Volume 18, issue 7 (2018)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 25
Issue 6, 3145–3787
Issue 5, 2527–3144
Issue 4, 1917–2526
Issue 3, 1265–1915
Issue 2, 645–1264
Issue 1, 1–644

Volume 24, 9 issues

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
 
Subscriptions
 
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
 
Author index
To appear
 
Other MSP journals
Equivariant cohomology Chern numbers determine equivariant unitary bordism for torus groups

Zhi Lü and Wei Wang

Algebraic & Geometric Topology 18 (2018) 4143–4160
Bibliography
1 J F Adams, Stable homotopy and generalised homology, Univ. Chicago Press (1974) MR0402720
2 M F Atiyah, Bordism and cobordism, Proc. Cambridge Philos. Soc. 57 (1961) 200 MR0126856
3 M F Atiyah, R Bott, A Lefschetz fixed point formula for elliptic complexes, II : Applications, Ann. of Math. 88 (1968) 451 MR0232406
4 M F Atiyah, G B Segal, The index of elliptic operators, II, Ann. of Math. 87 (1968) 531 MR0236951
5 M F Atiyah, I M Singer, The index of elliptic operators, I, Ann. of Math. 87 (1968) 484 MR0236950
6 M Bix, T tom Dieck, Characteristic numbers of G–manifolds and multiplicative induction, Trans. Amer. Math. Soc. 235 (1978) 331 MR0478182
7 J M Boardman, Stable homotopy theory, VI, mimeographed notes (1966)
8 V M Buchstaber, T E Panov, Toric topology, 204, Amer. Math. Soc. (2015) MR3363157
9 V Buchstaber, T Panov, N Ray, Toric genera, Int. Math. Res. Not. 2010 (2010) 3207 MR2673724
10 G Comezaña, Calculations in complex equivariant bordism, from: "Equivariant homotopy and cohomology theory" (editor J P May), CBMS Regional Conference Series in Mathematics 91, Amer. Math. Soc. (1996) 333 MR1413302
11 P E Conner, Seminar on periodic maps, 46, Springer (1967) MR0224100
12 P E Conner, E E Floyd, Differiable periodic maps, Bull. Amer. Math. Soc. 68 (1962) 76 MR0133834
13 P E Conner, E E Floyd, Differentiable periodic maps, 33, Springer (1964) MR0176478
14 P E Conner, E E Floyd, Periodic maps which preserve a complex structure, Bull. Amer. Math. Soc. 70 (1964) 574 MR0164356
15 T tom Dieck, Bordism of G–manifolds and integrality theorems, Topology 9 (1970) 345 MR0266241
16 T tom Dieck, Characteristic numbers of G–manifolds, I, Invent. Math. 13 (1971) 213 MR0309125
17 T tom Dieck, Characteristic numbers of G–manifolds, II, J. Pure Appl. Algebra 4 (1974) 31 MR0358824
18 V Guillemin, V Ginzburg, Y Karshon, Moment maps, cobordisms, and Hamiltonian group actions, 98, Amer. Math. Soc. (2002) MR1929136
19 B Hanke, Geometric versus homotopy theoretic equivariant bordism, Math. Ann. 332 (2005) 677 MR2181767
20 A Hattori, Equivariant characteristic numbers and integrality theorem for unitary Tn–manifolds, Tôhoku Math. J. 26 (1974) 461 MR0353340
21 S S Khare, Characteristic numbers for oriented singular G–bordism, Indian J. Pure Appl. Math. 13 (1982) 637 MR666477
22 S O Kochman, Bordism, stable homotopy and Adams spectral sequences, 7, Amer. Math. Soc. (1996) MR1407034
23 I M Krichever, Obstructions to the existence of S1–actions : bordisms of branched coverings, Izv. Akad. Nauk SSSR Ser. Mat. 40 (1976) 828 MR0440578
24 P S Landweber, A survey of bordism and cobordism, Math. Proc. Cambridge Philos. Soc. 100 (1986) 207 MR848847
25 C N Lee, A G Wasserman, Equivariant characteristic numbers, from: "Proceedings of the second conference on compact transformation groups, I" (editors H T Ku, L N Mann, J L Sicks, J C Su), Lecture Notes in Math. 298, Springer (1972) 191 MR0365601
26 P Löffler, Bordismengruppen unitärer Torusmannigfaltigkeiten, Manuscripta Math. 12 (1974) 307 MR0348776
27 Z Lü, Q Tan, Equivariant Chern numbers and the number of fixed points for unitary torus manifolds, Math. Res. Lett. 18 (2011) 1319 MR2915484
28 Z Lü, Q Tan, Small covers and the equivariant bordism classification of 2–torus manifolds, Int. Math. Res. Not. 2014 (2014) 6756 MR3291639
29 J Milnor, On the cobordism ring Ω and a complex analogue, I, Amer. J. Math. 82 (1960) 505 MR0119209
30 S P Novikov, Some problems in the topology of manifolds connected with the theory of Thom spaces, Dokl. Akad. Nauk SSSR 132 (1960) 1031 MR0121815
31 D Quillen, Elementary proofs of some results of cobordism theory using Steenrod operations, Advances in Math. 7 (1971) 29 MR0290382
32 D P Sinha, Computations of complex equivariant bordism rings, Amer. J. Math. 123 (2001) 577 MR1844571
33 R E Stong, Notes on cobordism theory, 7, Princeton Univ. Press (1968) MR0248858
34 R E Stong, Equivariant bordism and Smith theory, IV, Trans. Amer. Math. Soc. 215 (1976) 313 MR0405464
35 R Thom, Quelques propriétés globales des variétés différentiables, Comment. Math. Helv. 28 (1954) 17 MR0061823
36 C T C Wall, Determination of the cobordism ring, Ann. of Math. 72 (1960) 292 MR0120654