
msp
Algebraic & Geometric Topology 18 (2018) 3821–3838

Noncrossing partitions and Milnor fibers

THOMAS BRADY

MICHAEL J FALK

COLUM WATT

For a finite real reflection group W we use noncrossing partitions of type W to
construct finite cell complexes with the homotopy type of the Milnor fiber of the
associated W–discriminant �W and that of the Milnor fiber of the defining poly-
nomial of the associated reflection arrangement. These complexes support natural
cyclic group actions realizing the geometric monodromy. Using the shellability of the
noncrossing partition lattice, this cell complex yields a chain complex of homology
groups computing the integral homology of the Milnor fiber of �W .

20F55; 52C35, 05E99

1 Introduction

Suppose g 2CŒz1; : : : ; zn� is a quasihomogeneous polynomial, defining the hypersur-
face V Dg�1.0/ in Cn . Then g restricts to a locally trivial fibration gW Cn�V !C� ,
the global Milnor fibration, with fiber g�1.1/, the Milnor fiber of g ; see Milnor [25].
The topology of g�1.1/ and the monodromy of the bundle are invariants of the singu-
larity type of g at the origin. Of special interest is the case where gDQW is a product
of complex linear forms defining the arrangement ADAW of reflecting hyperplanes
in Cn of a finite real or complex reflection group W ; see Dimca and Lehrer [19],
Settepanella [30; 31] and Măcinic and Papadima [27].

In this setting W acts on Cn , preserving V D
S

H2A H, the quotient W nCn is homeo-
morphic to Cn , and under this homeomorphism W nV is carried to a hypersurface �W

in Cn . This hypersurface is the zero locus of a quasihomogeneous polynomial PW ,
well-defined up to polynomial automorphism of Cn , called the discriminant associated
with W (see Section 3).

The fundamental group of Cn��W is the generalized braid group (or Artin group)
B.W / associated with W . If W has type Ad�1 then PW is the classical discriminant
for polynomials of degree d and B.W / is isomorphic to the classical braid group
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on d strands. In this paper, we construct a noncrossing partition (NCP) model for the
Milnor fiber FP DP�1

W
.1/ and study its structure, including the monodromy action, in

the case where W is a real reflection group. We also construct an NCP model for the
Milnor fiber FQ DQ�1

W
.1/ of the reflection arrangement AW . Both models arise as

subcomplexes of appropriate covering spaces of a finite K.B.W /; 1/ which is defined
in terms of noncrossing partitions; see Bessis [4], Brady [7] and Brady and Watt [8].

The NCP model for FP has a natural filtration by subcomplexes, which are seen to
be homotopy equivalent to bouquets of spheres using the lexicographic shellability of
the noncrossing partition lattice. This yields a chain complex computing H�.FP ;Z/

whose terms are homology groups of truncations of this lattice.

The standard approach to calculating the (co)homology of FQ (resp. FP ) is via the
co(homology) of Cn�V (resp. Cn��W ) with twisted coefficients in RŒt; t�1� for
some ring R. In the case of FP , a spectral sequence is often used to compute the
cohomology with coefficients in RŒt; t�1� of the Salvetti complex, a small cellular
model for Cn ��W (see De Concini and Salvetti [15], De Concini, Salvetti and
Stumbo [16], Callegaro [12], Callegaro and Salvetti [13], Frenkel [20] and Salvetti [29]).
Our approach is to construct a small model yFP for FP and use shellability of the NCP
lattice to simplify the direct calculation of homology with integer coefficients. The
disadvantage with this approach compared to using the Salvetti complex is the large
ranks encountered in our chain complex. For example, the rank of the top-dimensional
group in this complex is equal to the number of NCPs which are not contained in
proper standard parabolic subgroups (see Athanasiadis, Brady and Watt [3]). The
corresponding ranks for the model yFQ of FQ increase by the factor jW j=2.

2 NCP models for subgroups of B.W /

2.1 Background

Let W be a finite, irreducible, real reflection group of rank n and let T be the set of all
reflections in W . For background on finite reflection groups, see [6; 22]. Equip W with
the total reflection length function w 7! jwj (with respect to the generating set T ) and
with the partial order � given by u�w whenever jujCju�1wjD jwj (see [2]). We will
use the notation uÉw for the case where w covers u. Fix a specific Coxeter element 
in W and define the noncrossing partitions to be the elements in the interval Œe;  �
in the poset .W;�/. The poset of W–noncrossing partitions is a lattice, L (see [9]),
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whose order complex is denoted jLj. If W is of type An , then W is isomorphic to
the group of permutations of f1; : : : ; nC 1g and the noncrossing partitions are those
elements whose cycle structure gives a classical noncrossing partition; see [7].

We define B.W / to be the group with generating set

fŒw� W w 2L; w ¤ eg

subject to the relations

Œw1�Œw
�1
1 w2�D Œw2� whenever w1 � w2:

It is shown in [4; 7; 8] that B.W / is isomorphic to the generalized braid group of
type W .

We recall from [4; 7; 8] the contractible, n–dimensional, simplicial complex X whose
k–simplices are ordered .kC1/–tuples from B.W / of the form .g0;g1; : : : ;gk/ with
gi D g0Œwi � for some chain e < w1 < w2 < � � � < wk in L. It is convenient to use
the notation .g0; e < w1 < � � � < wk/ for such a simplex. Thus the simplices of X

are identified with pairs .g; �/, where g 2 B.W / and � is an initialized chain in L,
that is, � is a chain of the form e <w1 < � � �<wk . As B.W / acts freely on X, the
quotient K WD B.W /nX is a K.B.W /; 1/ and X is its universal cover. The action
of B.W / on X is given by

g � .g0;g1; : : : ;gk/D .gg0;gg1; : : : ;ggk/;

or, in terms of the pair notation,

(2-1) g � .g0; e <w1 < � � �<wk/D .gg0; e <w1 < � � �<wk/:

It is immediate that the simplex .g0; e < w1 < � � � < wk/ has k faces of the form
.g0; e < w1 < � � � < cwi < � � � < wk/, for 1 � i � k; each obtained by deleting one
of w1; w2; : : : ; wk from � . The remaining face is obtained by deleting e from � and
hence is given by the ordered set

.g0Œw1�;g0Œw2�; : : : ;g0Œwk �/D .g0Œw1�/ � .e; Œw1�
�1Œw2�; : : : ; Œw1�

�1Œwk �/:

In pair notation, this is denoted .g0Œw1�; e <w
�1
1
w2 < � � �<w

�1
1
wk/.

2.2 Quotients of X

If H is a normal subgroup of B.W / then we can form a CW–complex XH whose cells
are of the form .Hg; �/, where � is an initialized chain in L and the first component
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is a right H coset. If � D e <w1 < � � �<wk , then this cell has k boundary faces of
the form

.Hg; e <w1 < � � �<cwi < � � �<wk/ for 1� i � k;

with the remaining face given by .HgŒw1�; e < w�1
1
w2 < � � � < w�1

1
wk/. It will

be convenient to refer to .HgŒw1�; e < w�1
1
w2 < � � � < w�1

1
wk/ as the top face

of .Hg; �/ and to .Hg; e <w1 < � � �<wk�1/ as the bottom face of .Hg; �/. Since
X is contractible, XH is a K.H; 1/. The action of the quotient group HnB.W /

on XH is given by .Hg1/.Hg2; �/D .Hg1g2; �/.

We now highlight a particular feature of these complexes XH .

Lemma 2.1 In XH , each k–cell of the form

ck D .Hg; e <w1 <w2 < � � �<wk/ with jwk j< n

is incident on precisely two .kC1/–cells of the form

ckC1 D .Hg0; e < u1 < � � �< uk < /:

Proof Suppose that the cell

ck D .Hg; e <w1 <w2 < � � �<wk/;

with jwk j< n, is incident on a .kC1/–cell of the form

ckC1 D .Hg0; e < u1 < � � �< uk < /:

Since the chain of ck does not contain  , the cell ck must be obtained by deleting
either e or  from the chain of ckC1 . In the latter case, ck is the bottom face of ckC1 ,
forcing Hg0DHg and ui Dwi for i D 1; : : : ; k . In the former case, ck is the top face

.Hg0Œu1�; e < u�1
1 u2 < � � �< u�1

1 uk < u�1
1  /;

so that Hg0DHgŒw1�
�1 and u1D w

�1
k
; u2D w

�1
k
w1; : : : ; uk D w

�1
k
wk�1 .

In our examples, H will arise as the kernel of a specific homomorphism � with
domain B.W /. In this case we will denote Xker.�/ by X� . We can then identify the
coset Hg with the element �.g/ and denote the cells of XH as pairs .�.g/; �/, where
� is an initialized chain in L. If � D e <w1 < � � �<wk , then the cell .�.g/; �/ has
top face given by

�
�.g/�.Œw1�/; e <w

�1
1
w2 < � � �<w

�1
1
wk

�
.
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Example 2.2 If � is the trivial homomorphism, then H DB.W / and X� DK is the
K.B.W /; 1/ introduced earlier. The cells of K are of the form .e; �/, where � is an
initialized chain in L. If � D e <w1 < � � �<wk , then this cell has top face given by�

e�.Œw1�/; e <w
�1
1 w2 < � � �<w

�1
1 wk

�
D .e; e <w�1

1 w2 < � � �<w
�1
1 wk/:

Thus X DX� can be identified with the quotient of jLj under the equivalence relation
generated by identifying w1 <w2 < � � �<wk with e <w�1

1
w2 < � � �<w

�1
1
wk .

Example 2.3 The standard projection sW B.W /!W , Œw� 7! w , which takes each
NCP generator of B.W / to the corresponding NCP in W , is a homomorphism by our
presentation of B.W /. The kernel of s is the pure braid group PB.W / associated to W ,
and Xs is a K.�; 1/ for � DPB.W /. (By [11; 18], Xs is homotopy equivalent to the
complement M DCn�

S
H2A H, where A is the complexification of the associated

real reflection arrangement.) The cells of Xs can be identified with pairs .w; �/, for
w 2W and � an initialized chain in L. The top face of the cell .w; e<w1< � � �<wk/

is .ww1; e <w
�1
1
w2 < � � �<w

�1
1
wk/.

We will consider two further examples of this construction in Sections 4 and 5. These
will give the models for the fibers mentioned in the introduction. The next section
establishes the homotopy types of these fibers.

3 Discriminants and Milnor fibers

In this section we recall some definitions and basic facts about discriminants and Milnor
fibers.

3.1 The W –discriminant

Recall that W is a real reflection group whose action on Rn has been complexified to
an action on CnDRn˝C. Let ff1; : : : ; fng be a set of basic invariants for the ring of
W–invariant, complex polynomials [14]. The function f D .f1; : : : ; fn/W Cn!Cn

induces a homeomorphism of W nCn with Cn . Recall that T denotes the set of
reflections in W , and for each t 2 T , let Ht �Cn denote its fixed complex hyperplane
and �t W Cn ! C be a complex linear form with kernel Ht . The polynomial Q DQ

t2T �t W Cn ! C has the property that Q.wx/ D det.w/Q.x/ for all w 2 W

and x 2Cn and hence Q2 is invariant under the action of W . It follows that Q2 D

P .f1; : : : ; fn/ for some quasihomogeneous polynomial P 2 CŒz1; : : : ; zn� whose
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weights are equal to the degrees of the fi . The polynomial P is called the discriminant
of W . It is unique up to polynomial automorphism of Cn . The action of W on Cn

leaves the affine algebraic hypersurface V D Q�1.0/ D
S

t2T Ht invariant and its
quotient �W DW nV is identified with the affine algebraic hypersurface � WDP�1.0/.
The space M DCn�V is a K.PB.W /; 1/, and W acts freely on M, so the space
f .M /DW nM Š Cn �� is a K.B.W /; 1/ [10; 18]. In what follows, we identify
PB.W / with �1.M; z0/ and B.W / with �1.f .M /; f .z0//.

3.2 Milnor fibers of P and Q

The restriction to Cn�g�1.0/ of any quasihomogeneous polynomial gW Cn!C is
a locally trivial fibration whose fiber g�1.1/ is called the Milnor fiber of g [25]. The
Milnor fibers of P and Q will be denoted by FP and FQ . These spaces are determined
up to polynomial diffeomorphism by W . Then .Q2/�1.1/DQ�1.1/[Q�1.�1/ is
invariant under the action of W and FP D W n..Q2/�1.1// Š W CnFQ , where
W C D fw 2 W W det.w/ D 1g. The space FQ is a connected, regular, W C–cover
of FP since the action of W C on FQ is free.

We will show that each of FP and FQ is homotopy equivalent to a complex of the
form X� . Our proofs will make use of the following general result.

Proposition 3.1 Suppose gW E ! C� is a fibration with fiber F, where each of
E and F has the homotopy type of a connected CW–complex. Then F is homotopy
equivalent to the cover of E corresponding to the kernel of g�W �1.E/!�1.C

�/DZ.

Proof Let i denote the inclusion of F into E . The exact sequence of the fibration
implies that i�W �1.F /!�1.E/ is an injection whose image is ker.g�/. Let pW F 0!E

denote the connected cover of E corresponding to ker.g�/. Then the inclusion i lifts
to a map hW F ! F 0 with p ı h D i . We show that h is a homotopy equivalence.
Since p� and i� are injections, it follows that h�W �1.F /! �1.F

0/ is an injection
and hence is an isomorphism. Since p�W �k.F

0/! �k.E/ and i�W �k.F /! �k.E/

are isomorphisms for all k � 2 (the latter by the exact sequence of the fibration),
h�W �k.F / ! �k.F

0/ is also. As each of F and F 0 has the homotopy type of a
CW–complex, h is a homotopy equivalence.

Since algebraic sets are homotopy equivalent to CW–complexes, Proposition 3.1 yields
the following corollary.
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Corollary 3.2 (i) The Milnor fiber FP of P is homotopy equivalent to the cover
of f .M /DW nM corresponding to the kernel of the map P�W B.W /! Z.

(ii) The Milnor fiber FQ of Q is homotopy equivalent to the cover of f .M / D

W nM corresponding to the group f�.ker.Q�//.

Proof (ii) By Proposition 3.1, FQ is homotopy equivalent to the connected do-
main Y of a covering map �W Y !M for which ��.�1.Y;y0// D ker.Q�/. Since
the map f W M ! W nM is a finite cover, the map f ı � is a covering map with
.f ı �/�.�1.Y;y0//D f�.ker.Q�//, as required.

3.3 The characteristic homomorphism

It remains to identify the homomorphisms

Q�W PB.W /D �1.M /! Z and P�W B.W /D �1.W nM /! Z:

First we describe convenient generating sets for their respective domains. Fix � >0. For
each reflection t 2T , choose a point zt 2Ht�

S
t 02T;t 0¤t Ht 0 and let Dt be the closed

disc of radius � centered at zt in the complex line Lt which passes through zt and is
orthogonal to Ht . The complex structure induces a natural orientation on each Lt . By
shrinking � , if necessary, we may assume that Dt \

S
t 02T;t 0¤t .Ht 0 [Dt 0/D∅ for

all t 2T . Now choose a basepoint z0 in M and for each t 2T choose a path �t in M

which starts at z0 and ends on the boundary of Dt . Let t be the loop which travels
along �t , then around the boundary of Dt in a positive orientation and finally back
to z0 along �t . The set of homotopy classes t for t 2 T generates �1.M; z0/ [10];
see [1] for a recent generalization.

Since W acts freely on M, the restriction of f to M is a regular covering map
onto f .M / D W nM. We specify a set of elements of �1.W nM; f .z0// which
corresponds to the set of reflections in W Š �1.W nM; f .z0//=f��1.M; z0/. Under
this isomorphism, if ı is any path in M which starts at z0 and ends at w.z0/ (or which
starts at w.z0/ and ends at w.w.z0/)), then the homotopy class of f ı ı corresponds
to w 2W . If t 2 T is a reflection, let ıt be the path in M which travels first along �t ,
then half way around the boundary of Dt in the positive sense and finally along the
reverse of t�t to t.z0/. Similarly, let ı0t be the path from t.z0/ to z0 in M which
travels first along t�t , then around the other half of the boundary of Dt in the positive
sense and finally along the reverse of �t to t.t.z0//D z0 . Note that f ı ıt D f ı ı

0
t ,
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let �t be the corresponding homotopy class and note that the composition �t followed
by �t is represented by the path f ı t . From the short exact sequence

�1.M; z0/! �1.W nM; f .z0//!W

the group �1.W nM; f .z0// is generated by ff ı t ; �t W t 2 T g and, in fact, by
the smaller set f�t W t 2 T g, because f ı t D �2

t . For t 2 T , the generator
�t 2 �1.W nM; f .z0// corresponds to the generator Œt � in the presentation for B.W /

from Section 2.1.

Proposition 3.3 (i) The map Q�W �1.M; z0/! �1.C
�; 1/Š Z is given by

Q�.t /D 1 for each t 2 T:

(ii) The map P�W �1.W nM; f .z0//! �1.C
�; 1/Š Z is given by

P�.�t /D 1 for each t 2 T:

Proof (i) By scaling each �t if necessary, we may assume that �t .z0/D 1. Then
Q� D

�Q
t2T �t

�
�
D
P

t2T .�t�/ (since C� is a topological group). The result now
follows since our choices ensure that the winding number of .�t /�.t 0/ about the origin
is one if t D t 0 and zero otherwise.

(ii) First note that

P�.�
2
t /D P�.f ı t /D .Q

2/�.t /DQ�.t /CQ�.t /D 2:

Since P� is a group homomorphism, it follows that P�.�t /D 1.

Remark 3.4 Our calculation of P� from Q� can be modified to apply when W is
a Shephard group, the symmetry group of a complex polytope. The construction of
a model for the Milnor fiber of the W–discriminant (in the next section) will also be
valid in this case.

4 NCP model for the Milnor fiber of the discriminant

Consider the homomorphism P�W B.W /! Z and the cover of K given by XP� WD

ker.P�/nX.

Proposition 4.1 XP� is homotopy equivalent to the Milnor fiber of the discriminant P.

Proof This follows from Corollary 3.2(i) and Proposition 3.3, since corresponding
covers of K and W nM are homotopy equivalent.

Algebraic & Geometric Topology, Volume 18 (2018)



Noncrossing partitions and Milnor fibers 3829

Remark 4.2 By Section 2.2, XP� can be identified with the CW–complex whose cells
are pairs .m; �/ for m2Z and � an initialized chain in L. Since P�.Œt �/D 1 for each
reflection generator Œt � of B.W /, it follows that P�.Œw�/D jwj, the reflection length
of w , for each NCP w 2W . Hence, the top face of the cell .m; e <w1 < � � �<wk/

is the cell
.mCjw1j; e <w

�1
1 w2 < � � �<w

�1
1 wk/:

Definition 4.3 We define the small NCP model yFP of the Milnor fiber of PW to be
the finite subcomplex of XP� consisting of the cells of the form

.m; e <w1 <w2 < � � �<wk/ with 0�m< n� jwk j:

Remark 4.4 We observe that yFP is the union of cells of the form

.0; e Éw1 Éw2 É � � �Éwn�1/

together with their faces. In particular, yFP is .n�1/–dimensional.

Theorem 4.5 The subcomplex yFP is a strong deformation retract of XP� .

Proof We construct an acyclic matching (see Chapter 11 of [24]) which pairs cells of
XP��

yFP . Suppose ckC1D .m; �/ and that the chain � ends in  . Then this matching
pairs ckC1 with its top (resp. bottom) face if m� 0 (resp. m< 0). In particular, the
matching pairs cells whose chains end in  with cells whose chains do not end in  .

To show that this matching is acyclic, consider an alternating path

.l1; �1/�m .l2; �2/� .l3; �3/�m .l4; �4/� � � �

in this matching, where .li ; �i/� .liC1; �iC1/ means .li ; �i/ is a facet of .liC1; �iC1/

and .lj ; �j /�m .ljC1; �jC1/ means .lj ; �j / is matched with its facet .ljC1; �jC1/. By
definition of the matching, if i is odd, the chain �i ends in  and �iC1 does not end
in  . By Lemma 2.1, each such .liC1; �iC1/ is incident on precisely two .kC1/–cells
with chains ending in  . These must be .li ; �i/ and .liC2; �iC2/. If li < 0 it follows
that .liC1; �iC1/ is the bottom face of .li ; �i/ and hence liC2 > li for all i . Similarly,
if li � 0 it follows that .liC1; �iC1/ is the top face of .liC2; �iC2/ and hence liC2 < li

for all i . In particular, the path cannot form a cycle and the matching is acyclic.

It remains to show that the set of critical cells is precisely the set of cells of yFP . Let
ck D .m; e <w1 < � � �<wk/ be a cell of XP� . When wk D  , the cell ck is matched
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with its top or bottom face according to whether m � 0 or m < 0 and, hence, is not
critical. When wk ¤  , two cases arise. If m< 0 then ck is matched as the bottom
face of .m; e < w1 < � � �< wk < / and is not critical. On the other hand, if m� 0,
then ck is matched as the top face of

.m� nCjwk j; e < w
�1
k < w�1

k w1 < � � �< w
�1
k wk�1 < /

if and only if m� nCjwk j � 0.

Corollary 4.6 The finite complex yFP is homotopy equivalent to the Milnor fiber FP

and is a K.�; 1/ for � D ker.P�/.

Example 4.7 Let W be a dihedral group acting on R2 with t reflections, denoted by
R1;R2; : : : ;Rt . Thus the NCPs are fe;R1;R2; : : : ;Rt ;  g, where  can be taken
to be a rotation through twice the angle between adjacent lines of symmetry. Here
n D 2 and yFP is 1–dimensional with two vertices, namely .0; e/ and .1; e/. The
complex yFP has a 1–cell .0; e <Ri/ for each chain e <Ri and the endpoints of this
1–cell are .0; e/ and .1; e/. Thus yFP has the homotopy type of the suspension of a
0–dimensional subcomplex on t points and ker.P�/ is free of rank t � 1. This agrees
with [26, Theorem 1]; P has weights 2 and t .

Example 4.8 Let W be the group A3Š†4 , the symmetric group; the polynomial P

is the classical discriminant for univariate quartics. Choose  to be the four-cycle
.1234/. Here nD 3 and yFP is 2–dimensional. (See Figure 1.) yFP has three vertices,
namely .0; e/, .1; e/ and .2; e/. Each transposition R contributes a 1–cell .0; e <R/

with endpoints .0; e/ and .1; e/ together with a 1–cell .1; e<R/ with endpoints .1; e/
and .2; e/. Each length-two NCP ˛ 2 f.123/; .124/; .134/; .234/; .12/.34/; .14/.23/g

contributes a single 1–cell .0; e < ˛/ with endpoints .0; e/ and .2; e/. Finally, for
each of the 16 chains of the form e <R< ˛ corresponding to factorizations of  by
transpositions, we have a 2–cell .0; e <R < ˛/ whose boundary is glued along the
three 1–cells .0; e <R/, .0; e < ˛/ and .1; e <R�1˛/.

Remark 4.9 The cells of yFP are simplices, but yFP is not a simplicial complex; rather
it is a �–complex in the sense of [21]. It can be realized as the nerve of the germ (in
the sense of category theory; see [17]) with objects f0; 1; : : : ; n� 1g and morphisms
i ˛
�! j , where ˛ is an NCP of length j � i . The composition, when defined, is

determined by multiplication of NCPs.
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J
J
J
J
J
J
JJ.0; e/

.2; e/

.1; e/

.0; e <R/

.0; e < ˛/ .1; e <R�1˛/

Figure 1: Typical 2–cell .0; e <R< ˛ < / of yFP for W DA3

Remark 4.10 The monodromy action on yFP is obtained by composing the mon-
odromy action on XP� with the retraction defined by the acyclic matching. The
monodromy action is determined by the action of either generator of Z. Since one
of the two cells identified in Lemma 2.1 has a simpler formula than the other we will
describe the action of �1. Explicitly a cell of the form

.m; e <w1 <w2 < � � �<wk/

for 0<m< n� jwk j is taken to

.m� 1; e <w1 <w2 < � � �<wk/;

while
.0; e <w1 <w2 < � � �<wk/

for jwk j< n is taken to

.jw1j � 1; e <w�1
1 w2 <w

�1
1 w3 < � � �<w

�1
1 wk <w

�1
1  /;

since, in the second case, the action of �1 on the k–cell .0; e <w1 <w2 < � � �<wk/

as a cell in XP� takes it to the k–cell .�1; e < w1 < w2 < � � � < wk/, which is the
bottom face of the .kC1/–cell .�1; e <w1 <w2 < � � �<wk < /, which in turn has
top face .jw1j � 1; e <w�1

1
w2 <w

�1
1
w3 < � � �<w

�1
1
wk <w

�1
1
 /.

5 NCP model for the Milnor fiber of the arrangement

The homomorphisms s and P� from Example 2.3 and Section 4 combine to give the
homomorphism

 D .P�; s/W B.W /! Z�W; x 7! .P�.x/; s.x//:

The space X (constructed as in Section 2.2) is then a K.�; 1/ for � D ker. /.
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Proposition 5.1 The complex X is homotopy equivalent to the Milnor fiber FQ

of Q.

Proof The map f W M!W nM ŠCn�� induces an injection f�W �1.M /!B.W /

whose image is the kernel of sW B.W /!W , by [10]. Now

ker. /D ker.P�/\ ker.s/

D ker.P�/\ im.f�/

D f�.ker.P� ıf�//

D f�
�
ker..Q2/�/

�
since P ıf DQ2

D f�.ker.Q�// since .Q2/� D 2.Q�/:

It follows that X is homotopy equivalent to the cover of K corresponding to
f�.ker.Q�// and hence to the cover of W nM corresponding to f�.ker.Q�//. How-
ever, this latter cover is homotopy equivalent to FQ by Corollary 3.2(ii).

Remark 5.2 The cover X is a simplicial complex. The vertices of the k–cell
ck D

�
.P�.x/; s.x//; e <w1 < � � �<wk

�
are�

.P�.x/; s.x//; e
�

and
�
.P�.x/Cjwi j; s.xwi//; e

�
for 1� i � k:

This set of kC 1 vertices uniquely determines ck .

Remark 5.3 The map  D .P�; s/ is not onto. For each x 2B.W /, the integer P�.x/

is even if and only if s.x/ belongs to the subgroup W C <W of Section 3. Thus X 

can be identified with the CW–complex whose cells are triples .m; w; �/, where � is
an initialized chain in L and the parity of m2Z is the same as that of w 2W . The top
face of .m; w; e < w1 < � � � < wk/ is .mC jw1j; ww1; e < w

�1
1
w2 < � � � < w

�1
1
wk/,

while the other faces are given by .m; w; e <w1 < � � �<cwi < � � �<wk/ for 1� i � k .

Definition 5.4 We define the small NCP model yFQ of the Milnor fiber of Q to
be the finite subcomplex of X which is the preimage of yFP under the covering
X !XP� determined by the subgroup inclusion ker. /� ker.P�/.

Remark 5.5 The complex yFQ is the union of all cells of the form

.0; w; e Éw1 Éw2 É � � �Éwn�1/; where w 2W C;

together with their faces.

Theorem 5.6 The subcomplex yFQ is a strong deformation retract of the cover X .
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Proof The simplicial complex X is the cover of XP� determined by the subgroup in-
clusion ker.P�; s/<ker.P�/. By the homotopy lifting property, the strong deformation
retraction of XP� onto yFP (Theorem 4.5) is covered by a strong deformation retraction
of X onto yFQ .

Corollary 5.7 The finite simplicial complex yFQ is homotopy equivalent to the Milnor
fiber FQ and is a K.�; 1/ for the group ker.P�; s/.

Example 5.8 When W is the dihedral group acting on R2 with t reflections, the
subcomplex yFQ has the following description. Each vertex .0; w; e/ has w 2W C ,
the rotation subgroup of W , while each vertex .1; w; e/ has w 2W �W C , the set of
reflections of W . Furthermore, for each rotation w2W C and each reflection R there is
another reflection S with wDRS giving an edge in yFQ labeled .0; w; e<S/, starting
at .0; w; e/ and ending at .1;R; e/. Thus yFQ is the complete bipartite graph Kt;t ,
which is homotopy equivalent to a bouquet of .t � 1/2 circles. This is consistent with
the calculations in [26, Theorem 1].

Remark 5.9 The monodromy action on yFQ is obtained as in Remark 4.10 by compos-
ing the monodromy action on X with the retraction defined by the acyclic matching.
In this case, the action on X is by shifting the height of cells by multiples of 2.
However, since yFQ is a simplicial complex, it is sufficient to compute the action on
0–cells. We describe the action of �2 2 Z.

Explicitly, we define the action of �2 on 0–cells by

..m; w/; e/ 7!

8<:
..m� 2; w/; e/ if 2�m� n� 1;

..n� 1; w /; e/ if mD 1;

..n� 2; w /; e/ if mD 0:

The second case is explained as follows. The action of �2 on the 0–cell ..1; w/; e/
as a cell in X takes it to the 0–cell ..�1; w/; e/. This last 0–cell is the bottom face
of the 1–cell ..�1; w/; e < /, which in turn has top face ..n� 1; w /; e/. The third
case is similar.

6 Structure and homology of yFP

Although our model yFP of the Milnor fiber of P is not a simplicial complex, it
does have a combinatorial description as a sequence of mapping cones. The domains
of the mappings in question are order complexes of truncations of the noncrossing
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partition lattice L and the lexicographic shellability of L yields a chain complex which
computes H�. yFP ;Z/.

Let LŒi;j �D fw 2L W i � jwj � j g and let Ai D f.m; �/ 2 yFP Wm� n� i �1g, where
i and j are integers with 0 � i � j � n. Note that Ai has dimension i and that
A0 �A1 � � � � �An�1 D

yFP . Define gi W jLŒ1;n�i�1�j !An�i�2 by

w1 <w2 < � � �<wk 7! .i Cjw1j; e <w
�1
1 w2 < � � �<w

�1
1 wk/:

Proposition 6.1 The mapping cone of gi is cellularly isomorphic to An�i�1 .

Proof jLŒ0;k�j is simplicially isomorphic to the cone on jLŒ1;k�j since L has a unique
minimal element e . Under this identification, the subcomplex jLŒ1;k�j of jLŒ0;k�j cor-
responds to jLŒ1;k�j�f1g � jLŒ1;k�j� Œ0; 1�. The map jLŒ0;n�i�1�j!An�i�1 given by

e <w1 <w2 < � � �<wk 7! .i; e <w1 <w2 < � � �<wk/

combines with the inclusion of An�i�2 into An�i�1 to give a map

ygi W .jLŒ1;n�i�1�j � Œ0; 1�/qAn�i�2!An�i�1:

One can show that ygi is an identification map which identifies precisely the pair .x; 0/
with .x0; 0/ for each x;x0 2 jLŒ1;n�i�1�j and .x; 1/ with gi.x/.

Lemma 6.2 Hq.Ap;Ap�1/Š zHq�1.jLŒ1;p�j/ for all q � 1.

Proof The filtration A0 �A1 � � � � �An�1 D
yFP yields

Hq.Ap;Ap�1/Š zHq.Ap=Ap�1/Š zHq.†.jLŒ1;p�j//Š zHq�1.jLŒ1;p�j/;

where † denotes suspension. The second isomorphism follows from Proposition 6.1.

Definition 6.3 For each i , define the i th face map di W Cp�1.LŒ1;p�/!Cp�2.LŒ1;p�/

by
di.w1 Éw2 É � � �Éwp/D .�1/i�1.w1 Éw2 É � � �Écwi É � � �Éwp/

and the top face map �W Cp�1.LŒ1;p�/! Cp�2.LŒ1;p�1�/ by

�.w1 Éw2 É � � �Éwp/D .w
�1
1 w2 Éw�1

1 w3 É � � �Éw�1
1 wp/:

Theorem 6.4 The homology of yFP is isomorphic to the homology of the chain
complex whose pth group is zHp�1.jLŒ1;p�j/ and whose boundary homomorphism is
given, at the level of chains, by

P
a�� 7!

P
a��.�/.
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Proof First note that

Hq.Ap;Ap�1/Š zHq�1.jLŒ1;p�j/Š

�
Znp if q D p;

0 if q ¤ p;

where the last equality uses the lexicographical shellability of the NCP lattices [3; 5]. By
Theorem 39.4 of [28], the homology of yFP is isomorphic to the homology of the chain
complex with pth group given by Hp.Ap;Ap�1/ and boundary homomorphism given
by the connecting homomorphism of the exact sequence of the triple .Ap;Ap�1;Ap�2/.

It remains for us to compute the boundary homomorphism from zHp�1.jLŒ1;p�j/

to zHp�2.jLŒ1;p�1�j/. The isomorphism from zHp�1.jLŒ1;p�j/ to Hp.Ap;Ap�1/ of
Lemma 6.2 is induced by bpW jLŒ1;p�j ! Ap , � 7! .n� p � 1; e � �/, where e � �

means the simplex represented by e<w1< � � �<wl when � is the simplex represented
by w1 < � � �<wl . Let

P
a�� in Cp�1.jLŒ1;p�j/ be a cycle, so that

0D @

�X
a��

�
D

X
a�@.�/D

X
a�
X

i

di.�/:

Since each � is maximal, the .p�1/–chains di� and dj� have different length dis-
tributions whenever i ¤ j . (The length distribution of w1 < w2 < � � � < wp is
.jw1j; jw2j; : : : ; jwpj/.) It follows that

(6-1)
X

a�di.�/D 0 for each 1� i � p:

Using the fact that the connecting homomorphism is defined on the level of chains by
the boundary map in yFP , we get

@

�
bp

�X
a��

��
D @

�X
a� .n� 1�p; e � �/

�
D

X
a�@.n� 1�p; e � �/

D

X
a�

�
.n�p; e ��.�//C

X
i

.n� 1�p; e � di�/

�
D

X
a� .n�p; e ��.�// by (6-1)

D bp�1

�X
a��.�/

�
:

Remark 6.5 By Proposition 6.1 and Theorem 6.4, the total rank of the cellular chain
complex of yFP is the sum of the ranks of the chain groups of jLŒ1;p�j, while the
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complex introduced in this section has total rank equal to the sum of the ranks of the
reduced homology groups of the jLŒ1;p�j, which vanish except in the top dimension.

Example 6.6 In the case W D C3 , the symmetry group of the cube, there are nine
reflections, which we label 1; : : : ; 9, and nine length-two elements given by the length-
two products

12; 14; 18; 19; 27; 29; 45; 47; 78:

The complex jLŒ1;1�j is a set of nine discrete points while jLŒ1;2�j has the homotopy
type of the graph shown in Figure 2; see [23].

The upper face map applied to each chain R É˛ yields the reflection R�1˛ . These
values are given by the labels along the edges of the graph. Therefore the map
zH1.jLŒ1;2�j/ ! zH0.jLŒ1;1�j/ is given by reading, for each loop in the graph, the

signed sum of the corresponding labels. The resulting 8� 10 matrix has rank 7 and
hence H2. yFP /Š Z3 and H1. yFP /Š Z.

2

2 2
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1

1 1

1

1
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Figure 2: W D C3
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