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A note on the knot Floer homology of fibered knots

JOHN A BALDWIN

DAVID SHEA VELA-VICK

We prove that the knot Floer homology of a fibered knot is nontrivial in its next-to-top
Alexander grading. Immediate applications include new proofs of Krcatovich’s result
that knots with L–space surgeries are prime and Hedden and Watson’s result that
the rank of knot Floer homology detects the trefoil among knots in the 3–sphere.
We also generalize the latter result, proving a similar theorem for nullhomologous
knots in any 3–manifold. We note that our method of proof inspired Baldwin and
Sivek’s recent proof that Khovanov homology detects the trefoil. As part of this work,
we also introduce a numerical refinement of the Ozsváth–Szabó contact invariant.
This refinement was the inspiration for Hubbard and Saltz’s annular refinement of
Plamenevskaya’s transverse link invariant in Khovanov homology.

57M27; 57R17, 57R58

1 Introduction

Knot Floer homology is a powerful invariant of knots defined by Ozsváth and Szabó [19]
and by Rasmussen [24]. The most basic version of this invariant assigns to a knot K
in a closed, oriented 3–manifold Y a vector space

bHFK.Y;K/

over the field F D Z=2Z. If K is nullhomologous with Seifert surface † then this
vector space may be endowed with an Alexander grading,

bHFK.Y;K/D
g.†/M

iD�g.†/

bHFK.Y;K; Œ†�; i/;

which depends only the relative homology class of the surface in H2.Y;K/. We will
omit this class from the notation when it is unambiguous, such as when Y is a rational
homology 3–sphere. This Alexander grading is symmetric in the sense that

bHFK.Y;K; Œ†�; i/Š bHFK.Y;K; Œ†�;�i/ for all i:
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Much of the power of knot Floer homology owes to its relationship with the genus and
fiberedness of knots. For instance, Ozsváth and Szabó [20] proved that if K � Y is
fibered with fiber † then

bHFK.Y;K; Œ†�; g.†//Š F :

Moreover, knot Floer homology completely detects genus (see Ozsváth and Szabó [23])
and fiberedness (see Ghiggini [4] and Ni [17]) for knots in S3 . Specifically,

bHFK.S3; K; g.K//¤ 0 and bHFK.S3; K; i/D 0 for i > g.K/;(1)

bHFK.S3; K; g.K//Š F if and only if K is fibered:(2)

These facts can be used to prove that knots in S3 with lens space surgeries are fibered
(see Ozsváth and Szabó [21]), and that the trefoil and figure eight knots are characterized
by their Dehn surgeries; see Ozsváth and Szabó [22].

The results above are all in some way concerned with the summand of knot Floer
homology in the top Alexander grading. Much less is known about the summands in
other gradings. Our main result is that the knot Floer homology of a fibered knot is
nontrivial in its next-to-top Alexander grading.

Theorem 1.1 Suppose K � Y is a genus g > 0 fibered knot with fiber †. Then the
summand bHFK.Y;K; Œ†�; g� 1/ is nonzero.

While this result may seem a bit technical, we will see below that it can immediately be
put to several interesting ends. We remark that an analogue of Theorem 1.1 was recently
proven by Baldwin and Sivek [2] in the setting of instanton knot Floer homology, and
was used in combination with work of Kronheimer and Mrowka [14] to prove that
Khovanov homology detects the trefoils. Baldwin and Sivek’s proof is based in part on
our proof of Theorem 1.1.

Remark 1.2 Although our discussion will focus exclusively on knots, the conclusion
of Theorem 1.1 holds for fibered links as well, via the process of knotification. Indeed,
if K � Y is a fibered link, then the fibration naturally extends to one of its knotification
�.K/� �.Y /. For more information on this construction, we refer the reader to [19].

1.1 Applications

Suppose Y is a rational homology 3–sphere. The Heegaard Floer homology of Y is
bounded in rank by the number of elements in the first homology of Y ,cHF.Y /� jH1.Y /j:
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An L–space is a rational homology 3–sphere Y for which this inequality is sharp:cHF.Y /D jH1.Y /j:

L–spaces include lens spaces and all other 3–manifolds with elliptic geometry. A
great deal of effort has been devoted to understanding how L–spaces arise via surgery.
A knot K � S3 is called an L–space knot if some Dehn surgery on K is an L–space.
Ozsváth and Szabó [21] proved that knot Floer homology provides a strong obstruction
to having an L–space surgery. Namely, if K is an L–space knot then

(3) rk bHFK.S3; K; i/D 0 or 1

for each Alexander grading i . Combined with the genus detection (1) and fiberedness
detection (2), this implies in particular that L–space knots are fibered.

Theorem 1.1 therefore imposes the following additional constraint, first proven by
Hedden and Watson by quite different means in [7, Corollary 9].1

Corollary 1.3 If K is an L–space knot then bHFK.S3; K; g.K/� 1/Š F.

Theorem 1.1 also enables a new and immediate proof of the following result, which was
first established by Krcatovich [13, Theorem 1.2] using his reduced knot Floer complex.

Corollary 1.4 L–space knots are prime.

Theorem 1.1 provides for a simple proof of the following as well, which was first
established by Hedden and Watson [7, Corollary 8] using Rasmussen’s h–invariants.

Corollary 1.5 rk bHFK.S3; K/D 3 if and only if K is a trefoil.

In fact, we are able to prove the following more general result by a combination of
Theorem 1.1 with the results of Baldwin [1].

Corollary 1.6 Suppose K�Y is a nullhomologous knot with irreducible complement.
Then rk bHFK.Y;K/D 3 if and only if K is one of

� a trefoil in S3 ,

� the core of .C1/–surgery on the right-handed trefoil,

� the core of .�1/–surgery on the left-handed trefoil.

1Hedden and Watson credit Rasmussen as the first to observe this.
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1.2 Antecedents

As mentioned in [7], Rasmussen was the first to observe that L–space knots have
nontrivial knot Floer homology in the next-to-top Alexander grading. Hedden and
Watson proved a result akin to Theorem 1.1 for knots in S3 under some additional
assumptions on the � invariant and the knot Floer homology in the top Alexander
grading:

Theorem 1.7 [7, Theorem 7] Suppose K � S3 is a knot of genus g > 1. If

�.K/D g and bHFK�1.S3; K; g/D 0

then bHFK�1.S3; K; g� 1/¤ 0. Here, the subscripts denote the Maslov grading.

As alluded to above, Hedden and Watson [7] used this result to prove that the rank of
knot Floer homology detects the trefoil. Though it was not observed in [7], their result
is also strong enough to show that L–space knots are prime, by an argument similar to
ours. We emphasize that Hedden and Watson’s proof of Theorem 1.7 is conceptually
very different from our proof of Theorem 1.1.

1.3 Refining the contact invariant

The contact invariant in Heegaard Floer homology, defined by Ozsváth and Szabó [20],
assigns to a contact structure � on Y a class

c.�/ 2 cHF.�Y /:

This class vanishes when � is overtwisted. Thus, to prove that a contact structure � is
tight, it suffices to show that c.�/¤ 0. This basic principle enabled the classification
of Seifert fibered spaces which admit tight contact structures; see for instance Lisca
and Stipsicz [16]. The contact invariant does not completely detect tightness, however.
For example, it vanishes for tight contact manifolds with positive Giroux torsion; see
Ghiggini, Honda and Horn-Morris [5]. This paper began as an attempt to develop a
refinement of the contact invariant which can obstruct overtwistedness even when the
invariant vanishes. We describe our approach below, but do not develop it further in
this paper.

Suppose K is the connected binding of an open book ob compatible with .Y; �/. The
knot �K ��Y gives rise to a filtration of the Heegaard Floer complex of �Y , which,
up to filtered chain homotopy equivalence, takes the form

Fhci D F�g � F1�g � � � � � Fg DcCF.�Y /:
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The contact invariant c.�/ is defined in [20] as

c.�/ WD Œc� 2H�.cCF.�Y /; @/D cHF.�Y /:

Therefore, if c.�/D 0 then the class Œc� vanishes in the homology of some filtration
level. We assign a number b.ob/ 2N [f1g to this open book which records where
this class vanishes:

b.ob/ WD

�
1; c.�/¤ 0;

gCminfk j Œc�D 0 in H�.Fk/g; c.�/¤ 0:

One may then define an invariant of � by minimizing over compatible open books:

b.�/Dminfb.ob/ j ob compatible with .Y; �/g:

We prove the following:

Theorem 1.8 If ob is not right-veering then b.ob/D 1.

This fact is what inspired and led to the proof of Theorem 1.1. It also implies the
following, since every overtwisted contact manifold has a supporting open book with
connected binding which is not right-veering.

Corollary 1.9 If .Y; �/ is overtwisted then b.�/D 1.

Thus, to prove that � is tight it suffices to show that b.�/ > 1.

Theorem 1.8 also provides a simpler solution to the word problem in the mapping class
group of a surface with connected boundary than that in [7]. Indeed, suppose ' is a
diffeomorphism of † which restricts to the identity on @†. Then ' D id if and only if
both ' and '�1 are right-veering, which leads to the following:

Corollary 1.10 ' D id if and only if b.†; '/ > 1 < b.†; '�1/.

This invariant motivated the definition of an analogous refinement of Plamenevskaya’s
transverse invariant in Khovanov homology by Hubbard and Saltz [10]. The number
b.�/ is not a priori a very calculable contact invariant; nevertheless, there are several
interesting questions its construction raises, as described below.

1.4 Questions

It is thought that the knot Floer homology of a fibered knot in the next-to-top Alexander
grading should be related to the symplectic Floer homology of the monodromy of the
fibration. This raises the following:

Algebraic & Geometric Topology, Volume 18 (2018)
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Question 1.11 What implications does Theorem 1.1 have for the symplectic Floer
homology of mapping classes of a compact surface with connected boundary?

Motivated by Hedden and Watson’s Theorem 1.7, we ask whether a version of Theorem
1.1 holds for arbitrary (nonfibered) knots.

Question 1.12 Is the knot Floer homology of every knot in S3 of positive genus
nontrivial in its next-to-top Alexander grading?

Or even more generally, as Sivek has asked:

Question 1.13 Is it true for arbitrary knots K � S3 of positive genus that

rk bHFK.S3; K; g.K/� 1/� rk bHFK.S3; K; g.K//‹

Perhaps our Heegaard-diagrammatic proof of Theorem 1.1 for fibered knots could be
adapted to the setting of broken fibrations to answer these questions.

Below are some questions about the b.ob/ and b.�/.

Question 1.14 How does b.ob/ behave under positive stabilization?

We suspect that b.ob/ is not invariant under positive stabilization. On the other hand,
we believe that it is nondecreasing under positive stabilization and can increase by
at most 1. If true, then given open books ob and ob0 supporting the same contact
structure, the difference jb.ob/� b.ob0/j provides a lower bound on the total number
of positive stabilizations required to achieve a common stabilization.

Question 1.15 Are there contact structures with 1> b.�/ > 1?

Question 1.16 Is b.�/ nondecreasing under Legendrian surgery?

A similar (but ultimately calculable) numerical refinement of the Heegaard Floer contact
invariant was defined by Kutluhan, Matić, Van Horn-Morris and Wand [15], inspired
by work of Hutchings in embedded contact homology [11, Appendix].

Question 1.17 Is there a relationship between b.�/ and the invariant defined in [15]?

As mentioned above, b.ob/D 1 if ob is not right-veering. We ask the following:

Question 1.18 Is it the case that b.ob/D 1 if and only if ob is not right-veering?
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Ito and Kawamuro [12] proved that ob is not right-veering if and only if there is a
transverse overtwisted disk in the contact manifold .Y; �/ supported by ob such that
the open book foliation on this disk has exactly one negative elliptic singularity (where
the disk intersects the binding). Their proof suggests the following interesting question:

Question 1.19 Does b.ob/ provide a lower bound for the number of negative elliptic
singularities of the open book foliation on any transverse overtwisted disk in .Y; �/?

Organization

We prove Theorems 1.1 and 1.8 in Section 2. Section 3 contains the proofs of Corollaries
1.4, 1.5 and 1.6.
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2 The proof of Theorem 1.1

In this section, we give what we feel is a conceptually simple proof of Theorem 1.1,
based on the notion of non-right-veering monodromy and the fact that the boundary map
in the Heegaard Floer complex squares to zero. We will assume the reader is familiar
with Heegaard Floer homology and with Honda, Kazez and Matić’s description of the
Ozsváth–Szabó contact invariant in [9], though we provide a cursory review below, in
part for completeness but largely in order to establish notation and terminology.

2.1 Heegaard Floer homology

To define the Heegaard Floer homology of a closed, oriented 3–manifold Y one starts
with a pointed Heegaard diagram

HD .S;˛;ˇ; w/

for Y . The Heegaard Floer chain complex cCF.H/ is the F –vector space generated
by intersection points between the associated tori T˛ and Tˇ in Symg.S/. The
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differential

@W cCF.H/!cCF.H/

is the linear map defined on generators by

@.x/D
X

y2T˛\Tˇ

X
�2�2.x;y/
�.�/D1
nw.�/D0

# �M.�/ �y;

where �2.x;y/ is the set of homotopy classes of Whitney disks from x to y , �.�/ is
the Maslov index of � , nw.�/ is the intersection number

� � .fwg �Symg�1.S//

and �M.�/ is the space of pseudoholomorphic representatives of � modulo conformal
automorphisms of the domain. The Heegaard Floer homology of Y is the homology
of this complex, cHF.Y /DH�.cCF.H/; @/;

and is an invariant of Y .

2.2 Knot Floer homology

To define the knot Floer homology of a null-homologous knot K in a closed, oriented
3–manifold Y , one starts with a doubly pointed Heegaard diagram

HD .S;˛;ˇ; z; w/

for K � Y . In particular,

� .S;˛;ˇ; w/ is a pointed Heegaard diagram for Y , and

� if ˛ � S X˛ is an arc from z to w and ˇ � S Xˇ is an arc from w to z then
K is the union of the arcs obtained by pushing the interiors of ˛ and ˇ into
the ˛– and ˇ–handlebodies, respectively.

Given a Seifert surface † for K , each generator x of the Heegaard Floer complex

cCF.H/ WDcCF.S;˛;ˇ; w/

is assigned an Alexander grading

AŒ†�.x/D
1
2
hc1.sx/; Œ†�i 2 Z;
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which depends only on the relative homology class of †. For generators x and y
connected by a Whitney disk � 2 �2.x;y/, the relative Alexander grading is given by

AŒ†�.x/�AŒ†�.y/D nz.�/�nw.�/:

Let Fi denote the subspace of cCF.H/ spanned by generators with Alexander grading
at most i . That Fi is a subcomplex follows the positivity of nz.�/ for � with
pseudoholomorphic representatives and the fact that @ counts disks with nw.�/D 0.
These subcomplexes define a filtration

� � � � Fi � FiC1 � � � � � Fj DcCF.H/

whose filtered chain homotopy type is an invariant of .Y;K; Œ†�/.

The knot Floer chain complex bCFK.H/ is the associated graded object of this filtration.
Equivalently, it is the complex generated by intersection points in T˛ \Tˇ whose
differential counts disks, as before, which satisfy the extra condition that nz.�/D 0.
The knot Floer homology of K in Alexander grading i is given by

bHFK.Y;K; Œ†�; i/DH�.Fi=Fi�1/:

These groups vanish for ji j> g.†/. Moreover, the Alexander grading is symmetric
and detects genus and fiberedness as described in the introduction. It is customary to
define the knot Floer homology of K to be the graded group

bHFK.Y;K/D bHFK.H/ WDH�.bCFK.H//D
g.†/M

iD�g.†/

bHFK.Y;K; Œ†�; i/:

We describe below another useful way of computing the relative Alexander grading.
Let  D ˛ [ ˇ be the union of the arcs defined above. Let D1; : : : ;Dk denote the
closures of the components of †X .˛[ˇ[ /.

Definition A relative periodic domain is a 2–chain P D
P
aiDi satisfying

@P D ` C
X

ni˛i C
X

miˇi

for integers `, ni and mi .

Hedden and Plamenevskaya [6, Lemma 2.3] proved that if P is a relative periodic
domain representing the homology class Œ†� then the relative Alexander grading
between generators x;y 2 T˛ \Tˇ is given by

(4) AŒ†�.x/�AŒ†�.y/D nx.P/�ny.P/:
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2.3 The contact invariant

Suppose .†; '/ is an open book decomposition for Y . A basis for † is a collection
fa1; : : : ; a2gg of disjoint, properly embedded arcs in † whose complement is a disk.
Given such a basis, let bi be an isotopic copy of ai obtained by shifting the endpoints
of ai along @† in the direction specified by its orientation, so that bi intersects ai
transversally in a single point ci , as shown in Figure 1 in the case g D 1. Following
Honda, Kazez and Matić [9], we form a pointed Heegaard diagram

.S; ˛D f˛1; : : : ; ˛2gg; ˇ D fˇ1; : : : ; ˇ2gg; w/

for Y adapted to this open book and basis by “doubling” the fiber surface and basis
arcs. More precisely,

� S D†[�† is the union of two copies of † glued along their boundaries,

� ˛i D ai [ ai ,

� ˇi D bi ['.bi /,

� w 2†� S lies outside of the thin regions traced by the isotopies from the ai
to bi ,

as illustrated in Figure 1.

Then HD .S;ˇ;˛; w/ is a pointed Heegaard diagram for �Y . Note that the contact
generator

c WD fc1; : : : ; c2gg

is a cycle in cCF.H/. Moreover, Honda, Kazez and Matić [9] proved that this cycle
represents the contact invariant of � ,

c.�/D c.†; '/D Œc� 2 cHF.�Y /;

originally defined by Ozsváth and Szabó [20].

2.4 The proof of Theorem 1.1

Let us assume henceforth that K is a genus g > 0 fibered knot in Y with fiber †, as
in the hypothesis of Theorem 1.1. Let .†; '/ be an open book corresponding to the
fibration of K , supporting a contact structure � on Y . Let .S;˛;ˇ; w/ be a pointed
Heegaard diagram for Y adapted to this open book and a basis fa1; : : : ; a2gg, as
described in the previous section.
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A note on the knot Floer homology of fibered knots 3679

† †

�†

w

Figure 1: Left: the arcs a1 and a2 in red and b1 and b2 in blue. Right: the
corresponding pointed Heegaard diagram with ˛1 and ˛2 in red and ˇ1 and
ˇ2 in blue, where ' is a left-handed Dehn twist around a curve in † dual to
a1 (which looks like a right-handed Dehn twist on �†). The intersection
points c1 and c2 are shown as black dots.

To turn this diagram into a doubly pointed Heegaard diagram for K � Y , we perform
finger moves on the ˇ curves in a neighborhood of @†�S, pushing these curves in the
direction of the orientation of @†, and place a basepoint z in a region of S X .˛[ˇ/
adjacent to a1 , so that @† is given as the union of an arc ˛ � S X˛ from z to w
with an arc ˇ � S Xˇ from w to z , as shown in Figure 2.

We will be most interested in the diagram

HD .S;ˇ;˛; z; w/;

obtained by reversing the roles of ˛ and ˇ . This is a doubly pointed diagram for
�K��Y . We will study the knot Floer homology of �K with respect to the Alexander
filtration induced by its Seifert surface �†. Note that the intersection points c1; : : : ; c2g

†

�†

w z

a1

c1

d1

Figure 2: Modifying the Heegaard diagram in Figure 1. The black intersec-
tion points constitute c and the white intersection points constitute d . The
bigon from d to c is shown in gray.
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naturally persist in this diagram. Moreover, the contact generator

c WD fc1; : : : ; c2gg

is a cycle in the complexes

bCFK.H/ and cCF.H/ WDcCF.S;ˇ;˛; w/;

and still represents the contact invariant,

c.�/D Œc� 2 cHF.�Y /;

as the finger move procedure results in a Heegaard diagram adapted to an open
book .†; '0/, where '0 is simply the composition of ' with an isotopy.

The following lemma characterizes the Alexander gradings of generators of cCF.H/:

Lemma 2.1 The Alexander grading of a generator x of cCF.H/ is given by

AŒ�†�.x/D
1
2
� .nx.�†/�nx.†//:

Equivalently, AŒ�†�.x/ is equal to g less than the number of components of x in
�†� S.

Proof Note that the region �†� S is a relative periodic domain representing Œ�†�.
The formula (4) for relative Alexander grading implies that the largest Alexander
grading xA is realized precisely by generators with components contained entirely in
�†� S while the smallest Alexander grading A is realized precisely by generators
with components contained in †� S. In addition, the difference is

xA�AD 2g:

The fact that the knot Floer homology of �K with respect to Œ�†� is nontrivial in
gradings ˙g then forces xAD g . The lemma now follows easily from (4).

Remark 2.2 Lemma 2.1 implies that the filtration of cCF.H/ induced by �K and
�† takes the form

∅D F�g�1 � F�g � � � � � Fg DcCF.H/

and that the cycle c is contained in the bottom filtration level F�g .

We claim that the cycle c represents a nonzero class in knot Floer homology:

Algebraic & Geometric Topology, Volume 18 (2018)
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a'.a/

p

†

Figure 3: ' sends a to the left at p

Theorem 2.3 The class

Œc� 2 bHFK.�Y;�K; Œ�†�;�g/DH�.F�g=F�g�1/DH�.F�g/Š F

is always nonzero.

We postpone the proof of Theorem 2.3 until the end of this section. We first show how
it proves Theorems 1.1 and 1.8, beginning with a definition due to Honda, Kazez and
Matić [8] and some remarks.

Definition Given a properly embedded arc a �†, we say that ' sends a to the left
at an endpoint p if '.a/ is not isotopic to a and if, after isotoping '.a/ so that it
intersects a minimally, '.a/ is to the left of a near p , as shown in Figure 3. The map
' is right-veering if it does not send any arc to the left at one of its endpoints.

Remark 2.4 For the proof of Theorem 1.1, we may assume without loss of generality
that the monodromy ' is not right-veering. Indeed, suppose first that ' D id. Then
Theorem 1.1 holds by a calculation in [19, Section 9]. If ' ¤ id then one of ' or '�1

is not right-veering. If ' is right-veering then we use the fact that knot Floer homology
is invariant under reversing the orientation of Y and consider instead the knot K ��Y
with open book .†; '�1/.

Remark 2.5 Since Alexander graded knot Floer homology is symmetric and invariant
under reversing the orientation of Y;K;†,

bHFK.Y;K; Œ†�; i/D bHFK.�Y;�K; Œ�†�;�i/;

it suffices for Theorem 1.1 to prove that

bHFK.�Y;�K; Œ�†�; 1�g/¤ 0:

Proof of Theorem 1.1 We will prove that

bHFK.�Y;�K; Œ�†�; 1�g/¤ 0

per Remark 2.5. We will also assume that ' is not right-veering per Remark 2.4. In
[9, Proof of Lemma 3.2], Honda, Kazez and Matić show that the fact that ' is not
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right-veering means that there is some nonseparating arc a1 �† which is sent to the
left by ' at one of its endpoints. Since a1 is nonseparating, it can be completed to a
basis fa1; : : : ; a2gg for †. Let HD .S;ˇ;˛; z; w/ be the doubly pointed Heegaard
diagram for �K ��Y associated to this basis as above.

It is then easy to see that the non-right-veering-ness implies that the curves ˛1 and ˇ1
form a single bigon with corners at intersection points d1; c1� ˛1\ˇ1 , after isotoping
these curves on �†� S to intersect minimally, as shown in Figure 2. Consider the
generator

d D fd1; c2; : : : ; c2gg:

By Lemma 2.1,
AŒ�†�.d/D 1�g:

Moreover, it is easy to see that the bigon above is the sole contribution to @d by
the same reasoning that shows that c is a cycle (informally, no holomorphic disk
avoiding w can have corners at c2; : : : ; c2g ), so that

@d D c:

Thus, d is a cycle in F1�g=F�g . We claim that d is not a boundary in this quotient.
This will imply that the class

Œd � 2 bHFK.�Y;�K; Œ�†�; 1�g/DH�.F1�g=F�g/

is nonzero, which will prove Theorem 1.1.

Suppose for a contradiction that d is a boundary in F1�g=F�g . Then there is a
homogeneous chain

e 2cCF.H/

in Alexander grading 1�g such that

@e D d Cf ;

where f is a chain in Alexander grading �g . But the fact that @ ı @D 0 then forces

@.@.e//D @d C @f D cC @f D 0:

That is, @f D c . But this contradicts the fact that c represents a nonzero element in

bHFK.�Y;�K; Œ�†�;�g/DH�.F�g/;

as claimed in Theorem 2.3.
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Proof of Theorem 1.8 Let ob D .†; '/ and suppose ' not right-veering. Then
c.�/D 0, as follows from the proof of Theorem 1.1 (see [9, Lemma 3.2] for the original
proof). Therefore, per the introduction, b.ob/ is defined as

b.ob/D gCminfk j Œc�D 0 in H�.Fk/g:

According to Theorem 2.3, c represents a nonzero class in H�.F�g/. On the other
hand, the proof of Theorem 1.1 shows that Œc�D 0 in H�.F1�g/ since c D @d . Thus,

b.ob/D gC 1�g D 1;

as claimed.

Remark 2.6 Remark 2.4 and the proof of Theorem 1.1 show that if K�Y is a fibered
genus g > 0 knot with open book .†; '/ and ' is not the identity then without loss of
generality we can assume that ' is not right-veering, in which case there is a nontrivial
differential

d1W bHFK.�Y;�K; Œ†�; 1�g/! bHFK.�Y;�K; Œ†�;�g/

in the spectral sequence from bHFK.�Y;�K/ to bHFK.�Y /, sending Œd � to Œc�. In
particular,

rk bHFK.Y;K/¤ rk cHF.Y /

unless ' D id.

It remains to prove Theorem 2.3. As we shall see, this follows from a relatively
straightforward lemma. To set the stage for this lemma, recall that any two bases for †
can be obtained from one another by a sequence of arcslides, where an arcslide is a
modification of a basis in which the foot of one basis arc is slid up and over another
basis arc as in Figure 4; see [9] for details. The lemma below asserts that the same
holds even when we disallow arcslides which pass over a fixed basepoint on @†.

Lemma 2.7 Let z be a basepoint on the boundary of the fiber surface †. Suppose

aD fa1; : : : ; a2gg and a0 D fa01; : : : ; a
0
2gg

are bases for † disjoint from z . Then a0 can be obtained from a via a sequence of
arcslides taking place in the complement of z .

Proof Honda, Kazez and Matić [9, Proposition 3.4] showed that the there is a sequence
of arcslides taking a to a0. Thus, to prove Lemma 2.7, it suffices to show that any
arcslide which involves sliding a foot over the basepoint z can be effectuated by an
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a1 a2

@†

†

Figure 4: Sliding a1 over a2

alternative sequence of arcslides in the complement of z . In fact, it is sufficient to prove
a yet simpler statement, that an isotopy of bases which slides the foot of one arc over z
can be accomplished by a sequence of arcslides taking place in the complement of z .

For the latter, suppose a1 2 a is a basis element with one foot immediately to one side
of z , as shown in Figure 5. Let a01 be the isotopic copy of a1 obtained by sliding this
foot over z , as in the figure. To prove the lemma, it suffices to show that a1 can be arcslid
over the other aj in some sequence until the resulting arc is isotopic to a01 , via arcslides
in the complement of z . For this, it suffices to show that there is a polygon P in † with
boundary @P consisting of arcs of @†, together with a1 and a01 as well as some number
of copies of the other aj , such that z … @P. But this is plainly obvious, as cutting †
along a1; a01; a2; : : : ; a2g yields the disjoint union of such a polygon P together with
a quadrilateral Q bounded by a1 and a01 and two boundary arcs, with z 2 @Q , as
shown in Figure 5. In particular, a1 can be transformed into a01 by sliding each of its
endpoints exactly once over every other basis arc, in the complement of z .

Proof of Theorem 2.3 We first note that the class Œc� is independent of basis in the
following sense: Suppose

HD .S;ˇ;˛; z; w/ and H0 D .S;ˇ0;˛0; z; w/

a1 a01

@†
z

Q

P

Figure 5: The arcs a1 and a01 . The complement of the quadrilateral Q is
a polygon P �† certifying that a1 can be arcslid over the other aj in the
complement of z until the result is isotopic to a01 .
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are doubly pointed Heegaard diagrams for �K ��Y adapted to the open book .†; '/
and bases a and a0, where a0 is obtained from a by a single arcslide in the complement
of z . Let c and c0 denote the corresponding contact generators. We claim that there is
an isomorphism

 W bHFK.H/! bHFK.H0/ with  .Œc�/D Œc0�:

The proof is identical to that of [9, Lemma 3.5]. In summary, the diagram H0 is obtained
from H by a pair of handleslides (one for each of ˛ and ˇ ) in the complement of
the basepoints z and w . The isomorphism  is induced by the composition of
the holomorphic triangle-counting chain maps associated to these handleslides. A
composition of “small” triangles certifies that the composite chain map sends the
generator c to c0.

We next note that the class Œc� is natural with respect to the map on knot Floer homology
induced by adding negative Dehn twists to ' along nonseparating curves on †. To be
precise, suppose

'0 D ' ı ��1 ;

where � is a positive Dehn twist around a nonseparating curve  �†. Then .†; '0/
is an open book decomposition for the 3–manifold Y 0 obtained via .C1/–surgery
on a copy of  � Y with respect to the framing induced by †. Let K 0 � Y 0 denote
the image of K in this surgered manifold, corresponding to the binding of .†; '0/.
Since  does not link K in Y , the cobordism from Y to Y 0 corresponding to this
surgery induces a map

f W bHFK.�Y;�K/! bHFK.�Y 0;�K 0/

which preserves the Alexander gradings associated to �† [19, Proposition 8.1]. We
make two claims about this map below, after reminding the reader how it is defined.

Since  is nonseparating, we can find a basis fa1; : : : ; a2gg for † such that  intersects
a1 in one point and is disjoint from the other ai . Let

HD .S;ˇ;˛; z; w/

be the doubly pointed Heegaard diagram for �K ��Y adapted to this basis and open
book .†; '/. Then one obtains a doubly pointed Heegaard diagram

H0 D .S;ˇ0;˛; z; w/
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for �K 0 ��Y 0 adapted to this basis and open book .†; '0/ by modifying ˇ1 by the
negative Dehn twist ��1 . Let c and c0 denote the corresponding contact generators.
Our first claim is that the cobordism map

f W bHFK.H/! bHFK.H0/

satisfies

f .Œc�/D Œc0�:

The proof is identical to that of [9, Proposition 3.7]. In summary, the map f is induced
by a holomorphic triangle-counting chain map. Due to our choice of basis, there is a
“small” triangle which certifies that this chain map sends c to c0.

Our second claim is that the restriction

f W bHFK.�Y;�K; Œ�†�;�g/! bHFK.�Y 0;�K 0; Œ�†�;�g/

of f to the summand in the bottommost Alexander grading is an isomorphism. For
this, we note that f fits into a surgery exact triangle

bHFK.�Y;�K; Œ�†�;�g/
f
// bHFK.�Y 0;�K 0; Œ�†�;�g/

zz

bHFK.�Y 00;�K 00; Œ�†�;�g/

dd

where Y 00 is the result of 0–surgery on  � Y and K 00 is the induced knot. That
f is an isomorphism then follows from the fact that the third group is zero, as † is
homologous in Y 00 to a surface of genus g� 1 obtained by cutting † open along 
and capping the new boundary components with disks. Combining the last two claims,
we have that Œc� is nonzero if and only if Œc0� is.

Let �ı denote a positive Dehn twists around a curve ı parallel to @†. Note that any
other diffeomorphism ' of † is obtained from �n

ı
by adding negative Dehn twists, for

some n > 0. Thus, to complete the proof of Theorem 2.3, it suffices to show that the
class

Œc� 2 bHFK.�Y;�K; Œ�†�;�g/

is nonzero in the case that ' D �n
ı

for some n > 0. But this follows immediately from
the fact that the class

c.�/D Œc� 2 cHF.�Y /
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is nonzero as � is Stein fillable in this case [20]. To elaborate, suppose H is a doubly
pointed Heegaard diagram for K � Y adapted to .†; '/ and some basis. Recall from
Remark 2.2 that c is in the bottommost filtration level F�g . If c is a boundary in

F�g=F�g�1 D F�g

then c is a boundary in cCF.H/ as well.

3 The corollaries

We prove Corollaries 1.4, 1.5 and 1.6 below.

Proof of Corollary 1.4 Suppose for a contradiction that

K DK1 #K2

is an L–space knot which is a connected sum of nontrivial knots K1 and K2 . We
know that K is fibered, which implies that each summand is also fibered by [3]. Thus,

(5) bHFK.S3; K1; g.K1//Š F Š bHFK.S3; K1; g.K2//:

The Künneth formula for knot Floer homology states that

bHFK.S3; K; i/Š
M

i1Ci2Di

bHFK.S3; K1; i1/˝ bHFK.S3; K2; i2/:

Since g.K/D g.K1/Cg.K2/, the Künneth formula together with (5) implies that

bHFK.S3; K; g.K/� 1/Š bHFK.S3; K1; g.K1/� 1/˚ bHFK.S3; K1; g.K2/� 1/:

Each of the summands on the right is nontrivial by Theorem 1.1, which implies that

rk bHFK.S3; K; g.K/� 1/� 2:

But this violates the constraint (3) on the knot Floer homology of K , a contradiction.

Proof of Corollary 1.5 Suppose that

rk bHFK.S3; K/D 3:

Then bHFK.S3; K/ is supported in Alexander gradings 0 and ˙g.K/ by symmetry
and genus detection (1). Note that g.K/� 1 since otherwise K is the unknot and

rk bHFK.S3; K/D 1;
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a contradiction. So we have that

bHFK.S3; K; i/Š

8<:
F ; i D g.K/;

F ; i D 0;

F ; i D�g.K/:

Fiberedness detection (2) therefore implies that K is fibered. Theorem 1.1 then forces
g.K/D 1. Thus, K is a genus 1 fibered knot. It follows that K is either a trefoil or the
figure eight, but the knot Floer homology of the latter has rank 5, so K is a trefoil.

Proof of Corollary 1.6 Suppose that

(6) rk bHFK.Y;K/D 3:

Since K is nullhomologous, there is a spectral sequence with E2 page bHFK.Y;K/
and abutting to bHF.Y /. It follows that

rk cHF.Y /D 1 or 3:

In particular, this implies that Y is a rational homology 3–sphere.

Suppose for a contradiction that g.K/D 0. Then Y cannot be S3 since that would
violate our rank assumption (6). The knot K is therefore contained in a 3–ball in Y
whose boundary does not bound a ball in Y XK , violating the irreducibility of the
knot complement.

So g.K/ � 1. Since K has irreducible complement and Y is a rational homology
3–sphere, analogues of the genus and fiberedness detection (1) and (2) hold [18; 17].
In particular, Theorem 1.1 forces K to be a genus 1 fibered knot exactly as in the
previous proof.

Observe that rk bHFK.Y;K/ ¤ rkbHF.Y / since otherwise the monodromy of K is
trivial and Y Š #2.S1 �S2/ by Remark 2.6. Thus,

rk cHF.Y /D 1;

meaning that Y is an integer homology 3–sphere and an L–space. The genus 1 fibered
knots in L–spaces were classified in [1, Theorem 4.1] in terms of their monodromies.
From that classification, it is also easy to determine which such L–spaces are integer
homology 3–spheres. In particular, K must a fibered knot with fiber a once-punctured
torus T with monodromy ' one of the following, where x and y represent positive
Dehn twists around dual curves in T :
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(1) ' D xy�1 .

(2) ' D .xy/�3x�3y�1 D .xy/�6xy .

(3) ' D x�1y�1 .

(4) ' D .xy/3x�3y�1 D xy .

(5) ' D .xy/6x�1y�1 .

In the first case, K is the figure eight, a contradiction since bHFK of the figure eight
has rank 5. In the next four cases, K is, respectively,

� the core of .C1/–surgery on the right-handed trefoil,

� the left-handed trefoil,

� the right-handed trefoil,

� the core of .�1/–surgery on the left-handed trefoil.

Each of these also has bHFK of rank 3, as computed in [1], for example. This completes
the proof of Corollary 1.6.
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