Loading [MathJax]/extensions/mml2jax.js

Volume 18, issue 6 (2018)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 25, 1 issue

Volume 24, 9 issues

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
Action dimension of lattices in Euclidean buildings

Kevin Schreve

Algebraic & Geometric Topology 18 (2018) 3257–3277
Bibliography
1 H Abels, A Manoussos, G Noskov, Proper actions and proper invariant metrics, J. Lond. Math. Soc. 83 (2011) 619 MR2802502
2 P Abramenko, Twin buildings and applications to S–arithmetic groups, 1641, Springer (1996) MR1624276
3 P Abramenko, K S Brown, Buildings: theory and applications, 248, Springer (2008) MR2439729
4 G Avramidi, M W Davis, B Okun, K Schreve, The action dimension of right-angled Artin groups, Bull. Lond. Math. Soc. 48 (2016) 115 MR3455755
5 N Benakli, Polyèdres et groupes hyperboliques : passage du local au global, PhD thesis, Université Paris-Sud (1992)
6 M Bestvina, M Feighn, Proper actions of lattices on contractible manifolds, Invent. Math. 150 (2002) 237 MR1933585
7 M Bestvina, M Kapovich, B Kleiner, Van Kampen’s embedding obstruction for discrete groups, Invent. Math. 150 (2002) 219 MR1933584
8 A Borel, J P Serre, Cohomologie d’immeubles et de groupes S–arithmétiques, Topology 15 (1976) 211 MR0447474
9 M W Davis, J Dymara, T Januszkiewicz, J Meier, B Okun, Compactly supported cohomology of buildings, Comment. Math. Helv. 85 (2010) 551 MR2653692
10 M W Davis, J Dymara, T Januszkiewicz, B Okun, Weighted L2–cohomology of Coxeter groups, Geom. Topol. 11 (2007) 47 MR2287919
11 M W Davis, J Huang, Determining the action dimension of an Artin group by using its complex of abelian subgroups, Bull. Lond. Math. Soc. 49 (2017) 725 MR3725492
12 M W Davis, I J Leary, The 2–cohomology of Artin groups, J. London Math. Soc. 68 (2003) 493 MR1994696
13 M W Davis, J Meier, The topology at infinity of Coxeter groups and buildings, Comment. Math. Helv. 77 (2002) 746 MR1949112
14 M W Davis, B Okun, Vanishing theorems and conjectures for the 2–homology of right-angled Coxeter groups, Geom. Topol. 5 (2001) 7 MR1812434
15 Z Despotovic, Action dimension of mapping class groups, PhD thesis, University of Utah (2006) MR2709545
16 J Dymara, D Osajda, Boundaries of right-angled hyperbolic buildings, Fund. Math. 197 (2007) 123 MR2365885
17 B Eckmann, Introduction to 2–methods in topology : reduced 2–homology, harmonic chains, 2–Betti numbers, Israel J. Math. 117 (2000) 183 MR1760592
18 M Gromov, Kähler hyperbolicity and L2–Hodge theory, J. Differential Geom. 33 (1991) 263 MR1085144
19 E R van Kampen, Komplexe in euklidischen Räumen, Abh. Math. Sem. Univ. Hamburg 9 (1933) 72 MR3069580
20 C T McMullen, The moduli space of Riemann surfaces is Kähler hyperbolic, Ann. of Math. 151 (2000) 327 MR1745010
21 J R Stallings, The embedding of homotopy types into manifolds, mimeographed notes (1965)
22 M Tancer, K Vorwerk, Non-embeddability of geometric lattices and buildings, Discrete Comput. Geom. 51 (2014) 779 MR3216663
23 J Tits, Buildings of spherical type and finite BN–pairs, 386, Springer (1974) MR0470099