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Cohomology of symplectic groups
and Meyer’s signature theorem
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Meyer showed that the signature of a closed oriented surface bundle over a surface
is a multiple of 4 , and can be computed using an element of H 2.Sp.2g;Z/;Z/ . If
we denote by 1! Z! CSp.2g;Z/! Sp.2g;Z/! 1 the pullback of the universal
cover of Sp.2g;R/ , then by a theorem of Deligne, every finite index subgroup of
CSp.2g;Z/ contains 2Z . As a consequence, a class in the second cohomology of
any finite quotient of Sp.2g;Z/ can at most enable us to compute the signature of
a surface bundle modulo 8 . We show that this is in fact possible and investigate the
smallest quotient of Sp.2g;Z/ that contains this information. This quotient H is
a nonsplit extension of Sp.2g; 2/ by an elementary abelian group of order 22gC1 .
There is a central extension 1! Z=2! zH! H! 1 , and zH appears as a quotient
of the metaplectic double cover Mp.2g;Z/D CSp.2g;Z/=2Z . It is an extension of
Sp.2g; 2/ by an almost extraspecial group of order 22gC2 , and has a faithful irre-
ducible complex representation of dimension 2g . Provided g > 4 , the extension zH is
the universal central extension of H . Putting all this together, in Section 4 we provide
a recipe for computing the signature modulo 8 , and indicate some consequences.

20J06; 20C33, 55R10

1 Introduction

Let †g!M !†h be an oriented surface bundle over a surface. This is determined
by a homotopy class of maps †h ! BAutC.†g/. If g > 2 then the connected
components of AutC.†g/ are contractible (Corollary 19 in Luke and Mason [25];
see also Earle and Eells [9] and Hamstrom [19]), and �0 Aut

C.†g/ D �g is the
(orientation-preserving) mapping class group of †g . So BAutC.†g/' B�g , and the
bundle is classified by a homotopy class of maps †h! B�g , or equivalently by the
monodromy homomorphism

�1.†h/D ha1; b1; : : : ; ah; bh j Œa1; b1� � � � Œah; bh�D 1i ! �g:
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Now �g acts on H 1.†g;Z/ Š Z2g , preserving the symplectic form given by cup
product into H 2.†g;Z/ŠZ. So we have a map �g! Sp.2g;Z/, which is surjective.
Composing, we obtain a map

�W �1.†h/! �g! Sp.2g;Z/;

and an induced map in cohomology

��W H 2.Sp.2g;Z/;Z/!H 2.�1.†h/;Z/:

Meyer [26] constructed a 2–cocycle � on Sp.2g;Z/ such that

signature.M /D h��Œ� �; Œ†h�i 2 4Z� Z;

with Œ� �D4 in H 2.Sp.2g;Z/;Z/ŠZ for g>3, and Œ� �=4D1 in H 2.Sp.2g;Z/;Z/ŠZ,
classifying the universal central extension of Sp.2g;Z/. Let

.Œ� �=4/2 2H 2.Sp.2g;Z/;Z=2/Š Z=2

be the mod 2 reduction. The mod 2 residue

signature.M /=4D h��Œ� �=4; Œ†h�i D h�
�.Œ� �=4/2; Œ†h�i 2 Z=2

was identified by Rovi [31] with the Arf–Kervaire invariant of a Pontryagin squaring
operation.

Our main purpose in this paper is to construct a normal subgroup K of Sp.2g;Z/

for g�1 with finite quotient HDSp.2g;Z/=K of shape 22gC1 � Sp.2g; 2/ (for notation
describing group extensions, see Section 5.2 of the introduction to the Atlas [5]). Let
pW Sp.2g;Z/! H be the projection. There is a nonzero element c 2 H 2.H;Z=2/

(for g > 4 we have H 2.H;Z=2/Š Z=2 but there are extraneous summands inflated
from H 2.Sp.2g; 2/;Z=2/ for small g ) which classifies a nonsplit double cover zH of H.
The inflation p�.c/D Œ�=4�2 in H 2.Sp.2g;Z/;Z=2/ŠZ=2 classifies the metaplectic
double cover Mp.2g;Z/ of Sp.2g;Z/. Now p factors through Sp.2g;Z=4/, so that
we obtain as a consequence that signature.M /=4 2 Z=2 only depends on the Z=4–
coefficient monodromy �4W �1.†h/! Sp.2g;Z=4/ (this was already proved by a
different method by Korzeniewski [23]). The sequence of group homomorphisms

Sp.2g;Z/! Sp.2g;Z=4/! H! U.2g;QŒi�/=f˙1g

lifts to a sequence of double covers

Mp.2g;Z/!ESp.2g;Z=4/! zH! U.2g;QŒi�/;
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which is used in the recipe of Section 4 for the signature modulo 8. The faithful
representation zH! U.2g;QŒi�/ is investigated in Benson [2].

Denote by CSp.2g;Z/ the central extension obtained by pulling back the universal cover
of Sp.2g;R/:

1 // Z // CSp.2g;Z/ //

��

Sp.2g;Z/ //

��

1

1 // Z //DSp.2g;R/ // Sp.2g;R/ // 1

Then for g > 4 the group CSp.2g;Z/ is the universal central extension of Sp.2g;Z/,
while for g D 3 there is an extra copy of Z=2 coming from the fact that Sp.6; 2/ has
an exceptional double cover (see Lemma 6.11). Note also that the centre of Sp.2g;Z/

has order two. The centre of CSp.2g;Z/ is twice as big as the subgroup Z displayed
above; it is isomorphic to Z�Z=2 if g is even, and Z if g is odd.

A theorem of Deligne [6] implies that the group CSp.2g;Z/ is not residually finite. Every
subgroup of finite index contains the subgroup 2Z. To rephrase, every finite quotient
of CSp.2g;Z/ is in fact a finite quotient of the metaplectic double cover Mp.2g;Z/

of Sp.2g;Z/ defined by

1

��

1

��

2Z

��

2Z

��

1 // Z //

��

CSp.2g;Z/ //

��

Sp.2g;Z/ // 1

1 // Z=2 //

��

Mp.2g;Z/ //

��

Sp.2g;Z/ // 1

1 1

As a consequence, if we compose � with the map to a finite quotient of Sp.2g;Z/,
we lose information about the signature; the best we can hope to do is compute the
signature modulo 8. We shall discuss this in greater detail elsewhere.
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An outline of the paper is as follows. We describe the subgroup K 6 Sp.2g;Z/ and
quotient HD Sp.2g;Z/=K in Section 2. Their properties are described in Theorem 2.2,
and the proof occupies much of the rest of the paper. Section 3 contains background
and references on extraspecial and almost extraspecial groups, and there we explain
what this has to do with the structure of H and its double cover zH. We describe
a faithful unitary representation zH! U.2g;QŒi�/, which inflates to a representation
Mp.2g;Z/! U.2g;QŒi�/, and which is investigated in greater detail in [2]. Section 4
uses this representation to give a recipe for computing the signature modulo 8 of a sur-
face bundle over a surface. The rest of the paper consists of cohomology computations.
In preparation for this, in Section 5 we discuss the Lie algebra of the symplectic group.
We show that as a module, it is isomorphic to the divided square of the natural module,
and we discuss the submodule structure. This enables us in Section 6 to exploit the
five-term sequence to compute H2.H/ and H2.Sp.2g;Z=2n// for n > 2. Provided
that g > 4, these are isomorphic to Z=2.

Acknowledgements Campagnolo acknowledges support by the Swiss National Sci-
ence Foundation, grant number PP00P2-128309/1, and by the German Science Foun-
dation via the Research Training Group 2229, under which this research was started
and then completed.

2 The subgroup K 6 Sp.2g; Z/ and the main theorem

Denote by J the 2g� 2g matrix �
0 I

�I 0

�
:

Regarding J as a symplectic form, we have

Sp.2g;Z/D

��
A B

C D

�
DX

ˇ̌̌
X tJX D J

)
:

Since J�1 D �J , a matrix is symplectic if and only if its transpose is symplectic.
Writing out the above condition explicitly, a matrix is symplectic if and only if

(i) ABt and CDt are symmetric and ADt �BC t D I , or equivalently

(ii) AtC and BtD are symmetric and AtD�C tB D I .

We write Sp.2g; 2/ for the matrices satisfying the same conditions over F2 , and note that
reduction modulo two Sp.2g;Z/! Sp.2g; 2/ is surjective (Newman and Smart [28]).

Algebraic & Geometric Topology, Volume 18 (2018)
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We write �.2g;N / 6 Sp.2g;Z/ for the principal congruence subgroup consisting
of symplectic matrices which are congruent to the identity modulo N . We write
�.2g;N; 2N / for the Igusa subgroup [22] of �.2g;N / consisting of the matrices�

A
C

B
D

�
where the entries of Diag.ABt / and Diag.CDt / are divisible by 2N , or

equivalently where the entries of Diag.AtC / and Diag.BtD/ are divisible by 2N .
If N D 1, this is the theta subgroup, also known as the symplectic quadratic group, and
denoted Spq.2g;Z/. It is the inverse image in Sp.2g;Z/ of the orthogonal subgroup
OC.2g; 2/6 Sp.2g; 2/.

Definition 2.1 We write K for the subgroup of Sp.2g;Z/ consisting of matrices�
I C 2a 2b

2c I C 2d

�
2 Sp.2g;Z/

satisfying the following:

(i) The vectors of diagonal entries Diag.b/ and Diag.c/ are even.

(ii) The trace Tr.a/ is even.

Thus we have �.2g; 4/6K6�.2g; 2/ and j�.2g; 2/ WKjD 22gC1 . The interpretation
of the subgroup K is that it is the inverse image in Sp.2g;Z/ of the largest subspace of
�.2g; 2/=�.2g; 4/ on which the quadratic form in Theorem 2.2(iv) is identically zero.

Our main theorem is as follows. We assume that g > 4 for the purpose of simplifying
the statements. In the appendix we include statements for all values of g . The main
difference for low values of g is that the cohomology of Sp.2g; 2/ in degrees one and
two contributes some further annoying complications.

Theorem 2.2 Let g > 4.

(i) K is a normal subgroup of Sp.2g;Z/. We write H for the quotient Sp.2g;Z/=K.

(ii) The quotient �.2g; 2/=K 6 H is an elementary abelian 2–group .Z=2/2gC1 .

(iii) The extension

1! .Z=2/2gC1
! H! Sp.2g; 2/! 1

does not split.

(iv) The group .Z=2/2gC1 supports an invariant quadratic form q given by

q

�
I C 2a 2b

2c I C 2d

�
D Tr.a/ChDiag.b/;Diag.c/i

(see Remark 5.3 for the definition of the pointy brackets here).
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(v) The action of Sp.2g; 2/ on .Z=2/2gC1 described by the extension in (iii) gives
the exceptional isomorphism Sp.2g; 2/Š O.2gC 1; 2/, the orthogonal group of
the quadratic form q.

(vi) We have H 2.H;Z=2/Š Z=2, and an associated central extension

1! Z=2! zH! H! 1:

(vii) For n > 2, the inflation map H 2.H;Z=2/ ! H 2.Sp.2g;Z=2n/;Z=2/ is an
isomorphism.

(viii) The nonzero element of H 2.Sp.2g;Z/=K;Z=2/ inflates to the reduction modulo
two of 1

4
Œ� � as an element of H 2.Sp.2g;Z/;Z=2/.

(ix) Restricting the central extension of H to the subgroup �.2g; 2/=K gives an
almost extraspecial group 21C.2gC1/ 6 zH.

The proof of this theorem occupies the rest of the paper.

3 Extraspecial and almost extraspecial groups

For background on extraspecial and almost extraspecial groups, we refer the reader
to Section I.5.5 of Gorenstein [15] and Section III.13 of Huppert [21], as well as the
papers of Bouc and Mazza [3], Carlson and Thévenaz [4], Glasby [12], Griess [16],
Hall and Higman [17], Lam and Smith [24], Quillen [30], Schmid [36], Stancu [37],
and the letter from Isaacs to Diaconis reproduced in the appendix of Diaconis [8].

The cohomology ring H�..Z=2/n;Z=2/ is a polynomial ring in generators z1; : : : ; zn

of degree one. Thus

H 1..Z=2/n;Z=2/D Hom..Z=2/n;Z=2/

is an n–dimensional vector space spanned by the linear forms z1; : : : ; zn . An element
of degree two is therefore a quadratic form q on .Z=2/n . Letting b be the associated
bilinear form .Z=2/n � .Z=2/n! Z=2, we have

q.xCy/D q.x/C q.y/C b.x;y/:

In the corresponding central extension

1! Z=2!E! .Z=2/n! 1

Algebraic & Geometric Topology, Volume 18 (2018)
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the role played by q and b is as follows. If x and y are elements of .Z=2/n , choose
preimages yx and yy in E . Then as elements of the central Z=2, we have yx2 D q.x/

and Œyx; yy�D b.x;y/.

Definition 3.1 We say that a quadratic form q is nonsingular if the radical b? of the
associated bilinear form b is f0g, and nondegenerate if b?\ q�1.0/D f0g.

If q is nonsingular then nD 2g is even; in this case there are two isomorphism classes
of quadratic forms, distinguished by the Arf invariant. The corresponding groups E

defined by the central extension

1! Z=2!E! .Z=2/2g
! 1

are called extraspecial 2–groups, and are characterised by the properties

ˆ.E/D ŒE;E�DZ.E/Š Z=2:

The two isomorphism classes of extraspecial groups are denoted 21C2g
C (Arf invariant

zero) and 21C2g
� (Arf invariant one).

If q is singular but nondegenerate then n D 2gC 1 is odd; in this case there is one
isomorphism class of quadratic forms. The corresponding groups E defined by the
central extension

1! Z=2!E! .Z=2/2gC1
! 1

are called almost extraspecial groups. The central product of Z=4 with an extraspecial
group of either isomorphism type of order 21C2g gives the almost extraspecial group
of order 21C.2gC1/ .

If G is a group, we write Aut.G/ for the group of automorphisms of G , we write
Out.G/ for the group of outer automorphisms, and we write Inn.G/ for the group of
inner automorphisms. These fit into short exact sequences

1!Z.G/!G! Inn.G/! 1 and 1! Inn.G/! Aut.G/! Out.G/! 1:

Writing the automorphism groups of the extraspecial and almost extraspecial groups as
extensions of the outer by the inner automorphisms in this way, we have sequences

1! .Z=2/2g
! Aut.21C2g

C /! OC.2g; 2/! 1;

1! .Z=2/2g
! Aut.21C2g

� /! O�.2g; 2/! 1;

1! .Z=2/2g
! Aut.21C.2gC1//! Sp.2g; 2/�Z=2! 1;(3:2)
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which do not split provided g > 4. It is the last case that is of interest to us: in this case
the extra factor of Z=2 in the outer automorphism group Out.E/ acts by inverting the
central element of order four, and for g > 3 the derived subgroup Out.E/0 is Sp.2g; 2/.

It was proved by Griess [16] using representation theory that in each case, there is an
extension of the extraspecial group by its outer automorphism group, and of the almost
extraspecial group by the subgroup of index two in its outer automorphism group.

We are interested in the almost extraspecial case. In this case, what Griess proved
(part (b) of Theorem 5 of [16]) is that there is a group, which he denotes H0 , of shape
21C.2gC1/Sp.2g; 2/, with the following properties. The normal 2–subgroup O2.H0/

is the almost extraspecial group 21C.2gC1/ , and the quotient H0=Z.H0/ is isomorphic
to the subgroup of index two in Aut.21C.2gC1//.

Dempwolff [7] proved that for g > 2 there is a unique isomorphism class of nonsplit
extensions of Sp.2g; 2/ by an elementary abelian group .Z=2/2g with nontrivial
action. We shall combine the results of Griess and Dempwolff to show that the group H

of Theorem 2.2 is isomorphic to the quotient of Griess’ group H0 by the central
subgroup of order two. This in turn allows us to compute H 2.H;Z=2/ and relate it
to H 2.Sp.2g;Z/;Z/.

There is another approach to this, which we describe in a separate paper [2]. This
avoids the use of the theorems of Griess and Dempwolff, replacing them with a
computation showing that the group zH has a Curtis–Tits–Steinberg type presentation.
This approach is closely related to the action of zH on a certain 2g–dimensional space
of theta functions, and shows that the following defines a projective representation
� W Sp.2g;Z/! U.2g;QŒi�/=f˙Ig with kernel K, and then induces a 2g–dimensional
representation zH! U.2g;QŒi�/.

The underlying vector space for the representation has as a basis the vectors ew

for w 2 f0; 1gg . In the following matrices, we regard det A, which is really an element
of .Z=4/� D f1;�1g, as being either C1 or �1 in C , and

p
det A is either 1 or i:

�

�
I B

0 I

�
W ew 7! iw

tBwew;

�

�
A 0

0 .At /�1

�
W ew 7!

p
det A e.At /�1w;

�

�
0 I

�I 0

�
W ew 7!

1

.1� i/g
X
w0

.�1/w
tw0ew0 :
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Note that Sp.2g;Z/ is generated by these elements, but it is not at all obvious that
the relations in Sp.2g;Z/ hold up to sign for the linear transformations listed here;
this is proved in [2]. Note also that in the first formula above, the matrix B may be
interpreted as having diagonal entries in Z=4 and off-diagonal entries in Z=2, so that
it represents a quadratic form on .Z=2/g , taking values in Z=4.

Further references for the representation described here include Funar and Pitsch [11],
Glasby [12], Gocho [13; 14], Nebe, Rains and Sloane [27], Runge [32; 33; 34] and
Tsushima [41].

4 Signature modulo eight

Given an oriented surface bundle over a surface †g !M ! †h , recall that there
is an associated map �W �1.†h/ ! Sp.2g;Z/. Composing with � W Sp.2g;Z/ !

U.2g;QŒi�/=f˙Ig, we obtain a map

�W �1.†h/D ha1; b1; : : : ; ah; bh j Œa1; b1� � � � Œah; bh�D 1i ! U.2g;QŒi�/=f˙Ig:

Now the commutators Œ�.ai/; �.bi/� are well defined in U.2g;QŒi�/, since changing
the sign on �.ai/ or �.bi/ changes the sign twice in the commutator. Since the product
of the commutators is in the kernel of � , we have

Œ�.a1/; �.b1/� � � � Œ�.ah/; �.bh/�D˙I 2 U.2g;QŒi�/:

Theorem 4.1 We have

Œ�.a1/; �.b1/� � � � Œ�.ah/; �.bh/�D

�
I if and only if signature.M /� 0 .mod 8/;

�I if and only if signature.M /� 4 .mod 8/:

Remarks 4.2 (1) As a method of computation, this theorem is not very useful,
because of the large size of the matrices involved. Endo [10] provided a much more
efficient and purely algebraic method for computing the signature, and not just modulo 8.
On the other hand, there are consequences of the theorem that are not very apparent
from the point of view of Endo’s method.

(2) The following is a consequence of the theta function point of view, and will be
discussed in a separate paper [2]. Let Spq.2g;Z/ be the theta subgroup of Sp.2g;Z/.
If the image of � lies in Spq.2g;Z/ then we have signature.M / � 0 .mod 8/. In
particular, this holds if the action of �1.†h/ on H 1.†g;Z=2/ is trivial. This proves a
special case of the Klaus–Teichner conjecture; see the introduction to [18] for details.
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(3) Consider next the subgroup consisting of the matrices
�

A
C

B
D

�
2 Sp.2g;Z/ such

that the entries of C are even, and those of Diag.C / are divisible by four. If the image
of � lies in this subgroup then again we have signature.M /� 0 .mod 8/. This will
be proved in [2].

5 Symplectic groups and their Lie algebras

Let R be a commutative ring, and Sp.2g;R/ be the symplectic group of dimension 2g

over R. Explicitly, this consists of matrices X with entries in R, and satisfying
X tJX D J , where J is the symplectic form

J D

�
0 I

�I 0

�
and I is a g � g identity matrix. Denoting by VR a free R–module of rank g , and
setting

WR D V �R D HomR.VR;R/;

the matrices X act on UR D VR˚WR , preserving the skew-symmetric bilinear form

h ; iW UR �UR!R

given by
h.v; w/; .v0; w0/i D w0.v/�w.v0/:

For the action of matrices in Sp.2g;R/, we regard .v; w/ as a column vector of
length 2g with entries in R. The skew-symmetric bilinear form induces an isomorphism
from UR to U �

R
sending u to hu; i. If RD F2 , we shall write U, V and W instead

of UF2
, VF2

and WF2
.

The Lie algebra sp.2g;R/ consists of matrices Y with entries in R, and satisfying

J Y CY tJ D 0:

Thus

Y D

�
a b
c �at

�
;

where b and c are symmetric. To say that b is symmetric is to say that as an element of

HomR.WR;VR/Š VR˝R VR

it is invariant under the transposition swapping the two tensor factors. Thus b is an
element of the divided square D2.VR/ (which may not be identified with the symmetric
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square S2.UR/ unless 2 happens to be invertible in R, which will not be the case
for us). Similarly, we have c 2D2.WR/ and

a 2 HomR.VR;VR/Š VR˝R WR:

Putting this together, we see that

Y 2D2.VR/˚D2.WR/˚ .VR˝R WR/ŠD2.UR/:

Thus, as a module for Sp.2g;R/, we have identified the Lie algebra sp.2g;R/ with the
divided square of the natural module. More abstractly, if u 2 UR then the symmetric
tensor u˝u is identified with the endomorphism sending x to hu;xiu. Polarising, this
identifies u˝u0Cu0˝u with the endomorphism of UR sending x to hu;xiu0Chu0;xiu.
We have therefore proved the following.

Theorem 5.1 For any commutative ring R, we have isomorphisms

sp.2g;R/ŠD2.UR/ŠRg.2gC1/:

The first isomorphism is an isomorphism of Sp.2g;R/–modules, while the second is
an isomorphism of R–modules.

We are interested in the group Sp.2g;Z=4/. This sits in a short exact sequence

1! sp.2g; 2/! Sp.2g;Z=4/! Sp.2g; 2/! 1:

The elementary abelian 2–subgroup is identified with sp.2g; 2/, the symplectic Lie
algebra over F2 , and consists of the matrices I C 2Y with Y 2 sp.2g; 2/. These have
the form �

I C 2a 2b
2c I � 2at

�
;

with b and c symmetric. We have a short exact sequence

0 // ƒ2.U / // D2.U / //

Š
��

U // 0

sp.2g; 2/

where ƒ2.U / is spanned by elements of the form u˝u0Cu0˝u. As a submodule
of sp.2g; 2/, this consists of the matrices where Diag.b/DDiag.c/D0. The quotient U
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corresponds to the diagonal entries in b and c. Thus the above short exact sequence
can be thought of as a short exact sequence of groups

1! �.2g; 2; 4/=�.2g; 4/! �.2g; 2/=�.2g; 4/! �.2g; 2/=�.2g; 2; 4/! 1:

More generally, we have short exact sequences

1! sp.2g; 2/! Sp.2g;Z=2nC1/! Sp.2g;Z=2n/! 1;

and

1! �.2g; 2n; 2nC1/=�.2g; 2nC1/! �.2g; 2n/=�.2g; 2nC1/

! �.2g; 2n/=�.2g; 2n; 2nC1/! 1:

Proposition 5.2 As modules over Sp.2g; 2/, for g > 1 and n > 1, we have

�.2g; 2n/=�.2g; 2n; 2nC1/Š U and �.2g; 2n; 2nC1/=�.2g; 2nC1/Šƒ2.U /:

Now the symplectic form on U gives us a map ƒ2.U /! F2 , sending u˝u0Cu0˝u

to hu;u0i. We write Y for the kernel of this map, and we write Z for D2.U /=Y , an
F2–vector space of dimension 2gC 1. Putting these together, we have the following
diagram of modules:

0

��

0

��

Y

��

Y

��

0 // ƒ2.U / //

��

D2.U /

��

// U // 0

0 // F2

��

// Z

��

// U // 0

0 0

We claim that the symplectic form on U lifts to a nondegenerate orthogonal form
on Z , invariant under Sp.2g; 2/. The quadratic form Z! F2 is given by

q.u˝u/D 0 and q.u˝u0Cu0˝u/D hu;u0i;
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and the associated symmetric bilinear form is

b.u˝u;u0˝u0/D hu;u0i;

b.u˝u0Cu0˝u;u00˝u00/D 0;

b.u˝u0Cu0˝u;u00˝u000Cu000˝u00/D 0:

A priori, these are a quadratic form and associated bilinear form on D2.U /. But they
clearly vanish identically on Y , and define a nondegenerate but singular quadratic form
and associated bilinear form on Z . These are invariant under Sp.2g; 2/, which is
therefore the orthogonal group on Z Š F2

2gC1 , displaying the isomorphism

Sp.2g; 2/Š O.2gC 1; 2/:

Remark 5.3 Translating back from D2.U / to sp.2g; 2/, the quadratic and bilinear
form are given as follows:

q

�
a b
c �at

�
D Tr.a/ChDiag.b/;Diag.c/i;

b

��
a b
c �at

�
;

�
a0 b0

c0 �a0t

��
D hDiag.b/;Diag.c0/iC hDiag.b0/;Diag.c/i:

Here, the pointy brackets denote the standard inner product on F2
g given by multiplying

corresponding coordinates and summing.

The normal subgroup K described in Section 2 is the inverse image of

Y 6 sp.2g; 2/6 Sp.2g;Z=4/

under the quotient map Sp.2g;Z/! Sp.2g;Z=4/. Thus there is a short exact sequence

1!Z! H! Sp.2g; 2/! 1

and the subgroup Z Š .Z=2/2gC1 may be viewed as the orthogonal module F2
2gC1

for Sp.2g; 2/ via conjugation.

Remark 5.4 The submodule structure of the F2Sp.2g; 2/–modules ƒ2.U / of dimen-
sion g.2g � 1/ and D2.U / Š sp.2g; 2/ of dimension g.2gC 1/ can be described
explicitly as follows (see also Hiss [20]). There is a map ƒ2.U /! F2 corresponding
to the symplectic form, given by

u˝u0Cu0˝u 7! hu;u0i:
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There is a dual map F2!ƒ2.U / coming from the fact that the representation ƒ2.U /

is self-dual. In terms of the natural bases v1; : : : ; vg of V and w1; : : : ; wg of W , this
is given by

1 7!
X

i

.vi ˝wi Cwi ˝ vi/:

If gD 1 then ƒ2.U /Š F2 is one-dimensional, Y D 0, and Z DD2.U / decomposes
as a direct sum F2˚U.

If g > 2 is even then the composite F2!ƒ2.U /! F2 is zero, and the quotient of the
kernel by the image is a simple module S of dimension g.2g� 1/� 2. Thus ƒ2.U /

is uniserial (ie it has a unique composition series) with composition factors F2 , S , F2 .

If g > 3 is odd, then the composite is nonzero, and ƒ2.U / decomposes as a direct
sum of a trivial module F2 and a simple module S of dimension g.2g� 1/� 1.

In both cases with g > 2, the unique maximal submodule of D2.U / is ƒ2.U /. We
can therefore draw diagrams for the structure of D2.U /Š sp.2g; 2/ as follows:

g D 1: F2˚U g > 2 even:

U

F2

S

F2

g > 3 odd:
U

F2 S

For g > 2, the quotient Z of D2.U / has structure

U

F2

and this is the orthogonal module for Sp.2g; 2/ Š O.2gC 1; 2/. The submodule Y

is S for g > 3 odd, it is a nonsplit extension

0! F2! Y ! S ! 0

for g > 2 even, and Y D 0 for g D 1.

Lemma 5.5 (i) H0.Sp.2g; 2/;Y /D 0 and H0.Sp.2g; 2/;U /D 0 for g > 1.

(ii) H0.Sp.2g; 2/;Z/D 0 and H0.Sp.2g; 2/; sp.2g; 2//D 0 for g > 2.
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Proof This follows immediately from the structure of Y , U, Z , and sp.2g; 2/ as
Sp.2g; 2/–modules given in the above remark, since these modules admit no nontrivial
homomorphisms to F2 with trivial action.

6 Computations in degree two homology and cohomology

Lemma 6.1 (i) H2.Sp.2g; 2//D 0 for g > 4 and H2.Sp.6; 2//Š Z=2.

(ii) H 2.Sp.2g; 2/;Z=2/D 0 for g > 4 and H 2.Sp.6; 2/;Z=2/Š Z=2.

Proof (i) This is computed in the paper of Steinberg [40].

(ii) This follows from the universal coefficient theorem, because Sp.2g; 2/ is perfect
for g > 3.

Lemma 6.2 H0

�
Sp.2g;Z=2n/;H1.�.2g; 2n//

�
D 0 for n > 1 and g > 2.

Proof Proposition 10.1 of Sato [35] computes H1.�.2g;N //, the abelianisation
of �.2g;N /, finding that the derived subgroup is �.2g;N 2/ if N is odd, and
�.2g;N 2; 2N 2/ if N is even.

Taking N D 2n , this gives

H1.�.2g; 2n//Š �.2g; 2n/=�.2g; 22n; 22nC1/:

As modules over Sp.2g;Z=2n/ we have

�.2g; 2n/=�.2g; 22n/Š sp.2g;Z=2n/ and �.2g; 22n/=�.2g; 22n; 22nC1/Š U

(see Section 5). This gives us a short exact sequence

(6:3) 0! U !H1.�.2g; 2n//! sp.2g;Z=2n/! 0:

We also have short exact sequences

0! sp.2g; 2/! sp.2g;Z=2n/! sp.2g;Z=2n�1/! 0:

By Lemma 5.5(ii), for g > 2, we have

H0.Sp.2g;Z=2n/; sp.2g; 2//ŠH0.Sp.2g; 2/; sp.2g; 2//D 0;

and so by induction on n and right exactness of H0 , we have

H0.Sp.2g;Z=2n/; sp.2g;Z=2n//D 0:

Algebraic & Geometric Topology, Volume 18 (2018)



4084 Dave Benson, Caterina Campagnolo, Andrew Ranicki and Carmen Rovi

Finally, by Lemma 5.5(i) we have

H0.Sp.2g;Z=2n/;U /ŠH0.Sp.2g; 2/;U /D 0:

Therefore, using right exactness of H0 on the sequence (6.3), the lemma is proved.

Proposition 6.4 For n > 1 and g > 2,

(i) the map H2.Sp.2g;Z//!H2.Sp.2g;Z=2n// is surjective, and

(ii) the map H2.Sp.2g;Z=2nC1//!H2.Sp.2g;Z=2n// is surjective.

Proof (i) The short exact sequence

1! �.2g; 2n/! Sp.2g;Z/! Sp.2g;Z=2n/! 1

gives rise to a five-term sequence in homology

H2.Sp.2g;Z//!H2.Sp.2g;Z=2n//!H0

�
Sp.2g;Z=2n/;H1.�.2g; 2n//

�
!H1.Sp.2g;Z//!H1.Sp.2g;Z=2n//! 0:

The proposition therefore follows immediately from Lemma 6.2.

(ii) This is similar, observing that H1.�.2g; 2n/=�.2g; 2nC1//Š sp.2g; 2/, so that
by Lemma 5.5(ii) we have

H0

�
Sp.2g;Z=2n/;H1.�.2g; 2n/=�.2g; 2nC1//

�
D 0:

Corollary 6.5 For n > 1 and g > 3, the map

H 2.Sp.2g;Z=2n/;A/!H 2.Sp.2g;Z/;A/

is injective for any abelian group of coefficients A with trivial action.

Proof This follows directly from Proposition 6.4 together with the universal coeffi-
cient theorem for cohomology, as the groups Sp.2g;Z/ and Sp.2g;Z=2n/ are perfect
for g > 3.

Proposition 6.6 For g > 2, the maps H2.Sp.2g;Z=4//!H2.H/!H2.Sp.2g; 2//

are surjective.
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Proof For the first map, we use the five-term sequence for the short exact sequence

1! Y ! Sp.2g;Z=4/! H! 1;

and the computation

H0.H;H1.Y //DH0.Sp.2g; 2/;Y /D 0

given in Lemma 5.5. Note that Y is an elementary abelian 2–group, so H1.Y /Š Y .

The computation for the second map is similar, using the short exact sequence

1!Z! H! Sp.2g; 2/! 1

and the computation H0.Sp.2g; 2/;Z/D 0 given in Lemma 5.5.

Corollary 6.7 For g > 3, the inflation map H 2.H;A/ ! H 2.Sp.2g;Z=4/;A/ is
injective for any abelian group of coefficients A with trivial action.

Proof This follows directly from Proposition 6.6 and the universal coefficient theorem
for cohomology, as the groups Sp.2g;Z=4/ are perfect for g > 3, hence all their
quotients are perfect as well.

Proposition 6.8 For g > 4, the group H D Sp.2g;Z/=K Š Sp.2g;Z=4/=Y is iso-
morphic to the quotient H 0 of the group H0 of Griess (described in Section 3) by its
central subgroup of order two.

Proof Examine the extension

(6:9) 1! �.2g; 2/=�.2g; 2; 4/! Sp.2g;Z=4/=�.2g; 2; 4/! Sp.2g; 2/! 1:

This is nonsplit, since the element of order two in Sp.2g; 2/ which swaps the first basis
vectors of L and L� and fixes the remaining basis vectors does not lift to an element
of order two in Sp.2g;Z=4/=�.2g; 2; 4/.

Let E be the almost extraspecial group O2.H0/ of shape 21C.2gC1/ . The action
of Sp.2g; 2/ on �.2g; 2/=�.2g; 2; 4/ Š U is the same as the action of Out.E/0

on Inn.E/ (see (3.2)), namely the natural symplectic module. It follows from the main
theorem of Dempwolff [7] that

H 2
�
Sp.2g; 2/; �.2g; 2/=�.2g; 2; 4/

�
is one-dimensional. Thus Sp.2g;Z=4/=�.2g; 2; 4/ is isomorphic to the group Aut.E/0.
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Since �.2g; 4/� K� �.2g; 2; 4/ it follows that the short exact sequence

1!Z! H! Sp.2g; 2/! 1

also does not split. We have �.2g; 2; 4/=KŠ Z=2, and since g > 4, by Lemma 6.1
we have H 2.Sp.2g; 2/;Z=2/D 0. So H 2

�
Sp.2g; 2/; �.2g; 2; 4/=Y

�
D 0, and hence

H 2.Sp.2g; 2/;Z/ is at most one-dimensional. Since we have a nonsplit extension (6.9),
it is exactly one-dimensional. The modules E=ŒE;E� and Z for Sp.2g; 2/ are both
isomorphic to the natural orthogonal module of dimension 2gC1, so it follows that H
is isomorphic to H 0 .

Remark 6.10 In the case g D 3, Proposition 6.8 is still true, but needs a bit more
work. The group H 2.Sp.6; 2/;Z=2/ is one-dimensional by Lemma 6.1, and we are
left with the nasty possibility that HD Sp.6;Z=4/=Y is isomorphic to a quotient of the
pullback of H 0! Sp.6; 2/ and BSp.6; 2/! Sp.6; 2/ by the diagonal central element of
order two. In order to prove that H is really isomorphic to H 0 and not this other group,
it suffices to construct a matrix representation of a double cover of H of dimension 8.
Explicit matrices for this representation were given in Section 3. On the other hand, the
smallest faithful irreducible complex representation in the case of the other possibility
has dimension 64. It is worth noticing, though, that it does not matter which possibility
is true, if we just wish to prove the next theorem.

Lemma 6.11 H2.Sp.2g;Z//ŠZ for g >4 and H2.Sp.2g;Z//DZ˚Z=2 for gD3.

Proof See for example Stein [39, Theorem 2.2] for gD 3, and Behr [1, Korollar 3.2],
together with Stein [38, Theorem 5.3 and Remark 5 following Corollary 5.5], for g > 4.
See also Putman [29, Theorem 5.1] for a different proof in the case g > 4.

Theorem 6.12 For g > 3, we have H1.H/D 0. For g > 4, we have H2.H/Š Z=2,
and for g D 3, we have H2.H/Š Z=2˚Z=2. The map

H2.Sp.2g;Z=2n//!H2.H/

is an isomorphism for n > 2.

Proof The computation of the abelianisation H1.H/ is straightforward. It follows
from Propositions 6.4 and 6.6 that for n > 2 the maps

(6:13) H2.Sp.2g;Z//!H2.Sp.2g;Z=2n//

!H2.Sp.2g;Z=4//!H2.H/!H2.Sp.2g; 2//
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are surjective, and from Deligne’s theorem (see the introduction) that the kernel of the
first map contains every element divisible by two. Consulting Lemma 6.11, we see that
H2.Sp.2g;Z=2n// and H2.H/ are quotients of the groups given.

By Proposition 6.8, there is a nontrivial element of H2.H;Z=2/ which is killed by
the map to H2.Sp.2g; 2//. Namely, the central extension zH ! H is not inflated
from Sp.2g; 2/ because the kernel of zH! Sp.2g; 2/ is the nonabelian group E .

Comparing the value of H2.Sp.2g;Z// given in Lemma 6.11 with the value of
H2.Sp.2g; 2// given in Lemma 6.1, the theorem follows.

Corollary 6.14 We have H 2.H;Z=2/Š Z=2. For g > 3 and n > 2, the map

H 2.H;A/!H 2.Sp.2g;Z=2n/;A/

is an isomorphism for any abelian group of coefficients A with trivial action.

Proof This follows from Theorem 6.12 and the universal coefficient theorem.

Appendix Summary of homology and cohomology groups

Values of the homology and cohomology groups are summarized in Tables 1 and 2.

Group H1.�/ H2.�/ H 2.�;Z/ H 2.�;Z=8/ H 2.�;Z=2/

�g 0 Z Z Z=8 Z=2

Sp.2g;Z/ 0 Z Z Z=8 Z=2

PSp.2g;Z/ 0

�
Z˚Z=2
Z

Z

�
Z=8˚Z=2
Z=8

�
Z=2˚Z=2
Z=2

Sp.2g;Z=4/ 0 Z=2 0 Z=2 Z=2

PSp.2g;Z=4/ 0

�
Z=2˚Z=2
Z=4

0

�
Z=2˚Z=2
Z=4

�
Z=2˚Z=2
Z=2

H 0 Z=2 0 Z=2 Z=2

Sp.2g; 2/ 0 0 0 0 0

Table 1: Values for g � 4 . The group H is Sp.2g;Z=4/=Y . When the value
is expressed in cases, the first case is for g even and the second for g odd.
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Group H1.�/ H2.�/ H 2.�;Z/ H 2.�;Z=8/ H 2.�;Z=2/

�3 0 Z˚Z=2 Z Z=8˚Z=2 Z=2˚Z=2

Sp.6;Z/ 0 Z˚Z=2 Z Z=8˚Z=2 Z=2˚Z=2

PSp.6;Z/ 0 Z˚Z=2 Z Z=8˚Z=2 Z=2

Sp.6;Z=4/ 0 Z=2˚Z=2 0 Z=2˚Z=2 Z=2˚Z=2

PSp.6;Z=4/ 0 Z=4˚Z=2 0 Z=4˚Z=2 Z=2˚Z=2

HD Sp.6;Z=4/=Y 0 Z=2˚Z=2 0 Z=2˚Z=2 Z=2˚Z=2

Sp.6; 2/ 0 Z=2 0 Z=2 Z=2

�2 Z=10 Z=2 Z=10 .Z=2/2 .Z=2/2

Sp.4;Z/ Z=2 Z˚Z=2 Z˚Z=2 Z=8˚ .Z=2/2 .Z=2/3

PSp.4;Z/ Z=2 Z˚ .Z=2/2 Z˚Z=2 Z=8˚ .Z=2/3 .Z=2/4

Sp.4;Z=4/ Z=2 .Z=2/2 Z=2 .Z=2/3 .Z=2/3

PSp.4;Z=4/ Z=2 .Z=2/3 Z=2 .Z=2/4 .Z=2/4

HD Sp.4;Z=4/=Y Z=2 .Z=2/2 Z=2 .Z=2/3 .Z=2/3

Sp.4; 2/ Z=2 Z=2 Z=2 .Z=2/2 .Z=2/2

�1 Z=12 0 Z=12 Z=4 Z=2

Sp.2;Z/ Z=12 0 Z=12 Z=4 Z=2

PSp.2;Z/ Z=6 0 Z=6 Z=2 Z=2

Sp.2;Z=4/ Z=4 Z=2 Z=4 Z=4˚Z=2 .Z=2/2

PSp.2;Z=4/ Z=2 Z=2 Z=2 .Z=2/2 .Z=2/2

HD Sp.2;Z=4/=Y Z=4 Z=2 Z=4 Z=4˚Z=2 .Z=2/2

Sp.2; 2/ Z=2 0 Z=2 Z=2 Z=2

Table 2: Values for 1 6 g 6 3
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