. We have

.1˝‚Y ˝ 1/Ì .Indˆ�1.�;…/˝ �/.ˆ.f //

D ..1˝‚Y /Ì Indˆ�1.�;…//.ˆ.f //˝ �.h/

D ..1˝…X /Ì .� ˝…G/.f //˝ �.h/
D �.g/˝….f /˝ �.h/

D �.g/˝ .‚.ˆ.f //˝ �.h//

D �.g/˝ ..…X ˝ 1/Ì Indˆ.‚; �/.f //

D .1˝…X ˝ 1/Ì .� ˝ Indˆ.‚; �//.f /:

Let ƒ be a representation of C.X/ÌG, and set zƒ WD IndXƒ. Let

H zƒ;c WD f� 2H zƒ W �D zƒ.1K/� for some compact K ��g;
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and let L be the complex vector space of linear maps H zƒ;c!C which are bounded
whenever restricted to a subspace of the form zƒ.1K/H zƒ , with K � � compact.
Moreover, let ƒG be the unitary representation of G on Hƒ induced by ƒ, and denote
by zƒG and zƒH the unitary representations of G and H on H zƒ induced by zƒ. As
H zƒ;c is obviously invariant under the G– and H–actions, we obtain by restriction G–
and H–actions on H zƒ;c . Finally, by dualizing, we obtain G– and H–actions on L.

Lemma 3.13 There is a G–equivariant linear isomorphism Hƒ Š LH.

Proof Up to unitary equivalence, we have Hƒ D zƒ.1X /H zƒ , and ƒG is given by the
composite

G ,! C.X/ÌG Š 1XC0.�/Ì .G �H/1X
zƒ
�! L.zƒ.1X /H zƒ/;

where the first map is given by G ,! C.X/ÌG, g 7! ug .

We define LW Hƒ! L by setting L.�/.�/D
P
h2H h

zƒH.h/�; �i. Here h � ; � i is the
inner product in H zƒ , and our convention is that it is linear in the second component.
Note that in the definition of L.�/.�/, the sum is always finite since � lies in H zƒ;c . It
is clear that L is linear. Moreover, we have

L.�/.zƒH.h0/�/D
X
h

h zƒH.h/�; zƒH.h0/�i D
X
h

h zƒH..h0/�1h/�; �i D L.�/.�/:

Therefore, the image of L lies in LH, and we obtain a linear map Hƒ! LH. We
claim that the inverse is given by RW LH !H�ƒ ŠHƒ , where the first map is given
by restriction, l 7! l j zƒ.1X /Hzƒ

, and the second map is the canonical isomorphism,
identifying � 2 Hƒ with the element h�; � i 2 H�ƒ . Note that l j zƒ.1X /Hzƒ

is bounded
because of our definition of H zƒ;c . Let us show that R is the inverse of L. For l 2 LH,
we have

L.R.l//.�/D
X
h

h zƒH.h/R.l/; �iD
X
h

hR.l/; zƒH.h�1/�iD
X
h

l.zƒ.1X /
zƒH.h�1/�/

D

X
h

l.zƒH.h/zƒ.1X /
zƒH.h�1/�/D

X
h

l.zƒ.1Xh�//D l.�/:

For � 2Hƒ D zƒ.1X /H zƒ , we have R.L.�//D � since

L.�/.zƒ.1X /�/D
X
h

h zƒH.h/�; zƒ.1X /�i D
X
h

h zƒH.h/zƒ.1Xh/�; �i D h�; �i

because zƒ.1Xh/� D � if hD e and zƒ.1Xh/� D 0 if h¤ e .
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Finally, let us show that L is G–equivariant:

L.ƒG.g/�/.�/D
X
h

h zƒH.h/.ƒG.g/�/; �i

D

X
h

X
j

h zƒH.h/zƒ.1gXj�1\X /
zƒG.g/zƒH.j /�; �i

D

X
h;j

h zƒH.h/zƒH.j /�1 zƒ.1gXj�1\X /
zƒH.j /zƒG.g/�; �i

D

X
h;j

h zƒH.h/zƒ.1gX\Xj /
zƒG.g/�; �i

D

X
h

h zƒH.h/zƒ.1gX /
zƒG.g/�; �i

D

X
h

h zƒG.g/zƒH.h/zƒ.1X /�; �i

D

X
h

h zƒH.h/�; zƒG.g/�1�i

D L.�/.zƒG.g/�1�/:

Corollary 3.14 We have fƒG–invariant vectorsg DHGƒ Š LG�H .

Theorem 3.15 There exists a one-to-one correspondence between Indˆ�1.�;…/˝� –
invariant vectors and �˝ Indˆ.‚; �/–invariant vectors.

Proof Obviously, .1˝…X ˝ 1; � ˝ Indˆ.‚; �// is a covariant representation of
GÕ X. Let ƒ WD .1˝…˝ 1/Ì .� ˝ Indˆ.‚; �//. Set zƒ WD IndXƒ, and define L
as in Lemma 3.13. Then Corollary 3.14 yields a one-to-one correspondence between
�˝ Indˆ.‚; �/–invariant vectors and LG�H.

Let Indˆ�1 ƒ be the representation of C.Y /ÌH corresponding to

Indˆ�1.1˝…X ˝ 1; � ˝ Indˆ.‚; �//:

By Proposition 3.11, IndY Indˆ�1 ƒ �u zƒ. Hence, together with Lemma 3.12,
Corollary 3.14 yields a one-to-one correspondence between Indˆ�1.�;…/˝� –invariant
vectors and LG�H .

Thus,

fIndˆ�1.�;…/˝�–invariant vectorsg
1–1
 ! LG�H 1–1

 ! f�˝ Indˆ.‚; �/–invariant vectorsg:
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Corollary 3.16 Indˆ�1.�;…/˝� has an invariant vector if and only if �˝Indˆ.‚; �/
has an invariant vector.

We now come to Shalom’s property HFD . Recall that a group G has HFD if for
every unitary representation � of G, H 1.G; �/© f0g implies that � contains a finite-
dimensional subrepresentation.

Definition 3.17 A .G;H/ continuous orbit couple is called H 1G–faithful if its
G– and H–spaces are second countable compact, and its topological dynamical sys-
tem G Õ X has the property that for every unitary representation � of G with
H 1.G; �/© f0g, there exists a covariant representation .…X ;…G/ of GÕX such
that H 1.G; � ˝…G/© f0g.

Theorem 3.18 Let G and H be countable discrete groups. Suppose there exists an
H 1G–faithful topologically free .G;H/ continuous orbit couple. If H has property
HFD , then G has property HFD .

Proof of Theorem 3.18 By Lemma 3.10, we may assume that our H 1G–faithful
topologically free .G;H/ continuous orbit couple corresponds to a topologically
free .G;H/ coupling G Õ Y�X Ô H with second countable compact spaces X
and Y , which leads to topological dynamical systems GÕX and H Õ Y together
with a clopen subspace A � X \ Y with G:A D X, H:A D Y and .X ÌG/jA Š
.Y ÌH/jA. Now let � be a unitary representation of G with H 1.G; �/© f0g. By
H 1G–faithfulness, there exists a covariant representation .…X ;…G/ of GÕX with
H 1.G; �˝…G/© f0g. By Corollary 3.7, H 1.H; Indˆ�1.�;…//ŠH 1.G; �˝…G/,
so that H 1.H; Indˆ�1.�;…// © f0g. As H has property HFD , Indˆ�1.�;…/ must
have a finite-dimensional subrepresentation. Thus, Proposition A.1.12 of [3] implies
that there is a unitary representation � of H such that Indˆ�1.�;…/˝� has an invariant
vector. By Corollary 3.16, � ˝ Indˆ.‚; �/ must have an invariant vector. Again by
[3, Proposition A.1.12], this implies that � has a finite-dimensional subrepresentation.
Hence, G has property HFD .

Remark 3.19 A .G;H/ continuous orbit couple with second countable compact G–
and H–spaces is H 1G–faithful if its topological dynamical system GÕX admits a
G–invariant probability measure. To see this, let � be such a measure. Let .…X ;…G/
be the canonical covariant representation of GÕ X on L2.�/. Then …G contains
the trivial representation, so that � ˝…G contains � . This shows H 1G–faithfulness.
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In particular, this is the case when G is amenable. Therefore, Theorems 2.17 and 3.18
imply [51, Theorem 4.3.3]. The case of amenable groups is not the only situation where
invariant probability measures exist. It follows easily from [13] and Theorem 2.17 that
for residually finite groups G and H with coarsely equivalent box spaces, there exists
a .G;H/ continuous orbit couple with second countable compact G– and H–spaces
such that its topological dynamical system GÕX admits a G–invariant probability
measure. A similar statement applies to sofic groups with coarsely equivalent spaces of
graphs (see [1]). Note, however, that having coarsely equivalent box spaces is a strong
assumption, as this implies commensurability for finitely presented, residually finite
groups by [15].

4 Applications to (co)homology, II

We now turn to coarse invariants of (co)homological nature.

4.1 Coarse maps and res–invariant modules

Let G be a group, R a commutative ring with unit and W an R–module. Let C.G;W /
be the set of functions from G to W . The G–action on itself by left multiplication
induces a canonical left RG–module structure on C.G;W /. Explicitly, given g 2G
and f 2 C.G;W /, g:f is the element in C.G;W / given by .g:f /.x/ D f .g�1x/
for all x 2G. We are interested in the following class of RG–submodules of C.G;W /.
Given a subset A of G, let 1A be its indicator function, ie 1A 2 C.G;R/ is given
by 1A.x/ D 1 if x 2 A and 1A.x/ D 0 if x … A. Here 1 is the unit of R . Given
f 2C.G;W / and A�G, we form the pointwise product 1A�f 2C.G;W /. This is noth-
ing but the restriction of f to A, extended by 0 outside of A to give a function G!W .

Definition 4.1 An RG–submodule L � C.G;W / is called res–invariant if 1A � f
lies in L for all f 2 L and A�G.

Examples 4.2 For arbitrary R and W , the submodules C.G;W /,

Cf .G;W /D ff 2 C.G;W / W f takes finitely many valuesg;

RG˝RW Š ff 2 C.G;W / W supp.f / is finiteg

are res–invariant.

If RDR or RDC and W DR , then c0.G;W /Dff 2C.G;W / W limx!1jf .x/jD0g
is res–invariant, and `p.G;W / D

˚
f 2 C.G;W / W

P
x2G jf .x/j

p < 1
	

is res–
invariant for all 0 < p �1.
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Let G be a finitely generated discrete group and ` the right-invariant word length
coming from a finite symmetric set of generators. Let RDR or RDC and W DR .
As in [25], we define for s 2 R and 1 � p �1 the Sobolev space H s;p.G;W / WD

ff W G ! W W f � .1C `/s 2 `p.G;W /g, and H1;p.G;W / WD
T
s2RH

s;p.G;W /.
All these Sobolev spaces are res–invariant.

In the last examples (`p , c0 and H s;p ), we can also replace W by any normed space
over R .

We are also interested in the following topological setting; let R be a topological field
and W an R–module.

Definition 4.3 A topological res–invariant RG–submodule L of C.G;W / is a res–
invariant RG–submodule of C.G;W / together with the structure of a topological
R–vector space on L such that

L! L; f 7! 1A �f; is continuous for every A�G;(2)

L! L; f 7! g:f; is continuous for every g 2G:(3)

When we consider topological res–invariant modules, R will always be a topological
field, though we might not mention this explicitly. For instance, in Examples 4.2,
`p.G;W / and c0.G;W / are topological res–invariant modules. Also, H s;p.G;W /

becomes a topological res–invariant module with respect to the topology induced by
the norm kf ks;p Dkf � .1C`/sk`p.G;W / for s 2R, and with respect to the projective
limit topology for s D1.

In the following, we explain how coarse maps interact with res–invariant modules.
Recall that all our groups are countable and discrete, and that a map 'W G ! H

between groups G and H is a coarse map if '�1.fyg/ is finite for every y 2H, and,
for all S � G �G, f'.s/'.t/�1 W .s; t/ 2 Sg must be finite if fst�1 W .s; t/ 2 Sg is
finite (Definition 1.1).

Remark 4.4 Let 'W G ! H be a coarse map. Given g 2 G, define the set S D
f.g�1x; x/ 2 G �G W x 2 Gg. Then fst�1 W .s; t/ 2 Sg D fg�1g is finite, so that
f'.g�1x/'.x/�1 W x 2Gg is finite. In other words, we can find a finite decomposition
G D

F
i2I Xi , where I is a finite-index set, and a finite subset fhi W i 2 I g �H such

that '.g�1x/D h�1i '.x/ for all x 2Xi and i 2 I.

Recall that two maps '; �W G!H are close (written ' � � ) if f'.x/�.x/�1 W x 2Gg
is finite (Definition 1.1).
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Remark 4.5 If '; �W G ! H are close, then there is a finite decomposition G DF
i2I Xi , where I is a finite-index set, and a finite subset fhi W i 2 I g �H such that

we have �.x/D hi'.x/ for all x 2Xi and i 2 I.

Let R and W be as above, and 'W G ! H a coarse map. Given f 2 C.G;W /,
define '�.f / 2 C.H;W / by setting '�.f /.y/ D

P
x2G;'.x/Dy f .x/. Moreover,

given f 2 C.H;W /, define '�.f /D f ı' 2 C.G;W /.

Definition 4.6 Given a res–invariant RG–submodule L of C.G;W /, let '�L be
the smallest res–invariant RH–submodule of C.H;W / containing f'�.f / W f 2 Lg.
Given a res–invariant RH–submodule M of C.G;W /, let '�M be the smallest
res–invariant RG–submodule of C.H;W / containing f'�.f / W f 2M g.

Lemma 4.7 We have

'�LD hfh:'�.f / W h 2H; f 2 LgiR;(4)

'�M D hf1A �'
�.f / W f 2M; A�GgiR:(5)

Proof We obviously have “�” in (4). To show “�”, it suffices to show that the
right-hand side is res–invariant as it is obviously an RH–submodule. Given B �H,
we have for all h 2H and f 2 L that

1B � .h:'�.f //D h:.1h�1B �'�.f //D h:.'�.1'�1.h�1B/ �f //;

which lies in the right-hand side as L is res–invariant.

For (5), we again have “�” by construction. As the right-hand side is res–invariant,
it suffices to show that it is an RG–submodule in order to prove “�”. Given g 2G,
by Remark 4.4 we can find a finite decomposition G D

F
i2I Xi and a finite subset

fhi W i 2 I g � H such that '.g�1x/ D h�1i '.x/ for all x 2 Xi and i 2 I. Then,
for all A � G, g:.1A � '�.f // D 1gA � .g:'

�.f // D
P
i2I 1Xi

� 1gA � .g:'
�.f // DP

i2I 1Xi
�1gA�.'

�.hi :f // lies in the right-hand side of (5) as M is an RH–submodule.

Note that in general, '�L is not equal to f'�.f / W f 2 Lg, and '�M is not equal to
f'�.f / W f 2M g.

Lemma 4.8 (i) If '; �W G!H are coarse maps with ' � � , then '�LD ��L
and '�M D ��M for all L and M.

(ii)  �'�LD . ı'/�L and '� �N D . ı'/�N for all L, N and coarse maps
'W G!H and  W H !K .
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Proof (i) Let us show '�LD ��L. By Remark 4.5, there is a finite decomposition
G D

F
i2I Xi and a finite subset fhi W i 2 I g �H such that �.x/D hi'.x/ for all

x 2Xi and i 2 I. Then

��.f /D
X
i2I

��.1Xi
�f /D

X
i2I

hi :'�.1Xi
�f / 2 '�L

for all f 2 L. Hence, ��L� '�L. By symmetry, we have ��LD '�L.

Let us show '�M D ��M. Let I, fXi W i 2 I g and fhi W i 2 I g be as above. We have
that

'�.f /D
X
i2I

1Xi
�'�.f /D

X
i2I

1Xi
���.hi :f / 2 �

�M

for all f 2M. Hence, '�M � ��M. By symmetry, we have '�M D ��M.

(ii) Let us show  �'�LD. ı'/�L. Obviously, “�” holds as  �'�L3 �.'�.f //D
. ı '/�.f / for all f 2 L. Let us show “�”. By (4), it suffices to show that
 �.h:'�.f // 2 . ı �/�L for all h 2 H and f 2 L. By Remark 4.4, we can find
a finite decomposition H D

F
i2I Yi and a finite subset fki W i 2 I g � K such that

 .h�1y/D k�1i  .y/ for all y 2 Yi and i 2 I. Then

 �.h:'�.f //D
X
i2I

 �.1Yi
� .h:'�.f ///D

X
i2I

ki : �
�
1h�1Yi

� .'�.f //
�

D

X
i2I

ki :. ı'/�.1'�1.h�1Yi /
�f /

lies in . ı'/�L for all f 2 L as L is res–invariant. This shows “�”.

Let us show '� �N D . ı'/�N. The inclusion “�” holds as '� �N 3'�. �.f //
for all f 2 N. Let us prove “�”. By (5), it suffices to prove that '�.1B � �.f // 2
. ı'/�N for all B �H and f 2N. We have

'�.1B � 
�.f //D 1'�1.B/ �'

�. �.f //D 1'�1.B/ � . ı'/
�.f /;

which lies in . ı'/�N as the latter is res–invariant. This shows “�”.

4.2 Coarse embeddings and res–invariant modules

Recall that a map 'W G!H between groups G and H is a coarse embedding if for
every S � G �G, fst�1 W .s; t/ 2 Sg is finite if and only if f'.s/'.t/�1 W .s; t/ 2 Sg
is finite (Definition 1.1).
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Lemma 4.9 Let 'W G ! H be a coarse embedding, and let Y WD '.G/. Then we
can find X �G such that X ! Y , x 7! '.x/, is a bijection. In addition, we can find
a finite decomposition G D

FI
iD1Xi with g.i/ 2G for 1� i � I and h.i/ 2H for

1 � i � I, such that Xi D g.i/�1X.i/ for some X.i/ � X, with g.1/ D e (identity
in G ), h.1/D e (identity in H ), X1 D X.1/D X and '.x/D h.i/'.g.i/x/ for all
x 2Xi and 1� i � I.

Proof By Lemma 2.20, we can find X such that the restriction of ' to X is bi-
jective onto its image and that there are finitely many g.i/ 2 G, 1 � i � I, such
that G D

SI
iD1 g.i/

�1X, where we can certainly arrange g.1/ D e . Now define
recursively X1 WDX and X.i/DX ng.i/.g.1/�1X1[ � � � [g.i � 1/�1Xi�1/. Then
G D

FI
iD1 g.i/

�1X.i/. Using Remark 4.4, we can further decompose each X.i/ to
guarantee that there exist h.i/ 2H for 1� i � I such that '.x/D h.i/'.g.i/x/ for
all x 2 g.i/�1X.i/ and 1� i � I. Setting Xi WD g.i/�1X.i/, we are done.

Lemma 4.10 Let 'W G!H be a coarse embedding, and fix h 2H. There exists a
finite subset F � G such that for all x; zx 2 G with '.zx/D h�1'.x/, we must have
zx 2 Fx .

Proof Let S Df.s; t/2G W'.s/Dh�1'.t/g. Then f'.s/'.t/�1 W .s; t/2SgD fh�1g
is finite, so that F D fst�1 W .s; t/ 2 Sg is finite since ' is a coarse embedding.

Let 'W G ! H be a coarse embedding, and set Y WD '.G/. Lemma 2.20 yields a
subset X �G such that the restriction of ' to X is a bijection z'W X Š Y , x 7! '.x/.
It is clear that H D

S
h2H hY . Enumerate H, say H Dfh1; h2; : : : g, where h1D e is

the identity. Define recursively Y1 WDY and Yj WDY nh�1j .h1Y1[� � �[hj�1Yj�1/. By
construction, we have a decomposition as a disjoint union H D

F1
jD1 hjYj . Clearly,

for all h 2H,

(6) hY \ hjYj D∅ for all but finitely many j:

Definition 4.11 Define !W H !G by setting !.y/D z'�1.h�1j y/ for y 2 hjYj .

By construction,

(7) .' ı!/.y/D h�1j y for y 2 hjYj :

Take F as in Lemma 4.10 for h D e . Then .! ı '/.x/ 2 Fx for all x 2 G, so
f.! ı'/.x/x�1 W x 2Gg is finite, ie

(8) ! ı' � idG :
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In general, preimages under ! can be infinite, so that for an arbitrary f 2 C.H;W /,
!�.f / may not be defined. However, we can define !�.f / for f 2 '�L, where
L � C.G;W / is a res–invariant RG–submodule. We need some preparation. The
following is an immediate consequence of (4) and (6):

Lemma 4.12 We have '�LD
L1
jD1 1hjYj

� .'�L/ as R–modules.

Let F be as in Lemma 4.10 for h D e . For every x 2 G, define Fx � F by
fzx 2G W'.zx/D'.x/gDFxx . For every subset Fi �F , define Xi Dfx 2G WFxDFig.
Then G D

F
Fi�F

Xi , and by construction, we have the following:

Lemma 4.13 '�.'�.f //D
P
Fi�F

1Xi
�
�P

g2Fi
g�1:f

�
:

Similarly, let F be as in Lemma 4.10 for some fixed h 2H. Let X �G be as above.
For all x 2 X, define Fx � F by setting fzx 2 G W '.zx/ D h�1'.x/g D Fxx . For
a subset Fi � F, let Xi D fx 2 X W Fx D Fig. We have X D

F
Fi�F

Xi and, by
construction:

Lemma 4.14 1Y � .h:'�.f //D '�
�P

Fi�F
1Xi
�
�P

g2Fi
g�1:f

��
:

Now we are ready for the following:

Lemma 4.15 Let L�C.G;W / be a res–invariant RG–submodule. Then '�L!L,
f 7! !�.f /, is well defined, where !�.f /.x/D

P
y2H;!.y/Dx f .y/.

Proof By Lemma 4.12, it suffices to show that for every j and f 2 1hjYj
� '�L,

!�.f / lies in L. For such f , we know that !�.f /D 1X �'�.h�1j :f /. As f lies in
1hjYj

� '�L, the function h�1j :f lies in 1Yj
� '�L � 1Y � '�L. Hence, it suffices to

show that 1X �'�.'�L/� L. By (4), it is enough to show that '�.h:'�.f // 2 L for
all f 2 L. This follows immediately from Lemmas 4.13 and 4.14.

Definition 4.16 For ' and L as above, set

'��1L WD ff 2 C.H;W / W '�.h:f / 2 L for all h 2H g:

Note that the construction of '��1L makes sense for general coarse maps ' , but we
will only be interested in the case where ' is a coarse embedding. We collect a few
properties of '��1L:
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Lemma 4.17 (a) '��1L is a res–invariant RH–submodule of C.H;W /.

(b) For f 2 C.H;W /, f 2 '��1L if and only if 1hY �f 2 '��1L for all h 2H.

(c) '��1L is the biggest res–invariant RH–submodule M of C.G;W / such that
'�.f / 2 L for all f 2M.

(d) Let ! be as in Definition 4.11. Then !�.f / 2 '��1L for all f 2 L.

(e) '�'��1LD L.

Proof (a) '��1L is H–invariant by definition. To see that '��1L is res–invariant,
take B �H and f 2'��1L. Then, for all h2H, '�.h:.1B �f //D'�.1hB �.h:f //D
1'�1.hB/'

�.h:f / 2 L, so 1B �f 2 '��1L.

(b) This follows from '�.h:f / D '�.1Y � .h:f // D '
�.h:.1h�1Y � f // for all f 2

C.H;W /.

(c) If M is an res–invariant RH–submodule of C.H;W /, then f 2 M implies
h:f 2M for all h 2H, and hence, by (b), we conclude that f 2 '��1L.

(d) By (b), it suffices to prove 1hY �!�.f / 2 '��1L for all h 2H. By (6), it suffices
to prove 1hjYj

� !�.f / 2 '��1L for all j . For all y 2 hjYj , 1hjYj
� !�.f /.y/ D

f .!.y//Df .z'�1.h�1j y//D'�.1X �f /.h
�1
j y/, hence 1hjYj

�!�.f /Dhj :'�.1X �f /.
Let h 2H be arbitrary. Lemmas 4.14 and 4.13 imply that '�.hhj :'�.1X � f // lies
in L. Hence, !�.f / lies in '��1L.

(e) We have '�.f / � L for all f 2 '��1L by construction (see also (c)). Hence
'�'��1L � L by minimality of '�'��1L. To show L � '�'��1L, it suffices
to show that 1X � L � '�'��1L as L D

P
j g.i/

�1:.1X � L/ by Lemma 4.9. Let
f 2 1X �L. Then !�.f / 2 '��1L by (d), and 1X �'�.!�.f // 2 '�'��1L. But we
have 1X �'�.!�.f //D 1X � .! ı'/�.f /D 1X �f D f as ! ı' D id on X.

Lemma 4.18 If '; �W G ! H are coarse embeddings with ' � � , then '��1L D
���1L.

If 'W G!H,  W H !K are coarse embeddings, then  ��1'��1LD . ı'/��1L.

Proof By Remark 4.5, we have, for f 2 C.H;W /, '�.f / D
P
i 1Xi

� ��.hi :f /.
Hence, ���1L� '��1L. By symmetry, ���1LD '��1L.

If f 2 ��1'��1L, then  �.f / 2 '��1L, and thus . ı'/�.f /D '�. �.f // 2L.
Lemma 4.17(c) implies f 2 . ı '/��1L. To show . ı '/��1L �  ��1'��1L,
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take f 2 . ı'/��1L. To show f 2  ��1'��1L, it suffices to show for all k 2K
and h 2H that '�.h: �.k:f // 2 L. By Remark 4.4, we have  .h�1y/D k�1j  .y/

for all y 2 Yj and j 2 J, for suitable J, Yj and kj , so that '�.h: �.k:f // D
'�
�P

j 1Yj
� �.kjk:f /

�
D
P
j 1'�1.Yj /

. ı'/�.kjk:f /, which lies in L as f lies
in . ı'/��1L.

Our next goal is to define a suitable topology on '�L in the case that L is a topological
res–invariant RG–submodule of C.G;W / and ' is a coarse embedding. We start
with some preparations.

Lemma 4.19 Let zY � Y and zX D X \ '�1. zY /. Then 1 zX � L ! 1 zY � .'�L/,
f 7! '�.f /, is bijective.

Proof Injectivity holds as we can recover f from '�.f / using

'�.'�.f //.zx/D '�.f /.'.zx//D
X
x2G

'.x/D'.zx/

f .x/D f .zx/

for f 2 1 zX �L and zx 2 zX. For surjectivity, (4) implies that it suffices to show that
for all h 2H and f 2 L, 1 zY � .h:'�.f // lies in the image of our map. This follows
immediately from Lemma 4.14.

For j 2 Z, j � 1, set Xj WD X \ '�1.Yj /. Obviously, for all j � 1, we have
1hjYj

� .'�L/D hj :.1Yj
� .'�L//. Thus, 1Xj

�L! 1hjYj
� .'�L/, f 7! hj :'�.f /, is

an isomorphism. For J 2 Z, J � 1, define

ˆJ W

JM
jD1

1Xj
�L! '�L; .fj /j 7!

JX
jD1

hj :'�.fj /:

Definition 4.20 Let L be a topological res–invariant RG–submodule of C.G;W /.
Let � be the finest topology on '�L such that for all J 2Z, J � 1, ˆJ is continuous.
Here 1Xj

�L is given the subspace topology from L, and
LJ
jD1 1Xj

�L is given the
product topology.

The proof of the following lemma is straightforward:

Lemma 4.21 � is the finest topology on '�L satisfying the following properties:

(T1) .'�L; �/ is a topological res–invariant RH–submodule of C.H;W /.

(T2) L! .'�L; �/, f 7! '�.f /, is continuous.
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Lemma 4.22 Let ! be as in Definition 4.11. Then !�W '�L! L is continuous.

Proof By definition of the topology of '�L, it suffices to show that for every j ,
1Xj
�L! 1hjYj

� .'�L/, f 7! !�.hj :'�.f //, is continuous. But it is easy to see
that for f 2 1Xj

� L, !�.hj :'�.f // D '�.'�.f //. Continuity now follows from
Lemma 4.13.

Now let us define a suitable topology on '�M in the case that M is a topological
res–invariant RH–submodule of C.H;W / and ' is a coarse embedding. Again,
some preparations are necessary. Let 'W G ! H be a coarse embedding and M a
res–invariant RH–submodule of C.H;W /.

Lemma 4.23 Let zX � G be such that the restriction of ' to zX is injective. Let
zY WD '. zX/. Then 1 zY �M ! 1 zX � .'

�M/, f 7! 1 zX �'
�.f / is a bijection.

Proof For every f 2 1 zY �M and y 2H, we have

'�.1 zX �'
�.f //.y/D

X
x2 zX
'.x/Dy

'�.f /.x/D
X
x2 zX
'.x/Dy

.f /.'.x//D f .y/:

Hence, '�.1 zX �'
�.f //D f , and our map is injective. To show surjectivity, it suffices

by (5) to show that for every f 2M and A�G, 1 zX � .1A �'
�.f // lies in the image of

our map. This follows from 1 zX �.1A �'
�.f //D 1

A\ zX
�'�.f /D 1 zX �'

�.1
'.A\ zX/

�f /.

Now let Y D '.G/. Lemma 2.20 gives us X �G such that 'jX is a bijection X Š Y ,
x 7! '.x/. By Lemma 4.9, we can find a finite decomposition GD

FI
iD1Xi and finite

subsets fg.i/ W 1� i � I g �G and fh.i/ W i � i � I g �H such that Xi D g.i/�1X.i/
for some X.i/ � X and '.x/ D h.i/'.g.i/x/ for all x 2 Xi and 1 � i � I. Let
Yi WD '.Xi / and ˆW

LI
iD1 1Yi

�M ! '�M, .fi /i 7!
PI
iD1 1Xi

� '�.fi /. As we
obviously have '�M D

LI
iD1 1Xi

�.'�M/, ˆ is surjective. And by Lemma 4.23, ˆ is
injective. Thus, ˆ is an isomorphism of R–modules.

Definition 4.24 Let M be a topological res–invariant RH–submodule of C.H;W /.
Define the topology � on '�M so that ˆ becomes a homeomorphism. Here 1Yi

�M is
given the subspace topology from M, and

LI
iD1 1Yi

�M is given the product topology.

The following lemma is straightforward to prove:
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Lemma 4.25 � is the finest topology on '�M satisfying the following properties:

(T1) .'�M; �/ is a topological res–invariant RG–submodule of C.G;W /.

(T2) M ! .'�M; �/, f 7! '�.f /, is continuous.

Now we define a suitable topology on '��1L for a topological res–invariant RG–
submodule L of C.G;W / and a coarse embedding ' . Lemma 4.17(b) implies that
'��1LD

Q
j 1hjYj

� .'��1L/. The following is easy to verify:

Lemma 4.26 For every j , ˆ.j /W 1Xj
�L! 1hjYj

� .'��1L/, f 7! hj :'�.f /, is a
bijection whose inverse is given by 1hjYj

� .'��1L/! 1Xj
�L, f 7! 1Xj

�'�.h�1j :f /.

Definition 4.27 Let L be a topological res–invariant RG–submodule of C.G;W /.
Define the topology � on '��1L so that

Q
j ˆ

.j /W
Q
j 1Xj

�L!
Q
j 1hjYj

�.'��1L/D

'��1L becomes a homeomorphism. Here 1Xj
�L is given the subspace topology coming

from L, and
Q
j 1Xj

�L is given the product topology.

The following is straightforward to prove:

Lemma 4.28 � is the coarsest topology on '��1L satisfying the following properties:

(T�1) .'��1L; �/ is a topological res–invariant RH–submodule of C.H;W /.

(T�2) .'��1L; �/! L, f 7! '�.f /, is continuous.

Lemma 4.29 Let L, ' , ! and '��1L be as above. Then !�W L ! '��1L is
continuous.

Proof It suffices to show continuity of L! 1Xj
�L, f 7! 1Xj

� '�.h�1j :!�.f //,
for all j. And we have 1Xj

� '�.h�1j :!�.f // D 1Xj
� '�

�
h�1j :.1hjYj

� !�.f //
�
D

1Xj
� .'�'�.1Xj

�f //D 1Xj
�f , which clearly depends continuously on f .

Lemma 4.30 Let L, ' and '��1L be as above. We have '�'��1LDL as topolog-
ical res–invariant modules.

Proof Let � be the topology of L and z� the topology of '�'��1L. As '�W '��1L!
.L; �/ is continuous by (T�2), we must have � � z� by Lemma 4.25. To prove
z� � � , we show that idW .L; �/ ! .'�'��1L; z�/ is continuous. By construction
of z� it suffices to show that L! 1Yi

� '��1L, f 7! '�.1Xi
� f /, is continuous for

all i . By construction of the topology on '��1L, it is enough to show that L! L,
f 7! 1Xj

�'�
�
h�1j :.'�.1Xi

�f //
�
, is continuous. This now follows from Lemmas 4.14

and 4.13.
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We have the following topological analogue of Lemma 4.8, which is straightforward to
prove.

Lemma 4.31 (i) If '; �W G ! H are coarse embeddings with ' � � , then
'�LD ��L, '�M D ��M and '��1LD ���1L as topological res–invariant
modules for all topological res–invariant RG–submodules L of C.G;W / and
all topological res–invariant RH–submodules M of C.H;W /.

(ii) If 'W G!H and  W H!K are coarse embeddings, then  �'�LD . ı'/�L,
'� �N D . ı'/�N and  ��1'��1LD . ı'/��1L as topological res–invar-
iant modules for all topological res–invariant RG–submodules L of C.G;W /
and all topological res–invariant RK–submodules N of C.K;W /.

4.3 Coarse maps and (co)homology

Let us explain how coarse maps induce maps in group (co)homology. We first need to
write group (co)homology in terms of groupoids.

Let G be a group, R a commutative ring with unit and L an RG–module. We
write g:f for the action of g2G on f 2L. We recall the chain and cochain complexes
coming from the bar resolution (see [10, Chapter III, Section 1]): Let .C�.L/; @�/
be the chain complex � � � @3

�! C2.L/
@2
�! C1.L/

@1
�! C0.L/ with C0.L/ D L and

Cn.L/D Cf .G
n; L/ŠRŒGn�˝R L, where Cf stands for maps with finite support,

and @n D
Pn
iD0.�1/

i@
.i/
n , where

@.0/n .f /.g1; : : : ;gn�1/D
X
g02G

g�10 :f .g0;g1; : : : ;gn�1/;

@.i/n .f /.g1; : : : ;gn�1/D
X
g;xg2G
g xgDgi

f .g1; : : : ;gi�1;g; xg;giC1; : : : ;gn�1/ for 1� i�n� 1;

@.n/n .f /.g1; : : : ;gn�1/D
X
gn2G

f .g1; : : : ;gn�1;gn/:

Let .C �.L/; @�/ be the cochain complex C 0.L/ @0

�! C 1.L/ @1

�! C 2.L/ @2

�! � � � ,
where C 0.L/D L, C n.L/D C.Gn; L/ for n� 1 and @n D

PnC1
iD0 .�1/

i@n
.i/

, with

@n.0/.f /.g0; : : : ; gn/D g0:f .g1; : : : ; gn/;

@n.i/.f /.g0; : : : ; gn/D f .g0; : : : ; gi�1gi ; : : : ; gn/ for 1� i � n;

@n.nC1/.f /.g0; : : : ; gn/D f .g0; : : : ; gn�1/:
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Now let W be an R–module and L� C.G;W / be an RG–submodule. Consider the
transformation groupoid G WD G ÌG attached to the left multiplication action of G
on G. By definition, G D f.x; g/ W x 2 G; g 2 Gg, and the range and source maps
are given by r.x; g/D x and s.x; g/D g�1x , whereas the multiplication is given by
.x; g1/.g

�1
1 x; g2/ D .x; g1g2/. Define � W G ! G; .x; g/ 7! g . Let G.0/ D G and,

for n� 1, set

G.n/ WD f.
1; : : : ; 
n/ 2 Gn W s.
i /D r.
iC1/ for all 1� i � n� 1g;

and, for n� 1, define � W G.n/!Gn as the restriction of �nW Gn!Gn to G.n/ .

Note that G.n/D f..x1; g1/; : : : ; .xn; gn// 2 Gn W g�1i xi D xiC1 for all 1� i � n�1g,
so that we have a bijection

G.n/ ŠG �Gn; ..x1; g1/; : : : ; .xn; gn// 7! .x1; g1; : : : ; gn/:(9)

This is because, for 2� i � n, xi is determined by the equation xi D g�1i�1 � � �g
�1
1 x1 .

We will often use this identification of G.n/ with G�Gn without explicitly mentioning
it.

Now, given f 2 C.G.n/; W / and Eg 2Gn , we view f j��1. Eg/ as the map in C.G;W /
given by x 7! f .x; Eg/. Set supp.f / WD fEg 2Gn W f j��1. Eg/ ¤ 0g.

Let us define a chain complex .D�.L/; d�/ as follows: For nD 0; 1; 2; : : : , set

Dn.L/ WD ff 2 C.G.n/; W / W supp.f / is finite; f j��1. Eg/ 2 L for all Eg 2Gng:

Moreover, for all n � 1, define maps dnW Dn.L/ ! Dn�1.L/ by setting dn DPn
iD0.�1/

id
.i/
n with d .i/n D .ı

.i/
n /� , where ı.0/1 D s , ı.1/1 D r and, for n� 2,

ı.0/n .
1; : : : ; 
n/D .
2; : : : ; 
n/;

ı.i/n .
1; : : : ; 
n/D .
1; : : : ; 
i
iC1; : : : ; 
n/ for 1� i � n� 1;

ı.n/n .
1; : : : ; 
n/D .
1; : : : ; 
n�1/:

Here, we use the same notation as in Section 4.1, ie

.ı.i/n /�.f /.E�/D
X
E
2G.n/

ı
.i/
n .E
/DE�

f .E
/:

Let us define a cochain complex .D�.L/; d�/ by setting, for all nD 0; 1; 2; : : : ,

Dn.L/ WD ff 2 C.G.n/; W / W f j��1. Eg/ 2 L for all Eg 2Gng:
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Moreover, for all n, define maps dnW Dn.L/!DnC1.L/ by dn D
PnC1
iD0 .�1/

idn
.i/

,
with dn

.i/
D .ın

.i/
/� (as in Section 4.1, .ın

.i/
/�.f /D f ı ın

.i/
), where ı0

.0/
D s , ı0

.1/
D r

and, for all n� 1,

ın.0/.
0; : : : ; 
n/D .
1; : : : ; 
n/;

ın.i/.
0; : : : ; 
n/D .
0; : : : ; 
i�1
i ; : : : ; 
n/ for 1� i � n;

ın.nC1/.f /.
0; : : : ; 
n/D .
0; : : : ; 
n�1/:

We are also interested in the topological setting, where we assume that R is a topological
field and L� C.G;W / a RG–submodule together with the structure of a topological
R–vector space such that the G–action G Õ L is by homeomorphisms. Equip
the above chain and cochain complexes C�.L/ and C �.L/ with the topologies of
pointwise convergence. We also equip D�.L/ and D�.L/ with the topologies of
pointwise convergence, ie fi 2 C.G.n/; W / converges to f 2 C.G.n/; W / if and only
if limi fi j��1. Eg/ D f j��1. Eg/ in L for all Eg 2Gn .

The following is now immediate:

Lemma 4.32 (i) We have isomorphisms �� of chain complexes and �� of cochain
complexes given by

�nW Cn.L/!Dn.L/; �n.f /.x; Eg/D f .Eg/.x/;

�nW C n.L/!Dn.L/; �n.f /.x; Eg/D f .Eg/.x/:

(ii) In the topological setting, �� and �� from (i) are topological isomorphisms.

By definition of group (co)homology, Hn.G;L/ D Hn.C�.L// and Hn.G;L/ D

Hn.C �.L//. By definition of reduced group (co)homology, we have Hn.G;L/ D
Hn.C�.L// and Hn.G;L/ D H

n
.C �.L// in the topological setting (recall that

Hn.C�.L//D ker.@n/=im.@nC1/ and Hn.C�.L//D ker.@n/=im.@n�1/). Hence, we
obtain:

Corollary 4.33 (i) The maps �� and �� from Lemma 4.32 induce isomorphisms
Hn.��/W Hn.G;L/ŠHn.D�.L// and Hn.��/W Hn.G;L/ŠHn.D�.L// for
all n.

(ii) In the topological setting, �� and �� from Lemma 4.32 induce isomorphisms
Hn.��/W Hn.G;L/ŠHn.D�.L// and Hn.��/W Hn.G;L/ŠHn.D�.L// for
all n.
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In this groupoid picture of group (co)homology, let us now explain how coarse maps
induce chain and cochain maps. Let 'W G!H be a coarse map. Let G DG ÌG and
HDHÌH. Define '1W G!H , .x; g/ 7! .'.x/; '.x/'.g�1x/�1/. It is easy to see that
'1 is a groupoid homomorphism. This means that if 
1 and 
2 are composable, then so
are '1.
1/ and '1.
2/, and we have '1.
1
2/D '1.
1/'1.
2/. For all n� 1, define
'nW G.n/!H.n/ , .
1; : : : ; 
n/ 7! .'1.
1/; : : : ; '

1.
n//. Moreover, if 'W G!H is
a coarse embedding, let !W H ! G be as above, and define !1W H! G, .y; h/ 7!
.!.y/; !.y/!.h�1y/�1/, and for all n� 1, define !nW H.n/! G.n/ , .�1; : : : ; �n/ 7!
.!1.�1/; : : : ; !

1.�n//. Now let L be a res–invariant RG–submodule of C.G;W /.
For f 2 Dn.L/, consider .'n/�.f /.E�/ D

P
E
2G.n/; 'n.E
/DE� f .E
/. If ' is a coarse

embedding and ! is as above, set .!n/�.f /.E
/ D
P
E�2H.n/; !n.E�/DE
 f .E�/ for f 2

Dn.'�L/.

Lemma 4.34 (i) Let 'W G!H be a coarse map. For all n, Dn.'/W Dn.L/!
Dn.'�L/, f 7! .'n/�.f /, is well defined and gives rise to a chain map
D�.'/W D�.L/! D�.'�L/. If  W H ! K is another coarse map, then we
have

D�. ı'/DD�. / ıD�.'/:(10)

If L is a topological res–invariant RG–submodule of C.G;W / and ' is a
coarse embedding, then for all n, Dn.'/ is continuous.

(ii) If ' is a coarse embedding, then Dn.!/W Dn.'�L/!Dn.L/, f 7! .!n/�.f /,
is well defined and gives rise to a chain map D�.!/W D�.'�L/!D�.L/. If L
is a topological res–invariant module, then Dn.!/ is continuous for all n.

Note that for (10) to make sense, we implicitly use Lemma 4.8(ii).

Proof (i) To show that Dn.'/ is well defined, we have to show that .'n/�.f / 2
Dn.'�L/ for all f 2 Dn.L/. It suffices to treat the case that supp.f / D fEgg for a
single EgD .g1; : : : ; gn/2Gn , as a general element in Dn.L/ is a finite sum of such f .
Let us first show that .'n/�.f / has finite support. As ' is a coarse map,

F WD f'.x/'.g�1i x/�1 W x 2G; 1� i � ng is finite:(11)

Clearly, supp..'n/�.f // � F n . To show that for every Eh D .h1; : : : ; hn/ 2 H
n ,

.'n/�.f /j��1.Eh/
lies in '�L, define

A WD fx 2G W '.g�1i�1 � � �g
�1
1 x/'.g�1i � � �g

�1
1 x/�1 D hi for all 1� i � ng:
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Then 'n.x; Eg/ 2 ��1.Eh/ if and only if x 2 A. Hence,

.'n/�.f /.y; Eh/D
X
x2A

'n.x; Eg/D.y;Eh/

f .x; Eg/D
X
x2A
'.x/Dy

f .x; Eg/D '�.1A � .f j��1. Eg///.y/;

so that

.'n/�.f /j��1.Eh/
D '�.1A � .f j��1. Eg///:(12)

As f j��1. Eg/ lies in L, L is res–invariant and '�. Qf / 2 '�L for all Qf 2L, this shows
that .'n/�.f /j��1.Eh/

2 '�L. Hence, Dn.'/ is well defined for all n. Now .Dn.'//n

is a chain map because 'n is a groupoid homomorphism for all n. Equation (10)
holds because we have . n/� ı .'n/� D .. ı'/n/� for all n. Equation (12) shows
continuity of Dn.'/ for all n as the right-hand side depends continuously on f . This
is because L satisfies (2) and the topology on '�L satisfies (T2).

(ii) To show Dn.!/ is well defined, take f 2Dn.'�L/. We may assume supp.f /D
fEhg for EhD .xh1; : : : ; xhn/ and f j

��1.Eh/
2 1hY � .'�L/. By (6),

hY [ xh�11 hY [ � � � [ .xh�1n � � �
xh�11 hY /�

J[
jD1

hjYj

for some J. Thus, for all y 2 hY and 1 � i � n, !.xh�1i � � � xh
�1
1 y/ D z'�1.h�1j y/

for some 1 � j � J. Let S D f.xh�1i�1 � � � xh
�1
1 y; xh�1i � � �

xh�11 y/ W y 2 hY; 1 � i � ng.
The set f'.!.s//'.!.t//�1 W .s; t/ 2 Sg � fh�1j hk W 1 � j; k � J g is finite, so that
F WD f!.s/!.t/�1 W .s; t/ 2 Sg is finite as ' is a coarse embedding. Hence, we have
supp..!n/�.f //� F n . A similar formula as (12) shows that .!n/� is well defined,
and continuous in the topological setting.

Now let M be a res–invariant RH–submodule of C.H;W /. For f 2 Dn.M/,
consider .'n/�.f / D f ı 'n . If ' is a coarse embedding and L a res–invariant
RG–submodule of C.G;W /, set, for f 2Dn.L/, .!n/�.f /D f ı!n .

Lemma 4.35 (i) Let ' be a coarse map. For all n,

Dn.'/W Dn.M/!Dn.'�M/; f 7! .'n/�.f /;

is well defined and gives rise to a cochain map D�.'/W D�.M/!D�.'�M/.
If  W H !K is another coarse map, we have

(13) D�. ı'/DD�.'/ ıD�. /:
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If M is a topological res–invariant RH–submodule of C.H;W / and ' is a
coarse embedding, then Dn.'/ is continuous for all n.

(ii) If ' is a coarse embedding, then

Dn.!/W Dn.L/!Dn.'��1L/; f 7! .!n/�.f /;

is well defined and gives rise to a cochain map D�.!/W D�.L/!D�.'��1L/.
If L is a topological res–invariant module, then Dn.!/ is continuous for all n.

For (13) to make sense, we implicitly use Lemma 4.8(ii).

Proof (i) To show Dn.'/ is well defined, we have to show .'n/�.f / 2Dn.'�M/

for all f 2 Dn.M/, ie .'n/�.f /j��1. Eg/ 2 '
�M for all Eg D .g1; : : : ; gn/ 2 G

n .
F D f'.x/'.g�1i x/�1 W x 2 G; 1 � i � ng is finite by (11). We also know that
'n.x; Eg/ 2 ��1.F n/ for all x 2G. For EhD .h1; : : : ; hn/ 2 F n , let

AEh WD fx 2G W '.g
�1
i�1 � � �g

�1
1 x/'.g�1i � � �g

�1
1 x/�1 D hi for all 1� i � ng:

Then G D
F
Eh2F n AEh and, for x 2 AEh , we have 'n.x; Eg/D .'.x/; Eh/. Hence,

.'n/�.f /j��1. Eg/.x/D f .'
n.x; Eg//D

X
Eh2F n

1AEh
.x/ � .f j

��1.Eh/
/.'.x//;

and thus

.'n/�.f /j��1. Eg/ D

X
Eh2F n

1AEh
�'�.f j

��1.Eh/
/:(14)

As f j
��1.Eh/

2M, '�. Qf /2 '�M for all Qf 2M and '�M is res–invariant, this shows
that .'n/�.f /j��1. Eg/ 2'

�M. Hence, Dn.'/ is well defined for all n. Then .Dn.'//n
is a cochain map because 'n is a groupoid homomorphism for all n. Equation (13)
holds because we have .'n/� ı . n/� D .. ı'/n/� for all n. Equation (14) shows
that Dn.'/ is continuous for all n as the right-hand side depends continuously on f
because the topology on '�M satisfies (T1) and (T2).

(ii) Given f 2 Dn.L/ and Eh D .xh1; : : : ; xhn/ 2 Hn , we show .!n/�.f /j
��1.Eh/

2

'��1L. By Lemma 4.17(b), it suffices to show 1hY � ..!
n/�.f /j

��1.Eh/
/ 2 '��1L for

all h 2H. As we saw in the proof of Lemma 4.34(ii),

F D f!.xh�1i�1 � � �
xh�11 y/!.xh�1i � � �

xh�11 y/�1 W y 2 hY; 1� i � ng

is finite. Thus, !n.y; Eh/ 2 ��1.F n/ for all y 2 hY . For Eg 2 F n , let B Eg D
fy 2 hY W !.xh�1i�1 � � �

xh�11 y/!.xh�1i � � �
xh�11 y/�1 D gi for all 1� i � ng. We then have
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hY D
F
Eg2F n B Eg , and !n.y; Eh/D .!.y/; Eg/ for y2B Eg , so 1hY �..!n/�.f /j��1.Eh/

/DP
Eg2F n 1BEg �!

�.f j��1. Eg//, which lies in '��1L by Lemma 4.17(d). This formula
also shows continuity in the topological setting.

Our next goal is to show that coarse maps which are close induce the same chain and
cochain maps up to homotopy. Let '; �W G ! H be two coarse embeddings with
' � � . Let L be a res–invariant RG–submodule of C.G;W / and M a res–invariant
RH–submodule of C.H;W /. Let G D G ÌG and HDH ÌH. Define � W G!H ,
x 7! .'.x/; '.x/�.x/�1/. For n� 0 and 1� h� nC 1, let �.h/n W G.n/!H.nC1/ be
given by �.1/0 D � and, for n� 1,

�
.h/
n .
1; : : : ; 
n/D .'

1.
1/; : : : ; '
1.
h�1/; �.r.
h//; �

1.
h/; : : : ; �
1.
n//

for 1� h� n;
�.nC1/n .
1; : : : ; 
n/D

�
�1.
1/; : : : ; �

1.
n/; �.s.
n//
�
:

Moreover, for n � 1 and 1 � h � n, let �n
.h/
W G.n�1/! H.n/ be given by �1

.1/
D �

and, for n� 2,

�n
.h/
.
1; : : : ; 
n�1/D .'

1.
1/; : : : ; '
1.
h�1/; �.r.
h//; �

1.
h/; : : : ; �
1.
n�1//

for 1� h� n� 1;
�n.n/.
1; : : : ; 
n�1/D

�
�1.
1/; : : : ; �

1.
n�1/; �.s.
n�1//
�
:

Lemma 4.36 (i) k
.h/
n D .�

.h/
n /�W Dn.L/! DnC1.'�L/ D DnC1.��L/ is well

defined for all n and h. The sum kn WD
PnC1
hD1.�1/

hC1k
.h/
n gives a chain

homotopy D�.'/�h D�.�/.

(ii) kn
.h/
D .�n

.h/
/�W Dn.M/ ! Dn�1.'

�M/ D Dn�1.�
�M/ is well defined for

all n and h. The sum kn WD
Pn
hD1.�1/

hC1kn
.h/

gives a cochain homotopy
D�.'/�h D

�.�/.

Proof (i) Let us show that k.h/n is well defined, ie .�.h/n /�.f / 2DnC1.'�L/ for all
f 2Dn.L/. We may assume supp.f /D fEgg for a single EgD .g1; : : : ; gn/ 2Gn , as a
general element in Dn.L/ is a finite sum of such f . We first show supp..�.h/n /�.f //

is finite. By (11) and because ' � � , we know that

F WD f'.x/'.g�1i x/�1 W x 2G; 1� i �ng[f'.x/�.x/�1 W x 2Gg

[f�.x/�.g�1i x/�1 W x 2G; 1� i �ng
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is finite. As �.h/n .x; Eg/ lies in ��1.F nC1/ for all x2G, we conclude supp..�.h/n /�.f //

is contained in F nC1 , which is finite. Let us show that .�.h/n /�.f /j��1.Eh/
lies in '�M

for every EhD .h1; : : : ; hnC1/ 2HnC1 . Define

A WD
˚
x 2GW '.g�1i�1 � � �g

�1
1 x/'.g�1i � � �g

�1
1 x/�1 D hi for all 1� i � h�1;

'.g�1h�1 � � �g
�1
1 x/�.g�1h�1 � � �g

�1
1 x/�1 D hh;

�.g�1i�1 � � �g
�1
1 x/�.g�1i � � �g

�1
1 x/�1 D hiC1 for all h� i � n

	
:

Then we have �.h/n .x; Eg/ 2 ��1.Eh/ if and only if x 2 A. Hence, .�.h/n /�.f /j��1.Eh/
D

'�.1A�.f j��1. Eg///. Since f j��1. Eg/ lies in L, which is res–invariant, and '�. Qf /2'�L
for all Qf 2 L, we see that .�.h/n /�.f /j��1.Eh/

2 '�L. Hence, k.h/n is well defined for
all n and h. A straightforward computation shows that kn indeed gives us the desired
chain homotopy.

(ii) Let us show that kn
.h/

is well defined, ie .�n
.h/
/�.f /j��1. Eg/ 2 '

�M for all Eg D
.g1; : : : ; gn�1/ 2G

n�1 and f 2Dn.M/. As in the proof of (i), note that

F WD f'.x/'.g�1i x/�1 W x 2G; 1� i � n� 1g

[ f'.x/�.x/�1 W x 2Gg[ f�.x/�.g�1i x/�1 W x 2G; 1� i � n� 1g

is finite, and that �n
.h/
.x; Eg/ 2 ��1.F n/. For EhD .h1; : : : ; hn/ 2 F n , set

AEh WD
˚
x 2GW '.g�1i�1 � � �g

�1
1 x/'.g�1i � � �g

�1
1 x/�1 D hi for all 1� i � h� 1;

'.g�1h�1 � � �g
�1
1 x/�.g�1h�1 � � �g

�1
1 x/�1 D hh;

�.g�1i�1 � � �g
�1
1 x/�.g�1i � � �g

�1
1 x/�1 D hiC1 for all h� i � n� 1

	
:

Then G D
F
Eh2F n AEh , and, for x 2 AEh , �n

.h/
.x; Eg/D .'.x/; Eh/. Hence,

.�n.h//
�.f /j��1. Eg/.x/D f .�

n
.h/.x; Eg//D

X
Eh2F n

1AEh
.x/ � .f j

��1.Eh/
/.'.x//

and thus

.�n.h//
�.f /j��1. Eg/ D

X
Eh2F n

1AEh
� .'�.f j

��1.Eh/
//:

Since f j
��1.Eh/

2M, '�. Qf / 2 '�M for all Qf 2M and '�M is res–invariant, this
shows that .�n

.h/
/�.f /j��1. Eg/ 2 '

�M. Hence, kn
.h/

is well defined. It is straightforward
to check that kn indeed gives us the desired cochain homotopy.

Algebraic & Geometric Topology, Volume 18 (2018)



Dynamic characterizations of quasi-isometry and applications to cohomology 3525

Now let 'W G ! H be a coarse embedding, !W H ! G as above and L an res–
invariant RG–submodule of C.G;W /. Define # W H !H , y 7! .y; y.' ı!/.y/�1/.
For n� 0 and 1� h� nC1, let �.h/n W H.n/!H.nC1/ be given by �.1/0 D # and, for
n� 1,

�
.h/
n .�1; : : : ; �n/D .�1; : : : ; �h�1; #.r.�h//; .' ı!/

1.�h/; : : : ; .' ı!/
1.�n//

for 1� h� n;
�.nC1/n .�1; : : : ; �n/D

�
�1; : : : ; �n; #.s.�n//

�
:

Moreover, for n � 1 and 1 � h � n, let �n
.h/
W H.n�1/!H.n/ be given by �1

.1/
D #

and, for n� 2,

�n
.h/
.�1; : : : ; �n�1/D .�1; : : : ; �h�1; #.r.�h//; .' ı!/

1.�h/; : : : ; .' ı!/
1.�n�1//

for 1� h� n� 1;
�n.n/.�1; : : : ; �n�1/D

�
�1; : : : ; �n�1; #.s.�n�1//

�
:

Lemma 4.37 (i) We have D�.!ı'/�h id. The map l.h/n D .�
.h/
n /�W Dn.'�L/!

Dn.'�L/ is well defined for all n and h. The sum ln WD
PnC1
hD1.�1/

hC1l
.h/
n

gives a chain homotopy D�.' ı!/�h id.

(ii) We have D�.!ı'/�h id. The map ln
.h/
D .�n

.h/
/�W D

n.'��1L/!Dn.'
��1L/

is well defined for all n and h. The sum ln WD
Pn
hD1.�1/

hC1ln
.h/

gives a
cochain homotopy D�.' ı!/�h id.

Proof (i) D�.! ı'/�h id follows from Lemma 4.36(i) and (8). That l.h/n is well
defined can be proven as Lemma 4.34(ii). It is straightforward to check that ln gives
the desired chain homotopy.

(ii) D�.! ı '/ �h id follows from Lemma 4.36(ii) and (8). The same proof as for
Lemma 4.35(ii) shows that ln

.h/
is well defined. It is straightforward to check that ln

gives the desired cochain homotopy.

Combining Corollary 4.33 and Lemmas 4.34, 4.35, 4.36 and 4.37, we obtain:

Theorem 4.38 Let 'W G!H be a coarse map, L a res–invariant RG–submodule
of C.G;W / and M a res–invariant RH–submodule of C.G;W /.

(i) D�.'/ induces homomorphisms H�.'/W H�.G;L/! H�.H; '�L/. If ' is a
coarse embedding, H�.'/ is an isomorphism with inverse H�.!/. If in addition L
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is a topological res–invariant module, D�.'/ also induces topological isomorphisms
H�.'/W H�.G;L/ŠH�.H; '�L/.

If �W G!H is a coarse map with '�� , then H�.'/DH�.�/, and H�.'/DH�.�/
in the topological case.

If  W H ! K is another coarse map, then H�. ı '/ D H�. / ı H�.'/, and
H�. ı'/DH�. / ıH�.'/ in the topological case.

(ii) D�.'/ induces homomorphisms H�.'/W H�.H;M/! H�.G; '�M/. If ' a
coarse embedding, then H�.'/W H�.H; '��1L/!H�.G;L/ is an isomorphism with
inverse H�.!/. If in addition L and M are topological res–invariant modules, then
D�.'/ also induces continuous homomorphisms H�.'/W H�.H;M/!H�.G; '�M/

and topological isomorphisms H�.'/W H�.H; '��1L/!H�.G;L/.

If �W G!H is a coarse map with '�� , then H�.'/DH�.�/, and H�.'/DH�.�/
in the topological case.

If  W H ! K is another coarse map, then H�. ı '/ D H�.'/ ı H�. /, and
H�. ı'/DH�.'/ ıH�. / in the topological case.

In particular, for coarse equivalences, that is, coarse embeddings which are invertible
modulo �, we get:

Corollary 4.39 If 'W G!H is a coarse equivalence, then we obtain isomorphisms

H�.'/W H�.G;L/ŠH�.H; '�L/; H�.'/W H�.H;M/ŠH�.G; '�M/;

and, in the topological case,

H�.'/W H�.G;L/ŠH�.H; '�L/; H�.'/W H�.H;M/ŠH�.G; '�M/:

Remark 4.40 Our constructions are functorial in W : Let L1 � C.G;W1/ and
L2 � C.G;W2/ be res–invariant RG–submodules, and assume that an R–linear
map !W W1!W2 induces an RG–linear map �W L1! L2 . Then we also obtain an
induced map '��W '�L1! '�L2 , and we get commutative diagrams

D�.L1/

D�.�/

��

D�.'/
// D�.'�L1/

D�.'��/

��

D�.L2/
D�.'/

// D�.'�L2/

H�.G;L1/

H�.�/

��

H�.'/
// H�.H; '�L1/

H�.'��/

��

H�.G;L2/
H�.'/

// H�.H; '�L2/

A similar statement applies to reduced homology in the topological setting, and to
(reduced) cohomology.
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4.4 Consequences

Let us apply our results to Examples 4.2. Corollary 4.41(i)(c) below generalizes the
result in [21] that Hn.G;RG/ is a coarse invariant for groups with property Fn . The
reader may also consult [48, Example 5.21]. Corollary 4.41(ii)(1) was known in special
cases. For instance, in [18], group cohomology with `p coefficients has been identified
with nonreduced Lp–cohomology, and in [46; 8; 34], reduced group cohomology in
degree 1 (ie H

1
) with `p coefficients has been identified with Lp–cohomology, as

studied in [22; 43]. Since Lp–cohomology is known to be a coarse invariant, this
gives the special case of (ii)(1) where p 2 Œ1;1Œ and our groups are finitely generated.
Also, the case pD1 in (ii)(1) was known, since H�.G; `1G/ can be identified with
uniformly finite homology (see [6; 9]).

Corollary 4.41 Let G and H be countable discrete groups and 'W G!H a coarse
equivalence.

(i) For every commutative ring R with unit and every R–module W , ' induces
isomorphisms

(a) H�.G; C.G;W //ŠH�.H;C.H;W //,

(b) H�.G; Cf .G;W //ŠH�.H;Cf .H;W //,
H�.G; Cf .G;W //ŠH

�.H;Cf .H;W //,

(c) H�.H;RH ˝RW /ŠH
�.G;RG˝RW /.

(ii) Let RDR or RDC and W DR .

(1) For all 0 < p �1, ' induces isomorphisms

H�.G; `
p.G;W //ŠH�.H; `

p.H;W //;

H�.H; `p.H;W //ŠH�.G; `p.G;W //;

H�.G; `
p.G;W //ŠH�.H; `

p.H;W //;

H
�
.H; `p.H;W //ŠH�.G; `p.G;W //;

(2) ' induces isomorphisms

H�.G; c0.G;W //ŠH�.H; c0.H;W //;

H�.H; c0.H;W //ŠH
�.G; c0.G;W //;

H�.G; c0.G;W //ŠH�.H; c0.H;W //;

H�.H; c0.H;W //ŠH
�.G; c0.G;W //:
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(3) Let G and H be a finitely generated discrete groups. Then, for all s 2
R[f1g and 1� p �1, ' induces isomorphisms

H�.G;H
s;p.G;W //ŠH�.H;H

s;p.H;W //;

H�.H;H s;p.H;W //ŠH�.G;H s;p.G;W //;

H�.G;H
s;p.G;W //ŠH�.H;H

s;p.H;W //;

H
�
.H;H s;p.H;W //ŠH�.G;H s;p.G;W //:

Proof The point is that L.G/ D C.G;W /, Cf .G;W /, RG ˝R W , `p.G;W /,
c0.G;W / or H s;p.G;W / has the property that for every coarse equivalence 'W G!H,
we have '�L.G/ D L.H/ (and also topologically in the topological setting). Our
claim now follows from Corollary 4.39.

As an immediate consequence, we obtain a new proof of the result in [49] that homo-
logical and cohomological dimensions over R are preserved by coarse embeddings as
long as these dimensions are finite.

Corollary 4.42 Let R be a commutative ring with unit. Let G and H be countable
discrete groups, and assume that there is a coarse embedding 'W G!H.

If G has finite homological dimension over R , ie hdRG <1, then hdRG � hdRH.

If G has finite cohomological dimension over R , ie cdRG<1, then cdRG� cdRH.

Proof Assume that hdRGDn<1. Let W be an RG–module with Hn.G;W /©f0g.
Define W ,! C.G;W /, w 7! fw , where fw.x/D x�1:w . It is easy to see that this
is an embedding of RG–modules when we view W as an R–module to construct
C.G;W / (ie we define the RG–module structure by setting .g:f /.x/ D f .g�1:x/
for f 2C.G;W /). The long exact sequence in homology gives us 0!Hn.G;W /!

Hn.G; C.G;W //! � � � because the .nC1/st group homology of G vanishes for all
coefficients by assumption. Hence, Hn.G; C.G;W //© f0g. By Theorem 4.38(i), we
have Hn.H; '�C.G;W //ŠHn.G; C.G;W //© f0g. Thus, hdRH � n.

Now assume that cdRG D n < 1. By [10, Proposition (2.3)], we know that
Hn.G;RG˝RW /© f0g for some R–module W . By Theorem 4.38(ii),

Hn.H; '��1.RG˝RW //ŠH
n.G;RG˝RW /© f0g:

Thus, cdRH � n.

We also obtain a new proof for the following result, first proven in [49]:
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Corollary 4.43 Let R , G and H be as above. Assume that 'W G!H is a coarse
embedding. If G is amenable and Q�R , then hdRG � hdRH and cdRG � cdRH.

Proof As explained in [49, Section 4], it was observed in [51] that our assumptions on
G and R imply the existence of an RG–linear split Cf .G;R/!R for the canonical
homomorphism R! Cf .G;R/ embedding R as constant functions. Hence, given an
arbitrary RG–module V , we obtain by tensoring with V over R that the canonical
homomorphism V ! Cf .G; V / splits. Note that G acts on Cf .G; V / diagonally, so
Cf .G; V / is not a res–invariant module in our sense. But Cf .G; V /Š Cf .G; Vtriv/,
where Vtriv is the R–module V viewed as a RG–module with trivial G–action.
Hence, hdRG D supnfn W Hn.G; Cf .G;W // © f0g for some R-module W g. As
Hn.H; '�Cf .G;W //ŠHn.G;W / by Theorem 4.38(i), we conclude that hdRG �
hdRH. The proof for cdR is analogous.

At this point, the following interesting question arises naturally:

Question 4.44 Let R be a commutative ring with unit and G and H countable
discrete groups with no R–torsion. If G and H are coarsely equivalent, do we always
have hdRG D hdRH and cdRG D cdRH ?

Having no R–torsion means that orders of finite subgroups must be invertible in R ,
and this is certainly a hypothesis we have to include. For instance, Theorem 1.4 of [44]
implies that the answer to Question 4.44 is affirmative if our groups lie in the class HF.
This class HF has been introduced by Kropholler [28] and is defined as the smallest
class of groups containing all finite groups and every group G which acts cellularly
on a finite-dimensional contractible CW–complex with all isotropy subgroups already
in HF. All countable elementary amenable groups and all countable linear groups lie
in HF, and it is closed under subgroups, extensions, and countable direct unions.

Corollary 4.45 (to Theorem 1.4 in [45]) If G and H are in HF, then the answer to
Question 4.44 is affirmative.

Proof Theorem 1.4 of [45] implies that

(15) cdRG D supfcdRG0 WG0 coarsely embeds into G and cdRG0 <1g;

and similarly for H. Now Corollary 4.42 implies cdRG D cdRH. Equality for hdR
follows because for countable groups, cdR is infinite if and only if hdR is infinite by
[5, Theorem 4.6].
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Remark 4.46 The proof of Corollary 4.45 shows that Question 4.44 has an affir-
mative answer among all groups satisfying (15). In particular, for groups satisfying
[45, Conjecture 1.6], Question 4.44 has an affirmative answer. While counterexamples
to [45, Conjecture 1.6] are presented in [20], these examples still satisfy (15), as
becomes clear in [20]. Hence, also for them, Question 4.44 has an affirmative answer.

Let us now show that being of type FPn over a ring R is a coarse invariant. An
alternative approach, based on [27], has been sketched in [17, Theorem 9.61]. The
case RD Z is treated in [2]. Recall that for a commutative ring R with unit, a group
G is of type FPn over R if the trivial RG–module R has a projective resolution
� � � ! P1! P0!R! 0, where Pi is finitely generated for all 0� i � n.

Corollary 4.47 Let G and H be two countable discrete groups. Assume G and H
are coarsely equivalent. Then G is of type FPn over R if and only if H is of type FPn
over R .

Proof By [5, Proposition 2.3], G is of type FPn over R if and only if G is finitely
generated and Hk

�
G;
Q
I RG

�
Š f0g for all 1 � k � n, where I is an index set

with jI j D max.@0; jRj/. The map
Q
I RG ! C

�
G;
Q
I R

�
, .fi /i 7! f , where

.f .x//i D fi .x/, identifies
Q
I RG with the RG–submodule L.G/ of C

�
G;
Q
I R

�
consisting of those functions f with the property that for every i 2 I, .f .x//i D 0
for all but finitely many x 2G. Clearly, L.G/ is res–invariant. Denote the analogous
res–invariant RH–submodule of C

�
H;
Q
I R

�
by L.H/. It is easy to see that given a

coarse equivalence 'W G!H, we have '�L.G/DL.H/. Hence, by Theorem 4.38(i),
we have Hk

�
G;
Q
I RG

�
ŠHk.G;L.G//ŠHk.H;L.H//ŠHk

�
H;
Q
I RH

�
.

As another consequence, we generalize the result in [21] that for groups of type F1 ,
being a (Poincaré) duality group over Z is a coarse invariant. We obtain an improvement
since we can work over arbitrary rings R and do not need the F1 assumption. We
only need our groups to have finite cohomological dimension over R . Recall that
a group G is called a duality group over R if there is a right RG–module C and
an integer n� 0 with natural isomorphisms Hk.G;A/ŠHn�k.G; C ˝R A/ for all
k 2 Z and all RG–modules A (see [5, Section 9.2; 4; 10, Chapter VIII, Section 10]).
G is called a Poincaré duality group over R if C Š R as R–modules. The class of
duality groups is closed under extensions and under taking graphs of groups, with
certain hypotheses (see [5; 16]). Examples of groups which are not duality groups
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over Z but over some other ring can be found in [14], and examples of (Poincaré)
duality groups which are not of type F1 appear in [14; 29]. The second part of the
following corollary generalizes [51, Theorem 3.3.2].

Corollary 4.48 Let R be a commutative ring with unit. Let G and H be countable
discrete groups with finite cohomological dimension over R . If G and H are coarsely
equivalent, then G is a (Poincaré) duality group over R if and only if H is a (Poincaré)
duality group over R .

If G and H are amenable and Q�R , then G is a (Poincaré) duality group over R if
and only if H is a (Poincaré) duality group over R .

Proof By [4, Theorem 5.5.1 and Remark 5.5.2], we know that a group G is a
duality group if and only if it has finite cohomological dimension, there is n such that
Hk.G;A/Š f0g for all k¤ n and all induced RG–modules A, and G is of type FPn
over R . The second property is a coarse invariant by Corollary 4.41(i)(c). The third
property is a coarse invariant by Corollary 4.47. Hence, being a duality group is a coarse
invariant. Being a Poincaré duality group means being a duality group and having
dualizing module isomorphic to R . By Corollary 4.41(i)(c), the dualizing module is a
coarse invariant. Thus being a Poincaré duality group is also a coarse invariant. The
second part follows from the first part of the corollary and Corollary 4.43.

If Question 4.44 has an affirmative answer, then we can replace the assumption of finite
cohomological dimension by having no R–torsion in the first part of Corollary 4.48.

As another consequence, we obtain the following rigidity result for coarse embeddings
into Poincaré duality groups. The proof follows that of [5, Proposition 9.22].

Corollary 4.49 Let G and H be countable discrete groups. Let H be a Poincaré
duality group over a commutative ring R with unit. Assume that there is a coarse
embedding 'W G ! H which is not a coarse equivalence. If hdRG < 1, then
hdRG < cdRH. If, in addition, G is of type FP1 (ie FPn for all n), then cdRG <

cdRH.

In particular, every coarse self-embedding of a Poincaré duality group over R must be
a coarse equivalence.

Proof Let n D cdRH. Let D D Hn.R;RH/. As H is a Poincaré duality group
over R , D Š R as R–modules, and the RH–module structure of D is given by a
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group homomorphism H ! R� , h 7! uh . We know that hdRG � cdRG � n by
[5, Theorem 4.6] and Corollary 4.42. Now let L be a res–invariant RG–submodule
of C.G;W /. Then, by Theorem 4.38(i),

Hn.G;L/ŠHn.H; '�L/ŠH
0.H;HomR.D; '�L//Š .HomR.D; '�L//H ;

where we used that H is a Poincaré duality group over R . Clearly, HomR.D; '�L/Š
'�L as R–modules, and the H–action of HomR.D; '�L/ becomes h�f D uh � .h:f /
for f 2 '�L. Now take f 2 .'�L/H. If f ¤ 0, then f .y/¤ 0 for some y 2H, and
it follows from h�f D f for all h 2H that f .y/¤ 0 for all y 2H. This, however,
contradicts Lemma 4.12 as H cannot be contained in a finite union of the hjYj if ' is
not a coarse equivalence. Hence, Hn.G;L/Š .'�L/H Šf0g. This implies hdRG<n
(compare also the proof of Corollary 4.42). The rest follows from [5, Theorem 4.6(c)]
and that Poincaré duality groups are of type FP1 .

Corollary 4.49 implies that for a Poincaré duality group H and an arbitrary group G,
if G coarsely embeds into H and H coarsely embeds into G, then G and H must be
coarsely equivalent (ie H is “UE rigid” in Shalom’s terminology [51, Section 6.2]).

Question 4.50 In Corollary 4.49, do we always get cdRG < cdRH, even without
the FP1 assumption? In other words, is the analogue of the main theorem in [53] true
for coarse embeddings?

We present one more application: vanishing of `2–Betti numbers is a coarse invariant.
This was shown in [43] for groups of type F1 , for more general groups in [42]
(as explained in [50]), and for all countable discrete groups in [38, Corollary 6.3].
Recently, Sauer and Schrödl were even able to cover all unimodular locally compact
second countable groups [50]. As vanishing of the nth `2–Betti number is equivalent
to Hn.G; `2G/ Š f0g by [44, Proposition 3.8], Corollary 4.41(ii)(1) gives another
approach to the aforementioned result.

Corollary 4.51 Let G and H be countable discrete groups which are coarsely equiv-
alent. Then, for all n, the nth `2–Betti number of G vanishes if and only if the nth

`2–Betti number of H vanishes.
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