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On periodic groups of homeomorphisms
of the 2–dimensional sphere

JONATHAN CONEJEROS

We prove that every finitely generated group of homeomorphisms of the 2–dimensional
sphere all of whose elements have a finite order which is a power of 2 and is such that
there exists a uniform bound for the orders of the group elements is finite. We prove a
similar result for groups of area-preserving homeomorphisms without the hypothesis
that the orders of group elements are powers of 2 provided there is an element of even
order.
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1 Introduction

Despite some remaining open questions, there is a very complete understanding of
group actions on 1–manifolds (see Ghys [3] and Navas [13]). However, when passing
to the 2–dimensional setting, many natural and fundamental questions remain unsolved.
One of the most striking ones is related to the Burnside problem.

Recall that Burnside (see [1]) proved that every finitely generated linear group all
of whose elements have finite order and such that there exists a uniform bound for
the orders of the group elements is actually finite. This result has been extended to
some other contexts, but fails in general, as is shown by classical examples due to
Golod (see [4]). Later, Ol’shanskii (see [14]), Ivanov (see [8]), and Lysenok (see [12])
exhibited many other examples of infinite, finitely generated groups all of whose
elements have a finite order which is bounded by a uniform constant. The case of
groups of homeomorphisms is particularly interesting. The following question seems to
be folklore: Does there exist an infinite, finitely generated group of homeomorphisms
of the 2–dimensional sphere all of whose elements have finite order? Some progress on
this question has been made by Guelman and Liousse [5; 6] (provided there is a finite
orbit for the action and — in some cases — that all maps involved are of class C 1 ),
and Hurtado [7] (provided the action is by C1 volume-preserving diffeomorphisms
and there is a uniform bound for the orders of the group elements). The main result
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of this paper yields a new positive result for actions by homeomorphisms under some
hypothesis on the orders of group elements. For short, in what follows, we will call
periodic a group in which all elements have finite order, we will say that such a group
is a 2–group if the orders of group elements are powers of 2. Also, we will say that
a periodic group has uniformly bounded order if there exists a uniform bound for the
orders of its group elements. Our main result is the following:

Theorem A Let G be a finitely generated 2–group of homeomorphisms of the 2–
dimensional sphere. Suppose that G has uniformly bounded order. Then G is finite.

We note that the composition of two orientation-reversing homeomorphisms preserves
orientation. We deduce that the subgroup of orientation-preserving homeomorphisms
has at most index 2 in the group G above. Moreover, Schreier’s lemma states that
any finite-index subgroup in a finitely generated group is finitely generated. Hence, in
order to prove Theorem A, it is enough to show that a finitely generated 2–group of
orientation-preserving homeomorphisms of the 2–dimensional sphere is finite provided
there is a uniform bound for the orders of the group elements. As a first step to proving
this, we will show the next result, which is interesting by itself.

Theorem B Let G be a finitely generated 2–group of orientation-preserving homeo-
morphisms of the 2–dimensional sphere. Suppose that G acts with a global fixed point.
Then G is finite and cyclic.

The second step in the proof is the following:

Theorem C Let G be a finitely generated 2–group of orientation-preserving homeo-
morphisms of the 2–dimensional sphere. Suppose that G has a finite orbit. Then G is
finite. Moreover, if G has a finite orbit of cardinality 2, then it is either a cyclic or a
dihedral group.

As a by product of our methods, we obtain the following result for groups of area-
preserving homeomorphisms:

Theorem D Let G be a finitely generated periodic group of area-preserving homeo-
morphisms of the 2–dimensional sphere. Suppose that G has uniformly bounded order
and contains an element of even order. Then G is finite.

As above, in order to prove Theorem D, it is enough to show an analog of Theorem C
in this setting.
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Theorem E Let G be a finitely generated periodic group of area-preserving homeo-
morphisms of the 2–dimensional sphere. Suppose that G has a finite orbit. Then G is
finite. Moreover, if G has a finite orbit of cardinality 2, then it is either a cyclic or a
dihedral group.
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morfismos de superficies”. I thank A Navas for several useful discussions, suggestions
and corrections.

2 Preliminary results

2.1 Local rotation set

In this section, we introduce the notion of local rotation introduced by F Le Roux
(see [11]). Since local dynamics (more precisely, the dynamics around a fixed point)
does not fit into a compact framework, we consider only rotation numbers of “good
orbits”. This means that, in order to get a definition of a rotation set which is invariant
under conjugacy, we consider only recurrent points close to the fixed point.

Let h be a homeomorphism of the plane R2 that preserves the orientation and fixes the
vector 0 WD .0; 0/ 2R2 . We will denote by zADR� .0;C1/ the universal covering
of R2 n f0g. Let z� W zA!R2 n f0g be the corresponding universal covering map and
p1W R� .0;C1/!R the projection on the first coordinate. Let zh be a lift of h to zA.
We say that the rotation number (around 0) of a h–recurrent point x 2R2nf0g under zh
is well defined and equal to �0.zh;x/ 2R[f�1g[ fC1g if for every sequence of
integers .nk/k2N which goes to C1 such that .hnk .x//k2N converges to x , the
sequence .�nk

.zh;x//k2N , defined as

�nk
.zh;x/ WD

1

nk
.p1.zh

nk .zx//�p1.zx//;

where zx is a point in z��1.x/, converges to �0.zh;x/. Notice that this definition does
not depend on the choice of zx 2 z��1.x/.

The local rotation set (around the fixed point 0) of zh, which we denote by �0.zh/, is
the set of all rotation numbers of recurrent points of h.

We have the following properties (see [11] for more details):
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(1) The rotation numbers of a recurrent point and, consequently, the local rotation
set, are invariant under (local) oriented topological conjugacy. More precisely, if
' is a homeomorphism of R2 that preserves the orientation and fixes 0 2 R2

and z' is a lift of ' to zA, then

�0.z'
�1zhz'/D �0.zh/:

(2) For every p; q 2 Z, we have �0.zh
qC .p; 0//D q�0.zh/Cp . A similar formula

holds for the rotation number of a recurrent point.

2.2 Periodic, orientation-preserving homeomorphisms of the
2–dimensional sphere

We say that an orientation-preserving homeomorphism g of the 2–dimensional sphere
is periodic if its order is finite, that is, if there exists an integer q such that gq D Id. We
recall that Keréjártó proved that every periodic, orientation-preserving homeomorphism
of the 2–dimensional sphere is conjugate to a rotation (see [9; 2]). Formally, we have
the following proposition:

Proposition 2.1 Let g be a periodic, orientation-preserving homeomorphism of the
2–dimensional sphere. Then there exist an orientation-preserving homeomorphism h

of the 2–dimensional sphere which has the same fixed points as g and a rotation R

such that hgh�1 D R. In particular, if g is nontrivial, then it has exactly two fixed
points, and every point that is not fixed is periodic. Additionally, the periods of all
nonfixed, periodic points are the same.

2.3 Local rotation set for periodic homeomorphisms

In our setting, let g be a periodic homeomorphism that preserves the orientation of S2

and fixes a point z 2S2 . Considering a chart � centered at z , we have that hD �g��1

is a periodic homeomorphism of the plane R2 that preserves the orientation and fixes
the vector �.z/D 0 2R2 . Let zh be a lift of h to zA the universal covering of R2 nf0g,
which, as before, we identify with R� .0;C1/. Suppose that h has order q , that is,
q is the smallest positive integer such that hq D Id. We write ord.h/D q .

Then there exists an integer p such that, for every zx 2 zA,

zhq.zx/D zxC .p; 0/:
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It is not hard to prove that p and q are coprime. Also, every point is recurrent
for h and has a rotation number around 0 equal to p=q . Because of the invariance
under conjugacy by �0.zh/ (property (1) above), this number does not depend on the
choice of the chart � . Hence, by property (2) above, we can associate to our periodic
homeomorphism g a unique “local rotation number” around z , defined as

�loc;z.g/D
p

q
.mod 1/ 2 T1:

Remark 1 Clearly, if �loc;z.g/D 0, then g is the identity.

Given z 2 S2 , we will denote by HomeoC.S2I z/ the group of all homeomorphisms
of S2 that preserve the orientation and fix z . By the discussion above, the “local
rotation number map” is well defined for a periodic subgroup of HomeoC.S2I z/. We
have the following properties:

Lemma 2.2 Let g be an element of HomeoC.S2I z/.

(1) The local rotation set around z is invariant under (local) oriented topological
conjugacy. More precisely, if ' belongs to HomeoC.S2I z/, then

�loc;z.'
�1g'/D �loc;z.g/:

(2) For every q 2 Z, we have �loc;z.g
q/D q�loc;z.g/.

The first nontrivial observation concerning the local rotation set is the following:

Proposition 2.3 Let G0 be a periodic subgroup of HomeoC.S2I z/. The local rota-
tion number map defined on G0 is a group homomorphism into T1 if and only if G0

is abelian.

Proof Let f and g be two elements in G0 . We recall that Œf;g� WD fgf �1g�1

denotes the commutator of f and g . If �loc;z is a group homomorphism, then
�loc;z.Œf;g�/ is null, which implies that Œf;g� D Id (see Remark 1). As f and g

are arbitrary, G0 is abelian.

Conversely, assume that G0 is abelian, and let f and g be two elements in G0 .
Consider a chart � centered at z , and let h1 WD �f ��1 and h2 WD �g��1 be the
conjugate homeomorphisms. Both h1 and h2 are periodic homeomorphisms of the
plane R2 that preserve the orientation and fix the vector �.z/ D 0 2 R2 . Since
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h1 and h2 commute, we can consider commuting lifts zh1 and zh2 of h1 and h2 ,
respectively. Suppose that �0.zh1/ D p0=q0 and �0.zh2/ D p=q . Then, for every zx
and zx0 in zA, we have

zh
q
2
.zx/D zxC .p; 0/ and zh

q0

1
.zx0/D zx0C .p0; 0/:

Thus,

.zh1
zh2/

q0q.zx/D zh
q0q
1
.zh

q0q
2
.zx//D zh

q0q
2
.zx/C .qp0; 0/D zxC .q0p; 0/C .qp0; 0/:

Therefore,

�loc;z.fg/D
q0pC qp0

q0q
D

p

q
C

p0

q0
D �loc;z.f /C �loc;z.g/:

This shows that �loc;z is a group homomorphism.

2.4 Consequences for abelian, periodic subgroups of
orientation-preserving homeomorphisms of S2 that fix a point

From Proposition 2.3, we know that the “local rotation number map” is an injec-
tive group homomorphism for abelian, periodic subgroups of HomeoC.S2I z/ (see
Remark 1). So �loc;z gives an isomorphism with its image, a periodic subgroup of R=Z.

We deduce the following results:

Lemma 2.4 Let A be an abelian, periodic subgroup of HomeoC.S2I z/. Let a

and b be two elements of A with ord.a/ D ord.b/. Then there exists an integer
i 2 f1; : : : ; ord.a/�1g such that bD ai . In particular, there exists at most one element
of order 2 in A.

Lemma 2.5 If A is a finite, abelian subgroup of HomeoC.S2I z/, then A is cyclic.

3 Burnside problem for 2–groups of homeomorphisms of S2:
particular cases

In order to prove Theorem A, it is enough to prove that every finitely generated 2–
group G of orientation-preserving homeomorphisms of the 2–dimensional sphere is
finite. This is the purpose of the following two subsections. Our proof consists in first
considering the case where G has a global fixed point and later the case where G has
a finite orbit. Finally, we settle the general case, and for this we prove that the group G

contains only a finite number of involutions.
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3.1 The case where the group has a global fixed point

In this section we will prove Theorem B, that is, every finitely generated 2–group
of orientation-preserving homeomorphisms of the 2–dimensional sphere that has a
global fixed point is finite and cyclic. The idea of the proof is as follows: Notice that a
(nontrivial) 2–group G0 always contains involutions, that is, elements of order 2. The
key step consists in proving that, in our case, there is a unique involution in G0 . This
implies that such an involution must belong to the center of G0 , that is, it commutes
with each element of G0 . Since we are assuming that G0 is a 2–group, we can deduce
that G0 is abelian using the following property (see Proposition 3.6 below): if f
and g2 in G0 commute, then f and g commute. Finally, using that G0 is finitely
generated, we can conclude that G0 is finite, and hence cyclic by Lemma 2.5.

We start with a lemma that follows from classical properties of the local rotation set
around a fixed point (Lemma 2.2).

Lemma 3.1 Let g be a finite-order element in HomeoC.S2I z/. Suppose that g is
conjugate (by an element in HomeoC.S2I z/) to its inverse. Then g2 D Id.

Proof By hypothesis, there exists ' 2 HomeoC.S2I z/ such that '�1g' D g�1 . By
Lemma 2.2,

�loc;z.g/D �loc;z.g
�1/D��loc;z.g/:

This implies that 0D 2�loc;z.g/D �loc;z.g
2/. Since g has finite order, it must satisfy

g2 D Id.

Proposition 3.2 Let G0 be a periodic subgroup of HomeoC.S2I z/. Let � and � 0

be two elements of order 2 in G0 . Then � and � 0 commute.

Proof We know that, in any group, �� 0 is conjugate (by � ) to � 0� . Indeed,

� 0� D .��1�/� 0� D ��1.�� 0/�:

Since � and � 0 have order 2, we have that .�� 0/�1 D � 0� . By Lemma 3.1, it follows
that �� 0 has order 2. Since � , � 0, and �� 0 have order 2, we deduce (using an argument
due to Burnside) that

IdD .�� 0/2 D �� 0�� 0 D �� 0��1� 0�1
WD Œ�; � 0�:

This implies that � and � 0 commute.
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We deduce the following properties:

Proposition 3.3 Let G0 be a periodic subgroup of HomeoC.S2I z/. Then G0 has at
most one element of order 2.

Proof Suppose that � and � 0 are two elements of order 2 in G0 . By the previous
proposition, the group generated by � and � 0 is an abelian, periodic subgroup of
HomeoC.S2I z/. By Lemma 2.4, we deduce that � D � 0.

Corollary 3.4 Let G0 be a periodic subgroup of HomeoC.S2I z/. If � 2 G0 has
order 2, then � belongs to the center of G0 .

Proof Let g be an element of G0 . Since g�g�1 has order 2, by Proposition 3.3 we
deduce that g�g�1 D � . This implies that g and � commute.

Lemma 3.5 Let G0 be a periodic subgroup of HomeoC.S2I z/. Let f and g

be two elements in G0 . Suppose that f and g2 commute. Then, for every i 2

f0; : : : ; ord.f / � 1g, the element Œf i ;g�, the commutator of f i and g , satisfies
Œf i ;g�2 D Id. Moreover, Œg; f i �2 D Id.

Proof Since f and g2 commute, we have that f i and g2 commute, that is, f ig2D

g2f i . Hence,
g�1f �i

D gf �ig�2:

Consequently,

Œg; f i �D gf ig�1f �i
D gf i.gf �ig�2/D g.f igf �ig�1/g�1

D gŒf i ;g�g�1:

Since Œf i ;g��1D Œg; f i �, it follows from Lemma 3.1 that Œf i ;g�2D Id. Finally, notice
that Œg; f i �D Œf i ;g��1 . Hence, we deduce that Œg; f i �2 D Id.

Proposition 3.6 Let G0 be a periodic subgroup of HomeoC.S2I z/. Let f and g

be two elements in G0 . If f and g2 commute, then f and g commute.

Proof By the previous lemma, we have that Œf;g�2 D Id and so gŒf;g�2 D g , that is,

g D g.fgf �1g�1/.fgf �1g�1/

D .gf /.gf �1g�1f /g.f �1g�1/

D .gf /Œg; f �1�g.gf /�1:
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Applying the local rotation map and using its invariance under (local) topological
conjugacy, we obtain

�loc;z.Œg; f
�1�g/D �loc;z.g/:

Since Œg; f �1� commutes with g (Corollary 3.4), the local rotation map restricted to
the group generated by Œg; f �1� and g is a group homomorphism (Proposition 2.3).
Thus,

�loc;z.Œg; f
�1�/C �loc;z.g/D �loc;z.Œg; f

�1�g/D �loc;z.g/:

Therefore, �loc;z.Œg; f
�1�/D 0, and so Œg; f �1�D Id. This contradiction proves that

f and g commute.

End of the proof of Theorem B Let G0 be a finitely generated 2–group contained in
HomeoC.S2I z/. Let f and g be two elements in G0 . Since G0 is a 2–group, g has
order 2pC1 for a certain integer p � 0, and then g2p

has order 2. It follows from
Corollary 3.4 that g2p

and f commute. Applying the previous proposition, we obtain
that g2p�1

and f commute. Iterating this argument, we get that f and g commute.
Therefore, G0 is an abelian, finitely generated group, and so it is finite. Finally, we
deduce from Lemma 2.5 that G0 is cyclic.

3.2 The case where the group has a finite orbit

In this section, we prove Theorem C, that is, every finitely generated 2–group G of
orientation-preserving homeomorphisms of the 2–dimensional sphere which has a
finite orbit is finite. Moreover, if G has a finite orbit of cardinality 2, then it is either a
cyclic or a dihedral group.

Proof of Theorem C Let z0 be a point with finite G–orbit. We write OG.z0/ D

fz0; z1; : : : ; zng, where, for every i 2 f0; : : : ; ng, zi D gi.z0/ for some gi 2 G. We
denote by StaG.z0/, the stabilizer in G of z0 , that is, the set

StaG.z0/ WD fg 2G W g.z0/D z0g:

We first have, by Theorem B, that StaG.z0/ is a finite cyclic group. Finally, we conclude
that G is finite, by proving that G D

Sn
iD0 gi.StaG.z0//. Indeed, if g 2 G, since

g.z0/2OG.z0/ there exists an integer i 2 f0; : : : ; ng such that g.z0/Dgi.z0/. Hence,
g�1

i g 2 StaG.z0/ and then g 2 gi.StaG.z0//. This proves that G is finite. Now
suppose that G has a finite orbit of cardinality 2. We will prove, in this case, G is
either a cyclic or a dihedral finite group. Let z be a point with G –orbit of cardinality 2.
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We write OG.z/D fz; z
0g. We will consider the subgroup G0 of homeomorphisms

that fix both z and z0.

Lemma 3.7 The group G0 is an index-2, normal subgroup of G. In particular, G0 is
a finitely generated 2–group contained in HomeoC.S2I z/.

Proof It is easy to check that G0 is normal in G. Moreover, notice that if � and � 0

are in G nG0 , then �� 0 is in G0 . Hence, G0 has index 2 in G. Moreover, Schreier’s
lemma states that any finite-index subgroup in a finitely generated group is finitely
generated. Hence, as G is a finitely generated 2–group, we deduce that G0 is a finitely
generated 2–group contained in HomeoC.S2I z/.

Lemma 3.8 Every g 2G nG0 has order 2.

Proof If g 2 G nG0 , then g.z/ D z0 and g.z0/ D z . We deduce that g2.z/ D z .
As the local rotation number of g is a singleton, we deduce that g has order 2 (see
Proposition 2.1).

End of the proof of Theorem C By Theorem B, we know that G0 is a finite cyclic
group. If G DG0 , then G is finite and cyclic. Otherwise, let g0 in G be a generator
of G0 , and let g 2 G nG0 . Consider � the subgroup of G generated by g0 and g .
We claim that � DG. Indeed, if g0 is any element in G nG0 , then gg0 2G0 , hence
g0 2 � . Moreover, as gg0 and g do not belong to G0 , we have that gg0 and g have
order 2 (by the previous lemma). Hence, we have gg0gg0 D IdD g2 , which yields
gg0g�1 D g�1

0
. It follows that G is a dihedral group.

4 Burnside problem for 2–groups of homeomorphisms of the
2–dimensional sphere

In this section, we prove Theorem A, that is, every finitely generated 2–group G of
homeomorphisms of the 2–dimensional sphere for which there is a uniform bound
for the orders of the group elements is finite. Recall that a nontrivial 2–group always
contains involutions, that is, elements of order 2. Let Inv.G/ WD fg 2G n Id W g2D Idg,
and let Z.�/ be the centralizer of � in G, that is, Z.�/Dfg 2G W g� D �gg. In order
to prove Theorem A, we start by proving, using Theorem C, that, for every � 2 Inv.G/,
the set Z.�/\ Inv.G/ is finite (following the proof of Theorem A, this is the only part
where we use the existence of a uniform bound for the orders of the group elements).
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Then we will prove that the set Inv.G/ is finite. Since each g 2G n fIdg has exactly
two fixed points (by Proposition 2.1), we obtain that the union of fixed points of the
involutions is also finite. Moreover, this set is nonempty and G–invariant, and has
finite cardinality. We deduce that G is finite by Theorem C. For � 2G, let us denote
by Fix.�/ the set of all fixed points of � .

Proposition 4.1 Let G be a finitely generated 2–group of orientation-preserving
homeomorphisms of S2 . Suppose that G has uniformly bounded order. Then the
following assertions hold:

(1) If � 2 Inv.G/, then the set Z.�/\ Inv.G/ is finite.

(2) The set Inv.G/ is finite.

Proof Let us prove (1). Suppose that there is an infinite sequence �; �1; : : : ; �n; : : :

contained in Z.�/ \ Inv.G/. Fix an integer n � 1. The group Gn generated by
� , �1; : : : ; �n is finitely generated, periodic, and preserves the set of fixed points of �
(because each �i commutes with � ). Then, by Theorem C, the group Gn is finite and
either cyclic or dihedral. Moreover,

fIdg �G0 � � � � �Gn � � � :

Since we are assuming that elements in G have uniformly bounded order, this sequence
must stabilize at some integer n0 . That is, for every integer n� n0 , one has GnDGn0

.
This proves that Z.�/\ Inv.G/ is finite.

Let us prove (2). Suppose that there exists an infinite sequence of involutions �1 , �2 ,
: : : ; �n; : : : contained in G. For every integer n, the group generated by �1 and �n

is either cyclic or dihedral, because �1�n has finite order. Therefore, it contains
an involution �n that commutes with �1 and �n (�n D �1 in the cyclic case, and
�n D .�1�n/

ord.�1�n/=2 in the dihedral case). Since Z.�1/\ Inv.G/ is finite (by (1)),
we can suppose (by passing to a subsequence of .�n/n2N ) that �n D � for every
integer n. This implies that � commutes with all �n , and hence the sequence f�ngn2N

is contained in Z.�/\ Inv.G/. But this last set is finite by (1). This contradiction
proves that the set Inv.G/ is finite.

End of the proof of Theorem A Assume G is nontrivial. Applying Proposition 4.1,
we obtain that the set Inv.G/ is finite. Since each g 2G n fIdg has exactly two fixed
points (by Proposition 2.1), we obtain that the set

F WD
[

�2Inv.G/

Fix.�/
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is also finite. As Fix.g�g�1/D g.Fix.�// and g�g�1 is an involution, the set F is
nonempty and G–invariant, and has finite cardinality. We deduce that G is finite by
Theorem C.

5 Burnside problem for area-preserving homeomorphisms of
the 2–dimensional sphere

In this section, we prove Theorem D, that is, every finitely generated, periodic group
of area-preserving homeomorphisms of the 2–dimensional sphere having uniformly
bounded order and an element of even order — equivalently, of order two — is finite.
As in the case of a 2–group, we start by proving Theorem E (which is the analog of
Theorem C in the area-preserving setting). Then using Theorem E we deduce that
Proposition 4.1 holds in the area-preserving case (in the case where the set Inv.G/
is nonempty). We then finish the proof of Theorem D in the same way as that of
Theorem A. In order to prove Theorem E, we first introduce the rotation set for a
homeomorphism of the open annulus.

5.1 Rotation set for a homeomorphism of the open annulus

Let ADT1�R be the open annulus and zA WDR�R its universal covering. We denote
by z� W zA! A the corresponding universal covering map and p1W R �R! R the
projection on the first coordinate. By the two-point compactification, one can identify A

to the punctured sphere S2nfN;Sg, where N and S are two distinct points of S2 (the
north and south poles). The Lebesgue measure on S2 induces a probability measure
on A, which we still call the Lebesgue measure and denote by Leb.

Let h be a homeomorphism of A that is isotopic to the identity, and let zh be a lift
of h to zA. Following [10], we say that the rotation number of an h–recurrent point
x 2A under zh is well defined and equal to �.zh;x/ 2R[f�1g[fC1g if, for every
sequence of integers .nk/k2N which goes to C1 such that .hnk .x//k2N converges
to x , the sequence .�nk

.zh;x//k2N , defined as

�nk
.zh;x/ WD

1

nk
.p1.zh

nk .zx//�p1.zx//;

where zx is a point in z��1.x/, converges to �.zh;x/. Again, this definition does not
depend on the choice of zx 2 z��1.x/.

Assume that h preserves a probability measure � on A. We say that the rotation
number of zh (with respect to �) is well defined and equal to �.zh; �/ if
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(1) �–almost every point x 2A has a rotation number �.zh;x/, and

(2) the function x 7! �.zh;x/ is �–integrable, with

�.zh; �/ WD

Z
A
�.zh;x/ d�:

Notice that, by the Birkhoff ergodic theorem, we have

�.zh; �/ WD

Z
A
�1.zh;x/ d�;

where �1.zh;x/D p1.zh.zx//�p1.zx/, with zx 2 z��1.x/.

5.2 Rotation set for periodic homeomorphisms of S2

In our setting, let g be a periodic, orientation-preserving homeomorphism of S2

that preserves the Lebesgue measure. We know that if g is nontrivial, then it fixes
two distinct points N and S of S2 . As in the local case, we can associate to
our periodic homeomorphism g a unique “rotation number” on the open annulus
AN;S WD S2 n fN;Sg, defined as

�AN;S
.g/ WD

Z
AN;S

�1.g;x/ dLeb 2 T1:

Remark 2 If �AN;S
.g/D 0, then g is the identity.

Given two distinct points N and S of S2 , we will denote by Homeo0.AN;S / the
group of all homeomorphisms of S2 that preserve the orientation and fix both N and S.
As in the local case we have the following result:

Proposition 5.1 Let G0 be a periodic subgroup of Homeo0.AN;S /. The rotation
number map defined on G0 is a group homomorphism into T1 if and only if G0 is
abelian.

5.3 Proof of Theorems D and E

We start by proving Theorem E.

Proof of Theorem E Let G be a finitely generated periodic group of area-preserving
homeomorphisms of the 2–dimensional sphere. Let z be a point with G–orbit of
cardinality 2. We write OG.z/ D fz; z

0g. We consider the subgroup G0 of home-
omorphisms that fix both z and z0. By Lemma 3.7, the group G0 is an index-2,
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normal subgroup of G. In particular G0 is a finitely generated periodic group contained
in Homeo0.Az;z0/ all of whose elements preserve the Lebesgue measure. Since the
rotation number is a group homomorphism in the area-preserving case (see Lemma 5.2
below), we can invoke an analog of Proposition 5.1 to conclude that G0 is abelian.

Lemma 5.2 Let G0 be a subgroup of Homeo0.Az;z0/. Suppose each element of G0

preserves the Lebesgue measure. Then the rotation map is a group homomorphism.

Proof Let f and g be two elements of G0 . We have that

�Az;z0
.fg/D

Z
Az;z0

�1.fg;x/ dLeb.x/

D

Z
Az;z0

�1.f;g.x// dLeb.x/C
Z

Az;z0

�1.g;x/ dLeb.x/

D

Z
Az;z0

�1.f;y/ dLeb.y/C
Z

Az;z0

�1.g;x/ dLeb.x/

D �Az;z0
.f /C �Az;z0

.g/:

This shows that g 7! �Az;z0
.g/ is a group homomorphism.

Since G0 is finitely generated, periodic and abelian, we deduce that it is finite. Moreover,
by an analog of Lemma 2.5 (using the rotation number instead of the local rotation
set), we deduce that G0 is cyclic. The proof finishes as the proof of Theorem C.

Now we can prove Theorem D.

Proof of Theorem D The proof is a straightforward adaptation of the proof of
Theorem A. Let G be a finitely generated periodic group of orientation-preserving
homeomorphisms of S2 . Suppose that each element of G preserves the Lebesgue
measure, that G has at least one element of even order, and that G has uniformly
bounded order. Let Inv.G/ WD fg 2G n Id W g2 D Idg. Notice that G always contains
involutions. Indeed, if g2p D Id for some integer p , then gp 2 Inv.G/. Applying
Proposition 4.1 (using Theorem E instead of Theorem C), we obtain that the set Inv.G/
is finite. The proof follows as the proof of Theorem A.
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