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Detecting a subclass of torsion-generated groups

EMILY STARK

We classify the groups quasi-isometric to a group generated by finite-order elements
within the class of one-ended hyperbolic groups which are not Fuchsian and whose
JSJ decomposition over two-ended subgroups does not contain rigid vertex groups.
To do this, we characterize which JSJ trees of a group in this class admit a cocompact
group action with quotient a tree. The conditions are stated in terms of two graphs
we associate to the degree refinement of a group in this class. We prove there is a
group in this class which is quasi-isometric to a Coxeter group but is not abstractly
commensurable to a group generated by finite-order elements. Consequently, the
subclass of groups in this class generated by finite-order elements is not quasi-
isometrically rigid. We provide necessary conditions for two groups in this class to be
abstractly commensurable. We use these conditions to prove there are infinitely many
abstract commensurability classes within each quasi-isometry class of this class that
contains a group generated by finite-order elements.

20F65; 20E08, 20F55, 57M07, 57M20

1 Introduction

The large-scale geometry type of a finitely generated group does not depend on whether
the group contains elements of finite order; every finitely generated group is quasi-
isometric to a group that contains torsion. However, quasi-isometry classes that contain
groups generated by finite-order elements are distinguishable. Torsion-generated groups,
such as Coxeter groups, play an important role in geometric group theory. Background
is given by Davis [18]. An interesting problem is to determine which finitely generated
groups are quasi-isometric to a group generated by finite-order elements. In this paper,
we solve this problem within a certain class of hyperbolic groups.

A natural approach to this problem begins by decomposing the group using a graph of
groups decomposition. Dunwoody [20] proved every finitely presented group admits
a maximal splitting as a graph of groups with finite edge groups, and Papasoglu and
Whyte [30] proved for an infinite-ended finitely presented group, the set of quasi-
isometry classes of the one-ended vertex groups in this graph of groups decomposition
is a complete quasi-isometry invariant. Therefore, an infinite-ended finitely presented
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group is quasi-isometric to a group generated by finite-order elements if and only if each
of the one-ended vertex groups in this graph of groups decomposition is quasi-isometric
to a group generated by finite-order elements. Thus, for finitely presented groups, the
problem reduces to the case the group is one-ended.

Rips and Sela [32] proved if G is a one-ended finitely presented group that is not
Fuchsian, then there is a canonical graph of groups decomposition of G, called the
JSJ decomposition of G, with edge groups that are 2–ended and vertex groups of three
types: 2–ended, maximally hanging Fuchsian (MHF), and quasiconvex rigid vertex
groups not of the first two types. In this paper, we follow the language and structure
of the JSJ decomposition due to Bowditch [5] for one-ended hyperbolic groups that
are not Fuchsian. We characterize the groups quasi-isometric to a group generated
by finite-order elements within the class C of 1–ended hyperbolic groups that are not
Fuchsian and whose JSJ decomposition does not contain rigid vertex groups.

The isomorphism type of the Bass–Serre tree of the JSJ decomposition of a group in C
is a complete quasi-isometry invariant, as shown by Malone [29] for a subclass of
groups in C called geometric amalgams of free groups and by Cashen and Martin [9] in
the general setting; see also related work of Dani and Thomas [17]. Furthermore, there
is a one-to-one correspondence between isomorphism types of JSJ trees of groups in C
and (equivalence classes of) certain finite matrices, called degree refinements, which
are algorithmically computed from the JSJ decomposition.

A group generated by finite-order elements does not surject onto Z. Consequently, if a
group G 2 C is generated by finite-order elements, then the underlying graph of the
JSJ decomposition of G is a tree; we call this graph the JSJ graph of G . Conversely,
Dani, Stark and Thomas [15, Theorem 1.16] proved if a quasi-isometry class in C
contains a group whose JSJ graph is a tree, then the quasi-isometry class contains a
right-angled Coxeter group. Therefore, classifying the quasi-isometry classes within C
which contain a group generated by finite-order elements is equivalent to classifying
the JSJ trees of a group in C which admit a cocompact group action with quotient a
tree. To accomplish this, we introduce two graphs associated to the degree refinement
of a group G 2 C : the graph of blocks of G and the augmented graph of blocks of G.
The graph of blocks of G has vertex set in one-to-one correspondence with orbits of
vertices in the JSJ tree of G under the action of the full isometry group of the tree.
The augmented graph of blocks of G is the graph with fewest vertices and degree
refinement equivalent to the degree refinement of G. See Section 3 for more details.
The first main result of the paper is the following:
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Theorem 1.1 Let G 2 C . The following are equivalent:

(1) The group G is quasi-isometric to a right-angled Coxeter group.

(2) The group G is quasi-isometric to a group generated by finite-order elements.

(3) The group G is quasi-isometric to a group with JSJ graph a tree.

(4) The degree refinement of G satisfies the two conditions:
(M1) The graph of blocks of G is a tree.
(M2) The augmented graph of blocks of G has no 2–cycles at even distance

bounded by Type I vertices.

The equivalence of conditions (1)–(3) was established in [15]; see Section 4.3. We
prove here that (1)–(3) are equivalent to (4), a pair of conditions defined in Section 3
that can be easily verified. Thus, from the underlying graph of the JSJ decomposition
of a group in C , one may determine whether conditions (1)–(3) hold. The graphs in
condition (4) are quasi-isometry invariants (Corollary 3.8), and we prove conditions
(M1) and (M2) hold for a group in C with JSJ graph a tree. Conversely, if conditions
(M1) and (M2) hold, we perform a finite series of moves on the augmented graph of
blocks of the group to obtain a finite tree with an equivalent degree refinement.

Two groups are abstractly commensurable if the groups contain finite-index subgroups
that are isomorphic; two finitely generated groups that are abstractly commensurable
are quasi-isometric. Hence, the result in Theorem 1.1 gives a partial answer to
[15, Question 1.3], which asks which geometric amalgams of free groups are abstractly
commensurable to a right-angled Coxeter group. However, the next result proves the
set of groups quasi-isometric to right-angled Coxeter groups in C is strictly larger than
the set of groups abstractly commensurable to a right-angled Coxeter group in C .

Theorem 1.2 There exists G 2 C for which the following holds:

(1) The group G is quasi-isometric to a right-angled Coxeter group.

(2) The group G is not abstractly commensurable to any group with JSJ graph a
tree. In particular, G is not abstractly commensurable to any group generated by
finite-order elements.

To prove Theorem 1.2, we construct G in Construction 5.7 as the fundamental group
of a union of surfaces with boundary glued together along their boundary components.
While the JSJ tree of G Š �1.X / has a finite quotient which is a tree, there is an
asymmetry in the Euler characteristics of certain subsurfaces in the space X that yields
the commensurability result.
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A class of groups G is quasi-isometrically rigid if every group quasi-isometric to a
group in G is abstractly commensurable to a group in G. (A slightly different notion
of quasi-isometric rigidity requires every group quasi-isometric to a group in G to be
virtually isomorphic to a group in G. These notions are equivalent within C as groups
in C are virtually torsion-free; see Haïssinsky, Paoluzzi and Walsh [22, Observation 3.1]
and the book by Drut,u and Kapovich [19] for background.) The class of Coxeter groups
is not quasi-isometrically rigid. For example, Burger and Mozes [7] provided examples
of (nonhyperbolic) infinite simple groups which act geometrically on the product of
two finite-valence trees. Such groups have no finite-index subgroups, yet these groups
are quasi-isometric to the direct product of two free groups of rank greater than one,
and, hence, are quasi-isometric to a right-angled Coxeter group with defining graph a
complete bipartite graph with vertex sets of size greater than two. The class of groups C
is quasi-isometrically rigid by the construction of the JSJ decomposition given by
Bowditch [5]; see [22, Observation 3.1] for a related result. Theorem 1.2 proves the set
of right-angled Coxeter groups within the class C is not quasi-isometrically rigid, and
we also have the following corollary:

Corollary 1.3 The subclass of groups in C which have JSJ graph a tree is not quasi-
isometrically rigid. The subclass of groups in C which are generated by finite-order
elements is not quasi-isometrically rigid.

There are classes of right-angled Coxeter groups which are quasi-isometrically rigid;
simple examples include virtually free right-angled Coxeter groups and right-angled
Coxeter groups which act properly and cocompactly by isometries on the hyperbolic
plane; see Casson and Jungreis [10], Gabai [21] and Tukia [35]. Determining the classes
of right-angled Coxeter groups which are quasi-isometrically rigid is an interesting
problem. A natural focus is classes for which quasi-isometry invariants or classification
is known; see Behrstock, Hagen and Sisto [3; 2], Caprace [8], Charney and Sultan [12],
Dani and Thomas [16], Haulmark, Nguyen and Tran [23] and Levcovitz [28; 27].

The abstract commensurability classification within C remains open. This classification
may be an important step in resolving [15, Question 1.3]. Partial results are given by
Crisp and Paoluzzi [13], Malone [29], the author [34] and Dani, Stark and Thomas [15].
These known results impose strong conditions on the subclass of groups considered: for
example, they require the diameter of the JSJ graph to be at most 4. In Propositions 6.3
and 6.8 we prove two necessary conditions for commensurability for any geometric amal-
gam of free groups in C with JSJ graph a tree. The commensurability invariants are the
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commensurability classes of two vectors whose entries record the sum of the Euler char-
acteristics of certain vertex groups. As a consequence, we prove the following theorem:

Theorem 1.4 There are infinitely many abstract commensurability classes within every
quasi-isometry class in C that contains a group generated by finite-order elements.

The conclusion of Theorem 1.4 is not surprising based on the previous results on
commensurability for groups in C . The novelty of the result comes from removing the
hypothesis that the JSJ graphs have small diameter. Moreover, previous results strongly
use a topological rigidity theorem of Lafont [25], which applies only to geometric amal-
gams of free groups in C . The result in Proposition 6.3 does not require this hypothesis.

The main questions addressed in this paper, whether a given group is quasi-isometric or
abstractly commensurable to a right-angled Coxeter group (or, more generally, a group
generated by finite-order elements), may be viewed as coarse versions of the problem
of determining whether a given group is a right-angled Coxeter group (or a group
generated by finite-order elements); see, for example, Charney, Ruane, Stambaugh and
Vijayan [11] and Cunningham, Eisenberg, Piggott and Ruane [14].

Outline

Preliminaries are given in Section 2. The degree refinement of a group in C and related
graphs are defined in Section 3. Theorem 1.1 is proven in Section 4. Section 5 contains
the proof of Theorem 1.2. Section 6 contains the proof of necessary conditions for
commensurability. Theorem 1.4 is proven in Section 7.
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2 Preliminaries

2.1 Graph theory

In this section, we record relevant graph-theoretic terminology and establish notation.
Most graphs we consider are unoriented, and we view these graphs as CW–complexes.
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Let ƒ D .V .ƒ/;E.ƒ// be a graph, where V .ƒ/ is the vertex set of ƒ and E.ƒ/

is the edge set of ƒ. If e D .u; v/ 2 E.ƒ/, we say e is incident to the vertices u

and v , and we say u and v are adjacent vertices. The valence of a vertex u is the
number of edges incident to u. A graph is bipartite if V .ƒ/ is the disjoint union of two
nonempty subsets V .ƒ/D V1 tV2 such that every edge of ƒ is incident to exactly
one element of V1 and exactly one element of V2 . A tree is a connected graph that
does not contain an embedded cycle. An oriented graph ƒ consists of a vertex set
V .ƒ/, an edge set E.ƒ/ and maps i W E.ƒ/! V .ƒ/ and t W E.ƒ/! V .ƒ/ such that
e D .i.e/; t.e// for each edge e 2 E.ƒ/; we refer to i.e/ as the initial vertex of e

and t.e/ as the terminal vertex of e . If S � V .ƒ/, the subgraph of ƒ induced by the
vertices in S is the subgraph whose vertex set is S and whose edge set consists of all
edges in E.ƒ/ that have both endpoints in S.

2.2 JSJ decomposition and the class of groups considered

Definition 2.1 A graph of groups G is a graph ƒ D .V .ƒ/;E.ƒ// with a vertex
group Gv for each v 2 V .ƒ/, an edge group Ge for each e 2E.ƒ/, and edge maps,
which are injective homomorphisms ‚˙e W Ge!G˙e for each e D .�e;Ce/ 2E.ƒ/.
The graph ƒ is called the underlying graph of G.

A graph of spaces associated to a graph of groups G is a space X with a graph ƒ con-
structed from a pointed vertex space .Xv;xv/ for each v2V .ƒ/ with �1.Xv;xv/DGv ,
a pointed edge space .Xe;xe/ for each e 2 E.ƒ/ such that �1.Xe;xe/ D Ge , and
maps �˙e W .Xe;xe/! .X˙e;x˙e/ such that .�˙e /� D‚

˙
e . The space X is the union� G

v2V .ƒ/

Xv
G

e2E.ƒ/

.Xe � Œ�1; 1�/

�.
f.x;˙1/� �˙e .x/ j .x;˙1/ 2Xe � Œ�1; 1�g:

The fundamental group of the graph of groups G is �1.X /. A group G splits as graph
of groups if G is the fundamental group of a nontrivial graph of groups.

Definition 2.2 A Fuchsian group is a nonelementary finitely generated group which
acts properly discontinuously on the hyperbolic plane H2 .

Remark 2.3 The action of a Fuchsian group G on the hyperbolic plane need not
be faithful, but the kernel of the action is finite. This kernel is the unique maximal
finite normal subgroup of G. Thus, the quotient X DH2=G is a canonically defined
(ineffective) orbifold. In particular, X admits a decomposition as a finite cell complex

Algebraic & Geometric Topology, Volume 18 (2018)



Detecting a subclass of torsion-generated groups 4043

such that each cell � of X is equipped with a finite isotropy group K� which is
isomorphic to the stabilizer of each lift of � in H2 .

Definition 2.4 Let G be a Fuchsian group so that G Š �orb
1
.X /, where X DH2=G

is an (ineffective) orbifold. Realize X with a cell decomposition such that each cell �
of X has a well-defined isotropy subgroup K� . The Euler characteristic of G , denoted
by �.G/, is

�.G/D �.X /D
X

� cell in X

.�1/dim.�/ 1

jK� j
:

Lemma 2.5 Let G and H be Fuchsian groups. If H is an index-d subgroup of G,
then d ��.G/D �.H /.

For background on orbifolds, see Kapovich [24] and Ratcliffe [31]. The proof of Lemma
2.5 is also given by the more general theory presented by Brown [6, Chapter IX-7].

Definition 2.6 A bounded Fuchsian group is a Fuchsian group that is convex co-
compact but not cocompact. The convex core of the quotient is a compact orbifold
with nonempty boundary consisting of a disjoint union of compact 1–orbifolds. The
peripheral subgroups are the maximal two-ended subgroups which project to the
fundamental groups of the boundary 1–orbifolds. A hanging Fuchsian subgroup H

is a virtually free quasiconvex subgroup together with a collection of peripheral two-
ended subgroups, which arise from an isomorphism of H with a bounded Fuchsian
group. A full quasiconvex subgroup of a group G is a subgroup that is not a finite-index
subgroup of any strictly larger subgroup of G.

Theorem 2.7 [5, Theorem 0.1] Let G be a one-ended hyperbolic group that is not
Fuchsian. There is a canonical JSJ decomposition of G as the fundamental group of
a graph of groups such that each edge group is 2–ended and each vertex group is either
(1) 2–ended, (2) maximal hanging Fuchsian, or (3) a maximal quasiconvex subgroup
not of type (2). These types are mutually exclusive, and no two vertices of the same type
are adjacent. Every vertex group is a full quasiconvex subgroup. Moreover, the edge
groups that connect to any given vertex group of type (2) are precisely the peripheral
subgroups of that group.

Definition 2.8 Let G be a one-ended hyperbolic group that is not Fuchsian. The JSJ
tree of G is the Bass–Serre tree of the JSJ decomposition of G. The JSJ graph of G is
the underlying graph of the JSJ decomposition of G.
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Definition 2.9 (class of groups considered) Let C denote the class of one-ended
hyperbolic groups which are not Fuchsian and for which the JSJ decomposition has no
vertex groups of type (3).

Remark 2.10 If G 2 C , then the JSJ graph of G is bipartite.

2.3 Hyperbolic P –manifolds

We make use of the following subclass of groups in C . An example of a space defined
below is given in Figure 3.

Definition 2.11 A 2–dimensional hyperbolic P –manifold X is a space with a graph
of spaces decomposition over a finite oriented graph ƒ with the following properties:

(1) The underlying graph ƒ is bipartite with vertex set V .ƒ/D V1 tV2 and edge
set E.ƒ/ such that each edge e 2E.ƒ/ has i.e/ 2 V1 and t.e/ 2 V2 .

(2) For each u 2 V1 , the vertex space Xu is a copy of the circle S1 , and xu is a
point on Xu . For each v 2 V2 , the vertex space Xv is a connected surface with
negative Euler characteristic and nonempty boundary, and xv is a point on Xv .

(3) For each edge e 2 E.ƒ/, the edge space Xe is a copy of the circle S1 ,
and xe is a point on Xe . If e D .�e;Ce/ with �e D i.e/ and Ce D t.e/,
the map ��e W .Xe;xe/ ! .Xi.e/;xi.e// is a homeomorphism, and the map
�Ce W .Xe;xe/! .Xt.e/;xt.e// is a homeomorphism onto a boundary component
of Xt.e/ .

(4) Each vertex u 2 V1 has valence at least three. Given any vertex v 2 V2 , for each
boundary component B of Xv , there exists an edge e with t.e/D v such that
the associated edge map identifies Xe with B . The valence of v is the number
of boundary components of Xv .

The fundamental group of a 2–dimensional hyperbolic P –manifold is a geometric
amalgam of free groups and is a group in the class C . If X is a 2–dimensional
hyperbolic P –manifold, a connected subsurface in X is the union of a surface Xv

with v 2 V2 together with fXe � Œ�1; 1� j e is incident to vg, a set of annuli. (This
subsurface is homeomorphic to Xv and its boundary components are branching curves
on X.) A subsurface in X is a nonempty finite union of connected subsurfaces in X.

Remark 2.12 If X D X.ƒ/ is a 2–dimensional hyperbolic P –manifold, then the
JSJ graph of the geometric amalgam of free groups �1.X / is the (unoriented) bipartite
graph ƒ. For details, see [29, Section 4.1].
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Remark 2.13 “P –manifold” is short for “piecewise-manifold”. Lafont [25] refers to
2–dimensional hyperbolic P –manifolds as simple, thick, 2–dimensional hyperbolic
P –manifolds; we omit the extra adjectives for ease of exposition. In [15], these spaces
are referred to as surface amalgams.

3 Degree refinement and related graphs

Angluin [1, Section 6] proved two finite graphs have isomorphic universal covers if
and only if the graphs have equivalent degree refinements, which is a matrix defined
below; see also Leighton [26]. Malone [29] extended this work by defining the degree
refinement for a group G 2 C and proving this matrix encodes the isomorphism type of
the JSJ tree of G. Examples of the definitions given in this section appear in Figure 1.

Definition 3.1 The degree partition of a graph ƒ is a partition of the vertices of ƒ into
the minimum number of blocks M1; : : : ;Mn such that there exist constants mij such
that for each i and j with 1� i � n and 1� j � n, each vertex in Mi is connected
via mij edges to Mj . The degree refinement of ƒ is the n� n matrix M D .mij /.

Definition 3.2 Two degree refinements M and M 0 are equivalent if they have the
same size and there exists a permutation matrix P such that M 0 D PMPT .

The permutation matrix in the above definition accounts for possibly relabeling the
blocks of the degree partition. There is a correspondence between isomorphism types
of trees and equivalence classes of matrices given as follows.

Theorem 3.3 [26, Section 2; 29, Theorem 2.32] To each matrix M with entries in
N [f1g there is a unique tree T up to graph isomorphism such that M is the degree
refinement of T . Conversely, to each tree T there is a unique matrix M with entries
in N [f1g up to the equivalence defined in Definition 3.2 such that M is the degree
refinement of T .

Definition 3.4 If G 2 C , then the degree refinement of G is the degree refinement
of the JSJ tree of G. Alternatively, the degree refinement of G can be constructed
from the JSJ graph for G as follows, which was shown by Malone [29, Section 2.5],
extending [26, Section 2].
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JSJ decomposition
graph Degree refinement Graph of

blocks
Augmented

graph of blocks0BBBBB@
0 0 1 2 0

0 0 1 0 3

1 1 0 0 0

1 0 0 0 0

0 1 0 0 0

1CCCCCA
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y33
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T1 T2 F1F2F3

T1

T2

F1

F2

F3
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t1

f2

f1

f3

t2

t1

f2

f1

f3

0BBBBBBBBBBBB@

0 0 0 1 0 0 1 0 1

0 0 0 0 2 0 1 1 0

0 0 0 0 0 3 0 1 1

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0

1CCCCCCCCCCCCA

y21

y22 y31
y32

y33

y1

y4

y5

y6x1

x2 x3
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t2 t3

f1

f2 f3

f4
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f6
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t2 t3

f1

f2 f3
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f5

f6

0BBBBBBBBB@

0 0 0 2 0 2 0

0 0 0 0 3 0 2

0 0 0 0 0 1 1

1 0 0 0 0 0 0

0 1 0 0 0 0 0

1 0 1 0 0 0 0

0 1 1 0 0 0 0

1CCCCCCCCCA
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t1

t2
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t3

f1

f2

f4

f3

Figure 1: Three examples. White vertices correspond to 2–ended vertex
groups, and black vertices correspond to maximal hanging Fuchsian vertex
groups. Vertices xi and xij are in degree partition block Ti , and vertices yi

and yij are in degree partition block Fi . In each matrix the rows and columns
corresponding to the Ti come first, then those for the Fi . Any group in C
with a JSJ decomposition graph of the lower two types is not quasi-isometric
to any group generated by finite-order elements.

Suppose G has JSJ graph ƒ with vertex set V1 t V2 where each vertex group Gu

for u 2 V1 is two-ended, and each vertex group Gv for v 2 V2 is maximal hanging
Fuchsian.

Let r 2 V .ƒ/. The augmented valence of r is the valence of any lift of r in the JSJ
tree. More specifically, suppose s 2 V .ƒ/. Let �.r; s/D1 if r 2 V2 and r is adjacent
to s . Let �.r; s/ D k if r 2 V1 and r is adjacent to s via k edges. Let �.r; s/ D 0

otherwise. The augmented valence of the vertex r is equal to
P

s2V .ƒ/ �.r; s/.
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Perform the following steps to compute the degree refinement:

Step 1 Partition the vertices of V .ƒ/ into blocks according to their augmented valence.

Step 2 Refine the partition so that two vertices r and r 0 remain in the same block Mi

if and only if
P

s2Mj
�.r; s/D

P
s2Mj

�.r 0; s/ for all j ¤ i .

Step 3 Repeat Step 2 recursively until no further partitioning is possible to obtain the
degree partition of ƒ.

The degree refinement is the matrix M D .mij / where mij D �.ri ; rj / for ri 2Mi

and rj 2Mj . The process is finite since V .ƒ/ is finite.

Malone [29] proved the following theorem for geometric amalgams of free groups
using techniques of Behrstock and Neumann [4]. Cashen and Martin [9] proved the
remaining cases.

Theorem 3.5 [29, Theorem 4.14; 9, Theorem 4.9] Let G;G0 2 C . The groups G

and G0 are quasi-isometric if and only if the degree refinement of G is equivalent to
the degree refinement of G0.

Bipartite graphs considered in this paper arise as a JSJ graph of a group in C , which
leads to the following definition of the degree refinement for a bipartite graph. We
caution the reader that this is not the same as the usual notion of degree refinement for
the graph (without a specified bipartite structure).

Definition 3.6 If ƒ is a bipartite graph with V .ƒ/ D V1 t V2 , define the degree
refinement of ƒ to be the degree refinement of a group with JSJ graph ƒ as defined in
Definition 3.4. Similarly, define the degree partition of ƒ to be the degree partition of
a group with JSJ graph ƒ as defined in Definition 3.4.

Suppose in the degree partition of ƒ, the vertices in V1 are contained in blocks
T1; : : : ;Tn and the vertices in V2 are in blocks F1; : : :Fm . (We use “T ” for two-
ended and “F ” for hanging Fuchsian.) Let M be the degree refinement defined above.
Let nij be the entry in the degree refinement corresponding to the blocks Ti and Fj .
The graph of blocks of M , denoted by �B , has vertex set ft1; : : : ; tn; f1; : : : ; fmg and
an edge fti ; fj g if and only if nij > 0. The augmented graph of blocks of M , denoted
by �0 , has vertex set ft1; : : : ; tn; f1; : : : ; fmg and nij edges from ti to nj for 1� i �n

and 1� j �m.
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If G 2 C with JSJ graph ƒ as above, then the graph of blocks of G is the graph of
blocks of the degree refinement of G ; the augmented graph of blocks of G is the
augmented graph of blocks of the degree refinement of G. Similarly, if ƒ is a bipartite
graph, then the graph of blocks of ƒ is the graph of blocks of any group G 2 C with
JSJ graph ƒ; the augmented graph of blocks of ƒ is the augmented graph of blocks
of G.

Remark 3.7 The bipartite graph �0 defined in Definition 3.6 has degree refinement M.

The next corollary follows from Theorem 3.5.

Corollary 3.8 Let G;G0 2 C , let �B and � 0B denote the graphs of blocks for G

and G0, respectively, and let �0 and � 0
0

denote the augmented graphs of blocks of G

and G0, respectively. If G and G0 are quasi-isometric, then �B Š � 0B and �0 Š �
0
0
.

4 Characterization up to quasi-isometry

4.1 Obstructions

In this section, we prove that conditions (1)–(3) of Theorem 1.1 imply condition (4).
The first lemma generalizes [15, Example 8.1]. An example of a group that does not
satisfy the hypothesis of Lemma 4.1 is given in the middle example in Figure 1; an
example of a group which does not satisfy the hypothesis of Lemma 4.3 is given in the
bottom example in Figure 1.

Lemma 4.1 Suppose G 2 C has JSJ graph a tree T . Then the graph of blocks of G is
a tree.

Proof Suppose G 2 C has JSJ graph a tree T , and let �B be the graph of blocks
of G. Suppose towards a contradiction that �B is not a tree. Then �B contains an
embedded cycle 
 . Without loss of generality, suppose the vertices in the cycle 

are labeled ft1; f1; t2; : : : ; tk ; fkg with ti adjacent to fi and fi�1 , with indices taken
mod k , and likewise for fi . Let T1; : : :Tk ;F1; : : :Fk be the corresponding blocks
in the degree partition of T . Consider the subgraph of T induced by the vertices inSk

iD1 Ti [Fi . Choose a connected component C of the subgraph; then C must be a
finite tree. However, each vertex in C has valence at least two. That is, if vi 2Fi , then
vi is adjacent to some vertices ui 2 Ti and uiC1 2 TiC1 , with indices taken mod k .
Since the cycle 
 is embedded, Ti \TiC1 D∅; so, ui ¤ uiC1 . Similarly, if vi 2 Ti ,
vi has valence at least two, a contradiction.

Algebraic & Geometric Topology, Volume 18 (2018)



Detecting a subclass of torsion-generated groups 4049

Definition 4.2 Let G 2 C with degree refinement and related graphs as defined in
Definition 3.4. We say the augmented graph of blocks of G has no 2–cycles at even
distance bounded by Type I vertices if for any embedded path t1; f1; t2; : : : ; fk�1; tk

in �0 with ti 2 V1 and fj 2 V2 , if n11 > 1, then nij > 1 only if i D j .

Lemma 4.3 Suppose G 2 C has JSJ graph a tree. Then the augmented graph of blocks
of G has no 2–cycles at even distance bounded by Type I vertices.

Proof Suppose G 2 C has JSJ graph a tree. By Lemma 4.1, the graph of blocks of G is
a tree. Thus, in the notation of Definition 4.2, nij �1 only if iDj or iDjC1. Suppose
towards a contradiction that n`;`�1>1 for some ` with 1�`�k . Let T1; : : : ;T`�V1

and F1; : : : ;F`�1 � V2 be the corresponding blocks in the degree partition of T .
Consider the subgraph of T induced by the vertices in

�S`
iD1 Ti

�
[
�S`�1

iD1 Fi

�
. Choose

a connected component C of this subgraph; then C must be a finite tree. However, each
vertex in C has valence at least two. That is, for vi 2 Fi , 1� i � `�1, vi is adjacent
to some vertices ui 2 Ti and uiC1 2 TiC1 with ui ¤ uiC1 since Ti \ TiC1 D ∅.
Likewise, vi 2 Ti has valence two for 2� i � `�1. Since n11; n`;`�1 > 1, if vi 2 Ti

for i D 1; `, then vi has valence at least two. Thus, each vertex of C has valence at
least two, a contradiction since C is a finite tree.

Remark 4.4 In the notation of Definition 4.2, a group in C may have 2–cycles at
even distance bounded by Type II vertices. An example is given in the top of Figure 1.

4.2 Construction

Outline 4.5 Let M be a degree refinement of a group in C that satisfies conditions
(M1) and (M2) of Theorem 1.1. Let �B be the graph of blocks of M, and let �0 be
the augmented graph of blocks of M. We will describe a finite process to construct
a finite bipartite tree with degree refinement M (as in Definition 3.6). The bipartite
graph �0 has degree refinement M, but, in general, �0 is not a tree. We will perform
a finite series of moves on �0 to produce a finite tree. The moves on the graph �0

recursively unwrap the cycles of length two in �0 so that each move preserves the
degree refinement.

An image of the following definition appears in Figure 2.

Definition 4.6 (split an MHF vertex) Let ƒ be a bipartite graph with V .ƒ/DV1tV2

as defined in Definition 3.6. Let t 2 V1 and f 2 V2 , and suppose ƒ has r > 0 edges
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ƒ �0 T

Figure 2: Example: ƒ is the JSJ graph of a group in C that satisfies conditions
(M1) and (M2) of Theorem 1.1, and �0 is the augmented graph of blocks
of ƒ . Between the graphs �0 and T , the split a vertex move was performed
four times to produce a finite tree with the same degree refinement as ƒ
and �0 .

e1; : : : ; er with endpoints ft; f g. Let mi 2 ƒ be the midpoint of the edge ei , and
suppose that

Sr
iD1 mi separates ƒ into two components. Then ƒ�

Sr
iD1 Int.ei/ has

two components, where Int.ei/ denotes the interior of the edge ei . Let C � ƒ be
the component containing f , and let C 0 � ƒ be the component containing t .

�
So,

ƒDC [C 0[
�Sr

iD1 ei

�
.
�

Define ƒ0 to be the following finite graph, which is obtained
by splitting f into r vertices. For 1� i � r , let Ci be a graph isomorphic to C, and let
�i W C ! Ci be a graph isomorphism. Let fi D �i.f /. Let ƒ0 be the graph formed by
the union of C 0,

Sr
iD1 Ci , and r edges e0

1
; : : : ; e0r , where e0i has one endpoint t 2 C 0

and the other endpoint fi 2 Ci . Let pW ƒ0!ƒ be the projection that is the identity
on C 0, maps e0i to ei and Ci to C by an isomorphism.

Lemma 4.7 The degree refinement of ƒ is equivalent to the degree refinement of ƒ0 ,
where ƒ and ƒ0 are the graphs defined in Definition 4.6.

Proof Suppose T1; : : : ;Tn;F1; : : : ;Fm are the blocks in the degree partition of ƒ.
As in Definition 3.6, there exist constants nij with 1 � i � n and 1 � j � m such
that each vertex in Ti is adjacent via nij edges to Fj and if nij > 0, each vertex
in Fj is adjacent via at least one edge to Ti . There exists a partition of the vertices
of ƒ0 into blocks T 0

1
; : : : ;T 0n;F

0
1
; : : : ;F 0m , where T 0i D p�1.Ti/ and F 0i D p�1.Fi/,

where p is the projection map in Definition 4.6. By construction, since adjacencies are
affected only between f and t , each vertex in T 0i is adjacent via nij edges to F 0j and
if nij > 0, each vertex in F 0j is adjacent via at least one edge to T 0i .

Construction 4.8 Let �0 be the augmented graph of blocks of M as in Outline 4.5.
Suppose V .�0/D V1 tV2 as in Definition 3.4. The following construction produces
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a finite tree T with degree refinement M. Since �0 has degree refinement M, if
�0 is a tree, no additional moves are necessary. Otherwise, suppose �0 is not a tree.
Let t 2 V1 be such that there exists f 2 V2 and r > 1 edges e1; : : : ; er connecting
t and f . By condition (M1), removing the interiors of the edges in this collection
disconnects the graph �0 . Let C �ƒ�

Sr
iD1 Int.ei/ be the component containing f .

Let D D C [
Sr

iD1 ei .

Define a height function hW V .D/! N by h.v/ D d.v; t/. Then h.v/ 2 2Z if and
only if v 2 V1 . Furthermore, if there exists t 0 2D\V1 and f 0 2D\V2 and r 0 > 1

edges connecting t 0 and f 0, then h.f 0/D h.t 0/C 1; otherwise, condition (M2) would
be violated.

Perform a series of moves recursively to split vertices (as in Definition 4.6) of D

at height 1; 3; 5; : : : , and so on. Let Dk denote the graph obtained after vertices at
height k have been split. As in Definition 4.6, there are projections Dk ! Dk�2

for k � 3 and D1 ! D. Denote the composition of these maps as the projection
pk W D

k!D for k� 1. In an abuse of notation, we use t to denote the unique vertex in
p�1

k
.t/2Dk . Let hk W D

k!N be given by hk.v/D d.v; t/. Then hk.v/D h.pk.v//

for all v 2Dk . Let Dk
�k

be the subgraph of Dk induced by vertices with height � k .
Then Dk

�k
is a finite tree. Since D is a finite graph, there exists N 2 N such that

h.v/ <N for all v 2 V .D/. Thus, after finitely many moves, the resulting graph DN

is a tree.

The moves on �0 are the identity on �0nD, a graph which may still contain (finitely
many) embedded cycles of length two. For each set of additional cycles, the above
procedure can be performed. By condition (M1) �B is a tree, so these cycles of length 2

are the only embedded cycles in �0 . Hence, after finitely many steps, the resulting
graph is a tree. In addition, by Lemma 4.7, the resulting graph has the same degree
refinement as �0 , as desired.

Proposition 4.9 If G 2 C satisfies conditions (M1) and (M2) of Theorem 1.1, then G

is quasi-isometric to a group with JSJ graph a tree.

Proof Let M be the degree refinement of G, and let �0 be the augmented graph of
blocks of M. Then �0 has degree refinement M, and by Construction 4.8, there exists
a finite tree T with degree refinement M. Let G0 2 C be any group with JSJ graph T .
By Theorem 3.5, the groups G and G0 are quasi-isometric.
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4.3 Characterization

We collect the above conditions and constructions to prove one of the main theorems
of the paper.

Theorem 4.10 Let G 2 C . The following are equivalent:

(1) The group G is quasi-isometric to a right-angled Coxeter group.

(2) The group G is quasi-isometric to a group generated by finite-order elements.

(3) The group G is quasi-isometric to a group with JSJ graph a tree.

(4) The degree refinement of G satisfies the two conditions:

(M1) The graph of blocks of G is a tree.

(M2) The augmented graph of blocks of G has no 2–cycles at even distance
bounded by Type I vertices.

Proof Let G 2 C . We first show (3) and (4) are equivalent. To prove (3) implies (4),
let G0 2 C be a group with JSJ graph a tree which is quasi-isometric to G. Let �B
and � 0B be the graphs of blocks of G and G0, respectively, and let �0 and � 0

0
be the

augmented graphs of blocks of G and G0, respectively. By Corollary 3.8, �B Š � 0B
and �0 Š �

0
0
. Therefore, by Lemmas 4.1 and 4.3, conditions (M1) and (M2) hold. By

Proposition 4.9, (4) implies (3).

Clearly, (1) implies (2) and (2) implies (3). Suppose G 2 C is quasi-isometric to a
group with JSJ graph a tree. Then G is quasi-isometric to a geometric amalgam of free
groups with JSJ graph a tree. Thus, by [15, Theorem 1.16], G is quasi-isometric to a
right-angled Coxeter group, so (3) implies (1), concluding the proof.

5 Commensurability classes

5.1 The structure of finite-index subgroups

The structure of subgroups of a graph of groups is described by Scott and Wall in
[33, Section 3]. In this subsection, we record the facts and constructions relevant to
this paper.

As described in Section 2.2, the JSJ decomposition G of a group G 2 C is a splitting
of G as the fundamental group of a graph of groups. There is a finite CW–complex X
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which is a graph of spaces associated to G and such that G Š �1.X /. Any finite-index
subgroup H � G is the fundamental group of a graph of spaces Y which finitely
covers X. Thus, H splits as a graph of groups. Moreover, the graph of groups splitting
of H associated to this graph of spaces Y is the JSJ decomposition of H. The details
are as follows.

Proposition 5.1 Let G 2 C and H �G be a finite-index subgroup. Let G be the JSJ
decomposition of G with underlying graph ƒ. The subgroup H is the fundamental
group of a graph of groups H associated to the graph of spaces Y described above.
If � is the underlying graph of H , then for each w 2 V .�/, there exists v 2 V .ƒ/

and gw 2 G such that Hw D H \ gwGvg
�1
w and Hw is a finite-index subgroup of

gwGvg
�1
w . The graph of groups H is the JSJ decomposition of H.

Proof All statements except the last sentence of the proposition are given in Section 3
of [33]; it remains to show that H is the JSJ decomposition of H. Indeed, suppose
w 2 V .�/ is such that Hw DH \gwGvg

�1
w . By the construction of the JSJ decom-

position of G due to Bowditch [5], the subgroup gwGvg
�1
w is the stabilizer in G of a

distinguished subset A� @1G in the visual boundary of G, called either a necklace
or a jump, depending on whether the group Gv is maximally hanging Fuchsian or 2–
ended, respectively. (See [5, Section 5].) Since H is a finite-index subgroup of G, the
inclusion of H in G induces a homeomorphism from the visual boundary of H to the
visual boundary of G. Thus, Hw is the stabilizer in H of the subset A� @1H Š @1G.
Therefore, Hw is a vertex group in the JSJ decomposition of H. By the same reasoning,
the adjacencies between vertex groups in G yield the appropriate adjacencies between
vertex groups in H . Therefore, H is the JSJ decomposition of H.

Notation 5.2 Suppose G;G0 2 C are abstractly commensurable. Let G and G0 be the
JSJ decompositions of G and G0, respectively. Suppose G and G0 have underlying
graphs ƒ and ƒ0 , respectively, with V .ƒ/D V1 tV2 and V .ƒ0/D V 0

1
tV 0

2
. Suppose

each vertex group Gv and G0v0 is 2–ended for v 2 V1 and v0 2 V 0
1

, respectively;
suppose each vertex group Gv and G0v0 is maximally hanging Fuchsian for each v 2V2

and v0 2 V 0
2

, respectively. Let H �G and H 0 �G0 be subgroups of finite-index with
H ŠH 0. Let H and H0 be the JSJ decompositions of H and H 0, respectively. Suppose
H and H0 have underlying graphs � and � 0, respectively, with V .�/DW1 tW2 and
V .� 0/DW 0

1
tW 0

2
. Suppose each vertex group Hw and H 0w0 is 2–ended for w 2W1

and w0 2 W 0
1

, respectively; suppose each vertex group Hw and H 0w0 is maximally
hanging Fuchsian for each w 2W2 and w0 2W 0

2
, respectively.
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Suppose in the degree partition of ƒ the vertices in V1 are contained in blocks
T1.G/; : : : ;Tn.G/, and the vertices in V2 are contained in blocks F1.G/; : : : ;Fm.G/.
All groups in fG;G0;H;H 0g are quasi-isometric. Hence, by Theorem 3.5, in the degree
partition of ƒ0 the vertices in V 0

1
may be partitioned into blocks T1.G

0/; : : : ;Tn.G
0/

and the vertices in V 0
2

may be partitioned into blocks F1.G
0/; : : : ;Fm.G

0/ such that
the resulting degree refinement matrix for ƒ0 is equal to the degree refinement matrix
for ƒ (without permuting the indices of the Ti.G

0/ and Fi.G
0/). Similarly, assume

the degree partition of � into blocks T1.H /; : : : ;Tn.H /;F1.H /; : : : ;Fm.H / and
the degree partition of � 0 into blocks T1.H

0/; : : : ;Tn.H
0/;F1.H

0/; : : : ;Fm.H
0/ also

yield degree refinement matrices equal to the degree refinement matrix of ƒ and ƒ0

(without permuting the indices of the blocks).

The degree partitions of the vertices of the JSJ graphs yield natural partitions of the
vertex groups in the JSJ decompositions. We will use the notation

T G
i D fGv j v 2 Ti.G/g; FG

i D fGv j v 2 Fi.G/g;

T G0

i D fG
0
v0 j v

0
2 Ti.G

0/g; FG0

i D fG
0
v0 j v

0
2 Fi.G

0/g;

T H
i D fHw j w 2 Ti.H /g; FH

i D fHw j w 2 Fi.H /g;

T H 0

i D fH 0w0 j w
0
2 Ti.H

0/g; FH 0

i D fH 0w0 j w
0
2 Fi.H

0/g:

Lemma 5.3 Let H � G be a finite-index subgroup with the notation defined above.
Let w 2 V .�/ be such that there exists v 2 V .ƒ/ and gw 2G (by Proposition 5.1) be
such that Hw DH \gwGvg

�1
w . Then Gv 2 FG

i if and only if Hw 2 FH
i . Similarly,

Gv 2 T G
i if and only if Hw 2 T H

i .

Proof Since H is a finite-index subgroup of G, the inclusion of H in G induces a
homeomorphism from the visual boundary of H to the visual boundary of G. Hence,
H and G have isomorphic JSJ trees by the construction of the JSJ tree due to Bowditch.
Denote this tree by T . The subgroup Hw stabilizes the same vertex of T as gwGvg

�1
w ,

and the conclusion of the lemma follows.

To study finite covers of a 2–dimensional hyperbolic P –manifold X, one often con-
siders the full preimage of a singular curve on X or a subsurface of X. Algebraically,
this corresponds to considering the following subset of vertex groups:

Definition 5.4 For v 2 V .ƒ/, let

HvDfHw �H jw 2V .�/ and there exists gw 2G such that HwDH\gwGvg
�1
w g:

Define H0v similarly.
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We will make use of the following two elementary observations, which follow from
the discussion in [33, Section 3].

Lemma 5.5 Suppose H �G is a subgroup of index d . For each v 2 V .ƒ/,X
Hw2Hv

ŒGv WHw �D d:

Lemma 5.6 If w;w0 2 V .�/ are adjacent, Hw D H \ gwGvg
�1
w , and Hw0 D

H \gw0Gv0g�1
w0 for some gw;gw0 2G and v; v0 2 V .ƒ/, then v and v0 are adjacent.

5.2 Quasi-isometric rigidity does not hold for the subclass of
torsion-generated groups

Construction 5.7 Let GŠ�1.X /2C be the fundamental group of the 2–dimensional
hyperbolic P –manifold X shown in Figure 3. The group G has JSJ decomposition
with JSJ graph ƒ. The vertices in Figure 3 are labeled so that GvK

Š �1.K/, where
K is a connected subsurface or branching curve in the space X. The JSJ graph for G

has the degree partition

T1.G/D fv˛; vˇg; F1.G/D fvAg; F4.G/D fvD1
; : : : ; vD4

g;

T2.G/D fv
 g; F2.G/D fvBg; F5.G/D fvE1
; : : : ; vE5

g;

T3.G/D fvıg; F3.G/D fvC1
; vC2

; vC 0
1
; vC 0

2
g;

The degree refinement for G is the matrix in Figure 3.

Theorem 5.8 Let G Š �1.X / 2 C be as given in Construction 5.7. The following
hold:

(1) The group G is quasi-isometric to a right-angled Coxeter group.

(2) The group G is not abstractly commensurable to any group with JSJ graph a
tree. In particular, G is not abstractly commensurable to any group generated by
finite-order elements.

We first prove (1) in the next lemma.

Lemma 5.9 The group G is quasi-isometric to a right-angled Coxeter group.
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T1 T2 T3 F1F2 F3F4 F5

T1

T2

T3

F1

F2

F3

F4

F5

ƒ �

X

C1

C2

C 0
1

C 0
2

Sv S 0
v

A

B

D1

D2 D3

D4

E1

E2

E3

E4

E5

˛ ˇ




ı

v˛ vˇ

v


vı

vA

vBvC1

vC2

vC 0
1

vC 0
2

vD1

vD2 vD3

vD4

vE1

vE2 vE3

vE4

vE5

0BBBBBBBBBBB@

0 0 0 1 1 2 0 0

0 0 0 1 0 0 4 0

0 0 0 0 1 0 0 5

1 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

1CCCCCCCCCCCA
Figure 3: The group �1.X / has JSJ decomposition graph ƒ and degree
refinement the matrix shown. The group �1.X / is quasi-isometric to a
right-angled Coxeter group with JSJ graph � , but �1.X / is not abstractly
commensurable to any group generated by finite-order elements, as shown in
Theorem 5.8.

Proof Let G0 be a geometric amalgam of free groups with JSJ graph � shown in
Figure 3, where the vertex groups associated to the white vertices are infinite cyclic and
the vertex groups associated to the black vertices are maximally hanging Fuchsian. The
graph � is a tree; so, by [15, Theorem 1.16], G0 is quasi-isometric to a right-angled
Coxeter group. The group G0 also has degree refinement the matrix shown. Therefore,
by Theorem 3.5, the groups G and G0 are quasi-isometric.

Outline 5.10 We outline the proof of Theorem 5.8(2) in the case of a simplifying
assumption. Suppose towards a contradiction that G is abstractly commensurable
to a group G0 with JSJ graph a tree and such that G0 Š �1.X

0/ where X 0 is a 2–
dimensional hyperbolic P –manifold. In this setting, by [25, Theorem 1.2], there
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exist finite covers pW Y !X and p0W Y 0!X 0, where Y and Y 0 are 2–dimensional
hyperbolic P –manifolds, and there exists a homeomorphism f W Y ! Y 0 inducing an
isomorphism between finite-index subgroups of G and G0.

The vertices fv˛; vA; vˇ; vBg form a cycle in the JSJ graph ƒ for G. The full preimage
of A[B [˛[ˇ in the cover Y !X yields (not necessarily disjoint) cycles in the
JSJ graph for �1.Y / and hence in the JSJ graph for �1.Y

0/Š �1.Y /. We show these
cycles cannot project to a tree in the JSJ graph for �1.X

0/. The first step is to show that
p0.f .p�1.Sv///\p0.f .p�1.S 0v///D ∅, where Sv and S 0v are the closed surfaces
in X labeled in Figure 3. This claim holds since the vertex groups in FG

3
are exactly

f�1.C1/; �1.C2/; �1.C
0
1
/; �1.C

0
2
/g and the ratio of the Euler characteristic of the sub-

surfaces in Sv is different from the ratio of the Euler characteristic of the subsurfaces
of S 0v . Consequently, p0.f .p�1.˛/// \ p0.f .p�1.ˇ/// D ∅. Since �1.A/ 2 FG

1

and �1.B/ 2 FG
2

, Lemma 5.3 implies p0.f .p�1.A///\p0.f .p�1.B///D∅. Each
subsurface or curve in X 0 in

fp0.f .p�1.A///;p0.f .p�1.B///;p0.f .p�1.˛///;p0.f .p�1.ˇ///g

corresponds to a vertex in a set V 0 contained in the JSJ graph for �1.X
0/. The vertices

in V 0 are adjacent to at least two other vertices in V 0 by the above arguments, and
this yields a cycle in the JSJ graph, a contradiction. The proof in full generality given
below translates these topological ideas to the algebraic setting.

Proof of Theorem 5.8 The proof of (1) is given in Lemma 5.9. To prove (2), suppose
towards a contradiction that G is abstractly commensurable to a group G0 with JSJ
graph a tree ƒ0 . Suppose H �G and H 0 �G0 are finite-index subgroups which are
isomorphic. Since G is a geometric amalgam of free groups, the groups H and H 0

are geometric amalgams of free groups. Hence, H Š �1.Y / and H 0 Š �1.Y
0/, where

Y and Y 0 are 2–dimensional hyperbolic P –manifolds. By [25, Theorem 1.2] there
exists a homeomorphism f W Y ! Y 0 inducing an isomorphism ˆW H !H 0. Suppose
pW Y !X is a finite covering map.

Let S be the full preimage of Sv in Y , and let S 0 be the full preimage of S 0v in Y ,
where SvDC1[C2 and S 0vDC 0

1
[C 0

2
are the closed surfaces in X labeled in Figure 3.

The spaces S and S 0 are each a disjoint collection of connected closed surfaces and
S \ S 0 D ∅ since Sv \S 0v D ∅. The lifts of the branching curve ˛ on X partition
each surface † in S as †DZ1[Z2 so that p.Zi/D Ci . Similarly, the lifts of the
branching curve ˇ on X partition each surface †0 in S 0 as †0 D Z0

1
[Z0

2
, where
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p.Z0i/D C 0i . Each branching curve in Y that intersects † is incident to exactly one
subsurface in each of Z1 and Z2 . Hence, Z1 covers C1 by the same degree that
Z2 covers C2 . A similar argument holds for †0. Moreover, since f W Y ! Y 0 is a
homeomorphism,

(5-1)
�.f .Z1//

�.f .Z2//
D
�.Z1/

�.Z2/
D
�.C1/

�.C2/
and

�.f .Z0
1
//

�.f .Z0
2
//
D
�.Z0

1
/

�.Z0
2
/
D
�.C 0

1
/

�.C 0
2
/
:

Let H 0
†
Š �1.f .†// �H 0 and H 0

†0 Š �1.f .†
0// �H 0. We now set notation. The

subgroup H 0
†

is generated by a union of vertex groups in T H 0

1
and FH 0

3
in the JSJ

decomposition of H 0 by Lemma 5.3. Suppose H 0
†
D hH 0w1

; : : : ;H 0wr
;H 0x1

; : : : ;H 0xs
i,

where wi 2 F3.H
0/ for i 2 f1; : : : ; rg and xj 2 T1.H

0/ for j 2 f1; : : : ; sg. Similarly,
H 0
†0 D hH

0
w0

1
; : : : ;H 0w0

r 0
;H 0x0

1
; : : : ;H 0x0

s0
i, where w0i 2 F3.H

0/ for i 2 f1; : : : ; r 0g and
x0j 2T1.H

0/ for j 2f1; : : : ; s0g. Assume that the fundamental group of every branching
curve in Y 0 that intersects f .†/ is included in the set fH 0xj g

s
jD1

, and assume that the
fundamental group of every branching curve in Y 0 that intersects f .†0/ is included
in the set fH 0

x0
j

gs
0

jD1
. That is, the generating sets above are not minimal since these

branching curves are boundary curves of surfaces whose fundamental groups are con-
tained in the sets fH 0wi

gr
iD1

and fH 0
w0

i

gr
0

iD1
. By Proposition 5.1 and Lemma 5.3, there

are vertices vi ; v
0
i 2F3.G

0/ and yj ;y
0
j 2T1.G

0/ and elements gwi
;gw0

i
;gxj ;gx0

j
2G0

such that
H 0wi
DH 0\gwi

G0vi
g�1
wi
; H 0xj DH 0\gxjG0yj g�1

xj
;

H 0
w0

i

DH 0\gw0
i
G0
v0

i

g�1
w0

i

; H 0
x0
j

DH 0\gx0
j
G0

y0
j

g�1
x0
j

:

The surfaces f .†/ and f .†0/ are disjoint in the space Y 0, so

fw1; : : : ; wr ;x1; : : : ;xsg\ fw
0
1; : : : ; w

0
r 0 ;x

0
1; : : : ;x

0
s0g D∅:

Claim fv1; : : : ; vr ;y1; : : : ;ysg\ fv
0
1
; : : : ; v0r 0 ;y

0
1
; : : : ;y0s0g D∅:

Proof of Claim Since the fundamental group of every branching curve in Y 0 that
intersects f .†/ or f .†0/ is included in the set fHxj g

s
jD1
[fHxj 0 g

s0

jD1
, if vi D v

0
`

for
some i; `, then yj D y0

k
for some j ; k . Suppose towards a contradiction yj D y0

k
for

some j 2 f1; : : : ; sg and k 2 f1; : : : ; s0g.

We first show recursively this assumption implies

fv1; : : : ; vr ;y1; : : : ;ysg D fv
0
1; : : : ; v

0
r 0 ;y

0
1; : : : ;y

0
s0g:
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Each vertex xj 2 fxig
s
iD1

is adjacent to exactly two vertices w;w0 2 fwig
r
iD1

. By the
structure of the degree refinement for H 0, each vertex xj 2 fxig

s
iD1

is not adjacent to
any other vertices in F3.H

0/. An analogous statement holds for the vertices fx0j g
s0

jD1

and fw0ig
r 0

iD1
. Since the degree refinement for G0 is the same as the degree refine-

ment for H 0, an analogous statement also holds for the pairs .fvig
r
iD1

; fyj g
s
jD1

/ and
.fv0ig

r 0

iD1
; fy0j g

s0

jD1
/. Therefore, if yjDy0

k
, then the two vertices v; v02F3.G

0/ incident
to yj D y0

k
are in the sets fvig

r
iD1

and fv0ig
r 0

iD1
. Since f .†/ and f .†0/ are closed

surfaces, for each vertex wi and w0i with i 2f1; : : : ; rg and i 0 2f1; : : : ; r 0g, each vertex
in T1.H

0/ incident to wi is in the set fxj g
s
jD1

and each vertex in T1.H
0/ incident to w0i

is in the set fx0j g
s0

jD1
. Thus, an analogous statement holds for the pairs .fvig; fyig/ and

.fv0ig; fy
0
ig/. So, each vertex in T1.G

0/ incident to either v or v0 is in the sets fyig
r
iD1

and fy0ig
r 0

iD1
. The above argument can then be applied to these vertices incident to v

and v0. Each pair of vertex sets .fwig; fxj g/, .fw0ig; fx
0
j g/, .fvig; fyj g/ and .fv0ig; fy

0
j g/

spans a connected subgraph in either � 0 or ƒ0 . Therefore, these arguments can be
repeated to conclude fv1; : : : ; vr ;y1; : : : ;ysg D fv

0
1
; : : : ; v0r 0 ;y

0
1
; : : : ;y0s0g.

The partitions of the surfaces f .†/D f .Z1/[f .Z2/ and f .†0/D f .Z0
1
/[f .Z0

2
/

yield partitions of the vertices fwig
r
iD1
D Z1 tZ2 and fw0ig

r 0

iD1
D Z 0

1
tZ 0

2
. Hence,

there are partitions fvig
r
iD1
D V1 t V2 and fv0ig

r 0

iD1
D V 0

1
t V 0

2
, where vi 2 Vj if

Hwi
is the fundamental group of a subsurface in f .Zj /, and likewise for v0i . Each

vertex xj 2 fxkg
s
kD1

is adjacent to exactly one vertex in Z1 and exactly one vertex
in Z2 , and an analogous statement holds for x0j 2 fx

0
k
gs

0

kD1
. Hence, each vertex yj

for j 2 f1; : : : ; sg is adjacent to exactly one vertex in each of V1 and V2 , and the
same holds for y0j for j 2 f1; : : : ; s0g. Therefore, by the conclusion of the previous
paragraph, either V1 D V 0

1
and V2 D V 0

2
or V1 D V 0

2
and V2 D V 0

1
. Assume V1 D V 0

1

and V2 D V 0
2

; the other case is similar.

Since each yj with j 2 f1; : : : ; sg is incident to exactly one vertex in each of V1

and V2 , by the description of finite-index subgroups in [33, Section 3] and Lemma 2.5,
there exists d 2N such that

d �
X
v2V1

�.G0v/D �.f .Z1// and d �
X
v2V2

�.G0v/D �.f .Z2//:

Similarly, there exists d 0 2N such that

d 0 �
X
v2V 0

1

�.G0v/D �.f .Z
0
1// and d 0 �

X
v2V0

2

�.G0v/D �.f .Z
0
2//:
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Therefore, since V1 D V 0
1

and V2 D V 0
2

,

�.f .Z1//

�.f .Z2//
D

P
v2V1

�.G0v/P
v2V2

�.G0v/
D

P
v2V 0

1
�.G0v/P

v2V 0
2
�.G0v/

D
�.f .Z0

1
//

�.f .Z0
2
//
:

So, by (5-1), �.C1/=�.C2/D �.C
0
1
/=�.C 0

2
/, a contradiction. Therefore,

fv1; : : : ; vr ;y1; : : : ;ysg\ fv
0
1; : : : ; v

0
r 0 ;y

0
1; : : : ;y

0
s0g D∅:

To conclude the proof of the theorem, let H0˛ � V .� 0/ and H0
ˇ
� V .� 0/ be the sets

of vertices in � 0 whose vertex groups are the fundamental group of a component of
f .p�1.˛// and f .p�1.ˇ//, respectively, where ˛ and ˇ are the singular curves in X

labeled in Figure 3. Let G0˛ �ƒ0 and G0
ˇ
�ƒ0 be the set of vertices of ƒ0 whose vertex

groups contain, as a finite-index subgroup, H 0w for w 2H0˛ and w 2H0
ˇ

, respectively.
The above arguments imply G0˛ \G0

ˇ
D∅. Indeed, every lift of ˛ in Y is contained in

some surface † in S , and every lift of ˇ in Y is contained in some surface †0 in S 0.
Let H0

A
� V .� 0/ and H0

B
� V .� 0/ be the set of vertices in � 0 whose vertex groups are

the fundamental group of a component of f .p�1.A// and f .p�1.B//, respectively,
where A and B are the subsurfaces in X shown in Figure 3. Let G0

A
�ƒ0 and G0

B
�ƒ0

be the set of vertices in ƒ0 whose vertex groups contain, as a finite-index subgroup,
H 0w for w 2H0

A
and w 2H0

B
, respectively. Since �1.A/ 2 FG

1
and �1.B/ 2 FG

2
, by

Lemma 5.3, G0
A
\ G0

B
D ∅. Every vertex in H0

A
is adjacent to a vertex in H0˛ and a

vertex in H0
ˇ

and vice versa. Similarly, every vertex in H0
B

is adjacent to a vertex
in H0˛ and a vertex in H0

ˇ
and vice versa. Therefore, by Lemma 5.6, every vertex in G0

A

and G0
B

is adjacent to a vertex in G0˛ and a vertex in G0
ˇ

and vice versa. So, there is
a cycle in ƒ0 , a contradiction. Therefore, G is not abstractly commensurable to any
group with JSJ graph a tree.

6 Necessary conditions for commensurability

6.1 Block Euler characteristic vector

Definition 6.1 Let G 2 C , and let ƒ be the JSJ graph of G so that V .ƒ/DV1tV2 as
in Definition 3.4. Suppose in the degree partition of ƒ, the vertices in V1 are contained
in blocks T1; : : : ;Tn and the vertices in V2 are contained in blocks F1; : : : ;Fm . Let
�i D

P
Gv2F G

i
�.Gv/. Suppose the blocks fFig

m
iD1

are indexed so that �i � �j

for i � j . The block Euler characteristic vector of G is .�1; : : : ; �m/.
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Definition 6.2 Vectors v; v0 2Rn are commensurable if there exist nonzero integers
K;K0 2 Z such that Kv DK0v0.

Proposition 6.3 If G;G0 2 C are abstractly commensurable, then the block Euler
characteristic vector of G is commensurable to the block Euler characteristic vector
of G0.

Proof Let .�1; : : : ; �m/ and .�0
1
; : : : ; �0m/ be the block Euler characteristic vectors

of G and G0, respectively, where �i D
P

Gv2F G
i
�.Gv/ and �0i D

P
G0

v02F G0

i

�.G0v0/.
Suppose H � G and H 0 � G0 are finite-index subgroups with H Š H 0. Suppose
ŒG WH �D d and ŒG0 WH 0�D d 0. By Lemma 5.5, for every v 2 V .ƒ/ and v0 2 V .ƒ0/,

d ��.Gv/D
X

Hw2Hv

�.Hw/ and d 0 ��.G0v0/D
X

H 0

w02H0

v0

�.H 0w0/:

Furthermore, by Lemma 5.3,[
v2F G

i

Hv D FH
i and

[
v02F G0

i

H0v0 D FH 0

i :

Therefore,

d �
X

Gv2F G
i

�.Gv/D
X

Hw2F H
i

�.Hw/D
X

H 0

w02F H 0

i

�.H 0w0/D d 0 �
X

G0
v2F G0

i

�.G0v/:

So, d.�1; : : : ; �m/D d 0.�0
1
; : : : ; �0m/.

6.2 Matching Euler characteristic vector

Suppose G 2 C has JSJ decomposition with underlying graph ƒ with V .ƒ/D V1tV2

as in Definition 3.4. If all vertices in V1 have the same valence, then the block Euler
characteristic vector of G has one entry. Hence, the block Euler characteristic vector
does not distinguish commensurability classes in this setting. So, we define a finer
invariant in this subsection to deal with this case. Results in this section are proved
only within the subclass of geometric amalgams of free groups.

If � is a graph, a matching in � is a collection of disjoint edges whose vertex set is
exactly the vertex set of � . This notion extends to subsurfaces in a 2–dimensional
hyperbolic P –manifold, and a necessary criterion for commensurability can be stated
in these terms.
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Definition 6.4 Let X be a 2–dimensional hyperbolic P –manifold. A matching in X

is a (not necessarily connected) subsurface in X (see Definition 2.11) whose boundary
is exactly the set of branching curves in X. In particular, a matching does not contain
any branching curves in its interior, and each branching curve is incident to exactly
one connected subsurface with boundary in the matching. A maximal matching in X

is a matching which has the greatest Euler characteristic of any matching in X.

Lemma 6.5 (existence of a matching) Let X be a possibly disconnected hyperbolic
P –manifold over a finite forest, and suppose each branching curve in X is incident to
exactly n subsurfaces. Then X admits a matching.

Proof Let X be a possibly disconnected hyperbolic P –manifold over a finite forest T ,
and suppose each branching curve in X is incident to exactly n subsurfaces. Suppose
X has branching curves c1; : : : ; cm . To build a matching M of X, choose †1 � X,
a subsurface of X, and let †1 2M. Without loss of generality, †1 has boundary
c1; : : : ; ck for some k �m. Let X1 �X be the set of subsurfaces in X which have
at least one boundary component in fc1; : : : ; ckg. Without loss of generality, the set
of boundary curves of subsurfaces in X1 is fc1; : : : ; ckC`g. Let X 0

1
D X nX1 , a

hyperbolic P –manifold over a finite forest. Since T is a finite forest, each curve in
fckC1; : : : ; ckC`g has degree n� 1 > 1 in X 0

1
. So, it is possible to add to M one

subsurface in X 0
1

incident to each curve in fckC1; : : : ; ckC`g. Repeat this procedure
with each new surface chosen for M in the place of †1 to produce a matching M in
finitely many steps.

Example 6.6 There are 2–dimensional hyperbolic P –manifolds for which each
branching curve has the same degree and for which there does not exist a matching. In-
deed, let X be a 2–dimensional hyperbolic P –manifold whose fundamental group has
JSJ graph � shown in Figure 4. The white vertices in � correspond to 2–ended vertex
groups; the black vertices correspond to maximally hanging Fuchsian vertex groups.

Definition 6.7 Let X be a 2–dimensional hyperbolic P –manifold with underlying
graph a tree, and suppose each branching curve in X is incident to exactly n sub-
surfaces. Let M1 be a maximal matching in X, and let Mi be a maximal matching in
X n Int

�Si�1
kD1 Mi

�
for i D 2; : : : ; n.

�
Note that in a slight abuse of notation, we still

refer to the image of the branching curves of X in X n Int
�Sn�2

kD1 Mi

�
as “branching”

even though at this step the space is a manifold; similarly for X n Int
�Sn�1

kD1 Mi

�
.
�
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�

Figure 4: The JSJ graph � of a 2–dimensional hyperbolic P –manifold
whose fundamental group does not admit a matching

The matching Euler characteristic vector of X is

.�.M1/; �.M2/; : : : ; �.Mn//:

The proof of the following proposition generalizes [34, Proposition 3.3.2] and [15,
Proposition 6.4].

Proposition 6.8 Suppose X and X 0 are 2–dimensional hyperbolic P –manifolds, the
underlying graphs of X and X 0 are trees, and each branching curve in X and X 0 is
incident to exactly n subsurfaces with boundary. Let v and v0 be the matching Euler
characteristic vectors of X and X 0, respectively. If �1.X / and �1.X

0/ are abstractly
commensurable, then v and v0 are commensurable vectors.

Proof Suppose that X and X 0 are 2–dimensional hyperbolic P –manifolds, the under-
lying graphs of X and X 0 are trees, and each branching curve in X and X 0 is incident
to n branching curves. Let vD .�.M1/; : : : ; �.Mn// and v0D .�.M0

1
/; : : : ; �.M0n//

be the matching Euler characteristic vectors of X and X 0, respectively. Suppose that
�1.X / and �1.X

0/ are abstractly commensurable. We seek to prove that v and v0 are
commensurable.

Since �1.X / and �1.X
0/ are abstractly commensurable, there are finite covering spaces

pW Y !X and p0W Y 0!X 0 and a homeomorphism f W Y !Y 0 by [25, Theorem 1.2].
Suppose that p is a degree D cover and p0 is a degree D0 cover. We will show
Dv DD0v0.

Suppose that

�.M1/D � � � D �.Ms/ > �.MsC1/� � � � � �.Mn/;

�.M01/D � � � D �.M
0
t / > �.M

0
tC1/� � � � � �.M

0
n/:

Without loss of generality, D�.M1/ � D0�.M0
1
/ and if D�.M1/ D D0�.M0

1
/

then s � t .
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Consider the matching f .p�1.M1// D fS
0
1
; : : : ;S 0r g � Y 0, a disjoint collection of

connected subsurfaces of Y 0 whose boundary is exactly the set of branching curves of Y 0.
Let fc1; : : : ; cmg be the set of branching curves of X 0. Each surface S 0i 2f .p

�1.M1//

covers a subsurface SIi
of X 0, where SIi

has boundary fcj j j 2 Iig for some
Ii � f1; : : : ;mg. Suppose S 0i covers SIi

by degree dIi
with 1� dIi

�D0.

Claim
rX

iD1

dIi
��.SIi

/�D0�.M01/:

Proof of Claim The inequality holds by the definition of maximal matching if D0D 1.
In general, the surfaces in fSIi

gr
iD1

need not form a matching of X 0. However, we
show that if these surfaces are counted with the right multiplicity, then they can be
partitioned into D0 matchings of X 0.

If D0 > 1, we will partition the surfaces in the set

S D fSI1
; : : : ;SI1„ ƒ‚ …

dI1

; SI2
; : : : ;SI2„ ƒ‚ …

dI2

; : : : ;SIr
; : : : ;SIr„ ƒ‚ …

dIr

g

into D0 matchings of X 0, called N1; : : : ;ND0 . The sum of the Euler characteristics
of the surfaces in the D0 matchings constructed is equal to the left-hand side of the
inequality in the claim. The conclusion of the claim will follow by the definition
of maximal matching. For i 2 f1; : : : ; rg, we call the value dIi

the weight of the
surface SIi

. The weight of SIi
records the contribution of �.SIi

/ to the Euler
characteristic of f .p�1.M1//. If cj is a boundary curve of the surface SIi

, we
say dIi

is the weight at cj coming from SIi
. The total weight at the curve cj isP

j2Ii
dIi
DD0 since p0W Y 0!X 0 is a degree D0 cover.

Construct the set of D0 matchings recursively. To construct the first matching N1 built
out of surfaces in S , choose a surface SIi

2 S . The surface SIi
is incident to curves

fcj j j 2 Iig. View the underlying graph of X as a bipartite graph with white vertices
corresponding to branching curves and black vertices corresponding to surfaces with
boundary. Let c be a curve corresponding to a white vertex at distance two (in the
graph) from cj for some j 2 Ii and at distance three (in the graph) from the black vertex
corresponding to SIi

, if such a curve exists. There is a surface in S incident to c and
not to cj . That is, both curves c and cj have total weight D0 coming from a collection
of surfaces incident to these curves. Some of the weight at cj comes from SIi

, so the
(unique) surface S incident to both cj and c has weight less than D0. Thus, some of
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the weight at c comes from a surface SIk
different from S. Let SIi

[SIk
2N1 . Since

the underlying graph of X is a tree, this selection may be continued (finitely many
times) to build the matching N1 of surfaces contained in S .

Build the remaining D0�1 matchings N2; : : : ;ND0 similarly. First form the set S1 by
removing from S one copy of each surface contained in N1 . Then, the matching N2

may be chosen analogously to N1 , where each branching curve in X 0 now has weight
D0 � 1 associated to it. This process may be continued to build the D0 matchings
N1; : : : ;ND0 . Furthermore, by construction and since M0

1
is a maximal matching

of X 0,
rX

iD1

dIi
��.SIi

/D �.N1/C � � �C�.ND0/�D0�.M01/;

concluding the proof of the claim.

Thus,

D�.M1/D �.f .p
�1.M1///D

rX
iD1

dIi
��.SIi

/�D0�.M01/;

where the last inequality is given by the claim above. Since D�.M1/ � D0�.M0
1
/

by assumption, D�.M1/ D D0�.M0
1
/. Each branching curve in Y 0 is incident to

exactly s connected surfaces in f .p�1.M1//[ � � � [f .p
�1.Ms//. Thus,

p0
�
f .p�1.M1//[ � � � [f .p

�1.Ms//
�

must have in its image at least s surfaces in the matchings M0
1
; : : : ;M0n ; so, t � s .

Therefore, D�.Mi/ D D0�.M0i/ for 1 � i � s D t and
Ss

iD1 f .p
�1.Mi// DSs

iD1 p�1.Mi/. So, the above argument can be repeated (at most finitely many times)
with the remaining matchings in X and X 0 of strictly smaller Euler characteristic,
proving the proposition.

7 Quasi-isometry versus abstract commensurability

Theorem 7.1 There are infinitely many abstract commensurability classes within
every quasi-isometry class in C that contains a group with JSJ graph a tree.

Proof Let Q be a quasi-isometry class in C that contains a group with JSJ graph a
tree T . Let G 2Q be a geometric amalgam of free groups with JSJ graph T such that
G Š �1.X / for some 2–dimensional hyperbolic P –manifold X. Choose a subsurface
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†�X. Exchange † with a surface †g with the same number of boundary components
as † and with genus g � 1. Let Xg denote the resulting 2–dimensional hyperbolic
P –manifold, and let Gg Š �1.Xg/. The groups Gg and G are quasi-isometric for
every g� 1, but Gg and Gh are abstractly commensurable if and only if gDh. Indeed,
if not all branching curves of Xg have the same degree, let vg be the block Euler
characteristic vector of Gg , and if all branching curves of Xg have the same degree, let
vg be the matching Euler characteristic vector of Gg . Changing the Euler characteristic
of one subsurface of Xg changes the commensurability type of the vector vg , hence
the claim follows from Propositions 6.3 and 6.8.

Remark 7.2 The proof above applies to any quasi-isometry class in C for which the
degree refinement contains more than one row coming from maximal hanging Fuchsian
vertex groups, since in this case the block Euler characteristic vector has more than
one entry.
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