Volume 18, issue 7 (2018)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 19
Issue 7, 3217–3753
Issue 6, 2677–3215
Issue 5, 2151–2676
Issue 4, 1619–2150
Issue 3, 1079–1618
Issue 2, 533–1078
Issue 1, 1–532

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

Author Index
The Journal
About the Journal
Editorial Board
Editorial Interests
Editorial Procedure
Submission Guidelines
Submission Page
Ethics Statement
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
To Appear
Other MSP Journals
Equivariant cohomology Chern numbers determine equivariant unitary bordism for torus groups

Zhi Lü and Wei Wang

Algebraic & Geometric Topology 18 (2018) 4143–4160

We show that the integral equivariant cohomology Chern numbers completely determine the equivariant geometric unitary bordism classes of closed unitary G–manifolds, which gives an affirmative answer to a conjecture posed by Guillemin, Ginzburg and Karshon (Moment maps, cobordisms, and Hamiltonian group actions, Remark H.5 in Appendix H.3), where G is a torus. As a further application, we also obtain a satisfactory solution of their Question (A) (Appendix H.1.1) on unitary Hamiltonian G–manifolds. Our key ingredients in the proof are the universal toric genus defined by Buchstaber, Panov and Ray and the Kronecker pairing of bordism and cobordism. Our approach heavily exploits Quillen’s geometric interpretation of homotopic unitary cobordism theory. Moreover, this method can also be applied to the study of (2)k–equivariant unoriented bordism and can still derive the classical result of tom Dieck.

equivariant unitary bordism, Hamiltonian bordism, equivariant cohomology Chern number
Mathematical Subject Classification 2010
Primary: 55N22, 57R20, 57R85, 57R91
Received: 10 December 2017
Revised: 23 April 2018
Accepted: 10 June 2018
Published: 11 December 2018
Zhi Lü
School of Mathematical Sciences
Fudan University
Wei Wang
College of Information Technology
Shanghai Ocean University