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Nonarithmetic hyperbolic manifolds and trace rings

OLIVIER MILA

We give a sufficient condition on the hyperplanes used in the Belolipetsky–Thomson
inbreeding construction to obtain nonarithmetic manifolds. We explicitly construct
infinitely many examples of such manifolds that are pairwise noncommensurable and
estimate their volume.

53C23, 22E40; 57M50, 51M25, 20G30

Let M be a finite-volume hyperbolic n–manifold, with n � 2. If M is complete, it
can be written as a quotient �nHn for � a torsion-free lattice in the semisimple Lie
group PO.n; 1/Š Isom.Hn/, the group of isometries of the hyperbolic n–space Hn .
The lattice � is then uniform (ie cocompact) if and only if M is compact.

A standard way to construct hyperbolic manifolds in higher dimensions is via arithmetic
lattices. In Lie groups with rank at least 2, this is actually the only possible construction
(by Margulis’ arithmeticity theorem); yet it is known that there are nonarithmetic lattices
in PO.n; 1/ for every n � 2. Many examples in low dimensions were constructed
using Coxeter groups, notably by Vinberg [16], but the first construction in arbitrary
dimension was given by Gromov and Piatetski-Shapiro [7]. Roughly, their idea consists
in constructing two pieces of noncommensurable arithmetic manifolds with isometric
boundaries and gluing them together to form a nonarithmetic manifold. This construc-
tion has then been generalized by Raimbault [12] and Gelander and Levit [6] to produce
many different commensurability classes of nonarithmetic manifolds.

A similar construction was introduced by Agol [1] in dimension 4 and generalized by
Belolipetsky and Thomson [2] in arbitrary dimension to obtain manifolds with short
systole. They start with two hyperplanes chosen at distance ı > 0 apart and find a
torsion-free arithmetic lattice � such that, in M D �nHn , the hyperplanes project
down to two disjoint hypersurfaces. Then they cut M open along the hypersurfaces
and glue it back to a copy of itself along its boundary; as ı! 0, the systole of such a
manifold then becomes arbitrarily small. Manifolds obtained via this construction will
be referred to as doubly cut gluings and the two corresponding hyperplanes as the cut
hyperplanes (see Section 1.2).
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An interesting consequence is that infinitely many of such doubly cut gluings are nonar-
ithmetic and pairwise noncommensurable. Moreover, these are the first examples in arbi-
trary dimension of nonarithmetic manifolds that are quasiarithmetic (see Thomson [15]).
However if one is only interested in constructing nonarithmetic manifolds, their proof
is somehow nonexplicit in the sense that it relies on the systole argument for proving
both nonarithmeticity and pairwise noncommensurability. Furthermore, it is hard to
give an estimate on the volume of one particular nonarithmetic manifold.

In this paper we give a sufficient condition on the cut hyperplanes to obtain nonarithmetic
doubly cut gluings. Recall that the group PO.n; 1/Š Isom.Hn/ has a natural matrix
representation in Of .R/ � GLnC1.R/ for f D �x2

0
C x2

1
C � � � C x2

n the standard
Lorentzian quadratic form (see Section 1.1).

Proposition 1 Let M be a doubly cut gluing with cut hyperplanes R1 and R2 . Let
�1; �2 2Of .R/ denote the reflections in R1;R2 respectively. If the trace of gD �1�2

is not an algebraic integer, then M is nonarithmetic.

In order to study the commensurability classes of doubly cut gluings, we use an invariant
called the adjoint trace ring. This invariant was introduced by Vinberg [17] as the mini-
mal ring of definition of a lattice � (see Section 2.1). We first show that we can realize
every finitely generated subring of Q as the adjoint trace ring of a doubly cut gluing.

Theorem 2 Let n�4. For every square-free integer d>1, there exists a nonarithmetic
lattice �d in PO.n; 1/ with adjoint trace ring ZŒ1=d �.

These lattices are nonuniform by construction (see Remark 2.7). Since the adjoint trace
ring is an invariant of the commensurability class, there is an immediate corollary:

Corollary 3 The lattices �d and �d 0 are noncommensurable whenever d ¤ d 0.

Thus we are able to construct many noncommensurable nonarithmetic doubly cut
gluings avoiding the nonexplicit systole argument. We will see in Section 3 that this
allows us to give explicit estimates on the volumes of these constructions.

The proof mainly relies on an observation about manifolds which admit a mirror
symmetry in two of their embedded hypersurfaces. In the first section we introduce the
necessary background and prove Proposition 1. In Section 2 we explain how to proceed
to obtain noncommensurable manifolds and prove Theorem 2. Section 3 is devoted to
volume computations, and some generalizations of Theorem 2 are discussed in Section 4.
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1 Background and nonarithmeticity

1.1 Background

Let k �R be a totally real number field with ring of integers Ok � k . Let G be an
absolutely simple adjoint algebraic k–group, and write G.Ok/ for G.k/\GLN .Ok/ in
an arbitrary embedding G� GLN (this group is well defined up to commensurability).
For n � 4, we say that G is admissible if G.R/Š PO.n; 1/ and G� .R/ is compact
for any nontrivial embedding � W k ,!R. In that case, G.Ok/ is a lattice in G.R/.

A lattice � � PO.n; 1/ is called arithmetic if there exists an admissible algebraic
k–group G and an isomorphism 'W PO.n; 1/! G.R/ such that

(1) '.�/ is commensurable to G.Ok/:

Since G is adjoint, we have '.�/� G.k/ (see Borel and Prasad [4, Proposition 1.2]).
The lattice � is called quasiarithmetic if condition (1) is replaced by the weaker
requirement that '.�/� G.k/. Thus arithmetic implies quasiarithmetic.

Let n� 4, and let f be a quadratic form of rank nC 1 defined over k . Assume that
f is admissible; that is, assume

(i) f has signature .n; 1/ when seen over R;

(ii) f � is positive definite for any nontrivial embedding � W k ,!R.

Condition (i) implies the existence of an R–isometry f Š �x2
0
C x2

1
C � � � C x2

n .
Therefore we may identify the hyperbolic space Hn with the “f –hyperbolic space” Hf
which is obtained by choosing one of the two connected components of the space

fx 2RnC1
j f .x/D�1g:

Let Of denote the algebraic k–group of f –orthogonal matrices and POf DOf =Z.Of /
the associated projective orthogonal group (in a matrix representation, we have POf D
Of =f˙ idg). Conditions (i) and (ii) ensure that POf is an admissible algebraic group;
the corresponding arithmetic groups are called of the first type.
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Instead of directly working in POf .R/, it is more convenient for our purposes to use
the Lie group O0f .R/ consisting of the matrices in GLnC1.R/ which preserve Hf .
This group acts on Hf and may be identified with the group Isom.Hn/ of isometries of
the hyperbolic n–space. Moreover there is an obvious isomorphism O0f .R/Š POf .R/
which allows us to see elements of POf .R/ as matrices. Since it is a matrix group, we
can define O0f .A/ for any subring A� R as O0f .R/\GLnC1.A/. In particular, the
group O0f .Ok/ is unambiguously defined and is an arithmetic subgroup of the first type.

With these identifications, a hyperplane of Hf is simply Hf intersected with a linear
subspace of RnC1 of dimension n. We will say that such a hyperplane is k–rational
(or more briefly rational) if the corresponding subspace in RnC1 is the f –orthogonal
complement of a vector v2knC1 (equivalently, v2Ok

nC1). Observe that the reflection
in such a hyperplane is an isometry of Hf which lies in O0f .k/.

1.2 Nonarithmeticity

We briefly recall the construction of Belolipetsky and Thomson [2] in order to prove
Proposition 1. Let f=k be an admissible quadratic form over a totally real number
field k . Let R1 and R2 be two disjoint rational hyperplanes in Hf ; ie R1 and R2

do not meet in Hf or at infinity. In that case, there is a unique geodesic segment �
orthogonal to both R1 and R2 , and its length is the distance between R1 and R2 .

Let ƒ� O0f .Ok/ be a finite-index torsion-free subgroup such that

(i) for i D 1; 2 and each � 2ƒ, either �Ri is disjoint from Ri or they coincide;

(ii) �R1 is disjoint from R2 for any � 2ƒ.

In that case, for i D 1; 2, the orbit ƒRi D f�Ri j � 2ƒg forms a collection of disjoint
hyperplanes, and ƒR1 \ ƒR2 D ∅. It follows from [2, Lemma 3.1] that such a
subgroup ƒ� O0f .Ok/ always exists.

Let L D ƒnHf . By construction, the two hyperplanes R1 and R2 project down
in L to two disjoint hypersurfaces (by which we mean finite-volume totally geodesic
codimension 1 embedded submanifolds); we denote them by N1 and N2 respectively.
The preimage of L n .N1 [N2/ in Hf consists of disjoint convex open sets whose
boundaries are hyperplane lifts of N1 or N2 . Let zC be the connected component
among them having R1 and R2 as boundary components, and let C denote the image
of zC in L. Then, since zC contains the geodesic segment � , the set C is a connected
component of Ln.N1[N2/ such that the distance separating N1 and N2 in C equals
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the distance between R1 and R2 in Hf . Finally let M denote the manifold obtained
by gluing two copies of C to each other by identifying their boundaries (that is, M

is the “double” of C ). We will call M a doubly cut gluing, and R1 and R2 the
cut hyperplanes. Observe that this manifold depends on the choice of the subgroup
ƒ� O0f .Ok/.

Since the hypersurfaces N1 and N2 have finite volume, the manifold M is com-
plete without boundary (even when N1 and N2 pass through cusps; see Gromov and
Piatetski-Shapiro [7, Section 2.10.B]). Hence we may write it as M D �nHf with
� � O0f .R/. Let D and D0 denote the two copies of C, seen as submanifolds of M.
A connected component zD of the preimage of D under the covering map Hf � M

is then a universal cover of D Š C. Thus upon conjugating � we can assume that
zD D zC and that

Stab�. zC /D Stabƒ. zC /:

Write ƒC for this stabilizer; it corresponds to the image of �1.C / in ƒ via the
isomorphism �1.L/Šƒ.

The following lemma gives a generating set for � . A similar generating set appears in
Thomson [15] in the proof of quasiarithmeticity. We include a proof of this specific
version, which we will need in the sequel.

Lemma 1.1 Let �1; �2 2 O0f .k/ denote the reflections in R1;R2 respectively. There
exists �1; �2 2ƒ such that

� D hƒC; �1ƒ
C�1; �1�2; �1�1�1�

�1
1 ; �1�2�2�

�1
2 i:

In particular, � � hO0f .Ok/; �1; �2i.

Proof Topologically, M consists of D and D0 glued together along their boundaries.
Now depending on whether N1 (resp. N2 ) separates L or not, @D consists of one or
two copies of N1 (resp. N2 ). Write @DDN1;1[N1;2[N2;1[N2;2 with Ni;j ŠNi

and possibly Ni;1 D Ni;2 . By our choice of � , we can assume (upon exchanging
Ni;1 and Ni;2 ) that the hyperplane Ri is a lift of Ni;1 . Moreover since the boundary
components of C corresponding to Ni;1 and Ni;2 are identified in L, we can find a
(possibly trivial) �i 2ƒ such that �iRi is a hyperplane lift of Ni;2 contained in the
boundary of zC.

Observe that by construction the reflections in the Ni;j are isometries of M, and that
all these reflections have the same effect on M : they exchange D and D0. Since zC
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x0

�2;1

N1;1 DN1;2

N2;1 N2;2

D

D0

Figure 1: A doubly cut gluing M

contains all Ri and �iRi as boundary, it follows that the reflection about Ni;j is
induced by �i if j D 1 and �i�i if j D 2. Thus for i D 1; 2 and � 2 f1; �ig, the
elements �1 and ��i�

�1 induce the same isometry on M. Therefore

�1��i�
�1
2 �:

Now pick a basepoint x0 in N1;1 , and let zx0 2R1 be a preimage of x0 . The geodesic
between zx0 and �2 ı �1.zx0/ is a segment which crosses R2 exactly once and does
not meet any other hyperplane lifts of the Ni;j except at its endpoints. Therefore,
�1�2 D .�2�1/

�1 2 � corresponds to the homotopy class Œ�2;1� 2 �1.M;x0/ of a
loop �2;1 at x0 which crosses N2;1 exactly once and is contained in D0 before this
crossing and in D after this crossing.

Similarly, for i D 1; 2, the element �1�i�i�
�1
i corresponds to the class of a loop �i;2

crossing Ni;2 exactly once. Consequently, the group �1.M;x0/ is generated by

�1.D/[�1.D
0/[fŒ�2;1�; Œ�1;2�; Œ�2;2�g:

Since �1.D
0/ corresponds to �1ƒ

C�1 in � , the lemma follows.

We turn towards the proof of Proposition 1.

Proof of Proposition 1 We prove the contrapositive. Assume M is arithmetic. Since
� and ƒ share the Zariski-dense subgroup ƒC , it follows from Gromov and Piatetski-
Shapiro [7, Section 1.6] that � \O0f .Ok/ is a finite-index subgroup of � . Therefore
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the element gD �1�2 2 � must have a power gN in O0f .Ok/. Let ˛ be an eigenvalue
of g . Then ˛N is an eigenvalue of gN, and is thus an algebraic integer (since it lies in
an integral extension of Ok). It is easy to see that the same is true about ˛ . Since ˛ is
arbitrary, we get that tr.g/D

P
.eigenvalues/ is also an algebraic integer.

Remark 1.2 The proof actually only uses the fact that �1�2 has an eigenvalue which
is not an algebraic integer. Therefore the conclusion of the proposition still holds if the
trace condition is replaced by this requirement.

2 Noncommensurability and examples over Q

2.1 The adjoint trace ring

Proposition 1 gives a way to control the nonarithmeticity of doubly cut gluings, but does
not say anything about their commensurability. To that end, we will use an invariant
introduced by Vinberg called the adjoint trace ring [17].

Let � be a Zariski-dense subgroup of a semisimple algebraic group G. The adjoint
trace field of � is the field

K.�/DQ.ftr Ad.
 / j 
 2 �g/;

where Ad denotes the adjoint representation. Similarly, the adjoint trace ring A.�/

of � is the integral closure of the ring ZŒftr Ad.
 / j 
 2 �g�. If k DK.�/ is a number
field, we simply have (see Davis [5])

A.�/DOk Œftr Ad.
 / j 
 2 �g�:

In his paper, Vinberg defines the minimal field (resp. ring) of definition of Ad� ,
and shows that it coincides with K.�/ (resp. A.�/) [17, Corollary of Theorem 1].
The adjoint trace field is an invariant of the commensurability class of � , and the
same is true for the adjoint trace ring when the adjoint trace field is a number field
[17, Theorem 3].

Let us assume that G is defined over R. Suppose further that G.R/Š PO.n; 1/ as Lie
groups (with n� 4) and that � �G.R/. For example, one can take GD POf for f a
signature .n; 1/ quadratic form. In that case, the algebraic adjoint representation and
the one coming from the Lie group structure coincide on G.R/. Thus the adjoint trace
field (resp. ring) of � does not depend on G, and it makes sense to speak of the adjoint
trace field K.M / (resp. of the adjoint trace ring A.M /) of a hyperbolic manifold M.
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Remark 2.1 For nD 3 the group Isom.H3/Š PSL2.C/ has a structure of a complex
Lie group. The adjoint trace field — for the complex adjoint representation — of a
Zariski-dense � � PSL2.C/ coincides with the invariant trace field in the sense of
Maclachlan and Reid [8, Definition 3.3.6]. If one uses an algebraic group G such that
G.R/Š Isom.H3/, one gets a different adjoint trace field. For n� 4 this ambiguity
does not appear, as PO.n; 1/ then does not possess a complex algebraic structure.

By Borel’s density theorem, any lattice � is Zariski-dense in G.R/ or G.R/0 . Further-
more, it follows from local rigidity that the adjoint trace field of � is a number field
(even if � is nonarithmetic; see Vinberg, Gorbatsevich and Shvartsman [18, Chapter 1,
Section 6] or Bergeron and Gelander [3, page 124]).

Remark 2.2 When � is arithmetic and commensurable to G.Ok/, it follows from
Prasad and Rapinchuk [11, Lemma 2.6] that K.�/D k and A.�/DOk . In particular,
the adjoint trace field of ƒC (defined in Section 1.2) is k since it contains the stabilizer
of a rational hyperplane which is an arithmetic group of adjoint trace field k .

The following easy lemma is useful to compute the adjoint trace ring.

Lemma 2.3 Let M be a doubly cut gluing with associated quadratic form f over the
field k . Write M D �nHf with � � O0f .R/. Then the adjoint trace field K.�/ of �
is k and its adjoint trace ring is

A.�/DOk Œftr 
 j 
 2 �g�:

Proof We first look at the adjoint trace field. Choose � as in Lemma 1.1. Since �
contains the Zariski-dense subgroup ƒC we get K.�/� k (see Remark 2.2). From
Lemma 1.1 we see that � � O0f .k/, thus establishing the other inclusion.

For the adjoint trace ring, we first apply Theorem 2 of Vinberg [17] to the representation
� ,!O0f .k/ given by the inclusion. We obtain that a conjugate of � lies in O0f .A.�//.
By [17, Lemma 1 and 2] this happens exactly when ftr.
 / j 
 2 �g �A.�/ and the
proof is complete.

Remark 2.4 It follows that a doubly cut gluing is arithmetic if and only if the trace
of all its elements are algebraic integers (that is, contained in Ok). With the help of
Lemma 1.1, Proposition 1 already implied one direction of this equivalence.
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Remark 2.5 In the complex orthogonal group, the following formula relates the trace
of an element and that of its adjoint:

tr Ad.g/D
.tr g/2� tr.g2/

2
for any g 2 On.C/:

This can be proven by direct computation using a basis of the Lie algebra. Since the
formula holds over C, it remains valid in any orthogonal group Of for an arbitrary
quadratic form f , and can therefore be used to compute the adjoint trace ring of
hyperbolic manifolds.

2.2 Examples over Q

To prove Theorem 2, we will apply the results of the previous section to the quadratic
form f D�x2

0
Cx2

1
C� � �Cx2

n defined over Q. In this section, norms, scalar products
and orthogonal complements are to be understood with respect to the quadratic form f .

Fix the hyperplane R1 D fx1 D 0g D v? , where v D .0; 1; 0; : : : ; 0/. Let w D
.w0; w1; : : : ; wn/ 2 ZnC1 be such that

w2
1 � hw;wi> 0:

Then the hyperplanes R1 and R2 D w
? do not intersect. Indeed we have jw1j D

jhv;wij�kvkkwkD
p
hw;wi, and by [13, Theorem 3.2.7] it follows that R1\R2D∅.

Let Mw be a doubly cut gluing with cut hyperplanes R1 and R2 . Write MwD�wnHf
with �w � O0f .R/. Let �1 and �2 denote the reflections in R1 and R2 respectively.

Lemma 2.6 The adjoint trace ring A.Mw/ of the manifold Mw D �wnHf satisfies

Z

�
4w2

1

hw;wi

�
�A.Mw/� Z

�
2

hw;wi

�
:

Proof By elementary computations, the matrix of �2 is

�2 D I �
2

hw;wi
wwtJ; where J D diag.�1; 1; : : : ; 1/:

Multiplying by �1 and using linearity and cyclic invariance of the trace, one gets

(2) tr.�1�2/D .n� 1/� 2
hw; �1wi

hw;wi
;

which in our case equals n�3C4w2
1
=hw;wi by an easy computation. With Lemma 2.3

this establishes the left inclusion. The right inclusion follows from Lemma 1.1 since
O0f .Z/[f�1; �2g � O0f .ZŒ2=hw;wi�/.
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We now dive into the proof Theorem 2.

Proof of Theorem 2 Set b D d if 2 does not divide d , and b D 4d otherwise. Pick
w1 2 Z such that w2

1
> b and gcd.w1; b/D 1. Choose integers w0; w2; : : : ; wn such

that �w2
0
Cw2

2
C� � �Cw2

n D .b�w
2
1
/. The latter is possible since the quadratic form

�x2
0
Cx2

2
C � � �Cx2

n represents any arbitrary integer (�x2
0
Cx2

2
represents every odd

integer, and we have at least one more variable to represent 1). If wD .w0; w1; : : : ; wn/,
we have hw;wi D b whence w2

1
> hw;wi> 0. Thus we can construct Mw D �wnHf

as in the beginning of this section. Since gcd.w2
1
; b/ D 1 we have, using standard

properties of subrings of Q,

Z

�
4w2

1

hw;wi

�
D ZŒ4=b�D ZŒ1=d �D Z

�
2

hw;wi

�
:

Therefore the theorem follows from Lemma 2.6, with �d D �w .

Remark 2.7 It follows from the proof that the lattices �d are all contained in O0f .Q/
for the same quadratic form f . Since its restriction to R1 is simply �x2

0
Cx2

2
C� � �Cx2

n ,
it follows (this form being isotropic) that N1 and thus also Mw are noncompact for
any (admissible) w .

More generally, for n� 5 any doubly cut gluing M with adjoint trace field K.M /DQ

is noncompact. Indeed, the adjoint trace field of the gluing hypersurface must then also
be Q, and since it is arithmetic (of the first type) it corresponds to a quadratic form
over Q with at least 5 variables. Such a quadratic form is always isotropic, and thus, by
Godement’s compactness criterion, the hypersurface, and hence M, are noncompact.

Remark 2.8 Theorem 2 still holds for nD 3, but the notion of adjoint trace ring/field
in the statement differs from its usual meaning if the lattices are considered in PSL2.C/

(see Remark 2.1). Thus Theorem 2 has been stated for n� 4 to avoid confusion.

3 Volume bound

The doubly cut gluings Mw from previous section depend on the choice of a finite-index
subgroup ƒ�O0f .Z/; in this section we will write Mƒ

w for the Mw obtained using the
subgroup ƒ. Note that it is not clear if two commensurable subgroups ƒ;ƒ0 �O0f .Z/
give rise to commensurable manifolds Mƒ

w and Mƒ0

w .
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Define Vw to be the minimal volume of Mƒ
w for any choice of ƒ�O0f .Z/ (satisfying

the requirements given in the beginning of Section 1.2). Our goal is to give an upper-
bound on Vw by constructing explicitly such a ƒ. The arguments of this section are
inspired by the proof of [9, Lemma 10] of Margulis and Vinberg.

We use the notation of the previous section. The subgroup ƒ � O0f .Z/ must be
torsion-free and satisfy, for all � 2ƒ,

(i) �R1\R1 D∅,

(ii) �R2\R2 D∅,

(iii) �R1\R2 D∅.

We focus on principal congruence subgroups of the form

ƒm D f� 2 O0f .Z/ j �� id mod mg (for m 2 Z not necessarily prime).

The goal is to find m� 2 such that ƒm fulfills (i)–(iii).

To obtain a torsion-free subgroup, it is enough to take a congruence subgroup ƒm

with m > 2 (see [10, Theorem IX.7]). Furthermore, it follows from Gromov and
Piatetski-Shapiro [7, Section 2.8] that any principal congruence subgroup satisfies (i).

For (ii), we need to ensure that for any � 2ƒm we have (using [13, Theorem 3.2.7],
as above)

(3) jh�w;wij � hw;wi:

Now if we choose m� 2hw;wi, the fact that

h�w;wi D hw;wi mod m

implies inequality (3).

Finally for (iii) the situation is similar: we just need to ensure that

(4) jh�v;wij � kwk:

If m� 2w2
1

, the fact that w2
1
� hw;wi and the equation

h�v;wi2 D hv;wi2 D w2
1 mod m

imply that inequalities (3) and (4) are fulfilled.

To sum up, we define ƒDƒm , where mDmax.3; 2w2
1
/. This congruence subgroup

is then such that LDƒnHf is a hyperbolic manifold in which R1 and R2 project to
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disjoint hypersurfaces, as desired. Now the doubly cut gluing Mƒ
w constructed from ƒ

is obtained as the double of a piece of L. Thus its volume cannot exceed twice the
volume of L, and we have proven:

Proposition 3.1 The minimal volume Vw of a doubly cut gluing Mw constructed as
in Section 2.2 satisfies

Vw � 2 � jOf .Z=mZ/j � covol Of .Z/;

where mDmax.3; 2w2
1
/.

As a corollary we obtain the following examples of relatively small volume:

Corollary 3.2 For any n� 4, there exists an n–dimensional nonarithmetic doubly cut
gluing M with

vol.M /� 2 � jOf .Z=8Z/j � covol Of .Z/:

Proof We pick w D .1; 2; 0; : : : ; 0/. Observe that w2
1
D 4 > hw;wi D 3 > 0.

Therefore, we can construct doubly cut gluings Mƒ
w as before. Let M DMƒ

w be a
doubly cut gluing realizing the volume Vw . This manifold has adjoint trace ring Z

�
1
3

�
(by Lemma 2.6) and is therefore nonarithmetic. The volume bound is a consequence
of Proposition 3.1.

This volume bound is larger than — but still comparable with — the volume bound
jOf .Z=3Z/j�covol.Of .Z// in the arithmetic case (which is obtained using the principal
congruence subgroup mod 3). For exact computations of the volumes we refer to the
formulas of Ratcliffe and Tschantz [14] and the references therein.

4 About generalizations

There are two easy-to-state generalizations of the doubly cut gluing construction of
nonarithmetic manifolds. The first one is to increase the number of cut hyperplanes.
Indeed, if one finds n disjoint rational hyperplanes, then it is possible (using again
Belolipetsky and Thomson [2, Lemma 3.1]) to find an arithmetic lattice � � POf such
that they project down to disjoint hypersurfaces. If one chooses the hyperplanes in
such a way that their reflections have interesting rational properties, one might get
better results regarding, for example, the minimal volume estimate of a manifold with
prescribed adjoint trace ring.
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The second possible generalization is to give an analog of Theorem 2 for number fields.
One way to proceed would be to replace ZŒ1=d � with the ring OS of S–integers of
a totally real number field k , where S is a finite set of nonarchimedean places. For
specific examples of S this is feasible (as suggested in the toy example of the next
proposition). However in order to get a general result one has to face the problem that
an admissible quadratic form over k ¤Q is not isotropic, and thus cannot represent
any element of k . Moreover, even when we restrict to quadratic extensions, it is likely
that more hyperplanes will be needed to generate OS , thereby making the construction
more complicated.

Proposition 4.1 Let k D Q.˛/ be a totally real number field, with ˛ an algebraic
integer which is positive at all but one embedding k ,!R. Let d 2 Z be a square-free
integer. Then there exists c 2 Z having the same prime factors as d and a doubly cut
gluing M of arbitrary dimension n� 4 with adjoint trace ring satisfying

Ok

�
1

d

�
�A.M /�Ok

�
1

d
;

1

c�˛

�
:

Proof Start with c D d . By eventually increasing the powers of the primes occurring
in it, we can ensure that c >max� j�.˛/j, where � ranges over all embeddings k ,!R.
Consider the quadratic form f D ˛x2

0
C .c �˛/x2

1
Cx2

2
C � � �Cx2

n . The conditions
on ˛ and c imply that f is admissible. Fix an embedding k �R such that ˛ < 0, and
set v D .0; 1; 0; : : : ; 0/ and w D .1; 1; 0; : : : ; 0/. We have

f .v/D c �˛ and f .w/D c;

hence both have positive f –norm, and the hyperplanes they define do not intersect
since hv;wi2

f
D .c � ˛/2 > .c � ˛/c D f .v/f .w/. Now if �1 and �2 denote the

reflections at the hyperplanes defined by v and w respectively, a computation shows
that formula (2) in the proof of Lemma 2.6 still holds when one uses the scalar product
induced by our f instead. We get

tr.�1�2/D .n� 1/� 2 �
2˛�c

c
2 �

4˛

c
CZ:

Let p.x/ denote the minimal polynomial of ˛ , and let N Dp.0/. Then .p.˛/�N /=˛

is in Ok , and thus

Ok Œ1=c��Ok Œtr.�1�2/��Ok

�
p.˛/�N

˛
�
4˛

c

�
�Ok Œ4N=c�:
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Now by possibly increasing further the powers of the primes in c that divide 4N,
we get that the rings on both sides of the chain of inclusions coincide and are equal
to Ok Œ1=d �.

This proves the first inclusion of the proposition. The second inclusion follows from
the same argument as in Lemma 2.6, observing that �1 2 O0f .Ok Œ1=c � ˛�/ and
�2 2 O0f .Ok Œ1=d �/.
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