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Cubical rigidification, the cobar construction
and the based loop space

MANUEL RIVERA

MAHMOUD ZEINALIAN

We prove the following generalization of a classical result of Adams: for any pointed
path-connected topological space .X; b/ , that is not necessarily simply connected,
the cobar construction of the differential graded (dg) coalgebra of normalized singular
chains in X with vertices at b is weakly equivalent as a differential graded associative
algebra (dga) to the singular chains on the Moore based loop space of X at b . We
deduce this statement from several more general categorical results of independent
interest. We construct a functor C�c from simplicial sets to categories enriched over
cubical sets with connections, which, after triangulation of their mapping spaces,
coincides with Lurie’s rigidification functor C from simplicial sets to simplicial
categories. Taking normalized chains of the mapping spaces of C�c yields a functor
ƒ from simplicial sets to dg categories which is the left adjoint to the dg nerve
functor. For any simplicial set S with S0 D fxg , ƒ.S/.x; x/ is a dga isomorphic to
�Q�.S/ , the cobar construction on the dg coalgebra Q�.S/ of normalized chains
on S. We use these facts to show that Q� sends categorical equivalences between
simplicial sets to maps of connected dg coalgebras which induce quasi-isomorphisms
of dgas under the cobar functor, which is strictly stronger than saying the resulting dg
coalgebras are quasi-isomorphic.

18G30, 55P35, 55U10, 57T30; 18D20, 55U35, 55U40

1 Introduction

In order to compare two different models for 1–categories, Lurie constructs in [15] a
rigidification, or categorification, functor CW Set�! Cat� , where Set� denotes the
category of simplicial sets and Cat� the category of simplicial categories (categories en-
riched over simplicial sets). For a standard n–simplex �n the simplicial category C.�n/

has the set Œn�D f0; 1; : : : ; ng as objects and for any i; j 2 Œn� with i � j the mapping
space C.�n/.i; j / is isomorphic to the simplicial cube .�1/�j�i�1 if i <j , isomorphic
to �0 if iDj , and empty if i >j . In particular, C.�n/.0; n/Š .�1/�n�1 for n>0 and
we think of this simplicial .n�1/–cube as parametrizing a family of paths in �n from 0
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to n. Adams described in [1] an algebraic construction, known as the cobar construction,
that when applied to a suitable differential graded coassociative coalgebra model of
a simply connected space X produces a differential graded associative algebra (dga)
model for the based loop space of X. Adams’s construction is based on certain geometric
maps �nW In�1!P0;nj�

nj, where P0;nj�nj is the space of paths in the topological n–
simplex j�nj from vertex 0 to vertex n, satisfying a compatibility equation that relates
the cubical boundary to the simplicial face maps and the Alexander–Whitney coproduct.
The definition of C.�n/.0; n/ resembles the construction of Adams’s maps �n and it
suggests that behind Adams’s constructions there is a space-level story.

In this article we describe explicitly the relationship between Lurie’s functor C and
Adams’s cobar construction. As a consequence we obtain a generalization of the main
theorem of [1] to path-connected spaces with possibly nontrivial fundamental group.
To achieve this, we factor the functor C through a functor C�c W Set�! Cat�c from
the category of simplicial sets to the category of categories enriched over cubical
sets with connections. If we apply the functor of normalized cubical chains (over
a fixed commutative ring k ) to the mapping spaces of C�c , we obtain a functor
ƒW Set� ! dgCatk from simplicial sets to dg categories satisfying the following
properties. The functor ƒ is the left adjoint of the dg nerve functor described by Lurie
in [16]. Moreover, if S is a 0–reduced simplicial set, ie S0 D fxg, then ƒ.S/.x; x/ is
a dga isomorphic to �Q�.S/, the cobar construction on the dg coalgebra Q�.S/ of
normalized simplicial chains with Alexander–Whitney coproduct.

From the properties of C�c described in the above paragraph we deduce that ƒ.S/.x; x/
and Q�.C.S/.x; x// are weakly equivalent as dgas, where Q�.C.S/.x; x// is consid-
ered as a dga obtained by taking normalized simplicial chains on the simplicial monoid
C.S/.x; x/. In fact, Q�.C.S/.x; x// is a dg bialgebra (with Alexander–Whitney
coproduct) but we are not concerned with the dg coalgebra structure in this article.
From these results, it follows that if f W S!S 0 is a map between 0–reduced simplicial
sets such that C.f /W C.S/! C.S 0/ is a weak equivalence of simplicial categories
(these maps are called categorical equivalences) then Q�.f /W Q�.S/!Q�.S

0/ is
a map of connected dg coalgebras which induces a quasi-isomorphism of dgas after
applying the cobar functor. Maps f W C !C 0 between connected dg coalgebras which
induce a quasi-isomorphism of dg algebras �f W �C !�C 0 after applying the cobar
functor � are called �–quasi-isomorphisms.

We apply the preceding discussion to the 0–reduced simplicial set Sing.X; b/ of
singular simplices on a path-connected space X with vertices at a fixed point b . From
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the relationships between C and C� and between C� and the cobar functor �, and
from some basic homotopy-theoretic properties of C, we deduce that �Q�.Sing.X; b//
is weakly equivalent as a dga to the singular chains on �M

b
X, the topological monoid of

Moore loops in X based at b . In [1], Adams obtained a similar statement for a simply
connected space X using different methods. Our statement does not assume X is simply
connected and therefore extends Adams’s classical result. The key homotopy-theoretic
property of C that implies our result is the following space-level statement, which lies
at the heart of Section 2.2 of [15]: for any path-connected pointed space .X; b/ there
is a weak homotopy equivalence of simplicial monoids between C.Sing.X; b//.b; b/
and Sing.�M

b
X/.

We believe this extension of Adams’s result has not been observed in the literature
mainly because of the historical development of the cobar construction. We highlight
two situations in which the simply connected hypothesis comes into play:

(1) In [1], Adams constructs a map of dg algebras from the cobar construction of the dg
coalgebras of chains to the cubical singular chains on the based loop space. Comparison
of spectral sequences was the main technique used at the time to measure how far a
chain map is from being a quasi-isomorphism. In Adams’s setup, the hypotheses in
Zeeman’s spectral sequence comparison theorem hold if the underlying space is simply
connected and fail in general for spaces with nontrivial fundamental group.

(2) The cobar construction is not invariant under quasi-isomorphisms of dg coalge-
bras. Namely, there are quasi-isomorphisms of dg coalgebras f W C ! C 0 for which
�.f /W �C !�C 0 is not a quasi-isomorphism of dg algebras. An explicit example
is described in Proposition 2.4.3 of Loday and Vallette [14]. However, the cobar
construction is invariant under quasi-isomorphisms of simply connected dg coalgebras,
ie dg coalgebras C for which C0 Š k and C1 D 0, as shown in Proposition 2.2.7
of [14]. Hence, Adams’s main statement regarding the relationship between the cobar
construction and the based loop space also holds if we replace singular chains on a
simply connected space X with the quasi-isomorphic dg coalgebra of simplicial chains
associated to any simplicial set S with no nondegenerate 1–simplices whose geometric
realization is weakly homotopy equivalent to X. The generalization of this statement
to spaces with nontrivial fundamental group fails.

In the nonsimply connected case we go around the use of spectral sequences as de-
scribed in (1) by turning the problem of showing that two dgas are quasi-isomorphic
into the more fundamental problem of showing that the two simplicial monoids
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C.Sing.X; b//.b; b/ and Sing.�M
b
X/ are weakly homotopy equivalent. Then, by

looking closely at the combinatorics, we realize that the simplicial chain complex on
C.Sing.X; b//.b; b/ is weakly equivalent as a dga to the cobar construction

�Q�.Sing.X; b//:

We go around (2) by using the following observation: if Set0� denotes the category of
simplicial sets with a single vertex, then the functor QK� W Set0�! dgCoalgk defined by
QK� .S/DQ�.Sing.jS j; x// sends weak homotopy equivalences of simplicial sets to
�–quasi-isomorphisms of dg coalgebras. Notice that, in general, for any S 2 Set0� the
connected dg coalgebra of simplicial chains Q�.S/ is quasi-isomorphic to QK� .S/ but
not �–quasi-isomorphic. Hence, in order to preserve all the homological information
of the based loop space, the chains functor should be always precomposed with a Kan
replacement functor and the notion of weak equivalences of dg coalgebras should be
taken to be �–quasi-isomorphisms.

We now say a few words regarding how the combinatorics in the construction of C

is unraveled and how its cubical version C�c is constructed. For any simplicial
set S, Dugger and Spivak computed in [5] the mapping spaces C.S/.x; y/ in terms of
necklaces. A necklace is a simplicial set of the form T D�n1 _� � �_�nk, where in the
wedge the final vertex of �ni has been glued to the initial vertex of �niC1 ; a necklace
in S from x to y is a map of simplicial sets f W T ! S, where T is a necklace and
f sends the first vertex of T to x and the last vertex of T to y . For any necklace T ,
one may associate functorially a simplicial cube C.T / and one of the main results
in [5] is that C.S/.x; y/ is isomorphic to the colimit of the simplicial sets C.T / over
necklaces T in S from x to y . It is tempting to replace the simplicial cubes C.T / with
standard cubical sets of the same dimension to obtain a cubical version of C. However,
there are certain maps between necklaces that are not realized by maps of cubical
sets. For example the codegeneracy map s1W �3!�2 which collapses the edge Œ1; 2�
in �3 yields a map between simplicial cubes C.s1/W C.�3/! C.�2/ which does not
correspond to a codegeneracy map between standard cubical sets. Nonetheless, C.s1/
corresponds to a coconnection morphism, whose definition is recalled in Section 2.
Cubical sets with connections were introduced in Brown and Higgins [3] and can be
thought of as cubical sets with extra degeneracies. In Section 3 we describe explicitly
the morphisms in the category of necklaces and then in Section 4 we explain how
cubical sets with connections arise naturally from necklaces. We use the results in
Sections 3 and 4 and the description of C.S/.x; y/ in terms of necklaces to define C�c
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in Section 5. In Section 6 we show that C�c gives rise to the functor ƒ which is the
left adjoint of the dg nerve functor described by Lurie in [16]. Then, in Section 7 we
explain how ƒ relates to the cobar construction. Finally, in Section 8, we recall some
homotopy-theoretic properties of the rigidification functor C and use them in Section 9
to obtain algebraic models for both the based and free loop spaces on a path-connected
space, extending classical results originally proven in the simply connected case.

Over a year since the results of this paper were posted on arXiv, two other preprints
(Kapulkin and Voevodsky [10] and Le Grignou [12]) discussing a cubical factorization
of C also appeared. In [10], the authors use a cubical version of C to describe a cubical
approach to Lurie’s theory of straightening and unstraightening. In [12], Le Grignou
discusses the homotopy theory of the category of categories enriched over cubical sets
with connections using the framework of model categories.
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2 Preliminaries

Denote by Set the category of sets. For any small category C denote by SetC the
category of presheaves on C with values in Set, so the objects of SetC are functors
Cop!Set and morphisms are natural transformations between them. For example, if �
is the category of nonempty finite ordinals with order-preserving maps then Set� is the
category of simplicial sets. We denote by �n the standard n-simplex, so �n is obtained
by applying the Yoneda embedding to Œn�, namely �nW Œm� 7!Hom�.Œm�; Œn�/. Recall
that morphisms in the category � are generated by functions of two types: cofaces
di W Œn�! ŒnC1� for 0� i �nC1 and codegeneracies sj W Œn�! Œn�1� for 0�j �n�1.
The Yoneda embedding yields simplicial set morphisms between standard simplices,
Y.di /W �

n!�nC1 and Y.sj /W �n!�n�1 , which we call coface and codegeneracy
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(simplicial) morphisms. We say a simplicial set S is 0–reduced if the set S0 is a
singleton and we denote by Set0� be the full subcategory of the category Set� of
simplicial sets whose objects are 0–reduced simplicial sets.

For any positive integer n, let 1n be the n–fold cartesian product of copies of the
category 1Df0; 1g which has two objects and one nonidentity morphism. Denote by 10

the category with one object and one morphism. We will consider presheaves over
the category �c which is defined as follows. The objects of �c are the categories 1n

for nD 0; 1; 2; : : : . The morphisms in �c are generated by functors of the following
three kinds: cubical coface functors ı�j;nW 1

n
! 1nC1 , where j D 0; 1; : : : ; nC 1 and

� 2 f0; 1g, defined by

ı�j;n.s1; : : : ; sn/D .s1; : : : ; sj�1; �; sj ; : : : ; sn/I

cubical codegeneracy functors "j;nW 1n! 1n�1 , where j D 1; : : : ; n, defined by

"j;n.s1; : : : ; sn/D .s1; : : : ; sj�1; sjC1; : : : ; sn/I

and cubical coconnection functors 
j;nW 1n! 1n�1 , where j D 1; : : : ; n�1 and n� 2,
defined by


j;n.s1; : : : ; sn/D .s1; : : : ; sj�1;max.sj ; sjC1/; sjC2; : : : ; sn/:

Objects in the category Set�c are called cubical sets with connections and were
introduced by Brown and Higgins [3]. For any cubical set with connections K we
have a collection of sets fKn WDK.1n/gn2Z�0 together with cubical face maps @�j;n WD
K.ı�j;n/W KnC1! Kn , cubical degeneracy maps Ej;n WD K."j;n/W Kn�1! Kn and
connections �j;n WDK.
j;n/W Kn�1!Kn . For simplicity we often drop the second
index in this notation and, for example, write @j instead of @j;n . Elements of Kn
are called n–cells. The structure maps satisfy certain identities described in [3]. The
standard n-cube with connections �n

c is the presheaf on �c represented by 1n , namely,
Hom�c . _ ; 1n/W �op

c ! Set.

For a fixed commutative unital ring k denote by Chk the category of nonnegatively
graded chain complexes over k . The tensor product over k defines on Chk a symmetric
monoidal structure. We have normalized chains functors Q�W Set� ! Chk and
Q�c W Set�c ! Chk . The definition of Q� is standard; we recall the definition
of Q�c following [2]. First let C�K be the chain complex such that CnK is the free
k–module generated by elements of Kn with differential @W Kn!Kn�1 defined on
� 2Kn by @.�/ WD

Pn
jD1.�1/

j .@1j;n�1.�/�@
0
j;n�1.�//. Let DnK be the submodule
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of CnK which is generated by those cells in Kn which are the image of a degeneracy
or of a connection map Kn�1!Kn . The graded module D�K forms a subcomplex
of C�K . Define Q�c .K/ to be the quotient chain complex C�K=D�K .

The functor Q�W Set� ! Chk lifts to a functor Q�W Set� ! dgCoalgk , where
dgCoalgk is the category of dg coalgebras over k , via the Alexander–Whitney con-
struction as recalled in Section 7. There is a slight abuse of notation throughout the
article: depending on the context Q�.S/ may be considered as a chain complex or as
a dg coalgebra. For example, by �Q�.S/ we mean the cobar construction of Q�.S/
considered as a dg coalgebra.

The category Set� has a symmetric monoidal structure given by the cartesian product
of simplicial sets. We will use the following (nonsymmetric) monoidal structure on
Set�c : for cubical sets with connections K and K 0 define

K˝K 0 WD colim
� W�nc!K; � W�

m
c !K0

�nCm
c :

Using the above monoidal structures we may define Cat� , the category of small
categories enriched over simplicial sets; these are called simplicial categories. Similarly,
denote by Cat�c the category of small categories enriched over cubical sets with
connections; these are called cubical categories with connections. We will also consider
the category dgCatk of small categories enriched over chain complexes over k ; these
are called dg categories.

The symbol Š will always denote isomorphism and ' will mean that there is a zigzag
of weak equivalences whenever there is a notion of weak equivalence in the underlying
category.

3 The category of necklaces

We follow [5] for the next definitions and notation. A necklace T is a simplicial set of
the form T D�n1 _ � � � _�nk, where ni � 0 and in the wedge the final vertex of �ni

has been glued to the initial vertex of �niC1 . Each �ni is called a bead of T . Since
the beads of T are ordered and the vertices of each bead �ni are ordered as well, there
is a canonical ordering on the set VT of vertices of any necklace T . We denote by
˛T and !T the first and last vertices of the necklace T . A morphism f W T ! T 0 of
necklaces is a map of simplicial sets which preserves the first and last vertices. We
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say a necklace �n1 _ � � � _�nk is of preferred form if k D 0 or each ni � 1. Let
T D�n1 _ � � � _�nk be a necklace in preferred form. Denote by bT the number of
beads in T . A joint of T is either an initial or a final vertex in some bead. Given a
necklace T write JT for the subset of VT consisting of all the joints of T . For any two
vertices a; b 2 VT we write VT .a; b/ and JT .a; b/ for the set of vertices and joints
between a and b inclusive. Note that there is a unique subnecklace T .a; b/� T with
joints JT .a; b/ and vertices VT .a; b/. Denote by Nec the category whose objects are
necklaces in preferred form and morphisms are morphisms of necklaces. Note that
Nec is a full subcategory of Set�;�� D @�

1 #Set� .

Proposition 3.1 Any nonidentity morphism in Nec is a composition of morphisms of
the following type:

(i) f W T!T 0 is an injective morphism of necklaces and jVT 0�JT 0 j�jVT�JT jD1.

(ii) f W �n1 _ � � � _�nk ! �m1 _ � � � _�mk is a morphism of necklaces of the
form f D f1 _ � � � _ fk such that for exactly one p , fpW �np ! �mp is a
codegeneracy morphism (so mp D np � 1) and, for all i ¤ p , fi W �ni !�mi

is the identity map of standard simplices (so ni Dmi for i ¤ p ).

(iii) f W �n1_���_�np�1_�1_�npC1_���_�nk!�n1_���_�np�1_�npC1_���_�nk

is a morphism of necklaces such that f collapses the pth bead �1 in the domain
to the last vertex of the .p�1/st bead in the target and the restriction of f to all
the other beads is injective.

Proof We prove that any nonidentity morphism of necklaces f W T ! T 0 is a com-
position of morphisms of type (i), (ii) and (iii) by induction on bT , the number
of beads of T . If bT D 1, then we must have bT 0 D 1 as well, so f is a mor-
phism of simplicial sets between standard simplices which preserves first and last
vertices. It follows that f is a composition of (simplicial) coface and codegeneracy
morphisms. Cofaces and codegeneracies between standard simplices are morphisms
of necklaces of type (i) and of type (ii) or (iii), respectively. Assume we have shown
the proposition for bT � k and suppose bT D kC 1. Let VT D fx0; : : : ; xpg be the
vertices of T and xi � xiC1 . Let xj0 be the last vertex of the first bead of T ,
so T D T .x0; xj0/ _ T .xj0 ; xp/, where T .x0; xj0/ has one bead and T .xj0 ; xp/

has k beads. Let Tf D T 0.f .x0/; f .xj0// _ T
0.f .xj0/; f .xp//. We have an in-

jective morphism of necklaces t W Tf ! T 0 (notice that it is possible for Tf ¤ T 0

since f .xj0/ might not be a joint of T 0 ). It follows that f D t ı .g _ h/, where
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gW T .x0; xj0/! T 0.f .x0/; f .xj0// and hW T .xj0 ; xp/! T 0.f .xj0/; f .xp// are the
morphisms of necklaces induced by restricting f to T .x0; xj0/ and T .xj0 ; xp/ respec-
tively. By the induction hypothesis each of g and h is a composition of morphisms of
type (i), (ii) and (iii) and this implies that g_h is a composition of such morphisms as
well. In fact, we have

g_ hD .idT 0.f .x0/;f .xj0 // _ h/ ı .g_ idT.xj0 ;xp//

and, clearly, the wedge of an identity morphism and a morphism which is a composition
of morphisms of type (i), (ii) and (iii) is again a morphism of such form.

To conclude the proof we show that t W Tf ! T 0 is of the desired form. More gen-
erally, let us prove that any nonidentity injective morphism of necklaces t W R! R0

is a composition of morphisms of type (i) by induction on the integer l.R;R0/ WD
jVR0 �JR0 j� jVR�JRj. If l.R;R0/D 1 then t is of type (i). Assume we have shown
the claim for l.R;R0/D k . Suppose t W R!R0 is injective and l.R;R0/D kC1; then
we have two cases: either (a) JR0 D t .JR/, or (b) JR0 � t .JR/. In case (a), it follows
that both R and R0 have the same number of beads, thus t D i ı j for inclusions
of necklaces j W R! S, i W S ! R0, where S is the subnecklace of R0 spanned by
t .VR/[fvg and v is the smallest element of VR0 � t .VR/. Then j is of type (i) and
i is a composition of morphisms of type (i) by the induction hypothesis. For case (b),
let t .JR/�JR0 D ft .xi1/; : : : ; t .xin/g and consider the unique subnecklace S of R0

defined by VS D t .VR/ and JS D t .JR/ � ft .xi1/g. Then we have t D i ı j for
inclusions of necklaces j W R! S, i W S !R0 with j of type (i) and i a composition
of type (i) morphisms by the induction hypothesis.

Remark 3.2 Let us consider type (i) morphisms of the form f W T !�p for some
integer p�1. If bT D1 then we have an injective map of simplicial sets f W �p�1!�p

which sends the first (resp. last) vertex of �p�1 to the first (resp. last) vertex of �p .
The morphism f determines a .p�1/–simplex of the simplicial set �p , ie an element
of .�p/p�1 . There are pC1 nondegenerate elements in .�p/p�1 , however only p�1
of these can correspond to f based on the constraint that f must preserve first and last
vertices, namely, all the faces of the unique nondegenerate element in .�p/p except the
first and last. If bT > 1 then there is a joint v 2 JT such that f .v/ … JT 0 . Moreover,
since f is injective and jVT 0 �JT 0 j� jVT �JT j D 1, we have f .JT �fvg/D J 0T and
f .VT /D VT 0 . It follows that bT D 2 and the image of f is a subnecklace T 01 _ T

0
2

of �p starting and ending with the first and last vertices of �p , respectively, and
containing all the vertices of �p . Hence, we have T 01 _ T

0
2 D �

p�i _�i for some
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0 < i < p and each of these subnecklaces of �p corresponds to a unique term in the
formula for the Alexander–Whitney diagonal Q�.�p/!Q�.�

p/˝Q�.�
p/ applied

to the generator represented by the unique nondegenerate p–simplex in .�p/p .

4 The functor C�c
W Nec ! Set�c

There is a functor C�c W Nec!Set�c which associates functorially to any �n1_� � �_�nk

in Nec a standard cube with connections of dimension n1C� � �Cnk�k . The goal of this
section is to define this functor carefully in a way which will be useful later. We start by
defining a functor P W Nec!Cat, where Cat is the category of small categories. Given
a necklace T and two vertices a; b 2 VT we may define a small category PT .a; b/
whose objects are subsets X � VT .a; b/ such that JT .a; b/�X and morphisms are
inclusions of sets. For any necklace T 2Nec let P.T /D PT .˛; !/, where ˛; ! 2 VT
are the first and last vertices of T . Let f W T ! T 0 be a morphism in Nec, so f is
a map of simplicial sets such that f .˛/D ˛0 and f .!/D !0, where ˛; ! 2 VT and
˛0; !0 2VT 0 are the first and last vertices of T and T 0, respectively. Notice that we have
an inclusion JT 0 � f .JT /. Thus f induces a functor Pf W PT .˛; !/! PT 0.˛

0; !0/

defined on objects by Pf .X/D f .X/ and on morphisms by the induced inclusion of
sets. This yields a functor P W Nec! Cat. We might think of the objects of P.T / as
strings of 0’s and 1’s, as discussed below. This interpretation will yield a functor P1

which is naturally isomorphic to P. We define a total order on the vertices of a necklace
by setting a � b if there is a directed path from a to b .

Proposition 4.1 For any necklace T and any a; b 2 VT such that a � b , there is an
isomorphism of categories �T W PT .a; b/Š 1N, where N D jVT .a; b/�JT .a; b/j.

Proof Let VT .a; b/�JT .a; b/D fy1; : : : ; yN g and yi � yiC1 for i D 1; : : : ; N �1.
Given any object X of PT .a; b/ (so JT .a; b/�X � VT .a; b/) we define �T .X/ WD
.�1T .X/; : : : ; �

N
T .X// to be the object in the category 1N, where, for 1 � i � N,

we have �iT .X/ D 1 if yi 2 X and �iT .X/ D 0 if yi … X. Given a morphism
f W X ! Y in PT .a; b/ (so f is an inclusion of sets) we have an induced morphism
�T .f /W �T .X/ ! �T .Y / defined by �T .f / WD .�1T .f /; : : : ; �

N
T .f //, where, for

1 � i � N, �iT .f /W �
i
T .X/ ! �iT .Y / is the unique nonidentity morphism in 1 if

�iT .X/D 0 and �iT .Y /D 1, and �iT .f / is an identity morphism otherwise. It is clear
that the functor �T W PT .a; b/! 1N is an isomorphism of categories.
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Consider the functor P1W Nec! Cat defined on objects by P1.T / D 1jVT�JT j and
on morphisms f W T ! T 0 by P1.f / D �T 0 ıP.f / ı �

�1
T W 1

jVT�JT j! 1jVT 0�JT 0 j .
The above proposition implies that P1 is naturally isomorphic to P. In the following
proposition we describe explicitly the functor P1.f / for morphisms f W T ! T 0 of
type (i), (ii) and (iii) as in Proposition 3.1.

Proposition 4.2 Let f W T ! T 0 be a morphism in Nec and let N D jVT �JT j.

(1) If f is of type (i) then P1.f /W 1
N
! 1NC1 is a cubical coface functor.

(2) If f is of type (ii) then P1.f /W 1
N
! 1N�1 is either a cubical coconnection

functor or a cubical codegeneracy functor.

(3) If f is of type (iii) then P1.f /W 1
N
! 1N is the identity functor.

Proof For any morphism of necklaces f W T ! T 0 we have JT 0 � f .JT /. For
f W T ! T 0 of type (i) we prove below that if JT 0 � f .JT / then P1.T /.f / is a
cubical coface functor ı1j;N and if JT 0 D f .JT / then P1.T /.f / is a cubical coface
functor ı0j;N . A morphism f W T ! T 0 of type (ii) collapses two vertices v and w
of T into a vertex v0 of T 0 and is injective on VT � fv;wg. We prove below that if
v0 … JT 0 then P1.T /.f / is a cubical coconnection functor 
j;N and if v0 2 JT 0 then
P1.T /.f / is a cubical codegeneracy functor "j;N . The proof for the third part of the
proposition will be straightforward.

(1) Let f W T ! T 0 be of type (i) and write fy01; : : : ; y
0
NC1g D VT 0 � JT 0 , where

y0i �y
0
iC1 . We have JT 0 �f .JT / since f is a morphism of necklaces. If JT 0 �f .JT /

then there is v 2 JT such that f .v/D y0j 2VT 0�JT 0 for some j 2 f1; : : : ; NC1g and
f .JT �fvg/�J

0
T . Then, for any object X in P.T /, v2JT �X, so yj Df .v/2f .X/.

Using the fact that f is injective and identifying objects X in P.T / with sequences
of 0’s and 1’s via the isomorphism �T W P.T /Š 1N we see that P1.f /W 1

N
! 1NC1

is given on objects by

P1.f /.s1; : : : ; sN /D .s1; : : : :; sj�1; 1; sj ; : : : ; sN /

and on morphisms �D .�1; : : : ; �N /W .s1; : : : ; sN /! .s01; : : : ; s
0
N / by

P1.f /.�/D .�1; : : : ; �j�1; id1; �j ; : : : ; �N /:

Thus, P1.f / is the cubical coface functor ı1j;N .

If JT 0Df .JT / then there exists exactly one j 2f1; : : : ; NC1g such that f �1.y0j /D∅.
Then, for any object X in P.T /, y0j will never be an element of f .X/. Using the fact
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that f is injective and identifying objects X in P.T / with sequences of 0’s and 1’s
via the isomorphism �T W P.T /Š 1N, we see that P1.f /W 1

N
! 1NC1 is given on

objects by

P1.f /.s1; : : : ; sN /D .s1; : : : :; sj�1; 0; sj ; : : : ; sN /

and on morphisms �D .�1; : : : ; �N /W .s1; : : : ; sN /! .s01; : : : ; s
0
N / by

P1.f /.�/D .�1; : : : ; �j�1; id0; �j ; : : : ; �N /:

It follows that P1.f / is the cubical coface functor ı0j;N .

(2) Let f W T!T 0 be of type (ii) and write fy1; : : : ; yN gDVT�JT , where yi �yiC1
and fy01; : : : ; y

0
N�1g D VT 0 �JT 0 , where y0i � y

0
iC1 . There exists v0 2 VT 0 such that

f �1.v0/Dfv;wg for some v;w 2VT and jf �1.x0/j D 1 for all x0 2VT 0�fv0g. Note
that v and w are consecutive vertices in the pth bead of T . We have two cases: either
v0 2 VT 0 �JT 0 or v0 2 JT 0 .

If v0 2 VT 0 � JT 0 , then v;w 2 VT � JT so we may write v D yj and w D yjC1

for some j 2 f1; : : : ; N � 1g. Hence, for any object X of P.T / we have that if
X \fyj ; yjC1g ¤∅ then v0 2 f .X/ and if X \fyj ; yjC1g D∅ then v0 … f .X/. By
identifying objects X in P.T / with sequences of 0’s and 1’s via the isomorphism
�T W P.T /Š 1N, we see that P1.f /W 1

N
! 1N�1 is given on objects by

P1.f /.s1; : : : ; sN /D .s1; : : : :sj�1;max.sj ; sjC1/; sjC2; : : : ; sN /

and on morphisms �D .�1; : : : ; �N /W .s1; : : : ; sN /! .s01; : : : ; s
0
N / by

P1.f /.�/D .�1; : : : ; �j�1; �j;jC1; �jC2; : : : ; �N /;

where �j;jC1 is the unique morphism max.sj ; sjC1/! max.s0j ; s
0
jC1/ in the cate-

gory 1. It follows that P1.f / is the cubical coconnection functor 
j;N .

If v02JT 0 , we may assume without loss of generality that w2JT and vDyj 2VT�JT
for some j 2 f1; : : : ; N g. Let X be any object of P.T /. Every element of X �fyj g
corresponds to a unique element in f .X/ via P.f / (since f is of type (ii)) and if
yj 2 X then P.f / sends yj to the joint v0 2 f .X/. By identifying objects X in
P.T / with sequences of 0’s and 1’s via the isomorphism �W P.T /Š 1N, we see that
P1.f /W 1

N
! 1N�1 is given on objects by

P1.f /.s1; : : : ; sN /D .s1; : : : ; sj�1; sjC1; : : : ; sN /
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and on morphisms �D .�1; : : : ; �N /W .s1; : : : ; sN /! .s01; : : : ; s
0
N / by

P1.f /.�/D .�1; : : : ; �i�1; �iC1; : : : ; �N /:

It follows that P1.f / is the cubical codegeneracy functor "j;N .

(3) If f is of type (iii) then jVT j D jVT 0 j C 1 and the injectivity of f only fails
when it collapses two joints (the endpoints of the pth bead �1 ) to a joint in T 0. Under
the isomorphism �T W P.T /Š 1N, this collapse does not have any effect since given
an object X of P.T / the entries in the string �T .X/ of 0’s and 1’s only indicate
which nonjoint vertices of T are in X. It follows that P1.f /W 1

N
! 1N is the identity

functor.

Remark 4.3 Consider two morphisms of necklaces f W U ! T and gW V ! T . If
f and g are both of type (i) and f ¤ g , then P1.f / ¤ P1.g/. If f and g are
of both of type (ii) and f ¤ g , we may have P1.f / D P1.g/. For example, let
U DW _�mC1_�n_W 0, V DW _�m_�nC1_W 0 and T DW _�m_�n_W 0

for any two necklaces W and W 0. Consider the maps f D idW _ smC1_ id�n _ idW 0
and gD idW _ id�m _ s1_ idW 0 , where smC1W �mC1!�m and s1W �nC1!�n are
the last and first (simplicial) codegeneracy morphisms, respectively. It follows that
P1.f /D P1.g/. The identification of these two morphisms after applying P1 should
be compared with the identification in the colimit defining the monoidal structure of
the category of cubical sets with connections discussed in the next section. Finally, if
f and g are of type (iii), then we always have P1.f /D P1.g/.

Corollary 4.4 The functor P1W Nec! Cat factors as a composition Nec!�c ,!

Cat.

Proof For any object T in Nec, P1.T /D 1N is an object of �c and, by Proposition
4.2, for any morphism f in Nec, P1.f / is a morphism in �c .

Hence, we may consider P1 as a functor from Nec to �c . Finally, we define a functor
from the category of necklaces to the category of cubical sets as follows.

Definition 4.5 Define the functor C�c W Nec! Set�c to be the composition of func-
tors C�c WD Y ı P1 , where Y W �c ! HomCat..�c/

op;Set/ D Set�c is the Yoneda
embedding.

Note that for any T in Nec, C�c .T / is the standard cube with connections �N
c , where

N D jVT �JT j.
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Remark 4.6 All nondegenerate cells of C�c .T / can be realized by injective maps of
necklaces T 0! T . More precisely, for every nondegenerate cell � 2 C�c .T /n there
is a necklace T� , with jVT� �JT� j D n, together with an injective map of necklaces
�� W T� ! T such that the induced map of cubical sets with connections

�n
c Š C�c .T� /

C�c .�� /
����! C�c .T /

corresponds to the cell � . Notice T� is not unique, since any other T 0� for which there
is a map T 0� ! T� of type (iii) also works.

5 The cubical rigidification functor C�c
W Set� ! Cat�c

The goal of this section is to show that the functor CW Set�! Cat� defined by Lurie
factors naturally through categories enriched over cubical sets with connections via
a functor C�c W Set�! Cat�c . More precisely, we construct functors C�c W Set�!
Cat�c and TW Cat�c ! Cat� such that T ıC�c is naturally isomorphic to C.

Definition 5.1 For any simplicial set S we define a category C�c .S/ enriched over
cubical sets with connections. Define the objects of C�c .S/ to be the vertices of S, ie
the elements of S0 . For any x; y 2 S0 define

C�c .S/.x; y/ WD colim
T!S2.Nec#S/x;y

C�c .T /;

where .Nec#S/x;y is the category whose objects are morphisms f W T ! S for some
T 2Nec such that f .˛T /D x and f .!T /D y . For any x; y; z 2 S0 , the composition
law

C�c .S/.y; z/˝C�c .S/.x; y/! C�c .S/.x; z/

is induced as follows. Note that given T !S 2 .Nec#S/x;y and U!S 2 .Nec#S/y;z ,
we obtain T _U ! S 2 .Nec#S/x;z . Then the composition

C�c .U /˝C�c .T /! C�c ..T _U/.˛U ; !U //˝C�c ..T _U/.˛T ; !T //

! C�c .T _U/

of morphisms of cubical sets with connections induces the desired composition law
after taking colimits. Recall that .T _U/.˛U ; !U / denotes the unique subnecklace
of T _U with joints JT_U .˛U ; !U / and vertices VT_U .˛U ; !U /. It follows from
Remark 4.3 that the above composition passes to the colimit and yields a well-defined
composition rule. Finally, it is clear that C�c .S/ is functorial in S.
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Remark 5.2 The set of n–cells in C�c .S/.x; y/ is� G
.T!S/2.Nec#S/x;y

C�c .T /n

�.
�;

where the equivalence relation is generated by .t W T ! S; �/ � .t 0W T 0 ! S; � 0/ if
there is a map of necklaces f W T ! T 0 such that t D t 0 ı f and C�c .f /.�/ D �

0.
Here t W T ! S and t 0W T 0! S are objects in .Nec#S/x;y , and � and � 0 are n–cells
in C�c .T / and C�c .T

0/, respectively. Any nondegenerate n–cell Œt W T ! S; �� 2

C�c .S/.x; y/n may be represented by a pair .r W R! S; �R/, where

� R is a necklace with jVR � JRj D n such that there are no .uW U ! S/ 2

.Nec#S/x;y with jVU �JU j D n�1 and f W R!U satisfying r D uıf , and

� �R 2 C�c .R/n is the unique nondegenerate n–cell in C�c .R/.

In fact, one can let R D T� and r D t ı �� as in Remark 4.6. These representatives
are not unique since we may have another representative .r 0W R0! S; �R0/ if there
is a morphism of necklaces hW R! R0 of type (iii) such that r 0 ı h D r . We write
Œr W R! S� for the equivalence class of the nondegenerate n–cell in C�c .S/.x; y/

represented by .r W R! S; �R/. Let v be the j th vertex in VR � JR . The face map
@1j W C�c .S/.x; y/n! C�c .S/.x; y/n�1 is given by @1j Œr W R! S�D Œ@1j r W Rv! S�,
where Rv is the subnecklace of R spanned by vertices VR�fvg and @1j r is the restric-
tion of r to Rv . The face map @0j W C�c .S/.x; y/n! C�c .S/.x; y/n�1 is given by
@0j Œr W R! S�D Œ@0j r W R.˛R; v/_R.v; !R/! S�, where @0j r is the restriction of r to
R.˛R; v/_R.v; !R/. Of course, Œ@1j r W Rv!S� and Œ@0j r W R.˛R; v/_R.v; !R/!S�

may be degenerate cells in C�c .S/.x; y/n�1 even if Œr W R! S� is nondegenerate.

Let us recall Lurie’s construction of CW Set�!Cat� . Given integers 0� i � j , denote
by Pi;j the category whose objects are subsets of the set fi; i C 1; : : : ; j g containing
both i and j and morphisms are inclusions of sets. We have an isomorphism of
categories Pi;j Š 1j�i�1 if i < j and Pi;i Š 10 . For each integer n � 0 define a
simplicial category C.�n/ whose objects are the elements of the set f0; : : : ; ng and for
any two objects i and j such that i � j , C.�n/.i; j / is the simplicial set N.Pi;j /,
where N W Cat! Set� is the nerve functor. If j < i , C.�n/.i; j / is defined to be
empty. The composition law in the simplicial category C.�n/ is induced by the map
of categories Pj;k �Pi;k! Pi;k given by union of sets. The construction of C.�n/ is
functorial with respect to simplicial maps between standard simplices. Then the functor
CW Set�! Cat� is defined by C.S/ WD colim�n!S C.�n/.
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C is defined as a colimit in the category of simplicial categories. Dugger and Spivak
computed in [5] the mapping spaces of C explicitly via necklaces. More precisely,
Proposition 4.3 of [5] states that there is an isomorphism of simplicial sets

colim
T!S2.Nec#S/x;y

ŒC.T /.˛T ; !T /�Š C.S/.x; y/:

We defined C�c having this formula in mind. We do it this way, as opposed to first
defining C�c on standard simplices and then extending as a left Kan extension, to
emphasize that maps of necklaces give rise to maps of cubical sets with connections
and the relationship of this fact with Adams’s cobar construction, as we will explain
later on. The mapping spaces of the functor C�c are cubical sets with connections
constructed by applying the Yoneda embedding to the category P1.T / associated to a
necklace T and then taking a colimit, while the mapping spaces in C are simplicial
sets obtained by applying the nerve functor to P1.T / and then taking a colimit.

Recall we have a triangulation functor j � jW Set�c ! Set� defined on a cubical set
with connections K by jKj WD colim�nc!K N.1

n/ Š colim�nc!K.�
1/�n . Define a

functor TW Cat�c ! Cat� as follows. Given a category K enriched over Set�c define
T.K/ to be the simplicial category whose objects are the objects of K and whose
mapping spaces are given by jK.x; y/j for any objects x and y in K. We have a
composition law on T.K/ induced by applying the functor j � j to the composition law
in K and using the fact that for cubical sets with connections K and K 0 we have a
natural isomorphism jK˝K 0j Š jKj � jK 0j. In fact, since colimits commute we have
the isomorphisms of simplicial sets

jK˝K 0j Š j colim
�nc!K;�

m
c !K0

�nCm
c j

Š colim
�nc!K;�

m
c !K0

j�nCm
c j

Š colim
�nc!K;�

m
c !K0

.�1/�nCm

Š colim
�nc!K;�

m
c !K0

.�1/�n � .�1/�m

Š colim
�nc!K

.�1/�n � colim
�mc !K0

.�1/�m

Š jKj � jK 0j:

Proposition 5.3 The functor CW Set�! Cat� is naturally isomorphic to the composi-
tion of functors

Set�
C�c
��! Cat�c

T
�! Cat�:
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Proof Let Y.�c/#�N
c be the category whose objects are morphisms �n

c !�N
c of

cubical sets with connections and whose morphisms are given by the corresponding
commutative triangles. Note j�N

c j is the colimit in simplicial sets of the functor
Y.�c/ #�N

c ! Set� that sends an object .�n
c ! �N

c / to N.1n/ Š .�1/�n and a
morphism in Y.�c/#�N

c to the corresponding induced morphism between nerves.
The identity morphism �N

c !�N
c is a terminal object in Y.�c/#�N

c . Therefore,
j�N
c j D colim

�nc!�Nc
N.1n/ is given by the value of the functor on the identity

morphism �N
c !�N

c , so j�N
c j DN.1

N /.

Let S be a simplicial set. The objects of the simplicial categories T.C�c .S// and C.S/

are the same, ie the elements of S0 . Since the triangulation functor j � j commutes with
colimits, we have the natural isomorphisms

.T.C�c .S///.x; y/Š colim
T!S2.Nec#S/x;y

jC�c .T /j Š colim
T!S2.Nec#S/x;y

N.1jVT�JT j/:

Moreover, by Proposition 4.3 of [5] it follows that we have natural isomorphisms

colim
T!S2.Nec#S/x;y

N.1jVT�JT j/Š colim
T!S2.Nec#S/x;y

ŒC.T /.˛; !/�Š C.S/.x; y/:

Hence, we have an isomorphism of simplicial categories T.C�c .S//Š C.S/ which is
functorial on S. It follows that T ıC�c and C are naturally isomorphic functors.

6 The left adjoint ƒW Set� ! dgCatk of the dg nerve functor

In Section 1.3.1 of [16], Lurie defines a functor NdgW dgCatk ! Set� , called the dg
nerve, which is weakly equivalent to the left adjoint of the composite functor

�W Set�
C
�! Cat�

Q�
�! dgCatk;

where Q� is the functor obtained by applying the normalized chains functor

Q�W Set�! Chk

on the mapping spaces. In this section we prove that the composite functor

ƒW Set�
C�c��! Cat�c

Q�c
��! dgCatk;

where Q�c is the functor obtained by applying the normalized chains functor

Q�c W Set�c ! Chk

on the mapping spaces, is left adjoint to Ndg .
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Recall Lurie’s definition of Ndg . Let C be a dg category. For each n � 0, define
Ndg.C/n to be the set of all ordered pairs of sets .fXig0�i�n; ffI g/, such that:

(1) X0; X1; : : : ; Xn are objects of the dg category C.

(2) I is a subset I D fi� < im < im�1 < � � �< i1 < iCg � Œn� with m� 0 and fI
is an element of C.Xi� ; XiC/m satisfying

dfI D
X

1�j�m

.�1/j .fI�fij g�fij<���<i1<iC ıfi�<im<���<ij /:

The structure maps in Ndg.C / are defined as follows. If ˛W Œm�! Œn� is a nondecreasing
function, then the induced map Ndg.C/n!Ndg.C/m is given by

.fXig0�1�n; ffI g/ 7! .fX˛.j /g0�j�m; fgJ g/;

where gJ Df˛.J / if ˛jJ is injective, gJ D idXi if J Dfj; j 0g with ˛.j /D i D˛.j 0/,
and gJ D 0 otherwise.

Theorem 6.1 The functor ƒW Set�! dgCatk is left adjoint to NdgW dgCatk! Set� .

Proof First, we show that for any standard simplex �n and any dg category C there
is a bijection

�n;CW dgCatk.ƒ.�
n/;C/Š Set�.�n; Ndg.C//

which is functorial with respect to morphisms in the category �. Given a dg functor
F W ƒ.�n/! C we construct an n–simplex

�n;C.F /D .fX0; : : : ; Xng; ffI g/

in Ndg.C/n . The objects of ƒ.�n/ are the integers 0; 1; : : : ; n so we let Xi D F.i/
for i D 0; 1; : : : ; n. For every subset I D fi� < i1 < � � � < im < iCg � Œn� define �I
to be the generator of the chain complex ƒ.�n/.i�; iC/ D Q�c .C�c .�

n/.i�; iC//

represented by the nondegenerate element of .C�c .�
n/.i�; iC//m which is the one-

bead subnecklace inside �n consisting of the .mC1/–simplex with i� as first vertex,
iC as last vertex, and i1; : : : ; im as nonjoint vertices; in other words, �I is represented
by the .mC1/–simplex inside �n spanned by vertices i�; i1; : : : ; im; iC . It follows
from Remark 3.2 that

d�I D

mX
jD1

.�1/j .@1j �I � @
0
j �I /D

mX
jD1

.�1/j .�I�fij g� �ij<���<i1<iC ı �i�<im<���<ij /:
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Define fI D F.�I /W Xi�!XiC . Since the dg functor F commutes with differentials
at the level of mapping spaces, fI satisfies property (2) in the definition of the dg nerve
functor. The functoriality of �n;C with respect to simplicial maps between standard
simplices follows from Proposition 4.2. Finally, since the functor ƒ preserves colimits,
�n;C induces a functorial bijection

dgCatk.ƒ.S/;C/Š Set�.S;Ndg.C//

for any simplicial set S and dg category C.

Remark 6.2 Let S be a simplicial set and x; y 2 S0 . A generator � of degree n in
the chain complex ƒ.S/.x; y/ is an equivalence class which may be represented by
a nondegenerate n–cell � in the cubical set with connections C�c .S/.x; y/. Since
C�c .S/.x; y/ is defined as a colimit, the nondegenerate n–cell � is itself an equiva-
lence class Œr W �n1_� � �_�nk!S�, where .r W �n1_� � �_�nk!S/2 .Nec#S/x;y and
n1C� � �Cnk�kDn and such that there is no .uW �m1_� � �_�ml!S/2 .Nec#S/x;y
with m1C � � �Cml � l < n together with a map of necklaces

f W �n1 _ � � � _�nk !�m1 _ � � � _�ml

satisfying r D u ıf . Moreover, any

sW �n1 _ � � � _�ni _�1 _�niC1 _ � � � _�nk ! S

satisfying rı�D s , where � W �n1_� � �_�ni_�1_�niC1_� � �_�nk!�n1_� � �_�nk

is the map of simplicial sets which collapses the .iC1/st bead in the domain necklace
to a point, also represents the equivalence class � . This follows essentially from
Proposition 4.2(3).

7 Rigidification and the cobar construction

In this section, we relate the functor C�c W Set0�! Cat�c to the cobar functor

�W dgCoalg0k! dgAlgk :

More precisely, we prove that �Q�.S/, the cobar construction on the dg coalgebra of
normalized chains on a simplicial set S with one vertex x , is isomorphic as a dga to
ƒ.S/.x; x/, where ƒ is the functor obtained by applying the normalized cubical chains
functor on the mapping spaces of C�c , or, naturally isomorphically, the left adjoint to
the dg nerve functor, as described in the previous section. Then we deduce a relationship

Algebraic & Geometric Topology, Volume 18 (2018)



3808 Manuel Rivera and Mahmoud Zeinalian

between CW Set0�!Cat� and �W dgCoalg0k!dgAlgk : we show �Q�.S/ is naturally
weakly equivalent (quasi-isomorphic) as a dga to �.S/.x; x/, where �W Set�! dgCat
is the functor obtained by applying normalized chains to the mapping spaces of C.

Let k be a fixed commutative ring. We may consider k as a graded k–module
concentrated on degree 0. A graded coassociative coalgebra .C;�/ over k is counital
if it is equipped with a degree 0 map �W C!k , called the counit, such that .�˝id/ı�D
idD .id˝ �/ ı�.

We say a differential graded coassociative coalgebra (dg coalgebra, for short) .C; @;�/
over a commutative ring k is connected if C0 Š k . Given a connected dg coalgebra
.C; @;�/ which is free as a k–module in each degree, the cobar construction of C
is the differential graded associative algebra .�C;D/ defined as follows. Consider
the graded k–module sC , where C i D Ci for i > 0 and C 0 D 0 and s is the shift
by �1, ie .sC /i D C iC1 . Let � D id˝ 1C 1˝ idC�0 and for any c 2 C write
�0.c/ D

P
c0 ˝ c00. The underlying algebra of the cobar construction is the tensor

algebra

�C D T sC D k˚ sC ˚ .sC ˝ sC /˚ .sC ˝ sC ˝ sC /˚ � � �

and the differential D is defined by extending D.sc/D�s@cC
P
.�1/deg c0sc0˝ sc00

as a derivation to all of �C. This construction yields a functor �W dgCoalg0k!dgAlgk ,
where dgAlgk is the category of augmented dg algebras over k .

For any simplicial set S, the chain complex Q0�.S/ of unnormalized chains over k
has a natural coproduct �W Q0�.S/!Q0�.S/˝Q

0
�.S/ given by

�.x/D
M

pCqDn

f p.x/˝ lq.x/

for any x 2 Q�.S/n , where f p denotes the front p–face map (induced by the
map Œp� ! Œp C q�, i 7! i ) and lq is the last q–face map (induced by the map
Œq� ! Œp C q�, i 7! i C p ). This coproduct is known as the Alexander–Whitney
diagonal map. Moreover, this dg coalgebra structure passes to the normalized chain
complex Q�.S/. Thus, we may consider Q� as a functor Q�W Set�! dgCoalgk .
In particular, Q�.S/ is a dg coalgebra which is free as a k–module in each degree. If
S is 0–reduced, ie S0 D fxg, then Q�.S/ is counital and connected with counit map
given by the composition Q�.S/�Q�.S/0 D kŒx�

Š
�! k . From now on all of the

coalgebras in this article will be assumed to be counital.
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Theorem 7.1 Let S be a 0–reduced simplicial set with S0 D fxg. There is an
isomorphism of differential graded algebras ƒ.S/.x; x/Š�Q�.S/.

Proof For each integer n � 0 the boundary map @W Q0�.S/n ! Q0�.S/n�1 and
the coproduct �W Q0�.S/n!

L
pCqDnQ

0
�.S/p˝Q

0
�.S/q can be written as sums

@D
Pn
iD0.�1/

i@i and �D
Pn
iD0�i as usual. In particular, for � 2 Sn , �0.�/D

min � ˝ � and �n� D � ˝ max � , where min � and max � denote the first and
last vertices of � , respectively. The truncated maps @0 D

Pn�1
iD1.�1/

i@i and �0 DPn�1
iD1.�1/

i�i also define a differential graded coassociative coalgebra structure
on Q0�.S/. Consider the dga �Q0�.S/D�.Q

0
�.S/; @

0; �0/. First, we show

ƒ.S/.x; x/DQ�c .C�c .S/.x; x//Š�Q
0
�.S/=�

for some equivalence relation � and then we construct an isomorphism

�Q0�.S/=�Š�Q�.S/:

The dga �Q0�.S/ has as underlying complex the tensor algebra T sQ0�.S/ together
with differential D0�D @

0C�0 extended as a derivation to all of T sQ0�.S/. We denote
a monomial s�1˝ � � � ˝ s�k 2 T sQ0�.S/ by Œ�1j � � � j�k�. Let s0.x/ 2 Q0�.S/1 be
the generator corresponding to the degenerate 1–simplex at x . We take a quotient of
T sQ0�.S/ by the equivalence relation generated by

Œ�1j � � � j�k�� Œ�1j � � � j�i�1j�iC1j � � � j�k�

if for some 1� i � k we have �i D s0.x/ (in particular, Œ�1�� 1k if �1D s0.x/); and

Œ�1j � � � j�k�� 0

if �i 2 Q0�.S/ni is a degenerate simplex with ni > 1 for some 1 � i � k . The
first relation corresponds to the identification in the colimit defining C�c .S/.x; x/

arising from Remark 4.6; the second relation corresponds to modding out by degenerate
chains in the definition of the normalized chain complex Q�c .C�c .S/.x; x//. Both
the differential D0� and the algebra structure of T sQ0�.S/ pass to the quotient

T sQ0�.S/=�:

It is clear that we have an isomorphism of dgas

Q�c .C�c .S/.x; x//Š�Q
0
�.S/=�

since necklaces in S correspond to monomials of generators in Q0�.S/.
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We define an isomorphism of dgas

z'W �Q0�.S/=�!�Q�.S/:

Given � 2 Q0�.S/ denote by x� the equivalence class of � in Q�.S/. First define
'Œ�� D Œx�� if deg � > 1, 'Œ�� D x� C 1k if deg � D 1, and '.1k/ D 1k . Extend
' as an algebra map to obtain a map 'W �Q0�.S/ ! �Q�.S/. It follows by a
short computation that the map ' is a chain map. Moreover, ' induces a map of
dgas z'W �Q0�.S/=� ! �Q�.S/. The map z' is an isomorphism of dgas, in fact,
the inverse map  W �Q�.S/! �Q0�.S/=� is given by defining  Œx�� D ŒŒ��� if
deg � > 1,  Œx�� D ŒŒ���� Œ1k� if deg � D 1, and  .1k/ D Œ1k� and then extending
 as an algebra map, where ŒŒ��� denotes the equivalence class of Œ�� 2�Q0� in the
quotient �Q0�.S/=�.

We now relate the dgas �Q�.S/ and �.S/.x; x/. We will use the following lemma,
which follows from an acyclic models argument.

Lemma 7.2 For any cubical set with connections K the chain complex Q�.jKj/ is
naturally weakly equivalent to Q�c .K/, where j � jW Set�c ! Set� is the triangulation
functor.

Proof This proposition follows from the acyclic models theorem applied to the two
functors

Q� ı j � j; Q�c W Set�c ! Chk :

Define the collection of models in Set�c to be MD f�0
c ;�1

c ; : : : g, where �j
c is the

standard j –cube with connections. It is clear that both Q� ı j � j and Q�c are acyclic
on these models. Recall a functor F W C! Chk is free on M if there exist a collection
fMj gj2J , where each Mj is an object in M (possibly with repetitions, possibly not
including all of the objects in M) together with elements mj 2 F.Mj / such that for
any object X of C we have that

fF.f /.mj / 2 F.X/ j j 2 J; .f W Mj !X/ 2 C.Mi ; X/g

forms a basis for F.X/. Clearly Q�c is free on M since we can take Mj D�j
c and

JD f0; 1; 2; : : : g, and define mj 2Q�c .Mj /DQ�c .�
j
c / to be the generator corre-

sponding to the unique nondegenerate element in .�j
c /j (ie mj is the top nondegenerate

cell of �j
c ). Note that the simplicial set j�j

c j Š .�1/�j has j Š nondegenerate
j –simplices �j1 ; : : : ; �

j
j Š
2 j�j

c jj . Hence, Q� ı j � j is also free on M since we
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can take fM 0
1 ;M

1
1 ;M

2
1 ;M

2
2 ; : : : ;M

j
1 ; : : : ;M

j
j Š
;M

jC1
1 ; : : : gj2J , where M j

k
D �j

c ,
JDf0; 1; 2; : : : g and mj

k
2Q�.jM

j

k
j/ is the generator corresponding to the j –simplex

�
j

k
2 j�j

c jj .

We have a natural isomorphism of functors H0.Q� ı j � j/ Š H0.Q�c /; in fact, for
any K 2 Set�c there is a natural bijection between jKj0 and K0 and any two vertices
x and y are connected by a sequence of 1–simplices in jKj1 if and only if they are
connected by a sequence of 1–cubes in K1 . By the acyclic models theorem there exist
natural transformations �W Q� ı j � j !Q�c and  W Q�c !Q� ı j � j such that each
composition � ı and  ı� is chain homotopic to the identity map.

We use the above lemma to relate �Q�.S/ and �.S/.x; x/.

Proposition 7.3 Let S be a 0–reduced simplicial set with S0 D fxg. The differential
graded associative algebras �Q�.S/ and �.S/.x; x/ are naturally weakly equivalent.

Proof By Theorem 7.1 we have an isomorphism

�Q�.S/Šƒ.S/.x; x/DQ�c .C�c .S/.x; x//:

By Lemma 7.2 and the fact that the triangulation functor and chains functor preserve
the monoidal structures, the dgas Q�c .C�c .S/.x; x// and Q�jC�c .S/.x; x/j are
naturally weakly equivalent. Finally, note that we have isomorphisms

Q�jC�c .S/.x; x/jDQ�..TıC�c /.S/.x; x//ŠQ�.C.S/.x; x//D�.S/.x; x/:

8 Properties of CW Set� ! Cat�

We recall several homotopy-theoretic properties of the rigidification functor CW Set�!
Cat� , in particular, its behavior with respect to Kan weak equivalences and its relation-
ship with path spaces. These will be used in the final section of the article.

A map of simplicial sets f W S ! S 0 is called a Kan weak equivalence if it is a weak
equivalence in the Quillen model structure, namely, if f induces a weak homotopy
equivalence of spaces jf jW jS j ! jS 0j. A map of simplicial sets f W S ! S 0 is called
a categorical equivalence if f induces a weak equivalence C.f /W C.S/! C.S 0/ of
simplicial categories in the Bergner model structure. Recall that a functor of simplicial
categories F W C! C0 is called a weak equivalence of simplicial categories if
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� F induces an essentially surjective functor at the level of homotopy categories,
and

� for all x; y 2 C, F W C.S/.x; y/! C0.F.x/; F.y// is a Kan weak equivalence
of simplicial sets.

The Quillen model structure on Set� has Kan equivalences as weak equivalences
and Kan complexes as fibrant objects. There is a different model structure on Set� ,
the Joyal model structure, which has categorical equivalences as weak equivalences
and quasicategories as fibrant objects. Moreover, the Quillen model structure is a
left Bousfield localization of the Joyal model structure. In particular, a categorical
equivalence is always a Kan weak equivalence. The converse is not true in general, but
a Kan weak equivalence between Kan complexes is always a categorical equivalence.
This is Proposition 17.2.8 in [17], which we record below.

Proposition 8.1 If f W S ! S 0 is a Kan weak equivalence between Kan complexes S
and S 0 then C.f /W C.S/! C.S 0/ is a weak equivalence of simplicial categories.

A map f W C ! C 0 of connected dg coalgebras is called a quasi-isomorphism if f
induces an isomorphism of coalgebras after passing to homology. On the other hand,
a map f W C ! C 0 of connected dg coalgebras is called an �–quasi-isomorphism if
f induces a quasi-isomorphism of dgas �f W �C !�C 0. An �–quasi-isomorphism
between connected dg coalgebras is always a quasi-isomorphism. The converse is not
true in general, namely, a quasi-isomorphism between connected dg coalgebras might
not be an �–quasi-isomorphism. However, if C and C 0 are connected dg coalgebras
which are simply connected (ie C1 D 0D C 01 ) then a quasi-isomorphism f W C ! C 0

is an �–quasi-isomorphism. This follows by comparing Eilenberg–Moore spectral
sequences. There are model structures of the category of connected dg coalgebras
having each of these two notions as the weak equivalences, but we do not need these
for the purposes of this paper.

Let Set0� be the full subcategory of the category Set� of simplicial sets whose objects
are 0–reduced simplicial sets. Let dgCoalg0k be the full subcategory of the category
dgCoalgk of dg coalgebras whose objects are connected dg coalgebras. The normalized
chains functor restricts to a functor Q�W Set0�! dgCoalg0k .

Proposition 8.2 The functor Q�W Set0�! dgCoalg0k sends Kan weak equivalences
to quasi-isomorphisms and categorical equivalences to �–quasi-isomorphisms.
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Proof The proof of the first part of the proposition is well known. For the second,
suppose f W S!S 0 is a categorical equivalence and S0Dfxg, S 00Dfx

0g. Then we have
an induced Kan weak equivalence of simplicial sets C.f /W C.S/.x; x/! C.S/.x0; x0/.
This induces a dga quasi-isomorphism

Q�C.f /W Q�.C.S/.x; x//!Q�.C.S/.x
0; x0//:

The result follows since the dgas Q�.C.S/.x; x// and Q�.C.S/.x0; x0// are naturally
weakly equivalent to the dgas �Q�.S/ and �Q�.S 0/, respectively, by Proposition 7.3.

For any pointed topological space .X; b/, denote by Sing.X; b/ the subsimplicial
set of Sing.X/ whose n–simplices are the continuous maps j�nj ! X that take all
vertices of j�nj to b . Define a new functor QK� W Set0�! dgCoalg0k by QK� .S/ WD
Q�.Sing.jS j; x//, where S0 D fxg and Sing.jS j; x/ is the Kan complex of singular
simplices j�nj!jS j sending all vertices of j�nj to x 2 jS j. In general, the functor Q�
does not send Kan weak equivalences of simplicial sets to �–quasi-isomorphisms, but
QK� does.

Proposition 8.3 The functor QK� W Set0�! dgCoalg0k sends Kan weak equivalences
of simplicial sets to �–quasi-isomorphisms of dg coalgebras.

Proof Let S; S 0 2 Set0� with S0 D fxg and S 00 D fx
0g. If f W S ! S 0 is a Kan weak

equivalence then jf jW .jS j; x/! .jS 0j; x0/ is a homotopy equivalence of pointed spaces.
The functor .X; b/ 7! Sing.X; b/ from the category of pointed spaces to Set0� sends
homotopy equivalences of pointed spaces to Kan weak equivalences of 0–reduced Kan
complexes. Thus, Sing.jf j/W Sing.jS j; x/! Sing.jS 0j; x0/ is a Kan weak equivalence.
It follows from Propositions 8.1 and 8.2 that Q�.Sing.jf j//W Q�.Sing.jS j; x//!
Q�.Sing.jS 0j; x0// is an �–quasi-isomorphism.

We now explain the relationship between mapping spaces of C and different kinds of
spaces of paths in a path-connected topological space. This relationship is deduced
from the homotopy-theoretic properties of C as studied in Section 2.2 of [15] and in [4]
using different methods.

For any simplicial category C define the simplicial nerve N�.C/ to be the simplicial
set whose set of n–simplices is given by

.N�.C//n D HomCat�.C.�
n/;C/:
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It follows that N�W Cat�! Set� is the right adjoint of CW Set�! Cat� . If C is a
topological category, then the topological nerve NTop.C/ is defined to be the simplicial
nerve of the simplicial category Sing.C/ obtained by applying Sing to each morphism
space of C. As is well known, for any topological monoid G, jNTop.G/j is a model
for the classifying space BG.

In Section 2.2 of [15], Lurie shows that the pair of adjoint functors .C; N�/ defines a
Quillen equivalence between model categories Set� with the Joyal model structure
and Cat� with the Bergner model structure. In particular, for any fibrant simplicial
category C (a simplicial category whose mapping spaces are Kan complexes) the counit
map C.N�.C//! C is a weak equivalence of simplicial categories. This also follows
from Theorem 1.5 of [4].

Let X be a path-connected topological space and let x; y 2 X. Define the space of
Moore paths in X between x and y to be

PMx;yX D f.
; r/ j 
 W Œ0;1/!X; 
.0/D x; 
.s/D y for r � s; r 2 Œ0;1/g

topologized as a subset of Map.Œ0;1/; X/�Œ0;1/, where Map.Œ0;1/; X/ is equipped
with the compact–open topology. Define a functor

PW Top! CatTop

from the category of topological spaces to the category of topological categories as
follows. For any X 2 Top the objects of P.X/ are the points of X. For any x; y 2X,
define the space of morphisms P.X/.x; y/ WD PMx;yX with composition rule induced
by concatenation of paths. We call PW Top! CatTop the path category functor.

The functor CW Set�! Cat� is a simplicial model for the path category functor as
shown in Proposition 8.4 below. Denote by Sing.PX/ the simplicial category obtained
by applying Sing to the morphism spaces of the topological category PX.

Proposition 8.4 Let X be a path-connected topological space. The simplicial cate-
gories C.Sing.X// and Sing.PX/ are weakly equivalent.

Proof Choose b 2X. The topological category PX is weakly equivalent to �X, the
topological category with a single object b and as morphism space �X.b; b/D�M

b
X

the space of based Moore loops at b with composition law given by concatenation
of loops. A weak equivalence PX ! �X of topological categories is given by
fixing a collection of paths O D f
xgx2X , where 
x is a path from b to x . More
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precisely, we have a functor FOW PX !�X given on objects by sending all objects
of PX to the single object of �X and on morphisms FOW PX.x; y/ ! �X.b; b/

is the continuous map FO.
/ D 

�1
y � 
 � 
x , where � denotes concatenation. The

functor FO is clearly a weak equivalence of topological categories. The topological
nerve NTop DN� ı SingW CatTop! Set� sends weak homotopy equivalences of topo-
logical categories to Kan weak equivalence of simplicial sets. Thus, the simplicial
sets NTop.PX/ and NTop.�X/ are Kan weakly equivalent. Moreover, the geometric
realization jNTop.�X/j is a model for B.�X/, the classifying space of the topological
monoid of based loops. It follows from B.�X/'X that the simplicial sets NTop.PX/

and Sing.X/ are Kan weakly equivalent. On the other hand, since the homotopy
category of NTop.PX/ is a groupoid it follows that NTop.PX/ is a Kan complex [9].
By Proposition 8.1 we have that C.NTop.PX// and C.Sing.X// are weakly equivalent
as simplicial categories. Since CıN�.C/'C for any C2 Set� whose mapping spaces
are Kan complexes, it follows that C.NTop.PX//D C.N�.Sing.PX///' Sing.PX/.
Hence, the simplicial categories C.Sing.X// and Sing.PX/ are weakly equivalent.

We have the following corollary.

Corollary 8.5 Let X be a path-connected topological space and b 2X. The simplicial
categories with one object C.Sing.X; b// and Sing.�X/ are weakly equivalent.

Proof For path-connected X the inclusion Sing.X; b/ ,! Sing.X/ is a Kan weak
equivalence of Kan complexes, so C.Sing.X//.b; b/ ' C.Sing.X; b//.b; b/. Hence,
by Proposition 8.4, C.Sing.X; b//' Sing.�X/.

We finish this section by describing more explicitly the weak equivalence of simplicial
sets between C.Sing.X//.x; y/ and Sing.PX/.x; y/ given by Proposition 8.4. We
review this for completeness but it is not strictly necessary to follow Section 9. We
follow Chapter 2 of [15].

Define a cosimplicial object J �W �! .@�1 # Set�/ by letting J n be the quotient
of the standard simplex �nC1 by collapsing the last face (ie the face spanned by
vertices Œ0; : : : ; n�) to a vertex. The quotient simplicial set J n has exactly two vertices,
which we denote by the integers 0 and nC 1. For any S 2 Set� and x; y 2 S0 ,
there is a simplicial set HomRS .x; y/ called the right mapping space defined by letting
HomRS .x; y/n be the set of all morphisms of simplicial sets 'W J n ! S such that
'.0/D x and '.nC1/D y , together with structure face and degeneracy maps defined
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to coincide with the corresponding structure maps of on SnC1 . Define a cosimplicial
simplicial set Q� by letting Qn WDC.J n/.0; nC1/ and denote by j�jQ� W Set�!Set�
the realization functor associated to Q� . Recall Proposition 2.2.4.1 of [15]:

Proposition 8.6 Let S be an quasicategory containing a pair of objects x and y .
There is a natural Kan weak equivalence of simplicial sets

f W jHomRS .x; y/jQ� ! C.S/.x; y/:

In Proposition 2.2.2.7 of [15], Lurie shows there is a Kan weak equivalence of simplicial
sets

gW jS jQ� Š colim
�n!S

C.J n/.0; nC 1/! colim
�n!S

�n Š S

for any simplicial set S. Hence, for a quasicategory S and x; y 2 S0 we have a zigzag
of Kan weak equivalences

HomRS .x; y/
g
 � jHomRS .x; y/jQ�

f
�! C.S/.x; y/:

Now consider the above zigzag of Kan weak equivalences in the case S D Sing.X/
for a topological space X. There is a Kan weak equivalence of simplicial sets

� W HomRSing.X/.x; y/! Sing.PMx;yX/

given as follows. A simplex 'W J n! Sing.X/ 2 HomRSing.X/.x; y/ corresponds to a
continuous map �' W j�nC1j ! X which collapses the last face of j�nC1j to x and
sends the last vertex of j�nC1j to y . For each point p in the last face of j�nC1j
there is a straight line segment from p to the last vertex of j�nC1j. These straight
line segments give a family of disjoint paths inside j�nC1j which start in the last face
and end in the last vertex and such a family is parametrized by j�nj. The continuous
map �' induces a continuous map j�nj ! PMx;yX which corresponds to a simplex
�.'/W �n! Sing.PMx;yX/. The map � is clearly a Kan weak equivalence of simplicial
sets. It follows from the above zigzag formed by Kan weak equivalences f and g that
C.Sing.X//.x; y/' Sing.PMx;yX/.

9 Algebraic models for loop spaces

In this section we deduce an extension of a classical theorem of Adams from our
previous results and discuss a few consequences. We start by showing that for a path-
connected pointed space .X; b/, ƒ.Sing.X; b//.b; b/ and S�.�Mb X I k/ are weakly
equivalent as dgas.
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Proposition 9.1 Let .X; b/ be a pointed path-connected topological space. The
differential graded associative algebras ƒ.Sing.X; b//.b; b/ and S�.�

M
b
X I k/ are

weakly equivalent.

Proof By definition, we have ƒ.Sing.X; b//.b; b/DQ�c

�
C�c .Sing.X; b//.b; b/

�
.

By Lemma 7.2 we have a quasi-isomorphism of chain complexes

Q�c

�
C�c .Sing.X; b//.b; b/

�
'Q�

�
jC�c .Sing.X; b//.b; b/j

�
:

Moreover, this quasi-isomorphism is a weak equivalence of dgas since the monoidal
structures are preserved under the triangulation functor. By Proposition 5.3, we have
an isomorphism

Q�
�
jC�c .Sing.X; b//.b; b/j

�
ŠQ�

�
C.Sing.X; b//.b; b/

�
:

Finally, by Corollary 8.5, we have

Q�
�
C.Sing.X; b//.b; b/

�
' S�.�

M
b X I k/

as dgas.

In [1], Adams introduced the cobar construction and constructed a chain map of dgas
'W �Q�.Sing.X; b//!C�

� .�
M
b
X I k/, where C�

� .�
M
b
X I k/ denotes the normalized

singular cubical chains on �M
b
X. Moreover, Adams showed that if X is simply

connected then ' is a quasi-isomorphism. The proof of this fact relied on associating
a spectral sequence to �Q�.Sing.X; b// and then comparing it to the Serre spectral
sequence for the fibration �M

b
X ! PX ! X. The simple connectivity assumption

was used in order for the hypotheses of the Zeeman comparison theorem for spectral
sequences to be satisfied.

We now deduce an extension of Adams’s classical theorem (Corollary 9.2 below) to the
case when X is a path-connected space with possibly nontrivial fundamental group.
Note that we have not relied on spectral sequence arguments but rather on categorical
and space-level arguments as discussed in the previous section.

Corollary 9.2 For any pointed path-connected space .X; b/, the differential graded
algebras �.Q�.Sing.X; b/// and S�.�Mb X I k/ are weakly equivalent.

Proof This follows directly from Theorem 7.1 and Proposition 9.1.

We conclude with two remarks and an application to model the free loop space.
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Remark 9.3 It follows from the above discussion that we may recover the homology
of the based loop space of jS j by taking the cobar construction on any connected
dg coalgebra �–quasi-isomorphic to QK� .S/. In general, Q�.S/ and QK� .S/ are
quasi-isomorphic but not necessarily �–quasi-isomorphic. However, if S0 D fxg and
S1 D fs0.x/g, where s0.x/ denotes the degenerate 1–simplex at x , then Q�.S/ and
QK� .S/ are simply connected dg coalgebras and the natural map of dg coalgebras
�W Q�.S/!QK� .S/ is a quasi-isomorphism. Thus, by Proposition 2.2.7 in [14], � is an
�–quasi-isomorphism. Consequently, �Q�.S/ is weakly equivalent as a dg algebra
(ie quasi-isomorphic) to S�.�Mx jS jI k/.

Remark 9.4 In the case of a simplicial complex, an explicit and smaller model for
the based loop space can be given using a Kan fibrant replacement functor. Let
K be a simplicial complex with an ordering of its vertices and let v be a vertex
of K . Let fK be the simplicial set obtained by defining the face maps in accordance
with the ordering of the vertices and adding degeneracies freely to K . The cobar
construction on Q�.fK/ might not yield the homology of the based loop space
of jfKj. However, we may consider the Kan fibrant replacement Ex1.fK/ of fK .
Ex1.fK/ is a Kan complex weakly equivalent to fK , so it follows that the Kan
complexes Ex1.fK/ and Sing.jfKj/ are weakly equivalent. Thus, C.Ex1.fK//,
C.Sing.jfKj// and Sing.PjfKj/ are weakly equivalent simplicial categories. There-
fore, ƒ.Ex1.fK//.v; v/ is a dga model for the based loop space of jfKj at v . This
remark explains an example of Kontsevich outlined in [11]. In [8], a similar construction
was also described for any simplicial set, which was then compared to Kan’s loop
group construction.

Finally, a chain complex model for the free loop space of a path-connected topological
space may be obtained as follows. For any dga A denote by CH�.A/ the Hochschild
chain complex of A. For the definition we refer the reader to any standard reference,
such as [13].

Corollary 9.5 For any pointed path-connected space .X; b/, the Hochschild chain
complex CH�.�.Q�.Sing.X; b//// is quasi-isomorphic to S�.LX I k/, the singular
chains on the free loop space of X.

Proof This is a direct consequence of the fact that the Hochschild chain complex of
the dga S�.�MX I k/ is quasi-isomorphic to S�.LX I k/ (a theorem usually attributed
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to Goodwillie [6]), Corollary 9.2 and the invariance of Hochschild chains under weak
equivalences of dgas.

As explained in Remark 2.23 of [7], for any connected dg coalgebra C there is a
quasi-isomorphism of chain complexes

coCH�.C /' CH�.�C/;

where coCH�.C / denotes the co-Hochschild chain complex of C ; we refer to [7] for
definitions and further details. As a consequence, we obtain a model for the free loop
space LX of a path-connected space X that does not require passing to the based loop
space, which we expect to be convenient in studying string topology.

Corollary 9.6 For any pointed path-connected space .X; b/, the co-Hochschild com-
plex coCH�.Q�.Sing.X; b/// is quasi-isomorphic to S�.LX I k/.

Proof This follows directly from Lemma 7.2 and the fact that coCH�.C /'CH�.�C/
for any connected dg coalgebra C.
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