Volume 18, issue 6 (2018)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 24
Issue 2, 595–1223
Issue 1, 1–594

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Editorial Interests
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
Author Index
To Appear
 
Other MSP Journals
Symplectic capacities from positive $S^1$–equivariant symplectic homology

Jean Gutt and Michael Hutchings

Algebraic & Geometric Topology 18 (2018) 3537–3600
Bibliography
1 F Bourgeois, A Oancea, Symplectic homology, autonomous Hamiltonians, and Morse–Bott moduli spaces, Duke Math. J. 146 (2009) 71 MR2475400
2 F Bourgeois, A Oancea, The Gysin exact sequence for S1–equivariant symplectic homology, J. Topol. Anal. 5 (2013) 361 MR3152208
3 F Bourgeois, A Oancea, S1–equivariant symplectic homology and linearized contact homology, Int. Math. Res. Not. 2017 (2017) 3849 MR3671507
4 K Choi, D Cristofaro-Gardiner, D Frenkel, M Hutchings, V G B Ramos, Symplectic embeddings into four-dimensional concave toric domains, J. Topol. 7 (2014) 1054 MR3286897
5 K Cieliebak, A Floer, H Hofer, Symplectic homology, II : A general construction, Math. Z. 218 (1995) 103 MR1312580
6 K Cieliebak, A Floer, H Hofer, K Wysocki, Applications of symplectic homology, II : Stability of the action spectrum, Math. Z. 223 (1996) 27 MR1408861
7 K Cieliebak, H Hofer, J Latschev, F Schlenk, Quantitative symplectic geometry, from: "Dynamics, ergodic theory, and geometry" (editor B Hasselblatt), Math. Sci. Res. Inst. Publ. 54, Cambridge Univ. Press (2007) 1 MR2369441
8 K Cieliebak, K Mohnke, Punctured holomorphic curves and Lagrangian embeddings, Invent. Math. 212 (2018) 213 MR3773793
9 K Cieliebak, A Oancea, Symplectic homology and the Eilenberg–Steenrod axioms, Algebr. Geom. Topol. 18 (2018) 1953 MR3797062
10 D Cristofaro-Gardiner, Symplectic embeddings from concave toric domains into convex ones, preprint (2014) arXiv:1409.4378
11 D Cristofaro-Gardiner, D Frenkel, F Schlenk, Symplectic embeddings of four-dimensional ellipsoids into integral polydiscs, Algebr. Geom. Topol. 17 (2017) 1189 MR3623687
12 I Ekeland, H Hofer, Symplectic topology and Hamiltonian dynamics, II, Math. Z. 203 (1990) 553 MR1044064
13 A Floer, H Hofer, Coherent orientations for periodic orbit problems in symplectic geometry, Math. Z. 212 (1993) 13 MR1200162
14 A Floer, H Hofer, Symplectic homology, I : Open sets in n, Math. Z. 215 (1994) 37 MR1254813
15 V L Ginzburg, B Z Gürel, Lusternik–Schnirelmann theory and closed Reeb orbits, preprint (2016) arXiv:1601.03092
16 L Guth, Symplectic embeddings of polydisks, Invent. Math. 172 (2008) 477 MR2393077
17 J Gutt, On the minimal number of periodic Reeb orbits on a contact manifold, PhD thesis, Université de Strasbourg and Université libre de Bruxelles (2014)
18 J Gutt, The positive equivariant symplectic homology as an invariant for some contact manifolds, J. Symplectic Geom. 15 (2017) 1019 MR3734608
19 R Hind, E Kerman, New obstructions to symplectic embeddings, Invent. Math. 196 (2014) 383 MR3193752
20 M Hutchings, Quantitative embedded contact homology, J. Differential Geom. 88 (2011) 231 MR2838266
21 M Hutchings, Recent progress on symplectic embedding problems in four dimensions, Proc. Natl. Acad. Sci. USA 108 (2011) 8093 MR2806644
22 M Hutchings, Lecture notes on embedded contact homology, from: "Contact and symplectic topology" (editors F Bourgeois, V Colin, A Stipsicz), Bolyai Soc. Math. Stud. 26, János Bolyai Math. Soc. (2014) 389 MR3220947
23 M Hutchings, Beyond ECH capacities, Geom. Topol. 20 (2016) 1085 MR3493100
24 D McDuff, The Hofer conjecture on embedding symplectic ellipsoids, J. Differential Geom. 88 (2011) 519 MR2844441
25 D McDuff, D Salamon, Introduction to symplectic topology, Oxford Univ. Press (2017) MR3674984
26 D McDuff, F Schlenk, The embedding capacity of 4–dimensional symplectic ellipsoids, Ann. of Math. 175 (2012) 1191 MR2912705
27 A Oancea, La suite spectrale de Leray–Serre en cohomologie de Floer pour variétés symplectiques compactes à bord de type contact, PhD thesis, Université Paris-Sud (2003)
28 A Oancea, A survey of Floer homology for manifolds with contact type boundary or symplectic homology, Ensaios Mat. 7, Soc. Brasil. Mat. (2004) 51 MR2100955
29 Y Ostrover, When symplectic topology meets Banach space geometry, from: "Proceedings of the International Congress of Mathematicians, II" (editors S Y Jang, Y R Kim, D W Lee, I Ye), Kyung Moon Sa (2014) 959 MR3728647
30 F Schlenk, Symplectic embedding problems, a survey, in preparation
31 P Seidel, A biased view of symplectic cohomology, from: "Current developments in mathematics, 2006" (editors B Mazur, T Mrowka, W Schmid, R Stanley, S T Yau), Int. (2008) 211 MR2459307
32 L Traynor, Symplectic packing constructions, J. Differential Geom. 42 (1995) 411 MR1366550
33 C Viterbo, Functors and computations in Floer homology with applications, I, Geom. Funct. Anal. 9 (1999) 985 MR1726235
34 C Viterbo, Metric and isoperimetric problems in symplectic geometry, J. Amer. Math. Soc. 13 (2000) 411 MR1750956