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Notes on open book decompositions for Engel structures

VINCENT COLIN

FRANCISCO PRESAS

THOMAS VOGEL

We relate open book decompositions of a 4–manifold M with its Engel structures.
Our main result is, given an open book decomposition of M whose binding is
a collection of 2–tori and whose monodromy preserves a framing of a page, the
construction of an Engel structure whose isotropic foliation is transverse to the
interior of the pages and tangent to the binding.

In particular, the pages are contact manifolds and the monodromy is a compactly sup-
ported contactomorphism. As a consequence, on a parallelizable closed 4–manifold,
every open book with toric binding carries in the previous sense an Engel structure.
Moreover, we show that among the supported Engel structures we construct, there
are loose Engel structures.

58A30

1 Introduction

One particularly fruitful approach to the study of contact structures is the use of open
book decompositions, that was introduced by E Giroux [13]. He showed that every
cooriented contact structure on a closed .2n�1/–manifold is supported by an open book
decomposition of the underlying manifold, ie it can be defined by a 1–form ˛ such that
˛ gives a contact structure on the binding and ˛ turns the pages into Weinstein domains.
If nD 2, then there is a one-to-one correspondence between open book decompositions
of M up to positive stabilization and isotopy classes of contact structures on M (see
for example Etnyre [9]).

The simpler part of this correspondence — the construction of a contact structure
starting from an open book decomposition — was established by W Thurston and
H Winkelnkemper [23].

Engel structures form a class of plane fields on 4–manifolds which have attracted some
interest recently, although our understanding of their properties is relatively under-
developed. We refer to Montgomery [19] and Vogel [24] for explanations concerning
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the motivation of their study. Here we note that Engel structures are closely related to
contact structures in dimension 3. This fact was applied successfully in [24] to prove
that every parallelizable 4–manifold admits an Engel structure.

The purpose of this note is to prove an analogue of the Thurston–Winkelnkemper
theorem for Engel structures: under the assumptions that the binding is a collection of
2–tori and that the monodromy preserves a framing of a page, we will obtain Engel
structures starting from an open book decomposition of the manifold that make the
pages contact; see Theorem 5.3. This follows from Corollary 5.4 for every open book
decomposition with toric binding of a parallelizable 4–manifold.

We also address stabilization constructions and the uniqueness question. In Theorem 5.8
we show that amongst the supported Engel structures we construct there is a special
class of loose ones which is invariant under stabilization. We also raise the problem
of studying Engel structures supported by an open book with tight contact pages, a
property that is invariant under stabilization by Theorem 6.3.

Whether an Engel structure is homotopic — through Engel structures — to an Engel
structure which is adapted to an open book decomposition is unknown. Notice that it
is unknown whether nonloose Engel structures exist. Finding a supporting open book
decomposition for a loose Engel structure up to Engel homotopy amounts, thanks to
our construction, to finding an open book decomposition and a framing .e1; e2; e3; e4/

such that the pages are transverse to a vector field e0
1

homotopic to e1 and the binding
tangent to e0

1
and linearly foliated by e0

1
.

Also, our definition of an Engel structure being adapted to an open book decomposition
is not tightly suited since the requirements in the definition only use the associated
even contact structure.
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2 Engel and even contact structures

We assume that the reader is familiar with the basics of contact topology in dimension 3;
a lot of the material we use is covered in [11]. The Giroux correspondence for contact
manifolds in dimension 3 is the subject of [9].

We now give definitions of Engel structures and associated distributions.

Definition 2.1 Let M be a 2n–dimensional manifold. A (cooriented) even contact
structure on M is a hyperplane field E defined as the kernel of a 1–form ˛ such that
˛^ .d˛/n�1 never vanishes.

To each even contact structure one can associate a line field W � E , called its isotropic
foliation or kernel foliation, which is the kernel of d˛ restricted to E . When nD 2,
the even contact condition is equivalent to ŒE ; E �D TM.

Definition 2.2 An Engel structure D is a smooth plane field on a 4–manifold M

such that ŒD;D�D E is an even contact structure.

Notice that if an even contact structure E is induced by an Engel structure, ie ŒD;D�DE ,
then W is tangent to D. Thus, an Engel structure D induces a flag of distributions

W � D � E � TM:

Moreover, if E comes from an Engel structure, then it is canonically oriented, and
an orientation of TM induces an orientation of W and vice versa. If we assume that
both D and M are oriented, then this shows that D induces a framing of TM which is
well defined up to homotopy. In particular, two Engel structures cannot be homotopic
through Engel structures if the associated framings are not homotopic. Quite recently
it was shown in [2] that every framing of a parallelizable 4–manifold is homotopic to
the framing induced by an Engel structure on M.

Example 2.3 On R4 the 1–form dz�y dx defines an even contact structure E . The
isotropic foliation is spanned by @w (where w is the fourth coordinate). Locally, every
even contact structure is diffeomorphic to the one given here.

The plane field D D ker.dy �w dx/\ E is an Engel structure such that ŒD;D�D E .
Every Engel structure is locally diffeomorphic to D (this fact is due to F Engel [8]).
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The fact that there is a line field associated to an even contact structure/Engel structure
means that Gray’s stability theorem cannot hold for these distributions: a varying family
of even contact structures or Engel structures will induce a varying family of isotropic
foliations. Hence, the even contact structures/Engel structures in the family are not
diffeomorphic to each other since dynamical properties of the isotropic foliation can
change. This is explored in [19].

If E is an even contact structure on M and if Y is a hypersurface in M transverse
to W , then the plane field

� D TY \ E
is a contact structure on Y .

Recall also that even contact structures satisfy the h-principle: a formal (oriented) even
contact structure on M is a pair .E ;W/, where E is an oriented hyperplane field on M

and W � E is an oriented line field. According to [17], the space of even contact
structures is homotopy equivalent to the space of formal even contact structures.

Remark 2.4 Once the even contact structure is fixed, the homotopy class of D is also
fixed as a plane field in E . Indeed, let W be a vector field generating W and N be
a vector field orthogonal to D in E (assuming we have fixed a metric). The path of
vector fields cos sW C sin sN for s 2

�
0; �

2

�
interpolates between W and N , and thus

gives a path between their normal plane fields in E .

However, for a fixed pair W � E , the homotopy class of D as a distribution sitting on
the sequence W � D � E is not fixed and it corresponds to the homotopy classes of
sections of the S1 –bundle S.E=W/!M.

The main motivating example of an even contact structure is the preimage of the contact
structure under the projection M D Y � Œ0; 1�! Y for a contact structure � on Y . The
fibers of the projection are the leaves of the isotropic foliation. A slight modification
of this example proves the following lemma:

Lemma 2.5 Let .Y; �/ be a contact manifold and ' the coordinate on Œ0; 1�. Then
the hyperplane field E D � ˚R.@' CL/ on Y � Œ0; 1� is an even contact structure
whose isotropic foliation is spanned by @'CL if and only if L is a contact vector field
on .Y; �/.

In order to find an Engel structure D such that the even contact structure E using
Lemma 2.5 satisfies E D ŒD;D� we require, in addition, that � admits a trivialization
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C1 , C2 . The following lemma was certainly known to H Geiges [10] and we are not
aware of an earlier reference.

Lemma 2.6 Let L be a contact vector field on .Y; �/. For a sufficiently big positive
integer k the plane field spanned by

W D @' CL and Xk D cos.k'/C1C sin.k'/C2

is an Engel structure Dk such that ŒDk ;Dk �D E . In particular, the isotropic foliation is
spanned by W .

3 Open book decomposition of a 4–manifold

Open book decompositions — their definition can be found below — have been probably
introduced into differential topology by J Alexander, who showed that every oriented
3–manifold has an open book decomposition. This led to the short proof of the fact
that every oriented 3–manifold has a contact structure [23] that we will adapt to Engel
structures.

Existence results for open book decompositions in dimension � 6 were found by
Winkelnkemper [25] and T Lawson [16]. Later, F Quinn [22] found necessary and
sufficient conditions for the existence of an open book decomposition on closed mani-
folds of dimension � 5. To the best of our knowledge there is no reference dealing
with open book decompositions of 4–manifolds specifically. The (simple) fact that if a
closed 4–manifold admits an open book decomposition then its signature has to vanish
was certainly known to Winkelnkemper [25].

For background on the relationship between contact structures and open book decom-
positions we refer to [9] when the underlying manifold has dimension 3, and to [13; 5]
for the case of contact manifolds in higher dimension.

3.1 Open books with torus binding

In this section we summarize basic definitions concerning open book decompositions.

Definition 3.1 Let M be a closed manifold. An open book decomposition of M is a
pair .K; �/ where

� K �M is a nonempty, not necessarily connected, submanifold of codimension
two with trivial normal bundle,
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� � W M nK! S1 is a fibration, and

� one can choose coordinates on a neighborhood

(1) N.K/'K�D2
D f.x; .r; �// j x 2K and .r; �/ 2D2 are polar coordinatesg

of K such that �.x; .r; �//D � for r ¤ 0.

The submanifold K is called the binding of the open book decomposition. For t 2 S1 ,
the preimage ��1.t/ will be called a fiber of .K; �/. The compactification of any fiber
obtained by addition of K is called a page. The natural orientation of S1 lifts through �
to a natural coorientation of the pages. If the ambient manifold M is oriented, then we
obtain a natural orientation on the pages, and K is naturally oriented as the boundary
of a page.

The simplest example of a manifold with an open book decomposition is the 2–sphere.
In this case, the binding consists of a pair of points, the complementary annulus fibers
over the circle and the fibers are intervals.

Recall that every oriented 3–manifold admits an open book decomposition [1].

Definition 3.2 (Giroux [13]) Let .M; �/ be a contact 3–manifold and .K; �/ an
open book decomposition of M. Then .K; �/ supports � if there is a defining contact
form ˛ for � such that

(i) ˛jK is positive, and

(ii) the restriction of d˛ to fibers of .K; �/ is a positive area form.

According to [13], in any odd dimension, every contact structure has a supporting open
book decomposition. Details of the proof can be found in [21].

When M has dimension four, K is a disjoint union of embedded closed surfaces.
From a vector field transverse to the fibers of M nK! S1 and a vector field VK with
isolated zeroes on K one can obtain a vector field on M whose zeroes are precisely the
zeroes of K such that the zeroes have the same index. Hence, the Euler characteristic
of K equals the Euler characteristic of M by the Poincaré–Hopf index theorem.

For 4–manifolds we will require in addition that K is a union of tori. Then �.M /D 0,
and this is a condition Engel manifolds satisfy.

Moreover, it follows from Novikov additivity [20] that the signature of a 4–manifold
admitting an open book decomposition vanishes. However, 4–manifolds which admit
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an open book decomposition do not always admit a Spin–structure. Consider for
example the nontrivial S2 –bundle S2 y�S2 over S2 . This manifold does not have a
Spin–structure, but an open book decomposition can be obtained by pulling back the
open book decomposition of S2 .

It seems to be unknown whether all oriented 4–manifolds with vanishing signature
admit an open book decomposition [22]. Below we describe simple examples of open
book decompositions on 4–manifolds which fiber over 3–manifolds.

So far we have considered open book decomposition from an intrinsic point of view.
From a more extrinsic point of view, an open book decomposition of an n–manifold M

is a triple .Y; h; �/ where

� Y is a compact oriented .n�1/–manifold with nonempty boundary,

� hW Y ! Y is a diffeomorphism which is the identity on a neighborhood of @Y ,
and

� �W †0.Y; h/!M is a homeomorphism, where †0.Y; h/ is the relative mapping
torus of .Y; h/.

This determines the manifold only up to homeomorphism. Recall that the relative
mapping torus of .Y; h/ is

†0.Y; h/D Y � Œ0; 1�=�h;

where �h is the equivalence relation

.h.x/; 0/�h .x; 1/ for all x 2 Y;

.x; t/�h .x; t
0/ for all x 2 @Y; t; t 0 2 Œ0; 1�:

The triple .Y; h; �/ gives rise to an open book decomposition of M whose binding is
�.@Y � Œ0; 1�=�h/ and whose pages are Yt D �.Y � ftg/. Conversely, any open book
decomposition can be seen as the relative mapping torus of some .Y; h/ (notice that
we usually do not mention the identification � ).

Example 3.3 Let .K0; �0/ be an open book decomposition of a 3–manifold Y , also
given by the relative mapping torus of .S0; h0/. Here S0 is a compact oriented surface
with nonempty boundary. Then .S1 �K0; id� �0/ is an open book decomposition
of S1 �Y , also described by the relative mapping torus of .S1 �S0; id� h0/.

We close this section with an example of an open book decomposition of S3 .
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Example 3.4 On S3 � C2 we consider the contact form ˛ D r2
1

d'1 C r2
2

d'2 .
Here r1 , '1 and r2 , '2 are polar coordinates on the first and second factors of C2 ,
respectively.

Then the Hopf link K0 D fr1 D 0g[ fr2 D 0g is the binding of an open book decom-
position which supports ker.˛/. The complement of the Hopf link K0 fibers over S1

by
�0W S

3
nK! S1; ..r1; '1/; .r2; '2// 7! '1C'2:

One can check that .K0; �0/ is an open book decomposition of S3 and that .K0; �0/

supports � D ker.˛/. The page A0 D �
�1
0
.0/ of the open book is the annulus˚

.r; ';
p

1� r2;�'/ 2 S3
j 0< r < 1 and ' 2 Œ0; 2��

	
:

The monodromy of this open book decomposition is a positive Dehn twist along the
circle

˚
r D 1

2

	
� ��1

0
.0/.

The following description of the stabilization of open book decompositions supporting
a contact structure on a 3–manifold M can be found in [14]; see also [9]. Let .K; �/
be an open book which carries the contact 3–manifold .M; �/. On a page † we pick
a properly embedded Legendrian arc ˇ . Now choose a vector field on M nK which
is transverse to the pages such that

� on N.K/ nK 'K � .D2 n f0g/ the vector field is tangent to the second factor,

� the time-1 flow is defined and it induces a self-diffeomorphism  1 of † whose
support lies in the interior of the page, and

� †[ 1=2.†/ is a surface whose interior is smooth.

Let N.a/�M be a closed ball which intersects K in two arcs and contains aD 1=2.ˇ/

in its interior such that @N.a/nK has precisely two tangencies with pages of the open
book decomposition. On a page of the open book decomposition of .S3; �st/ described
in Example 3.4 we choose an arc connecting the two components of the binding (a
Hopf link) and a neighborhood NS3 of that arc with properties analogous to those
of N.a/.

By carefully performing the connected sum of .M; �/ with .S3; �st/ using the balls
N.a/ and NS3 such that the oriented singular foliations are induced by the open book
decompositions on @N.a/ and @NS3 , one obtains a new open book decomposition of
M 'M # S3 . This yields a contact structure supported by the resulting open book

Algebraic & Geometric Topology, Volume 18 (2018)



Notes on open book decompositions for Engel structures 4283

decomposition which is isotopic to � by the classification of tight contact structures on
the ball (see [7]).

Figure 1 shows the intersection of the pages with @N.a/. The thickened solid arcs K

and K0 represent the binding before and after stabilization, respectively. These arcs lie
in the interior of the ball. Finally, the dashed arc represents pieces of ˇ , a and  .

ˇ
ˇ

aD  1=2.ˇ/
K K

K0

K0

 D a[ˇ

N.a/

before stabilization after stabilization

Figure 1: Stabilization of open book decompositions of 3–manifolds

3.2 Stabilization

As we have stated in the introduction, isotopy classes of contact structures on 3–
manifolds are in one-to-one correspondence with open book decompositions up to
positive stabilization. In this section we suggest a definition of stabilization for open
book decompositions of 4–manifolds as a fiber connected sum along an annulus A

in a page of the open book by taking the product of the stabilization in dimension 3

with S1 , ie the annulus A will be of the form a�S1 .

The stabilization of open books on 4–manifolds can be thought of as removing neigh-
borhoods of annuli in M and S3�S1 and identifying the boundaries. In the following
we also want to ensure that the binding is a union of tori after stabilization when this is
true for the original open book decomposition.

Let M be a 4–manifold equipped with an open book decomposition .K; �/ obtained as
the relative mapping torus of .Y; h/. We pick a properly embedded annulus .A; @A/�
.Y; @Y / such that no component of @A is contractible in @Y .
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Consider the 3–manifold Y 0 obtained by gluing S1 � Œ0; 1�� Œ�1; 1� to Y , where the
gluing map takes S1 � f0; 1g � Œ�1; 1� to @Y so that the two curves S1 � f0; 1g � f0g

are identified with @A and T DA[ .S1� Œ0; 1��f0g/ is a torus. The boundary of Y 0

is still a union of tori.

Let  � T be an embedded closed curve intersecting the circle S1�
˚

1
2

	
�f0g exactly

once. We then take a small tubular neighborhood N.T / of T in Y 0 and consider
the fibered Dehn twist � along T in the direction of  , supported in N.T /. Let
h0 D � ı h 2 Diff.Y 0/.

Proposition 3.5 The relative mapping torus of .Y 0; h0/ is diffeomorphic to M by a
diffeomorphism which induces an injection from a page Y of †0.Y; h/ to a page Y 0

of †0.Y
0; h0/.

Proof Recall that an elementary positive stabilization of a 3–dimensional open book
is obtained by performing the connected sum with S3 on a suitable neighborhood N.a/

of a properly embedded arc a [13; 14].

We start from the open book decomposition .K0; �0/ of S3 given by the relative
mapping torus of a positive Dehn twist on an annulus as described in Example 3.4. Its
binding is a positive Hopf link. Let A0 be a page of this open book, and a a properly
embedded arc on A0 connecting the two boundary components.

Next, we consider the manifold S1�S3 together with the open book .S1�K0; id��0/.
It contains the annulus S1�a and the associated neighborhood S1�N.a/, where N.a/

is a neighborhood of a as in [13]. The complement of S1 �N.a/ in S1 � S3 is
diffeomorphic to S1 �B3 .

Now we take coordinates S1 � Œ0; 1� on A � Y such that  D f0g � Œ0; 1� � A. As
in [13], we can find a neighborhood N.A/ of A in M with coordinates S1 �B3 , so
that the pages of .K; �/ define a “partial” open book decomposition on S1�B3 . This
open book is conjugate to S1 � .N.a/;K0; �0/.

Since both restrictions .S1 �B3;K; �/ and S1 � .N.a/;K0; �0/ are S1 –invariant,
we can form an S1 –invariant connected sum of open books, ie we glue�

S1
�S3

n int.S1
�N.a//;S1

�K0; id� �0

�
to .M n intN.A/;K; �/ in an S1 –invariant way. In this manner we get a manifold
diffeomorphic to M, with an open book of page Y 0 and monodromy h0.
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Another way to argue in the previous proof would be as follows: The stabilized manifold
is obtained from the original manifold by removing a copy of S1 �D3 and gluing it
back in. According to [15] every diffeomorphism of S1 � @D3 extends to S1 �D3 .
Hence, the diffeomorphism type of the manifold does not change under this surgery
operation.

4 Open book decompositions and even contact structures

Let M be an oriented closed 4–manifold together with an open book decomposition
.K; �/.

Definition 4.1 An even contact structure E with kernel W is adapted to (or supported
by) .K; �/ if the following conditions are satisfied:

� K is a union of tori.

� W is transverse to the fibers of � . In particular, the interior of the pages Y� are
naturally contact manifolds for the contact plane �� D E \TY� .

� �� is a positive contact structure for the canonical orientation of Y� .

� E is transverse to K .

� W restricts to a linear vector field on each connected component of K .

� For each � 2 S1 there is a collar U ' @Y� � .�1; 0� of @Y� in Y� such that
K D @Y� � f0g and the characteristic foliation on each connected component of
@Y� � frg for r 2 .�1; 0� is linear.

Remark 4.2 Since all linear vector fields on T 2 are homotopic, two even contact
structures supported by an open book are homotopic through even contact structures if
the contact structures in the pages are homotopic as 1–parametric families of plane
fields: the associated kernel foliations are homotopic through foliations which are
transverse to the interiors of the pages and induce linear vector fields on the binding.

Two even contact structures on M supported by the same open book .K; �/ are not
necessarily homotopic as formal even contact structures. A sufficient condition for
two different even contact structures to be homotopic through formal even contact
structures is that the associated gluing contactomorphisms are isotopic through formal
contactomorphisms. In particular, if the return maps are contact isotopic, then the
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even contact structures are formally homotopic and therefore homotopic through even
contact structures according to [17].

Note that uniqueness holds in the 3–dimensional contact case, because the return map
is an exact symplectomorphism of a surface, and two symplectomorphisms of a surface
are isotopic through symplectomorphisms if they are isotopic through diffeomorphisms.

Example 4.3 Let � be a contact structure on Y carried by an open book .K; �/, and
˛ an adapted contact form. Its Reeb vector field X is transverse to the pages and
tangent to the binding. We assume that � is trivial as a vector bundle.

Let M D fP� be the manifold consisting of 1–dimensional oriented subspaces of the
contact planes and

prW fP�!M

the S1 –fibration which sends a line in �p to p . Then pr�˛ defines an orientable even
contact structure E whose isotropic foliation is tangent to the fibers of pr.

We want to modify E so that the open book decomposition .pr�1.K/; � ı pr/ of fP�
is adapted to the resulting even contact structure E" . For this we identify S1 � Y

with fP� , denote the coordinate in S1 by t , and let zX be the lift of the Reeb field X

to S1 �Y using the connection f0g˚TY .

For " > 0 small enough the 1–form

˛" WD pr�˛� " dt

still defines an even contact structure E" . Let @t denote the vector field tangent to the
fibers dual to dt . Then @t C " zX is tangent to E" and this vector field preserves E" .
The isotropic foliation of E" is therefore spanned by @t C " zX, and the open book
.pr�1.K/; � ı pr/ supports E" provided that " > 0.

When one views an open book decomposition supporting an even contact structure as
a mapping torus, then the monodromy is a contact diffeomorphism of a page. Using
Eliashberg’s classification of overtwisted contact structures [6] it is easy to obtain
contact diffeomorphisms from diffeomorphisms which preserve a given plane field up
to homotopy.

Proposition 4.4 Let Y be a closed 3–manifold, e D .e0; e1; e2/ be a trivialization
of TY and h a diffeomorphism of Y such that h�.e/ is homotopic to e . Then there
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exists a contact structure � on Y , together with a contact diffeomorphism  of .Y; �/
isotopic to h, such that � contains a nonvanishing vector field X with  �X homotopic
to X in � .

Proof Write e0
i D ei and e1

i D h�.ei/ for i D 0; 1; 2. By hypothesis, there exists a
family .et

0
; et

1
; et

2
/ interpolating between these two framings. Let �t D he

t
0
; et

1
i. Since

the ball is contractible, we may assume that, after a homotopy of the framing ei and
an isotopy of the diffeomorphism h, there exists a ball U � Y such that �t jU D �0jU

is contact and �0jU contains an overtwisted disk. By [6], there exists a continuous
family �t;s such that �t;0 D �t and �t;1 are contact structures. We apply Eliashberg’s
classification theorem [6] as follows:

(1) First, for t D 0, find �0;s .

(2) Then we have a solution for t D 1, given by �1;s D h��0;s .

(3) The relative character with respect to the parameter of [6] allows us to extend it
to �t;s .

By contractibility of the interval, there is an extension .et;s
0
; e

t;s
1
/ that coincides with

.et
0
; et

1
/ for s D 0. Moreover, �t;s D he

t;s
0
; e

t;s
1
i, h�e

0;1
0
D e

1;1
0

and h�e
0;1
1
D e

1;1
1

.

By Gray stability, there exists a flow 't W Y ! Y such that .'t /��0;1D �t;1 . Therefore,
.'�1

1
ıh/��0;1 D �0;1 shows that .'�1

1
ıh/ is the required contactomorphism. Finally,

X D e
0;1
0

satisfies the stated hypothesis.

The same proof works for compact manifolds with boundary when the diffeomorphism h

is the identity on the boundary and h�.e/ is homotopic to e relative to the boundary.
We then obtain a contact diffeomorphism  supported in the interior of Y and a
nowhere-vanishing Legendrian vector field X such that  �.X / is homotopic (relative
to the boundary) to X through nowhere-vanishing Legendrian vector fields.

The assumption in Proposition 4.4 that h preserves a framing up to homotopy turns
out to be not too restrictive by the following observation of Geiges [10]:

Lemma 4.5 Let M be a closed oriented 4–manifold with trivial tangent bundle and
X a nowhere-vanishing vector field on M. Then there are vector fields e1 , e2 , e3 such
that X , e1 , e2 , e3 is a framing.

Proof We identify TM 'M �R4 with M �H . Then X together with e1 D iX,
e2 D jX and e3 D kX is a framing of TM.
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In particular, we can apply this lemma to the suspension vector field on the mapping
torus of a diffeomorphism hW N ! N when the mapping torus is parallelizable.
Projecting e1 , e2 and e3 to the fibers of a mapping torus, we obtain a framing of N

with the desired properties.

Theorem 4.6 Let Y be a compact 3–manifold bounded by a nonempty union of
tori, and � a positive contact structure on Y which prints a linear characteristic linear
foliation on @Y . If h is a contact diffeomorphism of .Y; �/ which is the identity near
the boundary, then the relative mapping torus of .Y; h/ carries an even contact structure
which induces � on (a small retraction of) the pages. This even contact structure is
uniquely determined up to homotopy through even contact structures carried by the
triple .Y; �; h/.

Proof For simplicity, we assume that @Y is connected. Let Ys D Y � Œ0; 1�=� be
the mapping torus of .Y; h/. We denote the suspension coordinate on Ys by ' and
fix a coordinate system .x;y/ on T 2 ' @Y such that @Y is linear in terms of the
coordinates. The suspension vector field is @' and D2

r0
�R2 is a disc of radius r0 .

We view M as the mapping torus Ys D Y � Œ0; 1�=� of .Y; h/, with a neighborhood
N.K/D @Y �D2

r0
of the binding K of the binding attached along the boundary such

that fyg � @D2
r0

is mapped to fyg �S1 in @Ys D @Y �S1 for all y 2 @Y .

Because h preserves � we get a well-defined 2–plane field �s on Ys which is tangent
to the fibers of � W Ys! S1 . Together with the suspension vector field @' , this plane
field spans an even contact structure Es on Ys whose isotropic foliation is directed
by @' .

Since h is the identity on a neighborhood of @Y and the characteristic foliation �.@Y /
is linear, we can choose a collar U ' @Y � Œ0; 2"/, with " > 0, such that hjU D idU

and
� D ker.cos.r C a/ dx� sin.r C a/ dy/:

where the parameter a 2 R is determined by the slope of the linear characteristic
foliation �.@Y /. Since we are free to choose the coordinates .x;y/, we may assume
that the slope is positive in terms of these coordinates. On U �S1 � Ys we consider
the even contact structure E0 D �˚R@' . The isotropic foliation is of course spanned
by @' . We want to homotope E0 through even contact structures so that isotropic
foliation of the resulting even contact structure E1 is @' C @y .
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Recall that the space of contact vector fields on a given contact manifold is in one-to-one
correspondence to the space of smooth functions once a contact form is fixed (see
[18, Section I.3.4]). This implies the existence of a contact vector field L with support
in U and LD @y on a collar V D @Y � Œ0; "�� U of @Y .

We use the same notation for L and its lift to the product Y �S1 . The desired homotopy
of even contact structures is Es D �s˚R.@' C sL/ with s 2 Œ0; 1�.

Finally, we extend Es to an even contact structure over V [N.K/: let .r; '/ be polar
coordinates on the second factor of N.K/D @Ys �R2 with r 2 Œ0; 1� and

Eb D ker.dxC r2 d' � r2dy/:

One can check by a simple computation that Eb is an even contact structure whose
isotropic foliation is spanned by @' C @y . In particular, Eb induces a contact structure
on f' D '0; 0< r � r0g. The characteristic foliation on T 2D T 2�fr D r0; ' D '0g

is linear and the slope is 1=r2 > 0.

Therefore, we can choose r0 so that the even contact structures Eb and E1 on Ys can
be glued, and we obtain an even contact structure supported by the resulting open book
on Ys [@ .@Y �D2

r0
/. The pages of this open book are formed by fibers of Ys! S1

with f' D '0; 0< r � r0g attached along @Y .

We now prove the uniqueness part of the theorem. Let E and E 0 be two even contact
structures carried by the open book decomposition .Y; �; h/. Their isotropic foliations
W and W 0 are spanned by vector fields of the form @' CL and @' CL0 on both
N.K/ and Ys , where L and L0 are tangent to the pages and to K .

The path of hyperplanes fields EsD �˚R.@'C.1�s/LCsL0/ for s2 Œ0; 1� interpolates
between E and E 0, satisfies the even contact condition and is carried by .Y; �; h/.

Remark 4.7 We are able to prove that the built even contact structure is unique (see
Remark 4.2) because we start with an open book given by a triple .Y; �; h/, and not by
a pair .K; �/.

Using the flexibility properties of overtwisted contact structures [6], we can show the
existence of a contact structure satisfying the assumptions of Theorem 4.6 for a given
open book decomposition .Y; h/ such that @Y is a union of tori and h preserves a
plane field up to homotopy relative to the boundary.
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Theorem 4.8 Let Y be a compact 3–manifold bounded by a nonempty union of tori,
and h a diffeomorphism of Y which is the identity near the boundary such that there
exists a plane field P of Y such that h�P is homotopic to P relative to @Y .

Then the relative mapping torus of h carries an even contact structure.

The proof of Theorem 4.8 follows from a combination of Theorem 4.6 and a variant of
Proposition 4.4. Under the hypothesis that the monodromy h preserves a plane field P
up to homotopy relative to the boundary, a slightly modified version of Proposition 4.4
gives an overtwisted contact structure homotopic to P and preserved by h. Theorem 4.6
then gives the conclusion.

The following theorem shows that one can always arrange that the page of an open
book supporting an even contact structure is overtwisted if one allows homotopies
through even contact structures which are not necessarily supported by the open book
decomposition. In particular, � 0 can be taken overtwisted even if � is tight.

Theorem 4.9 If E is carried by .Y; h/ and E induces a contact structure � on Y . Then,
for every overtwisted contact structure � 0 on Y which is homotopic to � as oriented
plane field relative to the boundary, the even contact structures E and E 0 associated to
� and � 0 are homotopic through even contact structures.

In particular, � 0 can be taken overtwisted even if � is tight.

Proof It is enough to prove the result when � 0 is overtwisted. In this situation, h��
0 is

overtwisted and homotopic to � 0 rel @Y . By Eliashberg’s classification of overtwisted
contact structures [6], � 0 is isotopic to h��

0.

We can thus deform h to h0 to make � 0 an h0–invariant contact structure. Then we
construct an even contact structure E 0 carried by .Y; � 0; h0/. The pair .E 0;W 0/ is
homotopic to .E ;W/ by construction. The h-principle [17] implies that E and E 0 are
homotopic through even contact structures: On the interior of the suspension of .Y; h/,
the homotopy of plane fields �t for t 2 Œ0; 1� interpolating between � and � 0 induces
a homotopy of formal even contact structures .�t ˚R@' ;R@'/, and both W and W 0

are homotopic to R@' as line fields transverse to the pages.

Still, rigidity could come from tightness of the pages.

Question 4.10 Which even contact structures are carried by at least one open book
decomposition with a tight page?
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5 Open book decompositions and Engel structures

Let M be a closed oriented 4–manifold and .K; �/ an open book decomposition
of M.

Definition 5.1 An Engel structure D is adapted to (or supported by) .K; �/ if the
associated even contact structure E D ŒD;D� is adapted to .K; �/.

As we have stated in the introduction, this is a somewhat unsatisfactory definition. For
example, it is possible that different Engel structures are adapted to the same open
book even if the associated framings are not homotopic.

Example 5.2 Let � be a contact structure on a compact 3–manifold Y which is trivial
as a plane field and is supported by an open book .K; �/. We fix an adapted contact
form ˛ together with the corresponding Reeb vector field R and a trivialization C1 , C2

of � . Let prW M DS1�Y ! Y be the projection. We denote the horizontal lifts of the
trivialization C1 , C2 and of the Reeb vector field R to S1 �Y with the same letters,
and the coordinate on S1 will be t .

For " > 0 small enough, the plane field Dk , with k � 1, spanned by

(2) W D @t C "R; X D cos.2�kt/C1C sin.2�kt/C2

is an Engel structure supported by .S1 �K; � ı pr/.

This can be applied to the contact structure on S.T �T 2/ for different k . The homotopy
class of the induced framing of S.T �T 2/�S1 depends on the parity of k . Thus, an
open book can generate Engel structures which cannot be homotopic through Engel
structures.

5.1 Invariants of Engel structures supported by open books

Fix D an Engel structure carried by .Y; h/; associate an integer k to D in the following
way: Pick a page Y0 and a collar neighborhood @Y0 � .�1; 0� of @Y0 in Y0 such
that the characteristic foliation �0.@Y0 � fsg/ for s 2 .�1; 0� is linear and where the
monodromy h is the identity. Let x0 2 @Y0 � fs0g be a point in that neighborhood.

Along the path x0 �S1 �†0.Y; h/, we have a trivialization of �t D E \TYt at the
point .x0; t/ for t 2 S1 by the line field C D �t \ T .@Yt � fs0g/. There is another
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line field C 0DD\ �t . We define k to be the rotation number of C 0 with respect to C

in �t when we go around x0 �S1 .

Now, if D and D0 are two Engel structures which are carried by the same open book
and induce the same contact structure �0 on one page Y0 , then there are two Legendrian
line fields LD �0\D and L0 D �0\D0. The degree of L0 with respect to L induces
a map which defines a homomorphism

ı.D;D0/W H1.Y0;Z/! Z:

If W and W 0 are the respective kernels of D and D0 and are equal near K , their
first return maps � and �0 of the kernel foliations are contactomorphisms on the
interior of .Y0; �0/ which coincide near @Y0 . The even contact structures E and E 0 are
homotopic through even contact structures supported by the open book if and only if
there is a family .�t ; �t / such that �t is a contactomorphism of the contact structure �t

on Y0 such that �0 D � , �1 D �0, �t has support in the interior of Y0 and �t is
constant on a neighborhood of @Y0 .

If we moreover assume W DW 0, then �t D �
0
t for all t 2 S1 , and ı.D;D0/ ı �� D

ı.D;D0/.

We now define twisting numbers, which will be used to keep track of the homotopy
class of plane fields in even contact structures such that the plane field is tangent to the
isotropic foliation of the even contact structure.

The restriction �' of E to each page is a contact structure. We assume that there is a
section X of E which is tangent to the pages. In the situations we are going to study,
X will be �@r on collars of the boundary of T 2 �D2 and of Ys D Y � Œ0; 1�=�.

Let C1 , C2 be an oriented framing of �' . For a closed oriented curve  there are
functions g1 and g2 such that X. .t//D g1.t/C1. .t//Cg2.t/C2. .t//. We define
the twisting number tw.C1;  / to be the degree of the map

S1
! S1; t 7!

.g1.t/;g2.t//

k.g1.t/;g2.t//k
:

Obviously, tw.C1;  / depends only on the homology class of  and on the homotopy
class of C1 as a nowhere-vanishing section of �' .

5.2 Construction of Engel structures

In this section we adapt the construction from Section 4 to obtain Engel structures and
prove the following theorem:
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Theorem 5.3 Let Y be a compact 3–manifold bounded by a nonempty union of tori,
and h a diffeomorphism of Y which is the identity near the boundary and for which
there exists a framing e of Y such that h�e is homotopic to e relatively to @Y . Then
the relative mapping torus of h carries an Engel structure.

We will prove this theorem in Section 5.2. Using Lemma 4.5 we obtain the following
corollary:

Corollary 5.4 If M is an oriented closed parallelizable 4–manifold, every open book
decomposition with toric binding .K; �/ of M carries an Engel structure.

Proposition 5.5 Let D be an Engel structure carried by .Y; h/ and ıW H1.Y;Z/!Z

be a morphism. If ı ı h� D ı , then there exists en Engel structure D0 supported by
.Y; h/ which induces the same contact structure as D on int.Y0/ (with W 0 DW and
E 0 D E outside a neighborhood of K ) such that ı.D;D0/D ı .

Question 5.6 Is every Engel structure homotopic to an Engel structure carried by an
open book?

Question 5.7 Which Engel structures are carried by an open book decomposition with
tight pages?

Let E be an even contact structure on the total space of a fibration over S1 such that the
isotropic foliation is transverse to the fibers of � . (We are going to consider two cases,
� W Ys ! S1 and � W T 2 � .D2 n f0g/! S1 .) We denote the vertical tangent vectors
in E by Ev . The analogous notation Dv will be used later for Engel structures D
whose isotropic foliation is transverse to a fibration over S1 .

In what follows, x , y and ' are simple closed curves in @Y �S1 (or, equivalently,
in T 2 � @D2 � T 2 �D2 ) which correspond to the coordinates x , y and ' .

5.2.1 Engel structure on Ys Let S� be vector field directing the characteristic folia-
tion on T 2�frg�f'g such that @r , S� is an oriented framing of � on a neighborhood
of @Y and @r points into Ys along @Ys . We choose coordinates x , y on T 2 D @Y

such that

(3) tw.C1; x/D 0; tw.C1; y/D �;
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where � is an integer. This determines the homotopy class of C1 as a nowhere-vanishing
section of � , and we assume

(4)
C1 D cos.�y/ @r C sin.�y/S� ;

C2 D�sin.�y/ @r C cos.�y/S�

on a collar of T 2 � @Y . A simple computation shows that C1 has the right twisting
numbers (see (3)). Note in particular that, along fy D 0g, C1 D�@r and C2 D S� .

On Y � Œ0; 2� with coordinates .p; '/ consider the plane field Dk spanned by the
isotropic foliation of the even contact structure defined as in Section 4 using the contact
structure � , and

(5) Xk WD cos.2�k'/C1C sin.2�k'/C2

with k 2N . According to Lemma 2.6, Dk is an Engel structure when k > 0 is large
enough and ŒDk ;Dk �D E is independent of k . The orientation of E induced by Dk is
the one determined by the framing C1 , C2 . Moreover, assuming again that k is large
enough, there is a smooth function f W Y ! .0; 2/ with f � 1 on U (where hD id)
such that

(6) hW Y ' f.p; f .p// j p 2 Y g ! Y D Y � f0g

preserves the line field spanned by Xk . At this point we use the assumption that
the framing .h�.C1/; h�.C2// is homotopic to .C1;C2/ together with the fact that
the holonomy of the characteristic foliation of Dk is the identity on U. Thus, we
obtain an Engel structure Dk on Ys . Notice that near @Ys the Engel structure Dk is
h@' C @yi˚ hXki.

By construction, tw.Xk ; '/D k . In order to make subsequent constructions possible,
we require that k is odd.

5.2.2 Even contact structure on T 2�D2 We need to extend the Engel structure Dk

to T 2 �D2 . For that we will first extend the associated even contact structure E in
such a way that the plane field Dk also extends to a plane field in E containing W .
This extra condition requires a modification of the construction in Section 4.

We will choose the even contact structure on T 2 �D2 D S1
x �S1

y �D2 so that it has
a section C 0

1
extending Xk over .0; 0/�D2 which is never tangent to W . Note that

the homotopy type of Xk as a section of Ev along .0; 0/� @D2 depends only on k

(and not on the choice of C1 in Y since it is '–invariant). This is done as follows.
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On S1
x�D2 consider an x–invariant contact structure � 0 with the following properties:

� � 0D ker.dxCr2 d'/ near the boundary of S1
x�D2 . In particular, � 0D � along

@Ys D @N.K/.

� The characteristic foliation on fx D 0g has only nondegenerate singularities.
Let e˙ and h˙ denote the number of elliptic and hyperbolic singularities,
respectively. The subscript refers to the sign of the singularities. We require

(7)
eC D

1
2
.kC 1/; e� D 0;

hC D 0; h� D
1
2
.k � 1/:

Since k is odd, these numbers are all integers.

Such a foliation exists since eCCe��hC�h�D 1D�.D2/ and standard results from
the theory of convex surfaces imply that the singular foliation on fx D 0g determines a
x–invariant contact structure � 0 on S1

x �D2 . Let E 0 be the extension of E given by
E 0 D � 0˚h@y C @'i.

We let X 0
k

be a vector field along @Ys generating Dk \ �
0. Note that

e.� 0/ŒD2�D eC� e�� hCC h� D k D tw.X 0k ; @D
2/:

By the Poincaré–Hopf theorem, the Legendrian vector field X 0
k

of � 0j@D2 extends to a
nowhere-vanishing section C 0

1
of E 0 on T 2 � .0; 0/ such that C 0

1
is nowhere tangent

to W 0 D @y C @' .

This extension is unique up to homotopy and there is a Legendrian vector field C 0
2

such
that .C 0

1
;C 0

2
/ is a framing of � 0 on .0; 0/�D2 .

Near T 2 � @D2 we require Ci and C 0i have the same image in E=W for i D 1; 2.
Then there is a homotopy between Ci and C 0i in Dk nW such that C 0i can be viewed
as an extension of Ci . Near T 2 � @D2 , we have

(8)
C 01 D cos.k'/ @r C sin.k'/S� ;

C 02 D�sin.k'/ @r C cos.k'/S� :

This is consistent with the choice of Xk near @Ys , ie the Ci together with C 0i form
a smooth vector field on a neighborhood of T 2 � @D2 in M D Ys [@ .T

2 �D2/ for
i D 1; 2.

5.2.3 Engel structure on T 2 � D2 Now we define �Dl on T 2 �D2 as the span
of @y and zXl D cos.ly/C 0

1
C sin.ly/C 0

2
. This is an Engel structure for all l 2N . The
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isotropic foliation is spanned by @y , so it is not transverse to the fibers of � . However,
the Engel structure D0

l
obtained by pushing forward �Dl with the diffeomorphism

f W S1
� .S1

�D2/! S1
� .S1

�D2/; .x;y; r; '/ 7! .x;y; r; 'Cy/;

has the desired property since its isotropic foliation is spanned by @y C @' . Let

(9) X 0l D f�.
zXl/D cos.ly/f�.C 01/C sin.ly/f�.C 02/:

By construction, the gluing map g maps the isotropic foliation (which is tangent to @Ys )
to the isotropic foliation of D0

l
(which is also tangent to T 2 � @D2 ). As in Section 4

we can arrange that the gluing map preserves the singular foliation on the fibers of � .

5.2.4 Gluing the pieces together The even contact structures induced by Dk and D0
l

coincide with the even contact structures near @Y �S1 and T 2 � @D2 , respectively,
which arose in Section 4. Therefore, the only remaining problem is to ensure that the
gluing maps the line field D0v

l
to Dv

k
. From (5) and (4) we obtain

Xk D cos.k'C�y/ @r C sin.k'C�y/S�

and, according to (8) and (9), X 0
l

is given by

X 0l D cos..l � k/yC k'/ @r C sin..l � k/yC k'/S�

near T 2 � @D2 . The conditions on the parameters l and k are

� k is a positive odd integer,

� l is a positive integer.

Thus, we obtain a smooth Engel structure on M D .T 2 �D2/[@ Ys if l � k D �

when k is large enough.

5.2.5 Uniqueness Using recent results about flexibility of Engel structures [3] we
can prove the following:

Theorem 5.8 For a fixed choice of framing e , the Engel structures constructed in
Theorem 5.3 are unique up to homotopy through Engel structures for k large enough.

According to [3], we only need to check that

� any pair of them are homotopic through formal Engel structures, ie the induced
framings of TM are homotopic, and

� the Engel structure is loose in the sense of [3] when k is big enough.
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Recall that k is odd, therefore the Engel structures on the mapping torus associated
to k and k C 2 are formally homotopic, ie the associated framings are homotopic.
Near the boundary, we can be more specific using the coordinates x , y and ' on the
boundary of the mapping torus: The homotopy of framings can be chosen to be:

� Constant on the neighborhood D1=2 �T 2 of the binding, and we may assume
that the characteristic foliation on D1=2 contains all singular points introduced
during the construction (7) for a fixed, odd value of k at the beginning of the
homotopy. At the end of the homotopy, D1 n D̊1=2 contains an additional pair
of singularities, so that, at the end of the homotopy, the characteristic foliation
on D1 has the number of singular points prescribed by (7) for k C 2 instead
of k .

� The hyperplane field on D1 nD1=2 spanned by the first three components of
the framing is invariant under rotations in the .x;y/–direction throughout the
homotopy.

� Throughout the homotopy, the framing is invariant under translations in the
x–direction; the first and the last component of the framing are also y –invariant.

� The second and the third components are not y–invariant in general, but they
are twisted and the twisting is determined by � as in (4).

A homotopy with all these properties can be found by first fixing it on the annulus
D1 n D̊1=2 and then extending the homotopy using the desired invariance properties.

Since �2.SO.4//D f0g, this homotopy is unique, and we may assume that the at the
end of the homotopy, the characteristic foliation on D1 n D̊1=2 � f.0; 0/g �D2 �T 2

has precisely one elliptic and one hyperbolic singularity (as in (4) for kC 2 instead
of k ).

The end result of the homotopy of framings coincides (up to homotopy) with the Engel
framing obtained by our construction for k C 2. In particular, the twisting number
along y is fixed.

We use the following definition for looseness of Engel structures. A chart in .M;D/ is
an N –Darboux chart for N 2N if there is an Engel embedding of the ball D3�.0;N /

with coordinates .x;y; z; �/ and with Engel structure

ker.dy � z dx/\ ker
�
cos.2�.� � �0// dz� sin.2�.� � �0// dx

�
for some �0 2R.
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In other words, the chart is a Darboux chart of an even contact structure in which the
vector transverse to W rotates N times. We say that D is N –loose if any point of the
manifold can be placed in the interior (not necessarily in the middle) of an N –Darboux
chart. The main result of [3] implies that there is an integer N0 with the following
property: if D0 and D1 are N –loose with N >N0 and formally homotopic, then they
are homotopic through Engel structures.

The Engel structure on Ys is .k�L/–loose, where L depends only on the gluing
map ' and the framing (see (6)). The Engel structure D0

l
on T 2 �D2 is l –loose.

Finally, recall that l D kC�. Since both � and L are independent of k , this implies
Theorem 5.8.

6 Stabilization

Let .Y; �/ be a contact manifold whose boundary is a nonempty union of tori such that
the characteristic foliation of � on each component of @Y is linear.

Let A be a properly embedded annulus in .Y; @Y / such that

(i) @A is not contractible in @Y ,

(ii) the characteristic foliation �A is nonsingular and made of intervals going from
one boundary component to the other, and

(iii) the characteristic foliations on the two 2–tori formed by A and the two annuli
cut by @A in @Y are linear.

Like in the topological case explained in Section 3.2, we glue a handle S1�Œ0; 1��Œ�1; 1�

to @Y and consider the torus T DA[S1 � Œ0; 1�� f0g. Recall that the stabilization
procedure requires the choice of a curve  in T intersecting the cocore S1�

˚
1
2

	
�f0g

exactly once.

We extend � to the handle S1 � Œ0; 1� � Œ�1; 1� as follows. First, we extend the
characteristic foliation �A of A to a linear foliation of T such that  is an integral
curve. This determines the germ of the contact structure � 0 along T . After reducing the
thickness of the handle, we obtain a contact structure � 0 on Y 0DY [S1�Œ0; 1��Œ�1; 1�.
Because of condition (iii), the characteristic foliations of the two tori formed by gluing
S1 � Œ0; 1�� f0g and the two annuli cut by @AD S1 � f0; 1g � f0g in @Y are linear.
This implies that we can choose the boundary of Y 0 so that the characteristic foliation
of � 0 is linear.
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There exists a neighborhood T �Œ�"; "� of T 'T �f0g such that each torus T �fsg for
s 2 Œ�"; "� has a linear characteristic foliation for � 0. We now choose a representative
of � which preserves each torus together with its foliation. Following Giroux [13; 9],
we then obtain another representative � which preserves � 0. Let h0 D � ı h.

Continuing Example 4.3, we give an example of a situation where the above conditions
are satisfied.

Example 6.1 Let .K; �/ be an open book decomposition of a closed 3–manifold Y

supporting a contact structure � which is trivial as a vector bundle. In Example 4.3 we
showed that for " > 0 small enough there is an even contact structure E" on S1 �Y

which is homotopic to pr�1
� .�/ through even contact structures. Recall that pr denotes

the projection onto the second factor of S1 �Y .

We now consider a stabilization of .K; �/. For this we choose a properly embedded
arc a inside a page S. By Giroux’s realization lemma [12], it is always possible to
isotope � through contact structures carried by .K; �/ so that a is Legendrian. Then
the open book decomposition .pr�1.K/; � ıpr/ is adapted to E" and the annulus S1�a

verifies the conditions stated at the beginning of this section.

Theorem 6.2 The even contact structures E and E 0 determined by the mapping tori
of .Y; �; h/ and .Y 0; � 0; h0/ are homotopic.

Proof Recall first that if an open book decomposition supporting a contact structure �
on a closed 3–manifold Z is stabilized along an arc a properly embedded in a page,
then the stabilized open book decomposition also carries a contact structure � 0 and that
� and � 0 are isotopic. More precisely, after Giroux and Goodman [14] (see also [9]),
one chooses a to be Legendrian. Then

.Z; � 0/D .Z; �/ # .S3; �st/;

where the sphere separating the two summands bounds a small neighborhood of a

in Z . The connected sum with S3 does of course not change the manifold and the
contact structure � 0 is isotopic to � since one Darboux ball (the neighborhood N.a/

of a) is removed and another Darboux ball is glued in. But then � 0 is homotopic to �
relative to the complement of N.a/ since all tight contact structures on a ball which
induce the same characteristic foliation on the boundary are isotopic by Eliashberg [7]
(in this case it can be checked directly).
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Now let A'S1� Œ0; 1� be an annulus satisfying the conditions (i), (ii) and (iii) stated at
the beginning of this section. Then one can find a neighborhood N0.A/'A� .�ı; ı/

of A in the page Y such that the plane field � is defined by dt � f .y/ dx , where
.t;x/ are product coordinates on AD S1 � Œ0; 1� and y 2 .�ı; ı/. Remember that �
is contact in the interior of Y , so f 0.y/ > 0 when x 2 .0; 1/ and f 0.y/D 0 on the
binding @Y \N0.A/D fx D 0; 1g.

In order to describe the even contact structure E 0 one can now refer to Example 6.1 when
we view AD S1�a, where a is a leaf of the characteristic foliation of a fixed annular
page of the open book of S3 described in Example 3.4, joining the two components of
the Hopf link binding. In particular, there is a neighborhood N.A/ of N0.A/ in M

where E is, possibly after homotopy, conjugate to .S1 �N.a/; E"/� .S1 �S3; E"/.

Notice that the contact structure �st on S3 supported by this open book is not trivial
as a vector bundle, but it is over trivial N.a/, where we can apply the construction
of Example 4.3. The even contact structure E 0 is obtained from E by first remov-
ing .S1 �N.a/; E/ and then attaching

�
S1 � .S3 nN.a//; E"

�
. Here, again, �st is

trivial over S3 nN.a/, so the construction makes sense, and there is an orientation-
reversing identification sending the boundary of .S1 �N.a/; E"/ to the boundary of
.S1 � .S3 nN.a//; E"/.

It now follows that .E 0;W 0/ and .E ;W/ are homotopic as formal even contact structures,
and hence as even contact structures [17].

In view of Questions 4.10 and 5.7, a nice feature of the stabilization operation is the
following:

Theorem 6.3 If .Y; �/ is universally tight then so is .Y 0; � 0/.

Proof The contact manifold .Y 0; � 0/ is obtained by gluing a universally tight contact
structure on T 2� Œ0; 1� to .Y; �/ along the prelagrangian torus @Y � .Y; �/. The result
is universally tight by [4].

Finally, we describe how to obtain an Engel structure D0 through a stabilization
procedure on an open book decomposition supporting an Engel structure D on a 4–
manifold M. In many situations, as in the case of even contact structures, if an open
book .Y; �; h/ supports an Engel structure D and if A� .Y; �/ is an annulus satisfying
conditions (i), (ii) and (iii) on page 4298, then using Theorem 5.3 one can construct an
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Engel structure D0 carried by the stabilization .Y 0; � 0; h0/ of .Y; �; h/ along A. We
can check that they are formally homotopic and by [3] they are homotopic for k large
enough, since we have shown that they are loose. However, we lose control of the
geometry.

We present a more intrinsic operation below. Unfortunately, this construction involves
a specific rigid normal form for D near the annulus A along which we stabilize. We
do not know how restrictive it is.

More explicitly, in Example 5.2, where �v is a contact structure on some closed 3–
manifold Y supported by an open book .K; �/, we pick a Legendrian arc a properly
embedded in a page S of .K; �/ and consider the annulus S1 � aD pr�1.a/ together
with an S1 –invariant neighborhood of it S1 � N.a/. We assume that the Engel
structure D on a neighborhood N.A/ of A is conjugated with some Engel structure Dk

from Example 5.2 on S1 �N.a/. Recall the construction of Dk involves the choice
of a trivialization and of a .K; �/–adapted Reeb vector field of �v on N.a/.

In order to obtain an Engel structure carried by the open book of M stabilized along A,
we replace the Engel structure D'Dk on N.A/'S1�N.a/ with an Engel structure
D0 obtained in the following way.

We stabilize the open book .K; �/ of Y along a using Giroux and Goodman’s stabi-
lization construction [14]. This is given, as mentioned in the proof of Theorem 6.2, by
replacing �v and the partial open book induced by .K; �/ on N.a/ by a structure � 0v —
contactomorphic to �v — and a stabilized partial open book .K0; � 0/ supporting � 0v
on N.a/. The trivialization and the Reeb vector field of �v along @N.a/ extend to a
trivialization and a .K0; � 0/–adapted Reeb vector field of � 0v ' �v on N.a/.

Then we again apply the construction of Example 5.2 to � 0v and .K0; � 0/ to get D0 as
an Engel structure D0

k
on N.A/' S1 �N.a/. It is supported by the original open

book of M stabilized along A.

This concludes the description of D0. As in the case of even contact structures it follows
that D0 is homotopic to D through Engel structures: the space of framings of � 0v which
coincide with a fixed framing on @N.a/ is contractible. Moreover, notice that �v
and � 0v are both tight near @N.a/. According to a theorem of Eliashberg [7], any two
contact structures on the ball which coincide near @N.a/ are isotopic relative to the
boundary of the ball. Finally, any two contact vector fields which are transverse to a
fixed contact structure are homotopic through contact vector fields which are transverse
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to that contact structure (this can be seen using convex combinations of two such
contact vector fields).

Remark 6.4 Given an annulus A in a page .Y; �/ satisfying conditions (i), (ii) and (iii),
it is not clear whether one can find a neighborhood N.A/ of A and a homotopy of D
such that the resulting Engel structure is conjugate to one of our models.
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