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Braid monodromy, orderings and transverse invariants

OLGA PLAMENEVSKAYA

A closed braid ˇ naturally gives rise to a transverse link K in the standard contact 3–
space. We study the effect of the dynamical properties of the monodromy of ˇ , such as
right-veering, on the contact-topological properties of K and the values of transverse
invariants in Heegaard Floer and Khovanov homologies. Using grid diagrams and
the structure of Dehornoy’s braid ordering, we show that y�.K/ 2 bHFK.m.K// is
nonzero whenever ˇ has fractional Dehn twist coefficient C > 1 . (For a 3–braid, we
get a sharp result: y� ¤ 0 if and only if the braid is right-veering.)

57M27, 57R17, 57R58

1 Introduction

In the standard contact 3–space .R3; �std/D ker.dzC r2d'/, links that are transverse
to the contact planes can be described via braids around the z–axis (up to a stabilization
equivalence). In this paper, we would like to see how dynamics of the braid monodromy
affects the contact-topological properties of the corresponding transverse link. We focus
on transverse link invariants that live in Heegaard Floer and Khovanov homologies
of the link K : the transverse invariant y�.K/ 2 bHFK.m.K// (see Ozsváth, Szabó and
Thurston [39]) as well as the invariant  .K/2Kh.K/; see Plamenevskaya [41]. A lot of
previous research was aimed at using these invariants to detect transverse nonsimplicity,
ie to show that certain transverse knots are not isotopic despite having the same smooth
type and self-linking number. The Heegaard Floer homological invariant y� detects many
such pairs, but it is unknown whether the Khovanov homological invariant  is effective.

The purpose of this paper is to clarify the qualitative meaning of transverse invariants
of an individual transverse knot. It turns out that the behavior of y� 2 bHFK is related
to certain dynamical properties of the braid monodromy (acting on a disk D with
punctures). A braid is right-veering if its monodromy sends every arc connecting @D
to one of the punctures to the right of itself; see Section 2 for a detailed definition.
(Otherwise, we say that the braid is non-right-veering.) The following proposition is
known and has motivated the present paper.
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Proposition 1.1 (see Baldwin and Grigsby [3], Baldwin, Vela-Vick and Vértesi [5]
and Plamenevskaya [41]) Suppose K is a transverse link with a non-right-veering
braid representative. Then y�.K/D 0 and  .K/D 0.

We establish a partial converse to this fact:

Theorem 1.2 Suppose that K is a transverse 3–braid. Then K is right-veering if and
only if y�.K/¤ 0.

Theorem 1.3 Suppose K is a transverse braid with the fractional Dehn twist coeffi-
cient C > 1. Then y�.K/¤ 0.

The fractional Dehn twist coefficient measures the amount of positive rotation the braid
monodromy makes around the boundary of the disk. The condition C > 1 means,
roughly, that the braid has more positive rotation at the boundary than a full positive
twist on all strands. We will give the precise definition of the FDTC in Section 5. Note,
however, that the condition C > 1 does not imply that the braid is positive or that it
“looks like” a positive braid in any sense; indeed, such a braid can contain a lot of
negative crossings and a large amount of negative rotation inside the disk (see model
examples ˇn;k in Section 5).

It is well known that the right-veering property of diffeomorphisms of surfaces plays an
important role in 3–dimensional contact topology. Namely, by Giroux’s theorem contact
structures can be described via compatible open books, and tight contact structures are
exactly those for which every compatible open book is right-veering; see Honda, Kazez
and Matić [18]. A product of positive Dehn twists is a special case of a right-veering
diffeomorphism; an open book with such monodromy supports a Stein fillable contact
structure. Some of the properties of the monodromy of an open book are reflected, via
the compatible contact structure, by the Ozsváth–Szabó contact invariant [37]. More
precisely, this invariant vanishes for open books with non-right-veering monodromy (ie
for overtwisted contact structures), and is always nonzero for monodromies which are
products of positive Dehn twists (ie for Stein fillable contact structures). The fractional
Dehn twist coefficient of the open book monodromy also carries information on the
contact structure. By Honda, Kazez and Matić [19], a contact structure supported by
an open book with connected boundary and pseudo-Anosov monodromy with C � 1

is isotopic to a perturbation of a taut foliation, and therefore weakly symplectically
fillable. Then, by Ozsváth and Szabó [36], the Heegaard Floer contact invariant (with
twisted coefficients) is nonzero.
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Our Theorem 1.3 for classical braids parallels the above result for contact structures,
but our proof is surprisingly different. Taut foliations and fillability do not have an
obvious interpretation in terms of braids; instead, we use braid structure supplied by
Dehornoy’s theory of braid orderings. This allows us to prove nonvanishing of y� via
grid diagrams. Note that a generalization of y� for the case of braids in arbitrary open
books was given in [5]; the definition is reminiscent of that of the Heegaard Floer
contact invariant. It would be interesting to find a technique that could be used to prove
both a general version of Theorem 1.3 and the result of [19]. An additional subtlety
is that our Theorem 1.3 holds with untwisted coefficients (we use Z=2 coefficients
throughout); in the context of open books, a nonvanishing result with Z=2 coefficients
has not been established. (In general, the untwisted version of the Ozsváth–Szabó
invariant may vanish for weakly fillable contact structures; see Ghiggini [16].)

Invariants related to braid orderings encode some of the topology of the braid closure,
such as genus bounds for the underlying knot, existence of certain isotopies and some
information on the geometry of the link complement; see Ito [21; 22] and Malyutin
and Netsvetaev [29]. We show that braid orderings are useful in contact topology. It
would be interesting to develop further connections and applications.

Right-veering seems important for certain contact-topological properties of transverse
links, so we take a closer look at features of right-veering transverse braids. An
important remark is in order: it is possible to start with a non-right-veering braid and
stabilize it, while preserving the transverse link type, to obtain right-veering monodromy
(Proposition 3.1). We therefore suggest:

Definition 1.4 Let K be a transverse link in .S3; �std/. We say that K is right-
veering if every braid representative of K is a right-veering braid. Similarly, K is
non-right-veering if there exists a non-right-veering braid representative for K .

It is interesting to ask if y�.K/ is always nonzero whenever K is a right-veering
transverse link; at the moment, we do not have any counterexamples. Another question
concerns the behavior of the Khovanov homological invariant  .K/ of a right-veering
link K . The analogs of Theorems 1.2 and 1.3 do not hold true for  , and there
are examples of right-veering transverse links with vanishing  . We include a few
observations concerning  .

In general, we would like to claim that right-veering transverse links have certain special
properties. It turns out that right-veering is a necessary condition for tightness of the
double cover .†.K/; �K / of .S3; �std/ branched over K , and for equality in various
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versions of the slice-Bennequin inequality. Recall that the self-linking number sl.K/ of
the transverse knot K has upper bounds (see Plamenevskaya [40; 41], Rudolph [46] and
Shumakovitch [47]) in terms of the slice genus g�.K/, the Ozsváth–Szabó concordance
invariant �.K/ and Rasmussen’s concordance invariant s.K/:

sl.K/� 2g�.K/� 1; sl.K/� 2�.K/� 1; sl.K/� s.K/� 1:

We show that these upper bounds can only be achieved by right-veering knots.

Theorem 1.5 Suppose that K is a non-right-veering transverse knot. Then:

(1) sl.K/ < s� 1, sl.K/ < 2� � 1 and sl.K/ < 2g�.K/� 1.

(2) The branched double cover .†.K/; �K / is overtwisted.

These facts are straightforward observations or corollaries of known results; we col-
lect them together to create a coherent picture. The converse statements to those of
Theorem 1.5 are not true (see Proposition 3.4), although it is well known that when K

is a quasipositive braid, the above bounds for the self-linking number become equalities,
and the branched double cover is tight (even Stein fillable). We discuss this further in
Section 3.

It might be tempting to think of the right-veering vs non-right-veering transverse knots
as a dichotomy analogous to that of tight vs overtwisted contact structures, but this
analogy does not go very far. Indeed, the main feature of overtwisted contact structures
is that they satisfy an h–principle (see Eliashberg [12]); in particular, two overtwisted
contact structures are isotopic whenever their underlying plane fields are homotopic.
In the case of transverse knots, an h–principle would say that non-right-veering knots
are transversely simple (ie the transverse isotopy type would be determined by the
smooth knot and the self-linking number), but this is not true: some of the transversely
nonsimple braids given in Birman and Menasco [7] are not right-veering.

The paper is organized as follows. In Section 2, we review the necessary definitions and
background. In Section 3, we prove Theorem 1.5 along with some other easy properties
of non-right-veering braids. The main results of the paper are contained in Sections 4
and 5: in Section 4, we discuss 3–braids and prove Theorem 1.2; Section 5 contains the
proof of Theorem 1.3 and the related discussion of Dehornoy’s floor function and the
fractional Dehn twist coefficient. In Section 6, we discuss higher-order branched covers.

Acknowledgements The author is grateful to John Baldwin, John Etnyre, Marco
Golla and Jeremy Van Horn-Morris for helpful conversations. This work was partially
supported by NSF grant DMS-1510091.
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2 Background

2.1 Braids and transverse links

As usual, we will write the elements of the Artin braid group Bm (braids on m strands)
as braid words on standard generators, �1 , �2 , . . . , �m�1 . We draw braids from left to
right, and consider braid closures as closed braids around the z–axis in R3 . (Closed
braids correspond to conjugacy classes in Bm .)

If R3 is endowed with the standard contact structure �std D ker.dzC r2d�/, closed
braids around the z–axis naturally give rise to transverse links. Moreover, two braids
that produce transversely isotopic links are related by braid isotopies and positive
Markov stabilization and destabilization moves [35; 48] (this fact is usually called
“transverse Markov theorem”). Positive Markov stabilization of a braid ˇ 2 Bm

gives the braid ˇ�m 2 BmC1 ; geometrically, this means adding an extra strand and
a positive crossing to the given closed braid. Negative Markov stabilization of ˇ
gives the braid ˇ��1

m , which is not transversely isotopic to ˇ . When we consider
the transverse links corresponding to braids, negative Markov stabilization is called
transverse stabilization. A basic invariant of transverse links, the self-linking number,
can be computed from a braid via the formula

slD #fpositive crossingsg� #fnegative crossingsg� .braid index/:

Transverse stabilization decreases the self-linking number by 2.

The braid group Bm is naturally identified with the mapping class group of a disk with
m marked points. (We will assume that D�C is the standard unit disk, and that the set
QD fx1;x2; : : : ;xmg of marked points lies on the x–axis with x1 < x2 < � � �< xm .)
The braid group acts on .D;Q/ on the right (fixing @D). Each standard generator �i

acts by a right-handed half-twist interchanging xi and xiC1 , supported in a small
neighborhood of the segment Œxi ;xiC1�.

2.2 Right-veering property and braid orderings

We now recall the definition of right-veering braids. For this, we consider the action
of the braid monodromy on embedded arcs that connect the boundary @D of the disk
to one of the marked points in Q, while avoiding all other marked points. We will
refer to such an arc as “an arc in .D;Q/”. Suppose that a1 and a2 are nonisotopic
arcs in .D;Q/ that start at the same point in @D and intersect transversely without
nonessential intersections (that is, the two arcs form no bigons in D nQ, so that no
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intersections can be removed by an isotopy of the arcs). We will say that a1 lies to
the right of a2 if the pair of tangent vectors . Pa1; Pa2/ at the arcs’ initial point induces
the original orientation on the disk D . For arcs with nonessential intersections, the
same definition can be used after the arcs are pulled taut, ie isotoped to eliminate all
nonessential intersections. Now, let ˇ 2 Bm be a braid, and write ˇ.a/ for the image
of an arc a in .D;Q/ under the action of ˇ . (The braid group acts on the right but we
abuse notation.)

Definition 2.1 Let ˇ 2Bm be a braid. We say that ˇ is right-veering if for any arc a

in .D;Q/, the arc ˇ.a/ is either isotopic to a or lies to the right of a (after the arcs a

and �.a/ are pulled taut in D nQ).

If there is an arc a such that ˇ.a/ is to the left of a (ie a is to the right of ˇ.a/), we
say that ˇ is non-right-veering.

In the context of open book decompositions, the notion of right-veering was developed
in [18] and applied to the study of contact structures. For braids, a definition where one
considers arcs with both endpoints in @D was given in [5]; the present definition appears
in [3]. (See also [23] for a detailed discussion and a proof that the definitions from [3]
and [5] are equivalent.) The general idea of right-veering goes back to W Thurston.

Using Thurston’s approach, the idea of right-veering can be used to show that the braid
group Bm is orderable. (Namely, there exists a left-invariant linear order on Bm , so
that if ˇ1 < ˇ2 , then ˇ1 < ˇ2 for any  2 Bm .) Many different orderings (known
as Nielsen–Thurston orderings) arise from this idea; we refer the reader to [11] for
a general discussion. In this paper, we will only need a specific ordering introduced
by Dehornoy [10]. Historically, Dehornoy was the first one to describe a linear order
on Bm ; he found it from an algebraic perspective. By definition, ˇ � 1 in Dehornoy’s
order if and only if the braid ˇ admits a braid word that contains the generator �i but no
��1

i and no �˙1
j for j < i . (Such words are called � –positive.) For example, we have

�3�
2
1
��5

2
��1

3
�1 and �2�5�

�2
3
�2

2
�1. Now, we set ˇ�ˇ0 if .ˇ0/�1ˇ�1, ie .ˇ0/�1ˇ

admits a � –positive word. This gives a well-defined left-invariant order [10; 11]. (From
this perspective, it is nontrivial to check, for example, that ˇ and ˇ�1 can never be
both � –positive.)

We will also use some more specific terminology. We say that a braid word is �i –
positive if it contains at least one letter �i but no ��1

i and no �˙1
j with j < i . Similarly,

we can define �i –negative words. We will say that a word is �i –free if it contains
no �˙1

j for j � i .
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Dehornoy’s order can be given a geometric interpretation [14], by considering the
action of the braid monodromy ˇ 2Map.D;Q/ on the x–axis. (Recall that we assume
that the marked points are all on the x–axis, labeled from left to right.) It turns out that
ˇ � 1 in Dehornoy’s order if and only if the image of the x–axis under ˇ veers to the
right of the x–axis, when compared at the left endpoint and pulled taut. (Note that the
x–axis passes through marked points, and may coincide with its image on a few initial
intervals. The image must veer right from the x–axis when they eventually diverge.
Indeed, for a �1 –positive word, the image of the x–axis will veer to the right at @D ,
but for a word that is �2 –free, the image will follow the x–axis up to the point x2 .
For a �3 –positive word, the image of the x–axis will veer to the right after x2 .)

It is important to note that the condition ˇ � 1 does not imply that ˇ is right-veering
(since we do not consider images of arbitrary arcs). For example, �1�

�1
2
� 1 since

this braid is �1 –positive, but it is clearly non-right-veering. However, we can say that
if ˇ is non-right-veering, ie sends some arc to the left of itself, it has a conjugate ž

that sends the initial (leftmost) arc of the x–axis to the left of itself, so ž � 1:

Proposition 2.2 [3; 14] Any non-right-veering braid is conjugate to a braid with a
braid word that contains ��1

1
but no �1 .

Corollary 2.3 A non-right-veering transverse link can be represented by a braid with
a word that contains ��1

1
but no �1 .

The proposition above and its corollary will be very useful for us.

2.3 Transverse invariants

We will be mostly concerned with transverse link invariants in Heegaard Floer homology
(although we will discuss Khovanov homological invariants as well). We now very
briefly recall the constructions, referring the reader to [39; 32; 33; 25] for details.

A grid diagram is an n�n square grid, marked with X’s and O’s so that there is exactly
one X and exactly one O in each row and each column. A grid diagram gives rise to
a braid, as follows. First, consider columns of the grid. For the columns that have O
above X, draw a vertical segment from X to O. For the columns that have X above O,
draw two vertical segments in this column, one from the bottom of the grid to O, the
other from X to the top of the grid. Now, consider the rows, and draw a horizontal
segment in each column connecting X to O, so that horizontal segments cross over the
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Figure 1: Braids and grid diagrams. The middle picture shows a braid running
from bottom to top, constructed from the grid diagram on the right. The
picture on the left shows the same braid running from left to right; the braid
closure is braided around the (vertical) z–axis and represents a transverse
link in .R3; ker.dzC r2d�// .

vertical segments. The result is an oriented braid (running from bottom to top); as in
Section 2.1, the braid gives a transverse link K . See Figure 1 for an illustration.

The grid diagram gives rise to the grid chain complex bCFK.m.K// whose generators
are n–tuples of intersection points of the grid (the opposite sides of the grid are identified
to form a torus). Here, m.K/ is the mirror knot (the mirroring is needed because
one associates a smooth link to a grid diagram in a different way when defining knot
Floer homology). The n–tuple given by the upper-right corners of the X markings
gives a distinguished cycle in the complex bCFK.m.K//; the corresponding element
y�.K/ 2 bHFK.m.K// is an invariant of the original transverse knot K .

The definition we just gave will be most convenient for our purposes; it comes from
Khandhawit and Ng’s braid interpretation [25] of the original definition from [39]. The
original definition [39] of the transverse invariant y� in Heegaard Floer homology starts
by representing the transverse link K in S3 as a push-off of a Legendrian link; the latter
can be put on a grid, and the corresponding grid diagram is used to define the transverse
invariant (as the class of the cycle given the upper-right corners of the X’s). Note
that there are other ways to define the same invariant. A more topological definition,
for transverse knots in arbitrary contact 3–manifolds, was developed via open books
adapted to the corresponding Legendrian knot in [27]. Finally, yet another construction,
whose input is directly a transverse braid (rather than an associated Legendrian link),
was given in [5], where equivalence of all the above definitions for transverse knots
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in S3 was established. While we work with grid diagrams in this paper, it would be
interesting to reprove and generalize our results from the perspective of [5]. Finally,
we remark that there is a related transverse invariant �� in HFK�.m.K// which
potentially contains more information; however, the hat version will be sufficient for
our paper.

The transverse invariant  in Khovanov homology was introduced in [41]. To define
 .K/ 2 Kh.K/ for a braid representative of a transverse link K , one considers the
oriented braid resolution, and then takes the cycle which is the lowest quantum grading
element in the component of the Khovanov chain complex CKh.K/ corresponding to
this resolution. The resulting homology class,  .K/, is independent of the choice of
the braid representative of K .

We recall a few properties.

Proposition 2.4 [39; 41] Suppose Kstab is a transverse stabilization of another
transverse link, K . Then y�.Kstab/D 0 and  .Kstab/D 0.

Both the Heegaard Floer and the Khovanov homological invariants are functorial with
respect to a positive crossing resolution in the transverse braid. More precisely:

Proposition 2.5 [2; 41] Suppose that the braid ˇ is obtained from ˇC by removing
a positive crossing of the braid (ie removing a generator �i from the braid word), and let
K and KC be the corresponding transverse links. The crossing resolution cobordism
gives rise to homomorphisms on Khovanov and Heegaard Floer homology, so that:

(1) There exists a map F W bHFK.m.KC//! bHFK.m.K// such that F.y�.KC//D
y�.K/.

(2) There exists a map GW Kh.KC/! Kh.K/ such that G. .KC//D  .K/.

Similarly, if K� corresponds to a transverse braid that differs from ˇ by an additional
negative crossing, the maps on Heegaard Floer and Khovanov homology send y�.K/
to y�.K�/ and  .K/ to  .K�/.

Propositions 2.2, 2.4 and 2.5 combine to give an immediate proof of Proposition 1.1:
non-right-veering transverse links have y� D 0 and  D 0. Indeed, a non-right-veering
link has a braid representative where all the crossings between the first and second
strands are negative; removing all of these crossings except one, we obtain a transverse
braid that can be destabilized and thus has  D 0 and y� D 0. These vanishing invariants
are mapped to the invariants of the original non-right-veering link by the maps on
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Khovanov and Heegaard Floer homology. (Note that the proof of vanishing of y� in [5]
relies on a different definition of right-veering property; namely, one considers the
effect of the braid monodromy on arcs with both endpoints on @D . We can, however,
reduce our Proposition 1.1 to [5] by “doubling” a non-right-veering arc in .D;Q/.)

3 Non-right-veering transverse links

In this section, we discuss a few basic features of non-right-veering transverse links.
(These can be turned around to say that right-veering is a necessary condition for certain
properties.) Recall that those were defined as links that can be represented by non-right-
veering braids. We first show that non-right-veering braids can become right-veering
after positive Markov stabilizations. This parallels the well-known situation with open
books [18]; our proof is somewhat similar in spirit to the proof of [18, Proposition 6.1].

Proposition 3.1 Let K be an arbitrary transverse link. Then K can always be repre-
sented by a right-veering braid.

Proof We will use the notion of stabilization along an arc. Recall that the usual
Markov stabilization can be thought of as follows. For a braid ˇ 2 Bm DMap.D;Q/,
we enlarge the disk D and add an extra point, xmC1 , to the set QD fx1;x2; : : : ;xmg.
The monodromy of the stabilized braid ˇ�m is then given by the composition of the
monodromy ˇ with a positive half-twist interchanging xm and xmC1 and supported
in a thin neighborhood of a standard arc connecting xm and xmC1 ; see Figure 2, left.
More generally, we can instead consider an arbitrary arc connecting xmC1 to a point
xj 2Q (and avoiding xi 2Q for i ¤ j ); see Figure 2, right. Composing ˇ with a
positive half-twist interchanging xj and xmC1 and supported in a thin neighborhood
of a this arc, we obtain a new stabilized braid. Clearly, stabilization along a general
arc amounts to the effect of a standard stabilization composed with conjugation, so the
result represents the same transverse link.

Figure 2: Markov stabilization ˇ 7! ˇ�m (left) and stabilization along an
arbitrary arc (right)
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Figure 3: The monodromy of the braid ˇ is supported inside the shaded disk.
The two stabilizing arcs twist around.

Now, we start with an arbitrary (non-right-veering) braid ˇ 2Bm , and stabilize it twice
as described below, so that it becomes right-veering. First, find a positive integer N so
that ˇ composed with an N –fold positive boundary twist is right-veering. Consider a
bigger disk zD such that D is contained inside zD , and zD nD contains two additional
marked points, xmC1 and xmC2 . We can assume that the monodromy ˇ is supported
inside D , and ˇ is stabilized along two arcs that connect xmC1 and xmC2 to some
marked points in D . We choose these two arcs as shown in Figure 3; both arcs make
at least N full twists in zD nD before entering @D . Moreover, one arc twists in the
clockwise direction and the other counterclockwise, and they intersect so that each of
them makes at least N twists around @D between their first intersection point and the
endpoint inside D .

We claim that after positively stabilizing along these two arcs (in any order), ˇ becomes
right-veering. Indeed, let a any arc in zD that starts on @zD and goes to one of the
marked points. If a does not enter D , then clearly the image of a must lie to the right
of a. If a enters D , then it must cross the stabilizing arcs. The monodromy of the
stabilized braid is the composition of the monodromy of ˇ with two positive half-twists
supported near the stabilizing arcs. Two cases are then possible for the image of a

under this new monodromy: either (1) the image of a veers right toward and around the
point xmC1 or xmC2 , or (2) it follows one of the stabilizing arcs, making (at least) N

right-handed full twists before entering D . In the first case, the image of a must veer
to the right and go around xmC1 or xmC2 even after it is pulled taut, which guarantees
that it stays to the right of a. In the second case, the image of a will be to the right
of a because ˇ becomes right-veering when composed with N positive full twists.
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Proposition 3.2 Suppose K is a transverse knot such that sl.K/ D s.K/ � 1 or
sl.K/D 2�.K/� 1. Then K is right-veering.

Proof Suppose that sl.K/ D 2�.K/ � 1. Then right-veering of K follows from
Proposition 1.1 and the fact that the equality sl.K/D 2�.K/�1 implies that y�.K/¤ 0.
This last fact seems to be absent from the literature but is known to experts; indeed, the
proof given in [32, Proposition 3.4] for the case of thin knots does not actually use the
thin property. The idea is that y� is related to another invariant, ��.K/2HFK�.m.K//.
The latter is always nontrivial, and y� vanishes if and only if �� is in the image of the
U –map. (Recall that one takes the quotient by the image of U to pass from HFK� to
bHFK .) If sl.K/D 2�.K/� 1, the grading level of �� is the same as the very top of

the ZŒU �–chain in HFK� , which means �� can’t be in the image of U.

The second statement of the proposition concerns Rasmussen’s invariant s.K/, defined
via Khovanov homology. In [44], s is only defined for knots, not for links, but an
extension to the case of oriented links was given in [6]. To prove the proposition, we
will need to remove a number of crossings from the given knot; as the result might be a
multicomponent link, we will work with the link version of s below. (We will actually
prove this part of the proposition for links.)

Recall that sl.K/ � s.K/� 1 when K is a knot; we claim that the same inequality
holds for links. To see this, we will connect the given link to a knot by a cobordism.
Under cobordisms, s changes as follows [44; 6]: if S is a smooth oriented cobordism
from L1 to L2 such that every connected component of S has boundary in L1 , then

(1) js.L2/� s.L1/j � ��.S/:

Given a .kC1/–component transverse braid L, we can insert k positive crossings to
obtain a connected braid K . This gives a cobordism S from the link L to the knot K ;
we have �.S/D�k . Then sl.L/D sl.K/� k � s.K/� 1� k � s.L/� 1 by (1).

We are now ready to prove the proposition. Assume that K is a non-right-veering
transverse link. Then, by Corollary 2.3, K has a braid representative with only negative
crossings in the �1 –level (ie the braid word has entries ��1

1
but no �1 ). Removing

all of these crossings except one, we get a cobordism S from the link K to a link K0

which is a negatively stabilized transverse braid. If k negative crossings were deleted,
then sl.K/ D sl.K0/� k . On the other hand, s.K/ � s.K0/� k by (1). Since K0

is a stabilized transverse link, the inequality sl.K0/ < s.K0/� 1 is strict; therefore,
sl.K/ < s.K/� 1.
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Note that in the above proposition, our proof for the case sl.K/D s.K/� 1 could be
repeated almost verbatim for the case sl.K/D 2�.K/� 1, using Cavallo’s extension
of the tau invariant to links [9]. Indeed, if one deletes k negative crossings from the
link K to obtain the link K0, then 2�.K/ � 2�.K0/� k ; see [9, Section 4.3]. Since
sl.L/� 2�.L/� 1 for all links [9, Proposition 1.5], it follows that the inequality must
be strict for stabilized links, and the result follows as in the case of the s–invariant. In
fact, Proposition 1.5 in [9] gives a stronger bound, namely sl.L/� 2�.L/� n, where
n is the number of link components of L. One can likely show that an n–component
link L is right-veering whenever sl.L/ D 2�.L/ � n, but we will not pursue this
generalization.

Proposition 3.3 Suppose K is a transverse link such that the branched double cover
.†.K/; �K / is tight. Then K is right-veering.

Proof Suppose K is non-right-veering, ie there is a non-right-veering braid represen-
tative � for K . Then there is an arc a in .D;Q/ whose image �.˛/ can be isotoped
to an arc b minimally intersecting a, so that b is to the left of a. We want to show
that .†.K/; �K / is overtwisted.

The branched double cover has an open book decomposition .S; �/ such that S is a
double cover of D with branch set Q and the monodromy � covers � . The arc a lifts
to an arc ˛ in S, and it is clear that �.˛/ is isotopic to the arc ˇ that covers b and
lies to the left of ˛ . We can conclude that � is non-right-veering if we check that ˛
and ˇ form no bigons. Indeed, if there were a bigon B formed by ˛ and ˇ , then B

couldn’t cover a bigon in .D;Q/, and so B would contain a branch point (unique for
Euler characteristic reasons). But then in a neighborhood of B the covering could be
modeled on z! z2 , and this neighborhood admits a covering involution (modeled on
z!�z ). The arcs ˛ and ˇ are both invariant under this involution, so they have to
pass through the branch point, and B would in fact be the union of two bigons, each of
which covers a bigon downstairs. This is a contradiction since we assumed that bigons
between a and b in .D;Q/ no longer exist.

It is natural to ask whether the converses of Propositions 1.1, 3.2 and 3.3 hold true. We
have counterexamples to all statements except the one concerning y� .

Proposition 3.4 There exist right-veering transverse knots whose self-linking number
is not maximal in the corresponding smooth knot type, whose branched double cover is
overtwisted, and for which  D 0.
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Proof Consider the transverse knots K1 and K2 that are the .3; 2/–cables of the
trefoil discovered by Etnyre and Honda [13]; see also [32, Proposition 3.3]. These
examples show that this smooth knot type is not transversely simple: the knots K1 and
K2 have sl.K1/D sl.K2/D 3 but are not transversely isotopic. Indeed, K1 can be
transversely destabilized but K2 cannot. By [32], y�.K2/¤ 0; thus, by Proposition 1.1,
K2 is right-veering. Since sl.K2/D sl.K1/ is nonmaximal, the inequalities sl< s� 1

and sl< 2� �1 must be strict. The knots K1 and K2 can be represented as transverse
push-offs of Legendrian knots L1 and L2 that differ by an “SZ move” [32, Figure 6];
by [26, Proposition 2.8] this implies that K1 and K2 can be related via “negative
flypes” (see [26] for definitions of these modifications), and then by [17, Theorem 1.2] it
follows that the branched double covers .†.K1/; �K1

/ and .†.K2/; �K2
/ are contacto-

morphic. Because K1 is a transversely stabilized knot, .†.K1/; �K1
/ is overtwisted by

[42, Proposition 1.3]; then .†.K2/; �K2
/ is also overtwisted. Finally,  .K2/D 0 (as

stated in [32], the Khovanov homology component of the relevant bidegree is trivial).

Note, however, that the converses of Propositions 1.1, 3.2 and 3.3 hold if the braid is
quasipositive (rather than simply right-veering). Recall:

Definition 3.5 A braid � is called quasipositive if it is a product of conjugates of
standard generators, ie � D

Q
w�iw

�1 .

As an automorphism of the punctured disk, � is represented as a product of (non-
standard) positive half-twists.

Definition 3.6 We say that a transverse link K is quasipositive if K can be represented
by a quasipositive braid.

Orevkov [34] proved that a quasipositive braid remains quasipositive after a positive
Markov destabilization. Thus, in contrast to Proposition 3.1, every braid representing a
quasipositive transverse link will be quasipositive.

The following properties of quasipositive braids are well known. Fillability of branched
double cover is clear because positive half-twists in the punctured disk lift to positive
twists in the covering open book; see eg [42]. The statements about transverse invariants
follow from Proposition 2.5, as one can resolve a number of positive crossings in a
quasipositive braid to obtain the trivial braid. Calculations of the � – and s–invariants for
quasipositive braids are known from standard theory [36; 44], and sl is easily computed.
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Proposition 3.7 Suppose K is a quasipositive transverse knot. Then:

(1) sl.K/D 2g�.K/� 1D 2�.K/� 1D s.K/� 1.

(2) The branched double cover .†.K/; �K / is Stein fillable.

(3) The transverse invariants  .K/ and y�.K/ are both nonzero.

In a sense, quasipositivity is a very strong condition. It would be interesting to de-
fine a weaker notion of “strong right-veering” that would still imply the analog of
Proposition 3.7.

4 Right-veering 3–braids

In this section, we prove Theorem 1.2, namely show that y� is nonzero for all right-
veering 3–braids.

Proof of Theorem 1.2 If ˇ is non-right-veering, then y�.K/D 0 by Proposition 1.1.
We need to prove that y� ¤ 0 for right-veering 3–braids.

According to Murasugi’s classification [31], 3–braids come in the following types (up
to conjugation):

(a) hd�1�
�a1

2
�1�
�a2

2
� � � �1�

�an

2
, where ai � 0 with some ai > 0.

(b) hd�m
2

, where m 2 Z.

(c) hd�m
1
��1

2
, where mD�1;�2;�3.

Here, h D .�1�2/
3 is a full positive twist of the 3–braid, and the exponent d is an

arbitrary integer.

We notice that some of the cases above clearly give non-right-veering braids. Indeed,
if d � 0 in (a) or (c), or d < 0 in (b), or d D 0 and m< 0 in (b), we get braid words
where �2 or �1 has only negative exponents. To prove the theorem, it suffices to show
that y� is nonzero in all of the remaining cases, namely:

(a0) hd�1�
�a1

2
�1�
�a2

2
� � � �1�

�an

2
, where d > 0 and ai � 0 with some ai > 0.

(b0) hd�m
2

, where d > 0 and m 2 Z, or d D 0 and m� 0.

(c0) hd�m
1
��1

2
, where d > 0 and mD�1;�2;�3.

Next, all braids in (c0) are clearly quasipositive, so y� is nonzero by [2]; see also
Proposition 3.7 above. Nonvanishing is also obvious for the braids in (b0) with m� 0,
since these are all positive.
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Figure 4: A grid diagram for �1�2�2�1�
�k
2

Next, we will show that

(2) y�.h � ��k
2 /¤ 0 for all k > 0:

These are braids from (b0) with d D 1. Once this case is established, the rest of (b0)
and (a0) follows from functoriality (Proposition 2.5); indeed, all the other braids in
(b0) and (a0) can be obtained from the model braid h � ��k

2
by insertion of additional

positive crossings.

Observe that h � ��k
2
D .�1�2/

3��k
2
D �1�2�2�1�

�kC2
2

.

We establish (2) for braids of the form �1�2�2�1�
�k
2

with k>0 by a direct examination
of a grid diagram representing the corresponding transverse link. An example of the
corresponding grid diagram is shown in Figure 4; in our picture k D 6, but the general
pattern should be clear to the reader. The element y�.K/2 bHFK.m.K// is given by the
cycle made of “upper-right corners” of the X –markings in the figure. If this cycle is
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?

Figure 5: The cycle y� (left) and looking for empty rectangles (right)

null-homologous, it is the boundary of another element in bCFK.m.K//. We now need
to recall the definition of the boundary map in grid homology [30]. In fact, instead
of bCFK , we can work with another chain complex, eCFK [39], that has the same chain
group but a slightly different boundary map. The homology eHFK of eCFK is not quite
a knot invariant — it depends on the size of the grid — but nonvanishing of y� in bHFK
is equivalent to nonvanishing of the corresponding element z� in eHFK . (The class z� is
given by the “same” generator as y� , the upper-right corners of X’s.) The advantage of
working with eCFK over bCFK is that the differential has a simpler form and will be
easier to analyze. For a generator x of eCFK , given by an n–tuple of intersection points
x D .x1;x2; : : : ;xn/, the boundary @x is obtained by summing over all n–tuples of
the form y D .x1; : : : ;yi ; : : : ;yj ; : : :xn/ that differ from x D .x1;x2; : : : ;xn/ by
exactly two entries and such that there is an empty rectangle in the grid diagram whose
top-right and bottom-left corners are xi and xj , while the top-left and bottom-right
corners are yi and yj . (A rectangle is “empty” if it contains no X and O markings and
none of the entries of x and y .)

Examining the diagram in Figure 5, we immediately see that there are no empty
rectangles that can contribute to a differential killing the � –cycle for our link. Indeed,
notice that we have to check for two types of rectangles, those contained inside the
square and those “wrapping around” the toric grid; the picture shows that no empty
rectangles (of any type) can be found in the middle of the grid, where the X’s and O’s
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fall into the given pattern. Empty rectangles involving the intersections near the corners
of the square grid (outside of the pattern) do not exist either, as inspection of the
diagram shows.

It should be noted that 3–braids are quite special and satisfy many properties that might
not hold in general. In particular, we have the following:

Proposition 4.1 A transverse 3–braid is right-veering if and only if its branched
double cover is tight.

Proof The “if” part is always true by Proposition 3.3; we now establish the “only if”
part, which is specific to 3–braids. This is an easy corollary of known results. Indeed,
the branched double cover of a 3–braid has an open book decomposition whose page
is a punctured torus (or, rather, a genus 1 surface S with one boundary component).
The page arises as a double cover of the disk branched over 3 points, and the braid
monodromy lifts to a diffeomorphism � of the page S, ie the monodromy of the open
book. Every arc ˛ with endpoints on @S covers an arc a in .D; fx1;x2;x3g/. (Note
that this statement is specific to the genus 1 case.) Indeed, ˛ can be represented as
an image �.˛0/ of a standard arc ˛0 in S covering an arc a0 in .D; fx1;x2;x3g/,
under some diffeomorphism � 2 Map.S/. Since S has genus 1 and one boundary
component, any such � is a lift of an element r 2 Map.D; fx1;x2;x3g/, so that ˛
covers r.a0/.

Now suppose that the given transverse 3–braid is right-veering. Then the corresponding
open book for the double cover must be right-veering as well, since a non-right-veering
arc “upstairs” would cover a non-right-veering arc “downstairs”. Indeed, if the image
�.˛/ is to the left of ˛ for some arc ˛ in S and ˛ covers an arc a in .D; fx1;x2;x3g/,
then the image of a under the braid monodromy must lie to the left of a (one should
be careful with nonessential intersections, but the arcs can be pulled taut both upstairs
and downstairs as in the proof of Proposition 3.3). Once we know that .S; �/ is
right-veering, we can use a result of Honda, Kazez and Matić [20]: right-veering open
books with a punctured torus page support tight contact structures.

While we chose to discuss liftings of arcs explicitly in the above proof, one could
instead use the results of [1], where it is shown that the right-veering monodromies
(a0), (b0) and (c0) listed in our proof of Theorem 1.2 are exactly the monodromies that
correspond to tight contact structures (and give nonvanishing Ozsváth–Szabó contact
invariant). This is also relevant for the corollary below:
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Corollary 4.2 Let K be a transverse 3–braid. Then the following conditions are
equivalent:

(1) y�.K/¤ 0.

(2) The branched double cover .†.K/; �K / is tight.

(3) The Heegaard Floer contact invariant c.�K / is nonzero.

Additionally, if  .K/¤ 0, then conditions (1)–(3) hold, but the converse is not true.

Proof Theorem 1.2 and Proposition 4.1 give (1)() (2). The equivalence (2)() (3)
for open books with punctured torus page is known from [20, Theorem 1.2; 1]. The
Khovanov homological statement follows from the above together with Proposition 1.1.
The analog of Theorem 1.2 does not hold for the transverse invariant  in Khovanov
homology. Indeed, while right-veering braids from (a0) are all quasialternating and have
 ¤ 0, the braid h � ��k

2
from (b0) considered in the proof above has  .h � ��k

2
/D 0,

even though its branched double cover is tight; see [4, Example 7.8].

It is interesting to compare the above corollary with the results of [4], where in certain
cases nonvanishing of c.�K / is derived from nonvanishing of  .K/ via the Ozsváth–
Szabó spectral sequence (see [38; 45]).

5 Fractional Dehn twist coefficient

It is natural to ask whether Theorem 1.2 extends to braids of higher index. It would
perhaps be too optimistic to expect that the transverse invariant y� is nonzero for all
right-veering braids. Our Theorem 1.3 establishes that y� does not vanish as long as the
braid has enough positive twisting.

We will obtain Theorem 1.3 as a corollary of a stronger statement, Theorem 5.2 below.
Theorem 5.2 uses braid orderings and is stated in terms of Dehornoy’s floor of a braid.
We first recall the notion of Dehornoy floor and prove Theorem 5.2. Then we will
discuss the fractional Dehn twist coefficient and its relation to Dehornoy’s floor and
complete the proof of Theorem 1.3.

As usual, let � 2 Bn denote the Garside element,

�D .�1�2 : : : �n�1/.�1�2 � � � �n�2/ � � � .�1�2/�1:
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Recall that � generates the center of the group Bn . Geometrically, � is the positive
half-twist on all strands, so

�2
D .�1�2 � � � �n�1/

n

is the full twist.

Definition 5.1 [11] Let ˇ 2 Bn be an arbitrary braid. Let m be an integer such that
�2m � ˇ � �2mC2 , where � is Dehornoy’s ordering on Bn . Then m D bˇcD is
called Dehornoy’s floor of ˇ .

Note that several slightly different definitions of bˇcD exist in the literature [29; 21; 11];
the present one best fits our purposes. Intuitively, Dehornoy’s floor tells us how many
positive full twists can be extracted from a given braid, so that the “leftover” braid
is still nonnegative in Dehornoy’s ordering. (Since � is a total ordering, and for any
given braid ˇ we have that ��N � ˇ ��N when N is very large, the floor function
is well defined.) Note that Dehornoy’s floor is not conjugacy-invariant (and thus not
an invariant of closed braids); for example, b�2�1�

�1
2
cD D 1 but b�2�2�

�1
1
cD D 0,

despite the fact that these two 3–braids are conjugate.

We are now ready to state our result.

Theorem 5.2 If the transverse link K can be represented by a braid ˇ with bˇcD � 1,
then y�.K/¤ 0.

Proof We will use the same idea as in the proof of Theorem 1.2: the question can
be reduced to a family of model braids, which can then be attacked directly via grid
diagrams.

Indeed, suppose that bˇcD � 1. This means that ˇ D�2 , where  � 1 with respect
to Dehornoy’s order. Then  has a braid word which is either �1 –positive or �1 –free.
Both cases guarantee that the braid word for  has no entries of �1 with negative
exponent.

For any k > 0, consider a braid ˇn;k 2 Bn of the form

ˇn;k D .�1�2 � � � �n�1/.�n�1 � � � �2�1/.�2�3 � � � �n�1/
�k :

In the n–braid ˇn;k , all the strands except the first are twisted together k times in
the negative direction, while the first strand twists positively once around all the other
strands.
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Figure 6: The cycle y� for a braid ˇ0
n;k
D ˇn;k with nD 5 and k D 2

The family of braids ˇn;k is universal in the following sense: any given braid ˇ 2 Bn

with bˇcD � 1 can be obtained from a braid ˇn;k with k large enough by insertion
of a number of positive crossings. Indeed, suppose that ˇ D �2 is an n–braid,
and the braid  has no negative crossings in the �1 level (ie no entries of �1 with
negative exponent). Suppose that  has k negative crossings. Then  can be obtained
from the braid  0 D .�2�3 � � � �n�1/

�k by insertion of a number of positive crossings:
we get each negative crossing ��1

i of  by inserting positive crossings to cancel
all the other negative crossings in the braid .�2�3 � � � �n�1/

�1 (the latter expression
repeats k times in the braid  0, so we can get k arbitrary negative crossings by this
procedure). Then we can insert additional positive crossings to create positive crossings
of  . Applying this procedure to ˇn;k D .�1�2 � � � �n�1/.�n�1 � � � �2�1/

0, we will
get the braid .�1�2 � � � �n�1/.�n�1 � � � �2�1/ , which in turn can be converted into
�2 D ˇ by inserting extra positive crossings to obtain the full twist �2 from the braid
.�1�2 � � � �n�1/.�n�1 � � � �2�1/.
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For a braid ˇ on n strands with k negative crossings and bˇcD � 1, we have shown
that ˇ can be obtained from ˇn;k by insertion of positive crossings. By functoriality
of y� [2] (see Proposition 2.5 above), it will follow that y�.ˇ/ ¤ 0 if we check that
y�.ˇn;k/¤ 0 for all n and k .

We will examine a grid diagram for a braid ˇn;k ; more precisely, we draw a diagram
for an equivalent braid

ˇ0n;k D .�1�2 � � � �n�1/.�n�1 � � � �2�1/�
0.�2�3 � � � �n�1/

�k.�0/�1;

where �0 is a positive half-twist on strands 2; 3; : : : ; n. Note that ˇ0
n;k
D ˇn;k in Bn ,

since �0 commutes with �2; �3; : : : ; �n . Consider a grid diagram for ˇ0
n;k

as shown
in Figure 6 (the example in the figure has n D 5 and k D 2). This diagram has a
similar pattern and the same features as the diagram for a 3–braid we considered in
Figure 4. As before, we can see that there are no empty rectangles whose top-left and
bottom-right corners are given by the distinguished intersection points forming the
y� –cycle. Therefore, y� ¤ 0.

We now discuss the definition of the fractional Dehn twist coefficient; its relation to
Dehornoy’s floor will give an immediate proof of Theorem 1.3. Most of the discussion
below is only needed to state Lemma 5.4 and not strictly necessary otherwise. However,
we choose to include a fairly detailed definition of the FDTC since the connection
between transverse invariants and the twisting of the monodromy, as measured by
the FDTC, is the central theme of this paper. The idea of the fractional Dehn twist
coefficient first appeared in [15] and was developed in the context of open books and
contact topology in [18]. For classical braids, a similar notion (via a somewhat different
approach) was studied in [28]. A generalization of FDTC to the case of braids in
arbitrary open books and a detailed proof that different definitions are equivalent is
given in [24].

To define the FDTC of a given braid ˇ 2 Bn , equip the disk D n fx1;x2; : : : ;xng

with a complete hyperbolic metric of finite volume such that @D is geodesic. Let zD
be the universal cover of the punctured disk; zD admits an isometric embedding into
the Poincaré disk H2 . We can compactify zD by adding points at infinity; the result
is a closed disk D . Choose a basepoint � 2 @D and its lift z� 2 @D . Let ˇ 2 Bn D

Map.D; fx1; : : : ;xng/ be a braid. Consider the lift žW zD ! zD with ž.z�/ D z�. It
extends uniquely to a homeomorphism x̌W D! D that fixes the component zC of the
preimage ��1.@D/ of @D under the covering map � such that zC contains z�. Notice
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that @Dn zC can be identified with R, so x̌ induces a homeomorphism of R. Moreover,
the identification @D n zC �R can be chosen so that the full twist around @D (ie the
braid �2 2 Bn ) induces the homeomorphism x 7! xC 1. Since � is in the center
of Bn , any braid ˇ 2 Bn will induce a homeomorphism of R that commutes with the
translation x 7! xC 1. This means that we have a map

‚W Bn!BHomeo
C
.S1/;

where BHomeo
C
.S1/ is the group of homeomorphisms of R that are lifts of orientation-

preserving homeomorphisms of S1 . The map ‚ is called the Nielsen–Thurston map.

Recall that a basic invariant of a map h 2 BHomeo
C
.S1/ is given by its translation

number, defined as

T .h/D lim
N!1

hN .x/�x

N

for any x 2R. Finally:

Definition 5.3 The fractional Dehn twist coefficient of a braid ˇ 2 Bn is defined as
the translation number of ‚.ˇ/,

C D T .‚.ˇ//:

The FDTC is well defined, ie independent of the choice of the hyperbolic metric on the
punctured disk and other choices [28].

Another definition, emphasizing the meaning of FDTC as the amount of rotation about
the boundary of D , can be given in the spirit of [18]. One uses the Nielsen–Thurston
classification to find a free isotopy connecting (an iterate of) � to its pseudo-Anosov,
periodic or reducible representative, and considers the winding number of an arc traced
by a basepoint in @D under this isotopy. We refer the reader to [24] for a detailed
definition and discussion.

The fractional Dehn twist coefficient is related to Dehornoy’s floor as follows. (Note
that unlike Dehornoy’s floor, FDTC is invariant under conjugation and thus gives an
invariant of a closed braid.)

Lemma 5.4 [28] Let ˇ 2 Bm be a braid with fractional Dehn twist coefficient C.
Then

bˇcD C 1� C � bˇcD and C D lim
n!1

bˇncD

n
:
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Proof of Theorem 1.3 This follows immediately from Theorem 5.2 and Lemma 5.4,
since any ˇ 2 Bm representing a closed braid with fractional Dehn twist coefficient
C > 1 has bˇcD � 1. (Note that bˇcD is an integer, and if bˇcD � 0 then, by
Lemma 5.4, we get C � 1.)

6 Higher-order simple covers

We have seen that the properties of contact manifolds arising as double covers of
.S3; �std/ branched over transverse braids often reflect the properties of the branch locus.
Indeed, quasipositive braids give rise to Stein fillable covers, while non-right-veering
braids have overtwisted covers. In this section we turn our attention to higher-order
covers. If one considers cyclic covers, the same properties hold:

Theorem 6.1 Let .†n.K/; �n/ be the n–fold cyclic cover of .S3; �std/ branched over
a transverse link K . Then:

(1) If K is represented by a quasipositive braid, .†n.K/; �n/ is Stein fillable.

(2) If K is a non-right-veering transverse link, .†n.K/; �n/ is overtwisted.

Proof The statements above are essentially contained in [17, Theorem 1.3 and Propo-
sition 4.2] — while [17, Proposition 4.2] is stated in terms of braids “with a row of
negative crossings”; by Corollary 2.3 this is equivalent to non-right-veering.

The situation changes dramatically if we consider simple covers instead of cyclic ones.
It is known that any contact 3–manifold can be represented as a 3–fold simple cover
of .S3; �std/ branched over some transverse link K ; thus, 3–fold simple covers are of
particular interest. We show that in this setting, positivity and right-veering properties
of the branch locus have no bearing on the properties of the cover:

Theorem 6.2 Any contact 3–manifold can be represented both as a 3–fold simple
cover of a positive braid and a 3–fold simple cover of a negative braid.

Proof If we ignore the contact structures, the counterpart of this statement is known in
low-dimensional topology: any 3–manifold can be represented as a 3–fold simple cover
of a positive braid (or of a negative braid). The proof (see eg [43, Theorem 25.2, Step 2])
is based on the fact that the branch locus can be modified in certain ways without
affecting the 3–fold simple branched cover. One of the transformations [43, Figure 24.3]
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Figure 7: Modification of the branch locus for a 3–fold simple cover

replaces two adjacent parallel strands in the braid by three positive crossings provided
that the branching pattern is as shown in Figure 7. (As usual, the labels indicate how
the sheets of the cover meet the branch locus; for example, one passes from sheet 1

to sheet 2 after going along a small loop around a given strand.) This allows to kill a
negative crossing (replacing it by two positive ones) whenever there arcs with different
labels meeting at the negative crossing. It is easy to achieve that all crossings have this
property by first isotoping the link as in [43, Theorem 25.2, Step 2, and Figure 25.1].
We now observe that the same proof goes through in presence of contact structures,
because the branched double cover corresponding to each of the transverse tangles in
Figure 7 is a Darboux ball. (Namely, we close up these tangles to obtain the trivial braid
on two strands and the braid �3

1
; both 3–fold simple branched covers are the standard

contact 3–spheres. Indeed, following the discussion of [43, Figure 23.7], one sees that
the cover corresponding to the braid �3

1
in Figure 7 is given by an open book with a disk

page. This discussion is compatible with contact structures, so the cover is .S3; �std/.)
The same move in the contact category is also discussed in [8, Section 3.2.2.2]; thanks
to John Etnyre for pointing this out to us.

Inserting triples of positive crossings into a given transverse braid, we can obviously
convert it into a positive braid. The branched double cover will remain the same contact
manifold during this procedure, so we have shown that any contact manifold is a 3–fold
simple cover of a positive braid. Performing the same modification backwards, we
can insert a triple of negative crossings into any branch locus (without changing the
cover); this shows that any contact 3–manifold is a cover of .S3; �std/ branched over a
negative braid.
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