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Spaces of orders of some one-relator groups

JUAN ALONSO

JOAQUÍN BRUM

We show that certain left-orderable groups admit no isolated left orders. The groups
we consider are cyclic amalgamations of a free group with a general left-orderable
group, the HNN extensions of free groups over cyclic subgroups, and a particular
class of one-relator groups. In order to prove the results about orders, we develop
perturbation techniques for actions of these groups on the line.

06F15, 20F60

1 Introduction

A group G is said to be left-orderable if it admits a total order invariant by left transla-
tions. Left-orderability of groups is a wide and active topic of research (see Ghys [8],
Clay and Rolfsen [5], Deroin, Navas and Rivas [7] and Kopytov and Medvedev [11]).
Within this theory, an important object of study is the space of left orders LO.G/
of a left-orderable group G. This is the set of left orders on G endowed with a
natural topology that makes it a Hausdorff, totally disconnected and compact space;
see Sikora [18]. For a countable group G, this implies that LO.G/ is a Cantor set
exactly when it contains no isolated orders. In addition to that, Linnell showed that this
space is either finite or uncountable [12], and Tararin classified the groups that have
finitely many left orders [11, Theorem 5.2.1]. In light of these results, one of the main
interesting problems concerning the topology of the space of left orders is to determine
which left-orderable groups admit isolated orders.

This problem turns out to be a complex one, as shown by the partial results that have
been obtained. For virtually solvable groups, Rivas and Tessera gave a complete
description of these spaces, showing that they are either finite or Cantor sets [17]. Free
products of left-orderable groups admit no isolated orders — see Rivas [16] — and
neither do cyclic amalgams of free groups; see Alonso, Brum and Rivas [1]. On the
other hand, Fn �Z admits isolated orders if and only if n is even; see Malicet, Mann,
Rivas and Triestino [13].
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Here we provide a generalization of the results about amalgams in [1].

Theorem 1.1 Let G D Fn �Z H be a left-orderable group with n � 2. Then G has
no isolated orders.

The orderability of G in Theorem 1.1 is equivalent to that of H since the amalgamating
subgroup is cyclic, as shown by Bludov and Glass [3]. The hypothesis that n� 2 is
necessary; for example, the torus knot groups ha; b j am D bki have isolated orders;
see Navas [15] and Ito [9].

The situation for general amalgamated products is more complex, even when the
amalgamating subgroups are cyclic. Ito [10] constructs a wide class of amalgamated
products of the form G �Z H that do have isolated orders. The groups G and H

considered in [10] both have isolated orders. Theorem 1.1 points in the other direction,
for amalgams G �Z H where one of the factors is a nonabelian free group.

The results and techniques used in [1] suggest the question:

Question 1.2 Can a one-relator group generated by three or more elements have an
isolated order?

We obtain some partial results in this direction. The next one can also be seen as
a generalization of Theorem 1.1 in [1], this time dealing with the case of an HNN
extension.

Theorem 1.3 Let G D ht;x1; : : : ;xn j tw1t�1 D w2i with n � 2 and nontrivial
w1; w2 2 hx1; : : : ;xni. Then G has no isolated orders.

One-relator groups are left-orderable unless they have torsion — see Brodskiı̆ [4] —
and they only have torsion when the relation is a proper power. Thus the groups in
Theorem 1.3 are left-orderable. Again, the result does not hold for nD 1. This can be
seen for the Klein bottle group ha; b j aba�1 D b�1i, which has finitely many orders;
see Deroin, Navas and Rivas [7].

Following Question 1.2, we consider one-relator groups with more complex rela-
tions. The techniques we developed seem well adjusted to the case where the re-
lation contains only positive powers of some given generator t . Namely, G D

ht;x1; : : : ;xn j tw1 � � � twk D 1i for n� 2 and wi 2 hx1; : : : ;xni. If k D 1 then G is
free, and for kD2 we can change the presentation to GDhs;x1; : : : ;xn js

2w�1
1
w2D1i,

which is an amalgam covered in Theorem 1.1. Our techniques allow us to obtain the
case k D 3, which turns out to be quite nontrivial.
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Theorem 1.4 Let G D ht;x1; : : : ;xn j tw1tw2tw3 D 1i with n � 2 and wi 2

hx1; : : : ;xni for i D 1; 2; 3. Assume that wi ¤ wj for some i and j . Then G has no
isolated orders.

Remark 1.5 If w1 D w2 D w3 then the group G in Theorem 1.4 has torsion and
therefore is not left-orderable.

The conclusion of Theorem 1.4 does not hold when n D 1, as Dehornoy shows in
[6, Proposition 8.1] that the groups ht;x j txptxptx�1i for p � 1 have isolated left
orders.

We would conjecture that the groups of the form G D ht;x1; : : : ;xn j tw1 � � � twk D 1i

with n � 2 do not have isolated orders in general. However, we meet technical
obstructions in our approach when k � 4.

The method for proving these theorems involve the close relationship between left
orders and actions on the line that has been introduced in [14]. A countable group G

is left-orderable if and only if it admits a faithful action by orientation-preserving
homeomorphisms of the line. Indeed, a left order on G induces an action on the line
via the construction called dynamical realization (see Section 2A). Furthermore, the
topology of LO.G/ is related to rigidity properties on the space of such actions. More
precisely, an isolated order induces an action that is structurally stable (also called
rigid); see [1] for the definition. In [1] it is shown that cyclic amalgams of free groups
have no rigid actions on the line, implying they have no isolated orders. Here we do not
deal with rigid actions in order to avoid more technicalities; instead we use a weaker
version of this principle, namely Proposition 2.2.

The proofs of our three theorems follow the same rough strategy. We start from the
dynamical realization of a given order and construct an arbitrarily small perturbation that
has nontrivial stabilizer on the orbit of 0, then we use Proposition 2.2 to conclude. The
groups in our theorems contain free subgroups, namely the factor Fn in Theorem 1.1,
and the subgroups generated by x1; : : : ;xn in Theorems 1.3 and 1.4 (see the Freiheitsatz
in Baumslag [2]), and the strategy in all cases is to perturb the action restricted to these
free subgroups in a way that can be extended to an action of the whole group. Our main
technical tool to achieve that is Lemma 3.3, that gives a way to perturb actions of free
groups creating nontrivial stabilizers, while controlling the behaviour of a particular
element and of finitely many partial orbits.
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We would like to remark on another application of our techniques, which we use as a
lemma but is also important on its own right. Let Rep.G;H / denote the set of group
representations of G in H. For each w 2 Fn , and any group H, we can define a word
map from Rep.Fn;H / to H that associates a representation � to �.w/ 2H. We study
the case when H DHomeoC.R/, the group of orientation-preserving homeomorphisms
of the real line.

Lemma 1.6 Let w 2 Fn , w ¤ 1 and g 2 HomeoC.R/. Then

Vw.g/D f� 2 Rep.Fn;HomeoC.R// W �.w/D gg

is nonempty.

This is to say that the word map for Rep.Fn;HomeoC.R// is surjective for any non-
trivial w 2 Fn .
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2 Preliminaries

2A Left orders and actions on the line

A left order on a group G is a total order < satisfying that if f;g; h 2G are such that
f < h, then gf < gh. If G admits a left order we say that G is left-orderable. The
reader unfamiliar with this notion may wish to consult [5; 7; 11]. The groups under
consideration in this paper are left-orderable, as we already mentioned in Section 1.

A natural topology can be defined on the set LO.G/ of all left orders on G, making it
a compact and totally disconnected space. A local base at a left order < is given by
the sets

Vg1;:::;gn
WD f<02 LO.G/ j 1<0 gig;

where fg1; : : : ;gng runs over all finite subsets of <–positive elements of G. In
particular, a left order < is isolated in LO.G/ if and only if there is a finite set S �G

such that < is the only left order satisfying

id< s for every s 2 S:
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When the group is countable this topology is metrizable [5; 7; 18]. For instance, if G is
finitely generated and Bn denotes the ball of radius n with respect to a finite generating
set, then we can declare that dist.<1; <2/D 1=n if Bn is the largest ball in which <1

and <2 coincide.

When the group G is countable, for every left order < on G one can attach a fixed-
point-free action �W G! HomeoC.R/ that models the left translation action of G on
.G; </, in the sense that

(1) f < g () �.f /.0/ < �.g/.0/:

This is the so-called dynamical realization of < (which is unique up to conjugation),
and 0 is sometimes called the basepoint; see [5; 7; 8].

On the other hand, any representation �W G ! HomeoC.R/ defines a partial left
invariant order on G through (1). This is a total order exactly when the stabilizer of 0

under � is trivial.

Given a group G we consider the set Rep.G;HomeoC.R// of group representations
from G to HomeoC.R/ endowed with the pointwise convergence. That is, �n con-
verges to � if and only if �n.g/ converges to �.g/ for all g 2G, where the convergence
�n.g/! �.g/ is given by the compact–open topology: for every positive " and for
every compact set K �M, there is n0 such that n� n0 implies

sup
x2K

j�n.g/.x/� �.g/.x/j � ":

Remark 2.1 The convergence of �n! � in Rep.G;HomeoC.R// is equivalent to
requiring that �n.g/! �.g/ for every g in a generating set of G.

The next result is a way to relate the topologies of LO.G/ and Rep.G;HomeoC.R//,
and will be the key tool for proving all our theorems.

Proposition 2.2 Let � 2 Rep.G;HomeoC.R// be the dynamical realization of a total
left order < on G (in the sense of (1)). If � can be arbitrarily approximated by
representations that have nontrivial stabilizers on the orbit of 0, then < is not isolated
in LO.G/.

Proof Let F �G be a finite set with 1<g for every g 2F. We take a neighbourhood
V of � such that if �0 2 V then 0 < �0.g/.0/ for g 2 F. By our hypothesis, there
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exists �0 2 V that has nontrivial stabilizer on the orbit of 0. This induces a partial
left order � on G. Since H D Stab�0.0/ is a subgroup of a left-orderable group, it is
also left-orderable and has at least two different left orders. By the convex extension
procedure (see [7, Section 2.1]) we can extend � to at least two different total left
orders <1 and <2 on G, satisfying 1<i g for g 2 F and i D 1; 2. One of them must
be different from <.

2B Conjugacy and roots in HomeoC.R/

Here we present some facts and constructions on line homeomorphisms that will be
needed in the sequel. Given � 2 HomeoC.R/ we define the sets

Fix.�/D fx j �.x/D xg;

Inc.�/D fx j �.x/ > xg;

Decr.�/D fx j �.x/ < xg:

These sets help us study the conjugacy class of � . If  �1 
�1 D �2 , then  induces

bijections between the corresponding sets for �1 and �2 . (Namely,  .Fix.�1// D

Fix.�2/ and so on). On the other hand, two homeomorphisms �1 and �2 are conjugated
in HomeoC.R/ if there exists  2 HomeoC.R/ that maps Fix.�1/ to Fix.�2/ and
Inc.�1/ to Inc.�2/ (and so maps Decr.�1/ to Decr.�2/). With this in mind, we define
a weak conjugation as follows:

Definition 2.3 For  , �1 and �2 homeomorphisms of the real line, we will say that
 is a weak conjugation from �1 to �2 if

�  .Fix.�1//D Fix.�2/, and

�  .Inc.�1//D Inc.�2/.

Additionally, if for an interval I we have that  �1.x/ D �2 .x/ for all x 2 I, we
will say that the weak conjugation  is strong on I.

Observe that conjugacy and weak conjugacy classes are identical, but it is much easier
to find/build weak conjugations rather than true conjugating elements. We will need a
result that allows us to pass from a weak conjugation to a conjugation, while respecting
the parts in which the weak conjugation is strong. This is Lemma 2.7 in [1], which we
state below.
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Lemma 2.4 Let  ; �1; �2 2HomeoC.R/. If  is a weak conjugation from �1 to �2

that is strong on a interval I, then there exists a conjugation x from �1 to �2 such
that

� x .x/D  .x/ for every x 2 I, and

� x .x/D  .x/ for every x 2 Fix.�1/.

Moreover, x agrees with  over I [�1.I/.

For the proof, we refer to [1].

Remark 2.5 We will use Lemma 2.4 in a slightly stronger form, where �1 and �2

are homeomorphisms of arbitrary intervals I and J, respectively. The map  W I ! J

is a weak conjugation, following a straightforward adaptation of Definition 2.3. This
stronger version of Lemma 2.4 is obtained as a corollary through conjugation.

We will also need to take square roots of homeomorphisms under composition.

Lemma 2.6 Every h 2 HomeoC.R/ has a square root.

Proof Translations on R clearly have square roots. For h 2 HomeoC.R/ define  
so that Fix. /D Fix.h/, and if I is a connected component of R� Fix.h/ then  jI
is a square root of hjI , which exists because hjI is conjugated to a translation. It is
easy to check that  2 D h.

Remark 2.7 In the proof above it is clear that if q 2 Fix.h/ and  0 is a square root
of hj.�1;q/ , we can choose  as an extension of  0 . We can also adapt Lemma 2.6
for a homeomorphism hW .�1; q1�! .�1; q2�, obtaining  W .�1; q3�! .�1; q4�

with  2 a restriction of h. This can be done by extending h to a homeomorphism
of R and then restricting  to a suitable interval.

3 Key technical tools

Let w 2 Fn D hx1; : : : ;xni be a reduced word, and write w D am � � � a1 with aj 2

fx˙1
1
; : : : ;x˙1

n g. We define w0 D e and wj D aj � � � a1 for 0 < j � m. If � 2
Rep.Fn;HomeoC.R// and x 2R, we will be interested in the sequence

S.�; w;x/D .�.w0/.x/; : : : ; �.wm/.x//;

which we call the trajectory of x by w under the action � .
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Trajectories will play a key role in our perturbation techniques. On one hand, we will
construct new representations by “extending” prefixed trajectories. That is, we will
first define some arbitrary, but suitable, sequence S D .s0; : : : ; sm/ 2RmC1 and then
find a representation that realizes S as a trajectory by w .

On the other hand, we will need to perturb the representations while keeping in mind
the effect on certain trajectories. To do that, for each generator xi we will need to look
at the minimum point from which we can perturb the map �.xi/ without changing the
trajectory S.�; w;x/. That point is the largest one where we apply the generator xi in
the trajectory.

Taking into account that we will work with “trajectories” before realizing them by
representations, it will be useful to make the relevant definitions in a combinatorial
context, without reference to a specific representation.

Definition 3.1 Take a word w 2 Fn D hx1; : : : ;xni with jwj Dm, a sequence S D

.s0; : : : ;sm/2RmC1 and i 2f1; : : : ;ng. Write wDam � � �a1 with aj 2fx
˙1
1
; : : : ;x˙1

n g.
We define

Dw.S; i/D fsj W ajC1 D xi or aj D x�1
i g

and
dw.S; i/Dmax Dw.S; i/:

When xi does not appear in w , we set Dw.S; i/D∅ and dw.S; i/D�1.

We remark that when S D S.�; w;x/ is an actual trajectory, the set Dw.S; i/ is the
subset of S where we apply the generator xi in the trajectory. Look at Figure 1 for an
example.

We find it enlightening to think of a trajectory as a graph, as shown in Figure 1. This
can also be formulated for general sequences. With the notation of Definition 3.1, we
associate a trajectory graph to S D .s0; : : : ; sm/ as follows: The vertex set is just
fs0; : : : ; smg, and we put in an edge for every j D 1; : : : ;m connecting sj�1 to sj .
This edge is labelled and oriented according to aj . Namely, if aj D x�i then the edge
label is xi , and its orientation depends on � : when � D 1 it is oriented from sj�1

towards sj , and the reverse for � D�1.

Looking at the trajectory graph of S, we can regard Dw.S; i/ as the set of vertices
which have an outgoing edge marked with xi .

The following observation will be useful in the proof of most of the heavier results. It
comes up naturally by looking at trajectory graphs.
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x �.w/.x/

�.x1/ �.x1/

�.x2/
�.x2/

dw.S; 2/ dw.S; 1/

Figure 1: A possible trajectory S D S.�; w;x/ for w D x�1
2 x�1

1 x2x1 in
which we can see the sets Dw.S; i/ as the starting points of the arrows
marked with �.xi/

Remark 3.2 For any � 2 Rep.Fn;HomeoC.R//, w 2 Fn and p 2 R, we have that
S.�; w�1; �.w/.p// is just S.�; w;p/ traversed backwards. Thus,

Dw.S.�; w;p/; i/DDw�1

�
S.�; w�1; �.w/.p//; i

�
for all i D 1; : : : ; n.

Our first result is the surjectivity of the word map, namely Lemma 1.6. Its proof will
illustrate the technique of defining a representation by prefixing some trajectories.

Proof of Lemma 1.6 We will prove it for the case Fix.g/ D ∅; the general case
reduces to this by setting Fix.g/ as the global fixed points of � . We can further assume
that g.x/ > x for every x 2R, the other case being analogous.

It suffices to find a representation �0 such that �0.w/.x/ > x for all x 2R, since then
we can conjugate �0 to obtain a representation � with �.w/D g . The same reasoning
allows us to exchange w by one of its conjugates in Fn , so we may assume that w is
cyclically reduced.

Let mD jwj and set Sr D .mr;mr C 1; : : : ;m.r C 1// for all r 2 Z. In other words,
Sr D .sr;0; : : : ; sr;m/ is the sequence defined by sr;j Dmr C j . Notice that Sr ends
where SrC1 begins. We will give a representation �0 that has all Sr as trajectories
by w . This is enough, since then we shall have that �0.w

r /.0/ D mr ! ˙1 as
n!˙1, proving that �0.w/.x/ > x for all x 2R.

Fix some r 2 Z. For each i 2 f1; : : : ; ng, we define a map gi on Dw.Sr ; i/ by the
formula gi.sr;j�1/ D sr;j if aj D xi and gi.sr;j / D sr;j�1 if aj D x�1

i . These
are indeed well-defined maps, and are also injective, due to the fact that Sr has no
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repetitions and w is reduced (admits no cancellations). This can be seen by considering
the trajectory graph for Sr : the formula for gi is just defined by the arrows (oriented
edges) marked by xi , and we notice that no vertex admits two incoming or two outgoing
edges of the same label.

Assuming that w is cyclically reduced allows us to join, for fixed i 2 f1; : : : ; ng, all
the maps gi corresponding to every r 2 Z (we abuse notation by omitting r from it).
This gives rise to a well-defined map gi on

S
r2Z Dw.Sr ; i/, as can be shown by the

same argument as for the trajectory graphs, where the fact that w is cyclically reduced
is used for the common vertices of different sequences, namely sr;m D srC1;0 .

We will show that gi W
S

r2Z Dw.Sr ; i/! R are increasing (ie gi.x/ < gi.y/ for
x<y ), and therefore can be extended to R as homeomorphisms (eg linear interpolation).
This defines the maps �0.xi/ that give the desired representation �0 . Notice that if a
generator xi is not present in w , we can choose �0.xi/ freely.

Now we see that gi is increasing: Take x < y in Xi D
S

r2Z Dw.Sr ; i/. The
construction of the sequences Sr gives that gi.x/DxC�.x/ for x2Xi and �.x/D˙1.
This shows gi.x/ < gi.y/ directly for y �x � 3, and using injectivity for y �x D 2.
Also notice that the union of the trajectory graphs for Sr admits no closed edge-paths.
So if both x and xC 1 belong in Xi , then we cannot have �.x/ > �.xC 1/, which
gives gi.x/ < gi.y/ for y �x D 1.

The following is the main technical lemma. It refines Lemma 3.1 in [1]. As we men-
tioned earlier, its aim is to give a perturbation of a representation of Fn in HomeoC.R/
that achieves many desired properties: having nontrivial stabilizer in the orbit of a
given point, preserving some given trajectories of the original action, and controlling
the dynamics near C1 of a specified element w 2 Fn .

Lemma 3.3 Let �2Rep.Fn;HomeoC.R//, p;p1; : : : ;pk 2R and w;v1; : : : ;vk 2Fn ,
with w cyclically reduced. Let

dij D dvj
.S.�; vj ;pj /; i/ for i D 1; : : : ; n and j D 1; : : : ; k

and
di D dw.S.�; w;p/; i/ for i D 1; : : : ; n:

Assume that �.w/.p/¤ p , and that there exists i0 with di0
�maxj di0j .

Then there exists �0 2 Rep.Fn;HomeoC.R// such that:
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(1) �0.xi/ agrees with �.xi/ on .�1;mi �, where mi Dmaxfdi ; di1; : : : ; dikg for
each i D 1; : : : ; n.

(2) S.�0; vj ;pj /D S.�; vj ;pj / for every j D 1; : : : ; k .

(3) �0.w/ agrees with �.w/ on .�1;p� and �0.w/.x/¤ x for x � p .

(4) p has nontrivial stabilizer under �0.

Remark 3.4 In the statement of Lemma 3.3, (2) and the first part of (3) can be deduced
from (1). This is straightforward from the definitions. Nevertheless, we state these
consequences explicitly as they are important in the applications.

The hypothesis of Lemma 3.3 is a bit involved. The following gives an easier way to
verify it that will suffice in most cases.

Lemma 3.5 In the notation of Lemma 3.3, if p�mDmaxfS.�;vj ;pj / Wj D1; : : : ;kg

then there exists i0 with di0
�maxj di0j .

Proof Write w D am � � � a1 and a1 D x�i0
. We claim this i0 works.

According to the sign of � , either p or �.a1/.p/ belongs to Dw.S.�; w;p/; i0/. If p

does (when � D 1), then di0
� p �m� di0j for every j .

Otherwise, �D�1 and �.a1/.p/�di0
. If the assertion were not true, then �.a1/.p/�

di0
< di0j � m � p for some j . But then we should have that �.xi0

/.di0j / > p .
This is a contradiction since �.xi0

/.di0j / belongs to S.�; vj ;pj /, so it should be less
than m.

The proof of Lemma 3.3 gets very technical. We point out that Theorems 1.1, 1.3
and 1.4 can be derived from the statement of Lemma 3.3 without using facts that come
up in its proof.

Proof of Lemma 3.3 For simplicity, we will assume that �.w/.p/ > p . Otherwise
we exchange w for w�1 and p for �.w/.p/. This can be done without altering the
hypotheses by Remark 3.2.

The strategy of the proof follows the same idea we used for Lemma 1.6. We will first
define some suitable sequences Sr for r D 1; 2; : : : that will become the trajectories
S.�0; w; �0.wr /.p// for the desired representation �0. Those sequences will be used to
define the maps �0.xi/ in some discrete sets, and then it will be possible to extend them
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by interpolation. Choosing the Sr carefully will allow us to achieve the objectives
in the statement: make these extensions possible with �0.xi/ and �.xi/ agreeing on
.�1;mi �, make �0.wr /.p/ tend to C1 (thus �0.w/ will have no fixed points after p ),
and also make �0.z/.p/D p for some nontrivial z 2 Fn (nontrivial stabilizer).

Write w D am � � � a1 , with mD jwj. Recall that mi Dmaxfdi ; di1; : : : ; dikg, and let
M Dmax S.�; w;p/[

Sk
jD1 S.�; vj ;pj /.

Step 1 (definition of S1 ) We define S1 D .s1;0; : : : ; s1;m/ as follows:

Set s1;0 D �.w/.p/ and, for 0< j �m, let

s1;j D �.aj /.s1;j�1/ while
�

s1;j�1 �mi if aj D xi ;

s1;j�1 � �.xi/.mi/ if aj D x�1
i :

We get to s1;l , the last element we can define by that process. Then we choose
s1;lC1 >M, and set s1;jC1 D s1;j C 1 for every j D l C 1; : : : ;m.

The above definition of the s1;j amounts to saying that S1 agrees with S.�;w;�.w/.p//

for as long as s1;j can be defined using the �.xi/ restricted to .�1;mi �. When that
is no longer possible, we have freedom to pick the next s1;j without contradicting (1).
We will do so to help us achieve (3), in a similar fashion as in Lemma 1.6. Figure 2
gives an example of this process. The next claim says that the last part of this definition
really takes place.

Claim l <m:

Proof Recall the hypothesis that there is some i0 with di0
�maxj di0j . Also recall

this means di0
D mi0

. Notice that dw.S.�; w;x/; i/ is increasing in x , as it is a
maximum of increasing homeomorphisms. Since we are assuming �.w/.p/ > p , this
gives us that

dw.S.�; w; �.w/.p//; i0/ > dw.S.�; w;p/; i0/D di0
Dmi0

:

On the other hand, if l Dm, we would have that S1 D S.�; w; �.w/.p// and every
point in Dw

�
S.�; w; �.w/.p//; i

�
would be less than mi for every i , for that is what

is needed for the “while” condition to hold through j D 1; : : : ;m. This contradicts
what we just obtained for i0 .

Step 2 (definition of Sr for r � 2) The idea is to make a suitable S2 that will help us
create a nontrivial stabilizer, and define Sr for r � 3 in a similar way as in Lemma 1.6,
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g1 g1

g2

g2

p s1;1 s1;2 s1;0 s1;3 s1;4

d2 d1 Dm1

Figure 2: Step 1: we show the construction of the sequence S1 for the
example in Figure 1, assuming that d1 Dm1 (the sequences S.�; vj ;pj / are
not drawn in the picture). Here l D 2 . Step 3: we draw the arrows defining
the gi on Dw.S1; i/ .

in order to obtain (3). We remark that Sr must begin where Sr�1 ends. We need to
distinguish two cases according to the form of w . They will only differ in S2 and
possibly in S3 .

Case A Suppose n D 2 and w D Œx1;x2�
u , where Œx1;x2� D x�1

2
x�1

1
x2x1 and

mD 4u. This case applies for the other commutators of x1 and x2 as well, possibly
exchanging the generators, or replacing them by their inverses.

We define S2 D .s2;0; : : : ; s2;4u/ as s2;0 D s1;m , s2;1 D s1;mC 3, s2;2 D s1;mC 4,
s2;3 D s1;mC 1, s2;4 D s1;mC 2 and, if u> 1, we set s2;5 D s1;mC 5 and s2;jC1 D

s2;j C 1 for j 2 f5; : : : ; 4u� 1g.

For r � 3 we define Sr D .sr;0; : : : ; sr;4u/ by sr;0 D sr�1;4u and sr;jC1 D sr;j C 1

for j 2 f0; : : : ; 4u� 1g, with the exception that s3;1 D s3;0C 3 if uD 1. (Notice that
by this exception, the trajectory graph defined on

S
r�2 Sr looks the same for any u,

and avoids two different incoming edges at s2;1 both marked with x1 .)

Case B For any other w we set Sr D .sr;0; : : : ; sr;m/ with sr;0D sr�1;m and sr;jC1D

sr;j C 1 for every r � 2 and j 2 f0; : : : ;m� 1g.

Step 3 (partial definition of the maps �0.xi/) The sequences Sr define maps gi

on the sets Dw.Sr ; i/ as in Lemma 1.6, by taking gi.sr;j�1/D sr;j if aj D xi and
gi.sr;j / D sr;j�1 if aj D x�1

i . We can set gi to agree with �.xi/ on .�1;mi �

and we obtain well-defined maps gi W .�1;mi �[
S

r Dw.Sr ; i/! R that are also
injective. (This works by the same arguments used in Lemma 1.6. Here we use that w
is cyclically reduced.)

In order to achieve the nontrivial stabilizer, we make a further extension of some of
the gi , which will be different in each case.
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g1 g1

g2 g2 g2

s2;0 s2;3 s2;4 s2;1 s2;2

Figure 3: Case A, Step 2: we draw the first four points of the sequence S2 .
Step 3: we draw the arrows corresponding to the maps gi .

� In Case A we set g2.s2;3/ D s2;0 . (See Figure 3.) Notice there is no arrow
coming from s2;3 and marked by x2 in the trajectory graphs, thus g2 is well
defined. Injectivity is given by the fact that there is no incoming edge marked
by x2 at s1;m D s2;0 , by construction of S1 and the form of w D Œx1;x2�

u .
(There is an outgoing edge marked by x2 at s2;0 , but that is compatible.)

� In Case B there is some j1 2 f1; : : : ;mg and some i1 2 f1; : : : ; ng such that
aj1C1 ¤ x˙1

i1
, and we do not have both aj1

D x�i1
and aj1C2 D x��i1

, where the
indexes are taken mod mD jwj. Otherwise we would be in Case A.

If neither aj1
nor aj1C2 is x˙1

i1
, we can set gi1

.s2;j1
/ D s2;j1C1 without

contradicting the values of gi1
we had defined previously. This is also true if

aj1
D xi1

or aj1C2 D xi1
. If aj1

D x�1
i1

or aj1C2 D x�1
i1

, then we cannot do
that, but we can put gi1

.s2;j1C1/D s2;j1
. (See Figure 4.)

Step 4 (extension of the maps �0.xi/) From the previous step we have maps gi

defined on .�1;mi �[Xi for Xi a discrete set. As we did for Lemma 1.6, we will
check that these maps are increasing, namely that x < y implies gi.x/ < gi.y/, so
they can be extended to R as homeomorphisms. This completes the definition of the
maps �0.xi/ that give the representation �0.

aj1
aj1C1 aj1C2

s2;j1
s2;j1C1

gi1

Figure 4: Case B: we have to pick an orientation for the dotted line, ensuring
that there is no vertex with two incoming or outgoing arrows marked with gi1 .
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Claim gi W .�1;mi �[Xi!R is increasing.

Proof On the sets Xi we can argue as in Lemma 1.6; for Case A it may be helpful to
look at Figure 3. It remains to show that gi.x/ < gi.y/ when xDmi and yDmin Xi .
The proof splits into two cases depending on i ; recall the construction of S1 , and let i�

be such that al D x�i� .

If i ¤ i� , then gi maps Xi � .�1;mi � into .M;C1/, since we picked sr;j > M

for r > 1 and r D 1, j > l . By definition, M �mi for all i , hence gi is increasing.

For i� we separate the cases � D˙1. If � D 1, then by our definition of l we have
s1;l > mi� , and we had set gi�.s1;l/ D s1;lC1 > M > �.xi�/.mi�/ D gi�.mi/. We
also have y D s1;l , so this gives the claim. If � D �1, we have s1;l > �.xi�/.mi�/

(also by definition of l ) and we had set gi�.s1;lC1/D s1;l > �.xi�/.mi�/D gi�.mi�/.
Notice that y D s1;lC1 (definition of l , and picking s1;lC1 >M �mi� ), so this case
is finished as well.

Step 5 (verification of the properties of �0 ) Point (1) is clear, and implies (2) and
the first part of (3). Notice that Sr is the trajectory of �0.wr /.p/ by w under the
representation �0. So we have that �0.wr /.p/D sr;0 , which tends to C1 with r , and
thus �0.w/ has no fixed points after p .

For (4) notice that sr;j is in the orbit of p for all r � 1 and j D 0; : : : ;m. Then we
have:

� In Case A, s2;0 is fixed by �0.x2x�1
1

x2x1/.

� In Case B, s2;j1
is fixed by �0.x�i1

aj1C1/ for some � D˙1.

This gives that the orbit of p has nontrivial stabilizer under �0.

4 Proof of Theorem 1.1

Let FnD hx1; : : : ;xni. Then a group G D Fn �Z H as in the statement can be written
as Fn �wDh H, where w 2 Fn is a cyclically reduced word and h 2H.

Let < be an order on G and � a dynamical realization for < (based at 0). We shall
define a new representation x� that is a small perturbation of � and has nontrivial
stabilizer on the orbit of 0. Then the theorem will follow from Proposition 2.2.

Algebraic & Geometric Topology, Volume 18 (2018)



4176 Juan Alonso and Joaquín Brum

Let g D �.h/D �.w/. Let Vw.g/D f�
0 2 Rep.Fn;HomeoC.R// W �0.w/D gg. We

will find some �0 2 Vw.g/ close to �jFn
such that the representation x� defined on G

by gluing it with �jH has nontrivial stabilizer on the orbit of 0.

Take an arbitrarily large compact interval K �R. Since � has no global fixed points,
being a dynamical realization [7], we can build a finite �–trajectory S, with respect
to the generating system fH;x1; : : : ;xng, which is an increasing sequence beginning
at 0 and ending outside K . By a �–trajectory with respect to fH;x1; : : : ;xng we
mean that each point of S is obtained from the previous one by acting either by �.h/
for h 2H or by �.xi/

˙1 for some i 2 f1; : : : ; ng.

By keeping track of the generators, we can split S into a union of trajectories by �jFn

that are connected by the action of elements of H (where the union of trajectories
is sequence concatenation). Namely, we can write S D

Sk
jD1 S.�jFn

; vj ;pj /, where
vj 2 Fn , and obtain pjC1 by acting on �.vj /.pj / by some �.hj / for hj 2H. Notice
that p1 D 0. Observe also that if �jH has no global fixed point in K \ Œ0;C1/ we
may choose S D .0; �.h/.0//, the trajectories by �jFn

are just points and the vj are
trivial.

Let p D �.vk/.pk/ be the last element of S.

Claim The representation �jFn
, and the p;p1; : : : ;pk 2 R and w; v1; : : : ; vk 2 Fn

we just constructed, satisfy the hypotheses of Lemma 3.3.

Proof Recall we are assuming w is cyclically reduced. That �.w/.p/¤ p is clear
since � is the dynamical realization of a total order and p is in the orbit of 0. Then
we can apply Lemma 3.5 since p Dmax S.

Let �0 be the representation obtained from �jFn
applying Lemma 3.3. Let q D

min Fix.g/\.p;C1/, with the convention that min∅DC1. The case for qDC1

is simpler, so we will focus on the construction when q <C1. We conjugate �0 to an
action on .�1; q� with q as a global fixed point, by a conjugation  W R! .�1; q/

that restricts to the identity up to maxfp; �.w/.p/g and such that �.w/j.�1;q� D
 �0.w/ 

�1 . This is possible by Lemma 2.4.

We use Lemma 1.6 to get a representation �1 of Fn on .q;C1/ with �1.w/ D

gj.q;C1/ . We define �0 2 Rep.Fn;HomeoC.R// by

�0.
 /.x/D

�
 �0.
 / 

�1.x/ if x � q;

�1.
 /.x/ if x > q:
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Notice that �0.w/D g , so we get x� 2 Rep.G;HomeoC.R// that agrees with �0 on Fn

and with �jH on H. Choosing K large enough we can get x� arbitrarily close to � .
It remains to show that the orbit of 0 has nontrivial stabilizer. By Lemma 3.3 we
have S.�0; vj ;pj / D S.�; vj ;pj / for all j D 1; : : : ; k , and since  is the identity
up to maxfp; �.w/.p/g these trajectories are not affected by the conjugation, so
S.�0; vj ;pj / D S.�; vj ;pj /. Thus, p is in the x� orbit of 0. On the other hand,
the stabilizer of p by �0 is nontrivial by Lemma 3.3, and  .p/D p , so p has the
same stabilizer under �0. The stabilizer of p under x� contains it, so it is nontrivial.
This gives the theorem by Proposition 2.2.

5 Proof of Theorem 1.3

Let G D ht;x1; : : : ;xn j tw1t�1 D w2i as in the statement. We can assume that w1

and w2 are cyclically reduced (possibly taking an equivalent presentation).

Let < be an order on G and � its dynamical realization. The proof follows the same
strategy as that of Theorem 1.1: we shall define a new representation x� that is a
small perturbation of � and has nontrivial stabilizer on the orbit of 0, then finish by
Proposition 2.2.

Take an arbitrarily large compact interval K �R. As we did for Theorem 1.1, we take
a finite increasing �–trajectory S, with respect to the generating set ft;x1; : : : ;xng,
that begins at 0 and ends outside K . This means each point of S is obtained from the
previous one by acting either by �.t/˙1 or by �.xi/

˙1 for some i 2 f1; : : : ; ng.

Again as in Theorem 1.1, we split S into a union of trajectories by �jFn
. So we

write S D
Sk

jD1 S.�jFn
; vj ;pj /, where p1 D 0 and pjC1 is obtained by acting on

�.vj /.pj / by �.t/˙1 . (It is possible that vj may be trivial, in which case the trajectory
S.�jFn

; vj ;pj / is the single point pj .)

Let p D �.vk/.pk/ be the last element of S.

Consider the word Sw D t�1w�1
2

tw1 that represents the identity on G. Notice that the
trajectory S.�; Sw;p/ is decomposed as follows: the initial segment is S.�; w1;p/,
next comes S.�; w2; �.t/.p// traversed backwards, and then the final point is p (since
Sw is the identity in G, the trajectory must be closed).

As in the statement of Lemma 3.3, we consider

dij D dvj
.S.�; vj ;pj /; i/ for i D 1; : : : ; n and j D 1; : : : ; k:
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Define as well d
.1/
i D dw1

.S.�; w1;p/; i/ and d
.2/
i D dw2

�
S.�; w2; �.t/.p//; i

�
.

By Lemma 3.5 there exists i0 with d
.1/
i0
�maxj di0j (recalling that S is an increasing

sequence and p its last point). We will assume that d
.1/
i0
� d

.2/
i0

for simplicity. Other-
wise, we can invert the roles of w1 and w2 , by replacing S by S [f�.t/.p/g and Sw
by tw�1

1
t�1w2 . This does not affect the d

.1/
i and d

.2/
i by Remark 3.2.

We will apply Lemma 3.3 to �jFn
, with the following setting:

� v1; : : : ; vk as constructed above, vkC1 D w2 and w D w1 .

� p1; : : : ;pk and p as constructed above, and pkC1 D �.t/.p/.

Notice the hypotheses of Lemma 3.3 hold for this setting, where the notation in the
statement would be di;kC1 D d

.2/
i and di D d

.1/
i . From Lemma 3.3 we obtain a

representation �0 2 Rep.Fn;HomeoC.R//.

This �0 is a perturbation of �jFn
that satisfies what we would expect from the restriction

to Fn of our desired representation. However, it is not always possible to extend it to G.
We deal with this problem in what follows, splitting the procedure into two cases. For
both we will need to notice that �0.w1/ agrees with �.w1/ up to p , and �0.w2/ agrees
with �.w2/ up to �.t/.p/. These maps are partially conjugated by �.t/, meaning that
for x 2 .�1;p� we have �.t/�0.w1/.x/D �0.w2/�.t/.x/.

Case 1 If �0.w2/ has no fixed points greater than �.t/.p/, then it is weakly conjugated
to �0.w1/ by a map that is strong on .�1;p� (see Definition 2.3). Thus, by Lemma 2.4
we can find a homeomorphism ' that conjugates �0.w1/ and �0.w2/, and agrees
with �.t/ on .�1;p�. In this case we can define x�.t/D ' and x�jFn

D �0 .

Case 2 On the other hand, assume that �0.w2/ has fixed points greater than �.t/.p/.
Let M Dmax S [S.�; Sw;p/. As in the proof of Theorem 1.1, we can conjugate �0

to a representation on .�1; q� for some q >M that has q as a global fixed point, by
a map that is the identity on .�1;M �. Call the result of this conjugation �0

0
.

Let z be the first fixed point of �0
0
.w2/ on Œ�.t/.p/; q�. Then z < q by the assumption

of this case. Notice that �0
0
.w1/ and �0

0
.w2/j.�1;z� are weakly conjugated, because

of the definition of z and their partial conjugation up to p by �.t/. By Lemma 2.4
we can find a homeomorphism 'W .�1; q� ! .�1; z� that conjugates �0

0
.w1/ to

�0
0
.w2/j.�1;z� and agrees with �.t/ on .�1;p�.

Extend ' to a homeomorphism of R that takes Œq; qC1� to Œz; q� and ŒqCm; qCmC1�

to ŒqCm� 1; qCm� for m� 1.
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Applying Lemma 1.6 recursively, we can define

�0m 2 Rep
�
Fn;HomeoC.ŒqCm� 1; qCm�/

�
so that �0m.w1/ D '�1�0

m�1
.w2/' for m � 1, where the base case is �0

1
.w1/ D

'�1�0
0
.w2/jŒz;q�' .

We define �0 2 Rep.Fn;HomeoC.R// so that �0.
 /j.�1;q� D �00.
 / and

�0.
 /j.qCm�1;qCm� D �m.
 /

for m� 1. Then we define x� 2 Rep.G;HomeoC.R// by x�jFn
D �0 and x�.t/D ' .

In both cases the resulting x� is a perturbation of � that can be made arbitrarily small
by choosing K large enough. The stabilizer of p by �0 is nontrivial and this fact is
preserved by the modifications in Case 2. On the other hand, the trajectory S is not
affected either, since S.�; vj ;pj /D S.x�; vj ;pj / for all j , and x�.t/ agrees with �.t/
on .�1;p�. Thus the stabilizer of 0 by x� is nontrivial. The theorem follows from
Proposition 2.2.

6 Proof of Theorem 1.4

Throughout this section we consider Sw D tw1tw2tw3 as a word that represents the
identity in G.

Lemma 6.1 G can be presented as G D ht;x1; : : : ;xn j tw1tw2tw3 D 1i, where the
strings wiw

�1
j are cyclically reduced for i ¤ j 2 f1; 2; 3g.

Proof Among the presentations of G of the form ht;x1; : : : ;xn j tw1tw2tw3D 1i we
choose one so that jw1jC jw2jC jw3j is minimal. We will show that this presentation
is the desired one. The string wiw

�1
j is cyclically reduced when wi and wj do not

have a common initial segment nor a common final segment. If this is not the case,
we will give another presentation that contradicts the minimality assumption. Suppose
for instance that w1 D av1 and w2 D av2 , where a is a common initial segment.
Then we change the presentation by the Tietze transformation t 0 D ta, which gives
ht 0;x1; : : : ;xn j t

0w0
1
t 0w0

2
t 0w0

3
D 1i, where w0

1
D v1 , w0

2
D v2 and w0

3
D a�1w3 (after

a possible reduction). Then jw0
1
jCjw0

2
jCjw0

3
j � jw1jCjw2jCjw3j�jaj, contradicting

the minimality. For a final segment, or other values of i and j , the argument is very
similar.
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Definition 6.2 Given g1;g2;g3 2 HomeoC.R/, we consider the equation

(E) Xg1Xg2Xg3 D id

in the group HomeoC.R/. A partial solution is a homeomorphism hW .�1;p/!

.�1; q/ such that hg1hg2hg3.x/D x for every x in the domain of the composition.

Remark 6.3 We do not exclude C1 as a value for p or q in the definition of partial
solution. We use the notation h.p/D q .

If h is a partial solution of (E) then the domain of the composition hg1hg2hg3 is an
interval of the form .�1; eh/.

Remark 6.4 If hW .�1;p/! .�1; h.p// and h1W .�1;p1/! .�1; h1.p1// are
partial solutions of (E) and h1 extends h (ie p1 > p ), then eh1

> eh .

We will need a notion of trajectories for partial solutions of (E). It will also be important
to look at the largest point of a trajectory where we apply the partial solution. As we
did in the context of representations, we will build partial (and total) solutions via
prefixing trajectories.

Definition 6.5 Given (E), a partial solution h and x < eh , we define a sequence

S.E; h;x/

D .x;g3.x/; hg3.x/;g2hg3.x/; hg2hg3.x/;g1hg2hg3.x/; hg1hg2hg3.x/D x/:

In turn, for any sequence of the form S D .a1; b1; a2; b2; a3; b3; a1/ 2R7 we define
dX S Dmaxfb1; b2; b3g.

These definitions are very similar to the definition of a trajectory for a representation,
given in Section 3, and to Definition 3.1. In fact, when � 2 Rep.G;HomeoC.R// and
gj D �.wj /, we have that �.t/ is a solution of (E) and (setting t DxnC1 , and recalling
that Sw D tw1tw2tw3 ) we get dSw.S.�; Sw;x/; nC 1/D dX S.E; �.t/;x/.

Notice that dX .E; h;x/ tends to p as x tends to eh , by our definition of eh .

Lemma 6.6 If hW .�1;p/! .�1; h.p// is a partial solution of (E) with p<C1,
then h.p/ <C1.
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Proof Since h must be defined on .�1;g3.eh//, we have eh � g�1
3
.p/ <C1. No-

tice that every entry in S.E; h;x/D .a1.x/; b1.x/; a2.x/; b2.x/; a3.x/; b3.x/; a1.x//

is increasing on x2 .�1; eh/. Also bj .x/<p for every j and x<eh , since h must be
defined on bj .x/. Recalling that dX S.E; h;x/!p as x! eh , we see there is some i

such that bi.x/!p when x!eh . If h.p/DC1 then aiC1.x/Dh.bi.x//!C1 as
x! eh . But then biC1.x/DgiC1.aiC1.x//!C1, which is absurd since bj .x/ <p

for every j .

h g2 h g1 h

a2 a3 a1b1 b2 b3

g3

Figure 5: A possible sequence S.E; h;x/ that is an instance of Case A in Lemma 6.7

In light of Lemma 6.6 we can assume that partial solutions are defined on .�1;p�,
and so we have dX S.E; h; eh/D p .

We consider the cyclic permutations of (E),

Xg3Xg1Xg2 D id;(E0)

Xg2Xg3Xg1 D id:(E00)

Observe that (E), (E0) and (E00) share the same partial solutions, though the domains
of the composition may be different.

Lemma 6.7 If hW .�1;p�! .�1; h.p/� is a partial solution of (E) and there exist
i and j such that gi.eh/ ¤ gj .eh/, then we can extend h to a partial solution h0

defined on .�1;pC �� for some � > 0.

Proof Let S.E; h; eh/ D .a1; b1; a2; b2; a3; b3; a1/. The condition that gi.eh/ ¤

gj .eh/ for some i and j rules out that b1 D b2 D b3 . That is because aiC1 D h.bi/

(where the indices are taken mod 3), so if b1 D b2 D b3 D b then b D p and
a1 D a2 D a3 D h.p/D eh , thus we would have g1.eh/D g2.eh/D g3.eh/D p .

Hence we must have one of the following two cases (taking indices mod 3):

Case A bj > bj˙1 for some j .

Case B bj D bj�1 > bjC1 for some j .
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Possibly exchanging (E) by a suitable cyclic permutation we can assume that j D 3.
Thus, b3 D dX S.E; h; eh/D p .

Case A Consider the map  D g1hg2hg3 where this composition makes sense. It
certainly is defined at a1 D eh , with  .eh/D p . Since the gi are defined on R and h

is defined up to p > b1; b2 , this composition is also defined up to ehC ı for ı > 0.
Then h0 D  �1 is defined on .�1;p C �/ for some � > 0. It agrees with h on
.�1;p� since h satisfies (E). It is also a partial solution of (E): if x < eh0 , then
h0g1h0g2h0g3.x/D  

�1g1hg2hg3.x/D x .

Notice that in this case the local extension h0 on .�1;pC �/ is unique.

Case B Since b3 D b2 , we get a1 D a3 by applying h, thus a1 D eh is fixed by hg1 .
Writing '0 D hg1 , which is defined on .�1; eh�, we get that '2

0
g�1

1
g2hg3.x/D x

for x < eh . If we take  D g�1
1

g2hg3 , we see that it is defined on .�1; ehC ı� for
some ı > 0, since b1<p . Let ' be a square root of  �1 that agrees with '0 up to a1 .
This map exists by Lemma 2.6 and Remark 2.7, since a1 is fixed. Then h0 D 'g�1

1
is

the desired extension, which is defined on .�1;pC �� for some � > 0.

Lemma 6.8 If hW .�1;p/! .�1; h.p// is a partial solution of (E) and there exist
i and j such that gi.x/¤ gj .x/ for all x � eh , then we can extend h to a solution
h0 2 HomeoC.R/.

Proof A maximal extension of h is an homeomorphism of the line by Lemmas 6.6
and 6.7.

Proof of Theorem 1.4 Let < be a left order on G with dynamical realization � .
We will repeat the strategy of the previous theorems, that is, to construct a small
perturbation of � that has nontrivial stabilizer on the orbit of 0.

g2

g3 g1

a2 b1

h h

a1 D a3 b2 D b3

Figure 6: An instance of Case B in Lemma 6.7
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Take an arbitrarily large compact interval K �R. As in the previous theorems, we can
find a finite increasing �–trajectory S, with respect to the generating set ft;x1; : : : ;xng,
that begins at 0 and ends outside K . Recall that each point of S is obtained from the
previous one by acting either by �.t/˙1 or by �.xi/

˙1 for some i 2 f1; : : : ; ng. As in
Theorem 1.3, write S D

Sk
jD1 S.�jFn

; vj ;pj /, where p1 D 0 and pjC1 is obtained
by acting on �.vj /.pj / by �.t/˙1 . (If vj is trivial, then S.�jFn

; vj ;pj / is just the
point pj .)

Let q D �.vk/.pk/ be the last element of S.

Choosing S so that q is large enough, we can assume that min S.�; Sw; q/ >max K ,
where we recall that Sw D tw1tw2tw3 . We consider, for i D 1; : : : ; n:

� dij D dvj
.S.�; vj ;pj /; i/ for j D 1; : : : ; k .

� d
.3/
i D dw3

.S.�; w3; q3/; i/, where q3 D q .

� d
.2/
i D dw2

.S.�; w2; q2/; i/, where q2 D �.tw3/.q/.

� d
.1/
i D dw1

.S.�; w1; q1/; i/, where q1 D �.tw2tw3/.q/.

By Lemma 3.5 there exists i0 with d
.3/
i0
� maxj di0j . Let l 2 f1; 2; 3g be such that

d
.l/
i0
Dmaxfd .1/i0

; d
.2/
i0
; d
.3/
i0
g.

Let w D w�1
lC1wl where l C 1 is taken mod 3. Writing di D dw.S.�; w; ql/; i/, we

have that d .l/i0
� di0

since wl is the final segment of w . That is because the string
w�1

lC1
wl is reduced, which can be assumed by Lemma 6.1.

We apply Lemma 3.3 to �jFn
, setting:

� v1; : : : ; vk as given above, vkC1 D w1 , vkC2 D w2 , vkC3 D w3 and w D
w�1

lC1
wl (also as above).

� p1 : : : ;pk as given above, pkC1 D q1 , pkC2 D q2 , pkC3 D q3 and p D ql .

The hypotheses of Lemma 3.3 hold by the previous discussion. Let

�0 2 Rep.Fn;HomeoC.R//

be the representation given by Lemma 3.3.

Let gj D �
0.wj / for j D 1; 2; 3. We consider the equation

(E) Xg1Xg2Xg3 D id:

Lemma 3.3(1) guarantees that gj agrees with �.wj / up to qj . Thus, �.t/ is a partial
solution of (E) when restricted to .�1; z/, where z Dmaxfg1.q1/;g2.q2/;g3.q3/g.
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Let hD �.t/j.�1;z/ . We consider a cyclic permutation of (E) such that eh D ql (for
(E) itself we have eh D q ).

By Lemma 3.3(3) we have gl.x/¤ glC1.x/ for all x � ql . This allows us to apply
Lemma 6.8, so h can be extended to a maximal solution  2HomeoC.R/. This gives
rise to a representation x� 2 Rep.G;HomeoC.R// with x�jFn

D �0 and x�.t/D  .

This x� is a small perturbation of � because of Lemma 3.3(1) and the fact that  agrees
with �.t/ on .�1; z�. Also by this fact and Lemma 3.3(2) we see that neither S nor
S.�; Sw; q/ are affected by this perturbation, so p D ql is in the orbit of 0 under x� .
Then we use Lemma 3.3(4) to conclude that the stabilizer of 0 under x� is nontrivial.
Thus, Proposition 2.2 finishes the proof.
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