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Constructing the virtual fundamental class
of a Kuranishi atlas

DusA McDUFF

Consider a space X, such as a compact space of J—holomorphic stable maps, that
is the zero set of a Kuranishi atlas. This note explains how to define the virtual
fundamental class of X by representing X via the zero set of amap pr: M — E,
where E is a finite-dimensional vector space and the domain M is an oriented,
weighted branched topological manifold. Moreover, .#)s is equivariant under the ac-
tion of the global isotropy group I' on M and E. This tuple (M, E, ', ) together
with a homeomorphism from ., (0)/T to X forms a single finite-dimensional
model (or chart) for X. The construction assumes only that the atlas satisfies a
topological version of the index condition that can be obtained from a standard, rather
than a smooth, gluing theorem. However, if X is presented as the zero set of an
sc—Fredholm operator on a strong polyfold bundle, we outline a much more direct
construction of the branched manifold M that uses an sc—smooth partition of unity.
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152 Dusa McDuff

1 Introduction

1.1 Statement of main results

Let X be a compact space that is locally the zero set of a Fredholm operator F of
index d, such as a moduli space of J—-holomorphic stable curves. The question of
how to define its fundamental class is central to symplectic geometry, since so much
information about the properties of this geometry depends on the ability to “count”
the number of elements in X. There are many possible approaches to this problem,
eg Fukaya and Ono [3], Hofer [5], Hofer, Wysocki and Zehnder [6] and Tehrani and
Fukaya [16]. In this note we develop the work of McDuff and Wehrheim [13; 14; 12]
and Pardon [15] that uses atlases, in an attempt to clarify the passage from atlas to

virtual fundamental class.

A d—dimensional atlas consists of a family of charts K; indexed by subsets I C
{1,..., N} =: A, together with coordinate changes ) 1 for I C J, where the chart K;
is a tuple

Ky =Ur, Er, I, 51, ¥1),

consisting of a manifold Uy of dimension d +dim E7, a real vector space Ey, actions
of the group I'7 on Uy and on Ej, a I'7—equivariant map s7: Uy — Ej, and finally
the footprint map vy : SI_1 (0) —> X that induces a homeomorphism from (sI_1 (0))/ Ty
onto an open subset F; of X. The charts K; that are indexed by sets {i} of length
one are called basic charts, and we assume that their footprints (F;);<;<ny cover X,
while the other charts Ky with |/| > 1 form transition data. In applications, the
corresponding vector spaces E; cover the cokernel of the Fredholm operator F at the
points in the footprint F; C X, and are called obstruction spaces because they obstruct
the existence of solutions when F is deformed. The essence of the problem lies in
trying to assemble these local finite-dimensional models for X into one structure that
retains enough information to determine its fundamental class, which (when d = 0)
one can think of as the number of solutions of a “generic” perturbation of F.

The paper [12] explains one way to use a d —dimensional oriented atlas to define a Cech
homology class [X ]",Cir € Hy(X:Q). Roughly speaking, the idea is this. Using the
coordinate changes to identify different domains, one constructs a metrizable, Hausdorff
space |K| = |J; Ur/~ that supports a (generalized) orbibundle |Ex| — |K| with a
canonical section |s|: |K| — | Ex| together with a natural identification

i X = |s|710).
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Constructing the virtual fundamental class of a Kuranishi atlas 153

With some difficulty, one then defines a multivalued perturbation section |v|: |V| — | Ex|,
on a subset |V| C |K|, such that |s 4 v| is transverse to 0. Finally, one shows that the
perturbed zero set |5 + v|~!(0) represents a unique element in Hy(X:Q).

Because it uses the notion of transversality, the above construction requires that the
atlas have some smoothness properties.! In particular, the transition maps between
charts must satisfy the so-called tangent bundle (or index) condition. On the other
hand, Pardon [15] introduces a new way to extract topological information from an
atlas that satisfies a topological version of this condition that he calls the submersion
axiom. Instead of gluing the chart domains together to form a topological space |K|,
Pardon works with K —homotopy sheaves of (co)chain complexes defined on homotopy
colimits of spaces that are obtained from the chart domains. This gives a flexible way of
assembling local homological information into a global object. Though this approach
may be useful in many contexts, it is hard for a nonexpert in sheaf theory to understand
where the technical difficulties are, and what actually has to be checked to ensure that
the method works in any particular case. This becomes an issue if one wants to extend
the method to cases (such as Hamiltonian Floer theory, or symplectic field theory) in
which one must deal with a family of related moduli spaces and so should work on
the chain level. The current paper was prompted by the desire to develop a different
approach, that would replace Pardon’s sophisticated sheaf theory by more elementary
arguments that yet do not require smoothness.

This note only considers the simplest case, appropriate to Gromov—Witten theory, in
which the aim is to construct a homology class [X ]V,Clr € Hy(X;Q). Working with
Pardon’s submersion axiom, we define a consistent thickening of the domains of the atlas
charts to make them all have the same dimension. In the case with trivial isotropy, one
thereby constructs an oriented topological manifold M of dimension D :=d +dim E4,
together with a map y: M — E4 whose zero set can be identified with X. If
the isotropy is nontrivial, M is a branched manifold with a weighting function A
and a global action of the total isotropy group I'4, and there is a homeomorphism
yj‘}l (0)/ T4 => X.2 (A typical example of such a manifold (M, A) is the union of
two circles, each of weight %, identified along a closed subarc A, so that the points

1See Castellano [1; 2] for a weak form of these requirements.

2 Another way to say this is that M := |1\7I |7 is the Hausdorff realization of a topological groupoid M
that is étale but not proper; see Sections 1.2 and 1.3 for relevant definitions. However, just as in the case of
the construction of the zero set in [12], it is most natural to construct a topological category M in which
not all morphisms are invertible, ie it is a monoid, rather than a groupoid.
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X € A have weight A(x) = 1, while the others all have weight A(x) = % See also
Section 1.4.)

Here is the first main result. (See Theorem 1.3.4 for a more precise statement.)

Theorem A Let K be a d —dimensional Kuranishi atlas on a compact space X that sat-
isfies the submersion condition (1.2.3) and has total obstruction space E4 = [[;c4 Ei
and total isotropy group 'y := [[;c4 Ii. Let D = d + dim E4. Then there is an
associated weighted branched D —dimensional manifold (M, A) with an action of T4,
and a 'y —equivariant map #)y: M — E4 with a compact zero set ,5”];[1 (0). Moreover,
there is a map V: 5”];11 (0) — X that induces a homeomorphism 5”];11(0) /Ty = X.

It is immediate from the construction that the bordism class of a neighborhood of
yﬂ}l (0) in M depends only on the concordance class of K.3 Further, if X and
hence (M, A) is oriented, we show in Lemma 2.3.4 that (M, A) carries a fundamental
class jups in rational Cech homology H, . Hence, we have the following:

Theorem B If K is an oriented atlas on X as above, there is a unique element
[X]",Cir € Pvld (X Q) that is defined as follows. For b € ﬁd(X; Q) and D=d+dim E4,
we have

(111 (X b) i= (#a)«(B) € Haim E4(Eas E4~1{0}: Q) = Q,
where b is the image of b under the composite

HYX:Q) L5 B9 (0): Q) 2> Hum g, (M, M ~ 3, (0): Q),

and D is given by cap product with the fundamental class pps. Moreover, [X ]V,Clr
depends only on the oriented concordance class of IC, and in the smooth case agrees

with the class defined in [12].

A key element of the proof of Theorem A is Pardon’s notion of deformation to the
normal cone, which allows one to assemble different chart domains into a family of
topological manifolds Y, albeit ones of the wrong dimension; see Proposition 2.1.1.
The second key point is the existence of compatible collars for these manifolds Y.
Remark 1.3.6 outlines the proof in more detail.

As we explain in Remark 2.2.5, if we start with a smooth atlas then the proofs of
the above results can be somewhat simplified. In particular, by McDuff [9] we can

3Two atlases K® and K! on X are said to be concordant if there is an atlas K°! on [0, 1] x X whose
restriction to {a} X X is K% for @ = 0, 1; see [13, Definition 4.1.6]. Note also that as here, when there is
no danger of confusion, we often abbreviate “Kuranishi atlas” to “atlas”.
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Constructing the virtual fundamental class of a Kuranishi atlas 155

construct M to be a simplicial complex, so that there is no need to use so much rational
Cech homology when proving Theorem B. Further, if one works with polyfolds, then
the proof can be radically simplified. Indeed, it is not difficult to define a smooth
Kuranishi atlas on any space X that appears as the (compact) zero set of a polyfold
bundle; see Hofer [5], Hofer, Wysocki and Zehnder [6], Yang [17] and McDuff and
Wehrheim (work in progress). Because the polyfolds of Gromov—Witten theory support
sc—smooth partitions of unity, if the isotropy is trivial, one can even define such an
atlas with just one chart. In other words, one obtains a finite-dimensional model

(U RN s,v), y:s710) = X,

for the whole of X, in which U is a smooth manifold of dimension d + N and
s: U — R is a smooth map. As we show in Remark 1.3.8, this construction can
be adapted in the presence of isotropy. However, the domain of the single chart is no
longer a manifold, but a branched manifold with action of the total isotropy group 4.

Another simple example is the calculation of the Euler class of an oriented vector bundle
7: £€— X of rank 2k over a compact manifold X. If £’ — X is an oriented complement
to € of rank 2¢ such that there is a vector bundle isomorphism ¢: £ ® &’ = RV x X,
where N =2k + 24, let

(1.1.2) M=¢, 7 M—->RYN, (¢ x) prgy (@€, x)).

Then .#~1(0) 2 X, and it is easy to check that the class [X ]‘,’ér defined by (1.1.1) is
Poincaré dual to the Euler class of £ — X ; see Lemma 1.4.1. This is an instance of
the construction in Pardon [15, Defition 5.3.1] for the bundle 7: £ — X with section
s = 0 in which the thickening 1: RY x X — & is given by the projection.

Finally note that the methods of this paper should extend, eg to a more general notion
of atlas, or to spaces more general than topological manifolds; see Remark 1.3.7.

1.2 Basic definitions and facts about atlases

A weak Kuranishi atlas KC of dimension d on a compact metrizable space X consists
of the following data:*

4These are essentially the same definitions as in [12], except that the smoothness requirements
mentioned in Remarks 1.2.1(ii) below have been replaced by an equivariant version of Pardon’s submersion
axiom. The notion of topological atlas introduced in [13] is somewhat different; in particular the domains
there need not be manifolds. For more details on all topics mentioned in this section, see the original
papers [13; 14; 12] or McDuff [10].
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¢ Footprint cover A finite open cover of X by nonempty sets (F;)jc4-
e A poset Ty = {I CA|Fr:=jer Fi # @} that indexes the charts.

e Charts Forall I €T, Fy is the footprint of a chart Ky := (U, Iy, Ey,s7,¥71),
where

(1.2.1)

Uy is a finite-dimensional topological manifold of dimension d + dim Ej ;
Er :=1l;e; Ei is a product of even-dimensional® vector spaces such that
dimU; —dim E; = d;

I'71 =[[;e; I is a product of finite groups that acts on Uy, and acts by a
product of linear actions on Ejy;

sy: Uy — Et is a I'T—equivariant map;

the footprint map y: SI_1 (0) — X induces a homeomorphism

s71(0)/ Ty = Fy.

¢ Coordinate changes If / C J there is a coordinate change ) 7. K —> Ky
given by the following data, where we identify Ej as a subspace of £ in the

obvious way:

(1.2.2)

a relatively open, I’y —invariant subset Uz of s;l(E 1) C Uy containing
s}l(O) and with a free action of I'y_7;

a covering map pjj: U 17 — Uy that quotients out by the (free) action
of I'y.7 and is equivariant with respect to the projection I'y — I}, and,
further,

S[opI =57, Yy =vYropry on sy (0)C Upys;
if I CJ CK, then
PIK = PIJ © PJK

whenever both sides are defined;

in an atlas (rather than a weak atlas) we require in addition that the domain
p;k(ﬁu) N ﬁJK of pjk o pys is a subset of the domain 1711( of prk;

in a tame atlas we require that both sides of (1.2.2) have the same domain
and that Uzy = s;l(EI).

3For simplicity, we assume that E; is even-dimensional, so that the orientation of a product of the E;
does not depend on their order. In the Gromov—Witten situation we may always choose the E; to have a
natural complex structure since the target of the linearized Cauchy—Riemann operator is a complex vector
space of (0, 1)—forms.
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¢ Equivariant submersion condition For each I C J, each point x € U 17 CUy
has a product neighborhood that is compatible with the section sy ; more
precisely, for each such x with stabilizer subgroup I, C Iy, there is a I'x—
equivariant local homeomorphism of the form

(1.2.3) OE: (Ejps x Wy, {0} x Wy) — (Uy, Upy),

where E;_j s is a §—neighborhood of 0 in Ey.; and Wy is a I'y—invariant
neighborhood of x in Upy, such that

E
SJ\IO¢x (€,y):€, eEEJ\I,5'

Remarks 1.2.1 (i) Although the submersion axiom in [15] does not assume equivari-
ance, this is needed in our set-up in order that M support an action of I'4. Notice that
because 'y acts freely on U 1J , the stabilizer I’y of x € U 17 lies in the subgroup I}
of Iy = I't x I'ys. The standard proof of the submersion axiom for Gromov—Witten
moduli spaces adapts easily to yield I'x —equivariance because it is an application of
the gluing theorem at the stable map x. The process of gluing depends on various
choices, for example of Riemannian metrics and of the complement to the image
of the linearized Cauchy—Riemann operator at x, and these can always be chosen
invariant under the finite stabilizer subgroup of x. This equivariance is built into the
smooth index condition, since the latter is expressed in terms of the equivariant section
maps Sy<r.

(ii)) The smooth case In this case the manifolds Uy are assumed to be smooth, all
structural maps (the group action on Uy, the section s; and coordinate changes pyy)
are smooth, and the submersion axiom is replaced by the requirement that Uiy bea
submanifold of Uy such that

(1.2.4) the derivative of sy j: Uy — E j; induces an isomorphism from the
normal bundle of 171] inUjyto Ej gy x (711.

In this case we claim that each of the maps 777 in Proposition 1.3.3 can be chosen

to be a local diffeomorphism onto its image, so that M is a smooth manifold if the

isotropy is trivial, and otherwise is a smooth branched manifold. The construction of
such an M is sketched in Remark 2.2.5.

(iii) Orientations We will consider an atlas to be oriented if each domain U; (and
each obstruction space E7) has a I'y—invariant orientation that is respected by the
coordinate changes. In fact, in the current situation, since we have assumed that the E;
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are all even-dimensional (eg that they are all complex vector spaces), then if they are
also invariantly oriented, the Ej inherit natural orientations, and the local product
structure given by the submersion condition permits the transfer of an orientation
between charts. In the smooth case, a slightly more general notion of orientation is
discussed extensively in [14; 12]. <o

We now briefly recall some other terminology that will be useful later. An atlas
K' = (K}, ®,) is a shrinking of K = (K1, ®yy) if

¢ it has the same index set Zx, obstruction spaces E7 and groups I7,

o each chart domain U is a precompact subset of Uy, written U; C Uy,

¢ the coordinate changes are given by restriction.
For short, in this situation we write
(1.2.5) ucu,  where U= || U u=|]uU.

1€l Ielx

It is shown in [13, Section 3.3; 12, Section 2.5] that every weak atlas has a tame
shrinking K’ C K that is unique up to a natural equivalence relation called concordance.
A tame atlas K is called preshrunk if there is a double shrinking K = K’ C K" such
that both K and K’ are tame.

Each atlas® K determines a topological category By with

(1.2.6) Objg, = | | Ur. Morg, = | | U1y xTy,
I I1cJ
§x1: Morg, — Objg, xObjg,. (I, J,y.y) > (Ly " (o (¥)), (/. )).
We denote by || := | Bx| its (geometric or naive) realization. Thus,
|Bi| =] |Ur/~.
1

where ~ is the equivalence relation on Objp,  that is generated by the morphisms, ie
(I,x) ~ (J,y) if and only if there is a chain of morphisms

(I, x) = (o, x1) = (I1,x1) < (I2,x2) = -+ < (g, xp) = (J, y).

5The extra assumption in the definition of atlas stated just after (1.2.2) implies that the set Morg ©
defined below is closed under composition.
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Though for a general atlas the quotient topology is non-Hausdorff, it is shown in
[13, Theorem 3.1.9] (see also [12, Section 2.5]) that if K is preshrunk and tame, the
quotient topology is Hausdorff and the natural maps

(1.2.7) mic: Up — |K|

induce homeomorphisms from Uy / I'; onto their images. Further, the quotient topology
on |K'| restricts to a metrizable topology on |K| that agrees with the quotient topology
on each set mxc(Ur). We will say that IC is good if its realization |K| has these
properties.”’

From now on we assume that KC is good in this sense, eg preshrunk and tame.

There is a similar category Ex formed by the obstruction bundles with

ObjE,C = |_| Uy xEr, Morg, = |_| U[J x Er x1I7,
1€Tx IcJ

s x1: Morg, — Objg, xObjg . (I.J.y.e.y) > ((I.y ' (p1s (). ). (J.y.€)).

The projections pr;: Uy x E;f — Uy, sections s7 and footprint maps vy fit together to
give functors

pr: Ex — Bx, s: Bx— Ex, v:s '(0)—> X,

where X is the category with objects X and only identity morphisms, and one can
show that ¥ induces a homeomorphism |v/[: |s|~!(0) — X.

Reductions and zero sets The situation when all the obstruction spaces E; vanish is
considered in McDuff [11]. In this case, the category By is

e étale, ie the object and morphism spaces are manifolds, and the source and target
maps are local homeomorphisms, and

e proper, ie the equivalence relation ~ on the object space generated by the
morphisms is closed.®

7The proof given in [13] that preshrunk and tame atlases are good is abstract, ie the argument only
uses properties of the objects and maps in the category By . However, because the atlas domains are often
constructed as subsets of an ambient Hausdorff metrizable space S (such as a space of stable maps), one
can sometimes use the existence of S to bypass some of the arguments in [13].

81f Obj B s a separable, locally compact metric space (as is the case for the categories considered in
this paper), then this properness condition implies that the realization | B| is Hausdorff; for a proof see
[13, Lemma 3.2.4]. If in addition B is a groupoid, then this condition is equivalent to the more standard
requirement that the map s x t: Morg — Objpg x Objpg is proper.
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Moreover, by [11, Proposition 2.3] it has a natural completion to an EP (étale, proper)
groupoid E;g (ie a category in which all morphisms are invertible) that also has
realization |K|. Thus, By provides an orbifold structure on |K].

If the obstruction spaces do not vanish, then the manifolds U; have varying dimensions.
However, if vy: Uy — Ej is a perturbation section such that s; + vy: Uy — Ey is
transverse to 0, then the perturbed zero set Zj := (s7 +v7)~ 1 (0) has fixed dimension d .
Hence, as is shown in [14, Lemma 7.2.7], if the isotropy groups vanish and if we can
choose the v; compatibly, ie they form a functor

v: Bx — Eg,

then these zero sets fit together to form a manifold. However, in general the domains Uy
overlap too much for there to be such a functor.’

We deal with this by passing to a reduction V, ie a family of 'y —invariant, precompact
open subsets Vy C Uy with the following properties:

¢ the footprints (GI =yr(Vr N sl_l(O))) cover X,

(12.8) Teti

e (V) Nax(Vy)#@onlyif I cJorJCl,

where mc: Ur — |K| is the projection in (1.2.7). In the construction given in Section 7.3
of [14] for the trivial isotropy case, we define the perturbation section as a functor

v: B|y — Exly

on the full subcategory By |y of By with objects | |; V7.

If the isotropy groups are nontrivial then it is (in general) no longer possible to choose
a transverse equivariant section v, even on a reduction V. However, because the
morphisms in Bj|, are described so explicitly, we show in [12, Proposition 3.3.3] that
we may construct the perturbation section as a (single-valued) functor

V: B;d;r — E;d;r,

where B ;C|;F is the (nonfull, nonproper) subcategory of By |y, obtained by discarding
the morphisms coming explicitly from the group actions. Thus,

(1.2.9) Morg |-r = || Vs
IcJ

9See the beginning of [13, Section 7.1]. The relation between I/ and its reduction V is similar to that
between the cover of a simplicial space by the stars of its vertices and the cover by the stars of its first
barycentric subdivision. In particular, though the footprints (F;)1<;<n of the basic charts cover X, the
corresponding sets (G; := F; N |V;|)1<i<n are disjoint and do not form a cover; see Figure 1.
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where

sxt: (I, J,y) = (I, oy (), (J,y)) and Viy =Vynpt (Vi) CUp.

We show in [12, Theorem 3.2.8] that if (s + v) M 0, the full subcategory of B,d;r
with objects

| [Z1 = (51 +v)70)
1

with weights
wi(Zy) = 1/[T7|

can be completed to a weighted étale groupoid whose realization is therefore a weighted
branched manifold as defined in Section 1.3. We will see below that in the current
context the branched manifold structure of M appears in a similar way.

1.3 The weighted branched manifold (M, A)

We will construct M from the realization of an étale category M whose objects are
thickened versions of the domains V; of a reduction V of the atlas XC, and whose
morphisms have exactly the same structure as those in the category B 1<|§F defined
in (1.2.9). In particular, in general M is not proper, so that its realization |M | is not
Hausdorff but rather branches along its locus of non-Hausdorff points (think of two
copies of a circle attached along a subarc.)

We begin with some relevant definitions from [9]. If G is a wnb groupoid as described
below, its realization |G| with the quotient topology is in general not Hausdorff. Hence,
we consider its maximal Hausdorff quotient |G |3, which has the following universal
property: any continuous map from |G| to a Hausdorff space factors through |G |4 .
In the following we write |G| for the realization Objg /~ of an étale groupoid G, and
|G |3 for its maximal Hausdorff quotient.!® We denote the natural maps by

nG: Objg = |G|, 7jg): |G| = |Gly, ng:=nlgong: Objg — |Glu.

Definition 1.3.1 [9, Definition 3.2] A weighted nonsingular branched groupoid (or
wnb groupoid) of dimension d is a pair (G, Ag) consisting of a nonsingular,!! étale

10The appendix to [12] gives succinct proofs of the results we use; in particular, the existence of |G |3
is established in [12, Lemma A.2]. Lemma 2.3.2 gives an explicit description of |G | in the case we need
here.

U That is, there is at most one morphism between any two objects. Further, we restrict here to rational
weights, but clearly this condition could be generalized.
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groupoid G of dimension d, together with a rational weighting function Ag: |G|y —
QT := QN (0,00) that satisfies the following compatibility conditions. For each
p € |G|y there is an open neighborhood N C |G|y of p, a collection Uy,..., Uy
of disjoint open subsets of (TL"}G{)_I (N) C Objg (called local branches) and a set of
positive rational weights m1,...,m, such that the following holds:

* Cover (n/5)~'(N)=|Ui|U---U|U| C|G].

¢ Local regularity Foreachi =1,...,{ the projection ﬂg|U,-3 Ui — |G|y is
a homeomorphism onto a relatively closed subset of N.

e Weighting For all ¢ € N, the number A g (g) is the sum of the weights of the
local branches whose image contains ¢ :

Ae@)= Y, m.

i:q€|Uiln
Now we can formulate the notion of a weighted branched manifold.!?

Definition 1.3.2 A weighted branched manifold of dimension d is a pair (Z, Az)
consisting of a topological space Z together with a function Az: Z — Q7 and
an equivalence class!? of tuples (G,Ag, f), where (G,Ag) is a d —dimensional
wnb groupoid and f: |G|y — Z is a homeomorphism that induces the function
Az :=Ago fL.

We define the weighted branched manifold (M, A) of Theorem A as the realization
of a category M constructed as follows. First choose a I —invariant norm | - || on
each E;, and for any J C A give the vector space Ej :=[[;c; E; the sup norm

lles |l = sup [le; ||
ieJ
Further, let
(1.3.1) Ejc:={ej € Ey||esll <e},

1215 distinction to [9; 12], we will not assume from the outset that a weighted branched manifold is
oriented, since there is no need for this hypothesis until it comes to considering the fundamental class.
Analogous definitions for cobordisms may be found in [12, Appendix].

I3The precise notion of equivalence is given in [9, Definition 3.12]. In particular, it ensures that the
induced function Az := Ag o f~! and the dimension of Obj G 1s the same for equivalent structures

(G.Ag. [).
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and

(132) €= (SI)IEI)C’

where

I1¢J = O0O<ker<ey fork:=max{|J||J €Ik}
Given a reduction V of an atlas K as in (1.2.8), for each I C J we let
(133) Vi =Vina (V) Vi, Vip=Vinac (ae(Vy)) C Vs,

where mic: Vi — |K| is the obvious projection. Thus, ,01](171]) = V7. Observe also
that the group I'q acts on E4< ¢, X Vj by

(1.3.4) y-(e.x) = (yla~s(@).y[s(x))., yeTly,

where y|; denotes the projection of y e Ty :=[[;c4 i to Ty :=[];cs i

The following result is the key step in the proof of Theorem A. A more precise version
is stated and proved in Proposition 2.2.2 below.

Proposition 1.3.3 Let K be a good atlas on X of dimension d. Then there is a
reduction V and choice of constants § > 0 such that the following holds.

(i) There is an étale category M of dimension D := d + dim E4 with

(1.3.5) Objyy = | | My:=Eqys,xVs. Mory= || My,
VASHNS I1CcJ,1,Jelx

S Xt MOI'M-)ObjMXObjM» (I,J,y)'—>((I,TIJ()’)),(J»)’))’

where M 17 C My is an open T4 —invariant subset containing {0} X 171 7 whose
closure CI(M]_]) is disjoint from CI(MHJ) unless I C H or H C I, and the
map

T Mpg— My = Eqcps, X Vi CMp
is a I'4y —equivariant covering map onto Mjy C My such that

e 1y restricts to pyy on {0} x V[J,'
e IfHCICJ thentygjy =tgrotyy OﬂM]JﬂMHJ,&Hd

(1.3.6) graphtyy C My x My is closed.
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(ii) M supports an action of I'y by (1.3.4) on objects, and by
(I?Jay)Hy'(I’me)::(I?va_l'y)’ VGFA’yGMIJ’

on morphisms.

(iii) There is a I'4y —equivariant functor .’ M — E 4, where the category E 4 has
objects E4 and only identity morphisms, that is given on objects by maps
Sy. My — E4 such that

(1.3.7) Z70,x) =s55(x), 7Y Ey) C{0}xVy,

so that
() 7H0) = {(0,x) € Eg4wy x Vy :57(x) = 0}.

The following result explains the construction and properties of the weighted branched
manifold (M, A) mentioned in Theorem A. Note that . denotes a functor M — E 4,
while s: M — E4 is the corresponding function on M.

Theorem 1.3.4 (i) The category M constructed in Proposition 1.3.3 has a unique
completion to a wnb groupoid M with the same objects as M and the same
realization |1\2| =|M]|.

(ii) If we denote the composite Objy, — | M| — M|y by y > |y| ey,
the function A: M :=|M | — Q™ defined by
1
Ap) =y #y € M| wa Iy = p} for pe|Mily
is a weighting function that gives (M, A) the structure of a weighted branched

manitfold.

(iii) The group action by T'y and functor . extend to M , so that there is a T'y—
equivariant map ). M — E4. Moreover, the zero set Y;,l (0) is a compact
subset of M, and the footprint maps ¥; induce a homeomorphism

V: 7' (0)/T4 => X.
(iv) If K is oriented, so are M and M.
The category M has the same structure as the category ZV considered in Theorem 3.2.8

of [12], formed by the perturbed zero set of the atlas C; and the proof of Theorem 1.3.4
(which is given in Section 2.3) is essentially the same as the corresponding result for Z'V.
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Condition (1.3.6), that 77 has closed graph, is automatically satisfied in the case of ZV,
and is an important ingredient of the analysis of the branching structure of M. For
example, if the isotropy groups are trivial, then the maps t7; are homeomorphisms
onto their images, and Lemma 2.3.1 implies that the only morphisms in the groupoid
completion M are those given by the 777 and their inverses. Hence, condition (1.3.6)
implies that the equivalence relation on Obj,, has closed graph, so that the quotient
space |1‘2 | is Hausdorff, and therefore a manifold. An example with nontrivial isotropy
is described in Example 1.4.3(IV).

Proof of Theorem A This is an immediate consequence of Theorem 1.3.4. a

Remark 1.3.5 Instead of taking M to be a weighted branched manifold with action
of T'y4, one could add the morphisms in I'4 to the completed category M to obtain
an étale groupoid M x 4. In general, this groupoid is not proper. However, it does
inherit a weighting function and so the realization |]\//i x 4]y is a weighted branched
orbifold M/ T4; for an explicit example see Example 1.4.3(VI). Note also that the
action of the group I'4 on M only affects the fundamental class s (and hence [X ]V,Cir
via the weighting function A, whose values depend on the groups I'7 as well as on the

category M. 3

Remark 1.3.6 (outline of the argument) We will explain the main points of the proof
of Proposition 1.3.3 in Section 2. The first step is to use “deformation to the normal cone”
(see [15]) to construct manifolds (Y, 7,¢) ez, of dimension d +dim E4+|J|—1 with
a natural boundary that lies over the boundary of a simplex A ; of dimension |J|—1. We
next consider the open submanifold Yy j ¢ C Y/ s ¢ corresponding to a reduction, and
show that this has a partial boundary collar with “corner control”; see Proposition 2.1.4.
Then we use the collar to construct the covering maps 77;: M 17 — My . Since the
general definition of these maps is quite complicated, we explain in Example 2.2.1 how
this works for an atlas with just three basic charts. Proposition 2.2.2 gives the general

construction.

Section 3.1 contains technical details about compatible shrinkings, and the proof that
each Yy, j . is a manifold. The argument here is based on the existence of the local
product structures provided by the submersion axiom. As we show in Step 1 of the
proof of Proposition 2.1.4 in Lemma 3.2.1, this axiom also allows one to construct
local collars that are compatible with the covering maps pyy and with projection to the
vector spaces Ey. ;. In Step 2 of this proof we explain a standard method (described
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in Hatcher [4]) for assembling these local collars into a global collar for each Yy j ¢,
and show in Step 3 how to arrange that these collars have the consistency properties
listed in Proposition 2.1.4 that are needed in the definition of the maps ;. This last
step works under the assumption that the domains of the local collars are compatible
with the reduction V and choice ¢ of thickening constants in a rather subtle way, which
is summarized in the notion of compatible reduction (V, ) in Definition 3.1.9. o

Remark 1.3.7 (generalizations) The construction of M could be generalized in
various ways. The argument relies in an essential way on the submersion property in
order to construct the collars in Proposition 2.1.4, ie on the fact that along U 17 the
space Uy islocally the product of the vector space E y.; with the domain U7 . However,
it does not use the fact that the domains U; themselves are topological manifolds; for
example, since all we want in the end is information on homology, it would no doubt
suffice if they were (locally compact, metrizable) homology manifolds of dimension
dim E;7 + d . One could also consider atlases (or equivalently categories Bj) whose
charts are indexed by a poset more general than that given by the subsets of A. However,
one does need to be able to restrict attention to a subcategory such as Bi|y in which
there are morphisms between the elements of two components of the domain only if
the indices of those components are comparable in the given poset. Some possible
generalizations of this kind are discussed in the last section of [10]. <o

Remark 1.3.8 (the polyfold approach) If X is the zero set of a Fredholm section s
of a polyfold bundle £ — S of index d, then one can use the fact that the realization |S|
supports partitions of unity to give a very simple construction for a weighted branched
manifold M and section . whose corresponding relative Euler class agrees with that
of s: S — £. (In the applications of interest to us S is a category'# whose realization
is a space of stable maps with the Gromov topology; see Hofer [5] and Hofer, Wysocki
and Zehnder [7].) Here is a very brief outline of the construction; for full details see
McDuff and Wehrheim (work in progress).

Given x € X with stabilizer subgroup Iy, choose a lift gx € Objg, and a I'x—invariant
open neighborhood O C Objg of gy such that the map O — |O| C |S]| factors through
a homeomorphism O/ Ty => |O|. Because s is Fredholm, there is a T'x—equivariant
linear map A: E — Sect(€|p) from a I'y—invariant normed linear space E to a subspace

140ne can think of S as an infinite-dimensional version of an EP groupoid, where the objects Obj s

do not form a set but nevertheless the quotient |S| = Objs/~ is a topological space, where ~ is defined
by setting x ~ y <= Mors(x, y) # &.
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of sct —smooth sections that covers the cokernel of the linearization of s at x. It follows
that there is ¢ > 0 such that the set

(1.3.8) U:={(e.q) € ExOJs(q) =Ale.q).|le] <&}

is a manifold of dimension d + dim E. (The proof involves a nontrivial amount of
analytic detail that will appear in McDuff and Wehrheim (work in progress).) Choose
a finite covering of the compact set X := |s~1(0)| by the footprints (y; (sl._1 0)iea
of such charts

K; = (Ui, Ei, I, si, %), si(e.q) =e,

and let (|O;|)ica be the associated open cover of a neighborhood of X in the ambient
space |S|. Just as in [11], one can use the groupoid structure of S to show that the K;
form the basic charts for a tame Kuranishi atlas I, whose transition charts are
given by tuples of composable morphisms. Instead of giving more detail about this
construction, we will outline how to modify these definitions so that the domains of
the charts all have the same dimension d + dim E4.

First choose a family of bump functions (0;);e4 With suppa; C |O;| such that

X =1|s"10)] c U{x | 0 (x) > 0 for some i}.

1

Then choose an ordering of the elements i € A and a reduction ()Wy|)rez, of the
covering (|O;|)ica with the following properties:

IWr| C|Or]:=jes |0i| foreach I € I;

WrlNWy|l#@ = IcJorJClI;

if i ¢ J then 0; =0 on |[Wy]|.

Then, given I = {iy,...,i;} with ip <ij <--- <, the space MIW consists of all
tuples
{(eA,q,-O, Yyioaiy - dix) | 1gio| € IWrI, Waq € Mor(q.q"), leall <,

5(dio) = ¥ 01, (4ig W™ (A1, 1) (@1,)) € Eqo}
J

where (g, Yoioaiy 91 Yai qiyr - -+ qi, ) 1s a composable k —tuple of morphisms from
a point go € Oj, to qx € O;, . By [7, Theorem 7.4], we may choose the o; so that for
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each i, j € A the function
Oi = [0,1], g o0j(lg]),

is sc—smooth. It follows that if & > 0 is suitably small, then, for each I, M IW is
a manifold of dimension d + dim E4 with action of I'y. Moreover, much as in
[11, Proposition 2.3], for each I C J one can define a I'y—equivariant covering map

t: MY oMYy — M)y c M)

by taking an appropriate combination of the structural maps in S (such as compositions
and source/target maps), where M}/}/ (resp. 1\7}/}/) consists of all elements in M IW
(resp. M}/V) with |gi,| € [Wr| N [Wy|. This gives a category M whose structure is
precisely as described in Proposition 1.3.3. The resulting virtual fundamental class
(VFC) [X]¥'" is independent of all choices, and can be shown to agree with that defined
by the polyfold Fredholm section s5: S — €.

Note that the equation satisfied by the elements in M IW involves the bump functions o7,
while the equation (1.3.8) defining the chart domains of the atlas K ; does not. Hence,
the weighted branched manifold (M"Y, A) constructed above is not identical to the
manifold obtained from the atlas Ky by the collaring construction described below.
Nevertheless, these two constructions are closely related and, by adapting the arguments
in Section 2.3, one can show that they define the same VFC [X]". For more details,
see McDuff and Wehrheim (work in progress). o

1.4 Examples

We end this introduction by giving some examples. Though these are not needed for
the proofs of the main results, readers unfamiliar with the description of orbifolds via
atlases might find it useful to read at least some of this section before proceeding further.

We begin by discussing the definition of the relative Euler class of an oriented vector
bundle 7: £ — W over a manifold that is equipped with a section s: W — £ whose
zero set X := s~ 1(0) is compact. In particular, we explain why the method outlined in
equation (1.1.2) does compute the Euler class e(€) of € — W when W is compact and
s = 0. In Remarks 1.4.2, we describe how to extend the construction to orbibundles.
Finally, we show in detail how our main construction works to calculate the Euler class
of the tangent bundle of 2, starting from the atlas defined in [12]. Our approach easily

generalizes to the football orbifold S2 ,, which is $? with orbifold points of orders p

P.q’
and ¢ at the two poles.
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Let m7: £ — W be an oriented, vector bundle over the manifold W, together with a
section s: W — £ with compact zero set X C W. As always (see Remark 1.2.1(iii)),
we suppose that £ has even rank to avoid problems with orientation.!> We build a
(Kuranishi) atlas whose charts are defined using tuples

(O’ Ev Tv S)’
where
e O CW isopen,
e F is an even-dimensional, oriented vector space,

e A Ex QO — &|o is a surjective orientation-preserving bundle homomorphism
over idp, and

e A pushes s: O — E forward to s|p, ie A(s(x),x) =s(x) € E|x forall x € O.
Given such a tuple, the corresponding chart
K :=(U,E,s,{), withfootprint F,
is defined by setting
U={(e,x) e ExO|Ae,x)=5(x)}, s(e,x)=e, ¥(0,x)—>xe€X.

One obtains an atlas as defined in Section 1.2 by taking the basic charts to be a finite
family (K;);=1,..a of charts of this form whose footprints (F;) cover the compact
set X = 571(0), and the transition charts (Kj)sez, to be the corresponding charts
(Ur, Er.sr,yr) with footprints Fr := ("); F; that are formed just as above but now
with Ef =[];c; Ei and A7 =) ;<7 A; . In particular,

Ur = {((¢1).x) € E; xOr | Y Ai(ej. x) =s(x)}, where O :=()0;.
iel
This gives an atlas in which the coordinate changes K; — Ky are given by the obvious
identifications

Uy :={(e,x) €Uy |ecEr, xcO5}=>Up ={(e.x) e Ur | Ax € O}.

To see that the submersion condition holds, choose for each I arightinverse o7: |0, —
E;r x Oy to Ay, sothat A; ooy = id, and define

Er g =1{('—o1(s(x)).x) | € Ejur, x €O} CEyx0y.

150f course, over Q the Euler class vanishes for bundles of odd rank anyway.
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Then E’J\ ; 1s an affine subbundle of E; x Oy — O, and we may identify Uy with
the pullback of £ _; to Uy by the projection Uy — Uy, (e,x) > x.

Since there is such an atlas for every collection of charts K whose footprints cover X,
any two such atlases K° and K! are directly commensurate, ie there is an atlas K
whose charts include those of K° and K!. Therefore, £° and K! are cobordant by
[14, Section 6.2]. Hence, they define cobordant manifold models (M, E4,.) by
Theorem A and the same class [X ]V,Cir by Theorem B.

If the bundle £ — W is smooth, then we can define the VFC either as in the proof of
Theorem B given in Section 2.3, or via an inverse limit of the homology classes of the
zero sets of a family of perturbed sections s + vi of £ — W. As explained in the proof
of Theorem B, these two approaches give the same answer. If W is just a topological
manifold, it is of course easiest to represent the Euler class by starting with an atlas
with just one basic chart (and hence just one chart). In this case, our general method of
building an atlas gives the tuple described in (1.1.2). We now show that if s =0, so that
X =s71(0) = W is a compact manifold, then [X ]V,Cir as defined in (1.1.1) is Poincaré
dual to the usual Euler class e(€) € H2K(X;Z), where 2k = rank £. In the following
lemma, we use simplicial (co)homology instead of the Cech theory discussed in the
appendix, since all spaces are manifolds, and take coefficients Z since the isotropy is
trivial.

Lemma 1.4.1 If £ — X is an oriented 2k —dimensional vector bundle over an oriented
(2k+d)—dimensional manifold X with s =0 and atlas K as above, then
(X1} = pux Ne(€) € Hy(X),

where y is the fundamental class of X and e(€) € H**(X;Z) is the Euler class
of £.

Proof By Theorem B and the above remarks, it suffices to calculate [X ],VClr using an

atlas with one chart as in (1.1.2). Thus, we may take

M=¢, M —RN, (¢, x) > prgw (t(e, X)),

where £ has rank 20, N =2k +24, ©: M — £’ @& is the inclusion and prgw is the
projection
prgyv: E@E = 0F :=RY x X - RV,
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Denote the Thom classes of £ and £’ by ¢ and ¢/ and their pullbacks to Og(v by
Tee H*OF 08 &), %o e H?* (O}, 0} ~¢).
Then, if gy € HY (RY,RY < {0}) is the canonical generator, we have
S (tgy) = F(toy) =T UTe) € HY (M. M~ X).

We may identify pps N ter with the fundamental class puy € Hpp44(X), where
up € Hayppqg (M, M ~ X) is the restriction of the fundamental class of M. Then,
for any class b € H%(X), we use the cap product in (A.7) with Y = M, A = &
and Y ~ U = X, and the relation between cap and cup products for even-dimensional
classes, to obtain

([XTX, b) := (Fa(pens D), trn) = (tx(ipr Nb), Te UTer) = (tx(mr Nb N 7er), Te)
=(ux Nb, 1y (re)) = (ux Ne(€).b),

where we have written (x: X — &£ for the inclusion and used the fact that § (t¢) is
the Euler class e(£) € H2*(X) of £. a

Remarks 1.4.2 (i) The above construction easily adapts to the case of an oriented
orbifold bundle £ — W over an oriented orbifold W, where now we should think of the
spaces £ and W as the realizations of suitable EP categories E and W. Thus, one can
build an atlas whose basic charts are as above with the addition of a group action, while
the transition charts are made using composable tuples of morphisms in E. For details,
see [10, Section 5.2]. One can then piece the corresponding fattened charts together
by the method explained in Sections 2 and 3 below to obtain a tuple (M, E4,.¥) as
in Theorem A. However, we can also build the category M directly from the set of
basic charts (U;, E;, I}, s;, Vi), using a partition of unity, and an associated reduction
as explained in Remark 1.3.8.

(i1)) In Gromov—Witten theory it sometimes happens that the space of J—holomorphic
maps in class A does form a compact manifold (or orbifold) X such that the rank of the
cokernel of the linearized Cauchy—Riemann operator D, at x € X is independent of x.
In this case, these cokernels fit together to form a bundle £ — X such that the map s
induced by the Cauchy—Riemann operator is zero. We explain in [10, Remark 5.2.4]
why one can choose a Gromov—Witten type atlas (constructed as in [10, Section 4]
or [15]) with precisely the structure considered above.

(iii) Pardon [15, Proposition 5.3.4] proves the analog of Lemma 1.4.1 in the smooth case
using a transverse perturbation of s as in Step 3 of the proof of Lemma 2.3.4. 3
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Example 1.4.3 (the tangent bundle of the 2—sphere and the football) We now illus-
trate the construction in the proof of Theorem A in the case of the bundle 7: TS? — S2
with section s = 0, starting from the Kuranishi atlas with two basic charts that was
constructed in [12, Example 3.4.2]. We organize the details into several steps.

(I) (atlas for the tangent bundle of the 2—sphere) To build a Kuranishi atlas whose
associated “bundle” pr: | Ex| — |K| models TS?, cover S? by two copies D and D>
of the unit disc in C, whose intersection D; N Dy =: D15 =: A 2= [0,1] x S! is an
annulus, and for i = 1, 2 define

K; .= U;:=D;, E;:=C, s5; :=0, ¥; :=1id).

For i = 1,2, choose unitary trivializations 7;: D; x C — TS?|p,, (x,e) > T; x(e),
and then define the transition chart

Kiz:= (Ui CE1x Ex x A, Ey X Ea, S12 =PI, xg,» Y12 = Praloxox4)

by setting
Uiz :=1{(e1,e2,x) | x € A, T1 x(e1) + T2,x(e2) = 0}.

The coordinate changes &)i,lz are given by U; 12 = {(0,0)} x A and p; 12(0,0,x) = x.
To justify this choice of Kuranishi atlas, note that one can construct a commutative
diagram

|E ICl —— TS?

(| ol
|Bx| —— S
where the top horizontal map restricts on Ujp X E1, to the map
((e1.€2.x).€}.€5) > Ty x(e}) + T2 x(e)) € TxS* C TS?|4.
Thus, it takes
graphsiz = {((e1.e2,x),e1,e2) | (e1,e2,x) € U2} CUi2 X E12
to the zero section of TS?.
This construction is generalized to other (orbi)bundles in [10]. o

(II) (calculating the Euler class) In order to calculate the Euler class of TS 2 it is
convenient to identify the annulus A with [0, 1] x S!, and then consider the corre-
sponding trivialization TS?|4 = A x R; x Rg, where t € [0,1] and 0 € S' =R /27 Z
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are coordinates. Then, for i = 1, 2 there is a section v;: U; — E; with one transverse
zero such that

Tix(vi(x)) = (x,1,0) € AXR; xRy =TS?|4, x€A.

(Take suitably modified versions of the sections vy(z) = z and vy(z) = —z, where
D; C C.) Therefore, the v; fit together to give a global section of TS? with two
transverse zeros, and it follows that the Poincaré dual of e(TS?) is represented by
2[pt] € Ho(S?).

To see how e(TS?) is calculated via the atlas, we start by choosing a reduction G of
the footprint covering. For example, we may take G2 = (¢, 1 —¢&) x S! = A for some
& € (0, %) and choose G; T D; so that

171’12 = (0,0) x (8, %) x §1 C Uia, 172,12 =(0,0) x (%, 1 —8) x §1 C Uja.
Choose a cutoff function B: [0, 1] x ST 5 [0, 1] — [0, 1] that equals 1 in [0, %] xSt
and O in [%, 1] x S1. Then the map Vviz: Vlz — E1 x E, given by

via(er, e2.x) = (B(x)v1(x), (1 - B(x))v2(x)) € E1 X E3

restricts to v; on V; 12 C (0,0) x A for i = 1,2. Thus, the tuple (v1,v2,v12) is an
admissible perturbation section in the sense of [12]. Moreover, s12 + V12 does not
vanish at any point (e, €3, Xg) € V12 because the three equations

T1,x0(e1) + T2 xo(e2) =0,
T xo(e1) + B(x0)(1,0) = T2 xo(e2) + (1 = B(x0))(1,0) =0 € {xo} x R; xRy

together imply that the vector (1,0) € R; x Ry is zero, a contradiction. Hence, as
before, the perturbed zero set consists of two points, each with weight one. o

(III) (construction of the corresponding manifold M and section .“3y: M — E13)
When, as in the case at hand, the isotropy groups are trivial, the current paper constructs
from the above reduction V of K a manifold M that is the union of three components

M=((My=EyexV)U(Mp =E1exVo)U(Mi2=V12))/~,

where ~ identifies (e;, x) € M; 12 with «; 12(e;, X) Eﬁi,lz C Mj, where o 12:= Ti_llz-
The submersion axiom (1.2.3) implies that the submanifold I7l~,12 has local product
neighborhoods in V1,. In Section 2 we will describe how to assemble these into a more

global structure that can be used to relate the different components M;. However, in
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the current situation there is an obvious global product structure that directly gives the
needed attaching maps as follows. First, with i =1 and j = 2, we define

¢ (B2, x V1,12, {0} x V1 12) > (Vi2. Vi 12),  (e2.%) > (—T{ 1 (T2x(e2)), €2, X).
Then, the attaching map 1,12 = 77 iz is given by

ay,12: Eze x V112 = V12,

(e2.x) > x' = ¢F (A e2,x) = (T L (T2,x(Ae2)). ez, x),

A= Vlez.

Further, we take .12 = 512, where
s12(~ T2 (Tax(e2)), €2, X) = (T 1 (T2 x(Re2)), Aea),

and then define .1 by pullback over V7,12, extended over M by a cutoff function

A1(e2.x) = B1,12(x) (~ T 1 (T2,x (Ae2)), Aez) + (1 — B1,12(x)(0, e2),

where f1,12: V1 — 1[0, 1] equals O near x =0 and 1 on Vj ;2. Note that 77,12 does have

where

closed graph in M x M5 since M contains no points (ez, x) with x € {%} xSlcA,
while M, contains no points (eq, ez, x) with x € {0} x S C A. There are similar
formulas for 2,12 and S;.

This construction gives a 4—manifold M together with a map .“js: M — E15 whose
zero set is homeomorphic to S2. In fact, we can identify M with a neighborhood of the
zero section in TS? that has width & > 0 over the discs (V; ~ V; 12)i=1.2 and contains
the whole of TS?|g,, . This holds because V;2 can be identified with TS?|g,, . S

(IV) (the normal bundle of ,5”1\;1(0) =~ S? in M is isomorphic to TS?) To see this,
note that there is an embedding

M1 Ual,lz M1’12 — C X D1

given on My = E, ¢ x V; by the obvious inclusion (where we identify E; = C) and
on 1\71,12 by

(—Ti A (T2.x(e2)). €2. x) > (A ley,x) € Eax ACCx Dy, A= +/|lea].

Identifying A with (e,1—¢) x S! as above, we may extend this embedding over a
neighborhood N7 C M1 of the set {(0,0)} x (e, %] x S so that it equals

(—Tl_,; (T2,x(€2)), €2, x) > (e2,x) forall x € (% -6, %] xS,
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The similar embedding
(E1,e x V2) Ugy 15 Ny — C x Dy

is given near the circle {%} x S1 by the map (el, —TZ_’;(lex(el)),x) — (e1,x).
Therefore, this bundle over S? is determined by the clutching map x > —TZ_,;(TL %)
which is homotopic to the map x Tz_,;(Tl, x) that determines TS?. o

(V) (the case of the football orbifold S 1%, q) This orbifold is topologically SZ, but has
orbifold points of orders p and g at the two poles. Thus, the bundle 7: TS 1%, PR 13, P
is again modeled by a Kuranishi atlas'® with two basic charts K; and K, as above,
with T7 = Z/ pZ acting by rotations on D and E; and with I3 = Z /g7 acting by
rotations on D, and E,. Since s; =0 for i = 1, 2, the footprint maps

Yiis (0 =Ui— 82, x> |x],

simply quotient out by the action of the group I;. We choose the trivializations 7;
of TD; to be equivariant under the rotation action of the isotropy groups, and will
suppose for simplicity that (p, q) = 1, so that the domain Uy, of the transition chart
is connected.!” Then, in terms of the coordinates (¢, 8) € A introduced in (I) we have

Uiz = {(61, €2,X) € E1 x Ex x A | |T1,,01,12(x)(el)| + |T2,,02,12(x)(e2)| = O}’
p1,12(2,0) = (¢,90), p2,12(t,0) = (¢, pf) € A=1[0,1] xR/Z,

where we denote the image of (e,x) € £y x D in T|x|Sp2’q by |T1,x(e)|, and the
equation takes place in the tangent bundle of the orbifold. Because the maps p; ;; are
equivariant by hypothesis, this equation is preserved by the action of I'1, on Uy by

(%, ;I)-(el,ez,(tﬁ)) — (%-el,g-ez, (t,9+% +€]—S)), kg +ep=1.

16The reader should beware that the words “orbifold atlas” or “good atlas™ are usually used in orbifold
theory with slightly different meaning, which is why [11] uses the words “strict atlas” to denote a Kuranishi
atlas with trivial obstruction spaces. As explained in [11], a strict atlas K for an orbifold Z defines an
EP groupoid Gx whose realization is Z, and hence defines an orbifold structure on Z. Further, by
[11, Proposition 3.3], G is Morita equivalent to the category constructed from any standard orbifold atlas
for Z . Finally one can obtain a standard orbifold atlas for Z from /C by taking a collection of restrictions
of the basic charts in C whose footprints cover Z, with transition maps induced by the morphisms in G .

17Since all points in Ujp have trivial stabilizer, we need 12 to act freely on Upz in such a way
that the projection p;,12 quotients out by the action of I5, which is possible for connected Uy> only if

(p.q) =1.
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We may calculate the Euler class by using essentially the same perturbation section
as before, since this may be chosen to be equivariant. But now the two zeros of the
section count with weights, % for the zero in V7 and é for the zero in V5.

The corresponding category M has three components that are given by the same
formulas as before. Again, the attaching maps 7;, 12: Mz’,lz — M; 12 C M; are nontrivial
covering maps. However, in distinction to the case of an atlas, the 7; 12 do not quotient
by the induced action of I'; on Mi,i ; since they are constructed to be I equivariant,
and Iy, acts (often effectively) on M;, via

(Y1, v2) - (ej, xi) = (yj - ej,vi-Xi).

However, as explained at the end of the proof of Proposition 2.2.2 (see for example
(2.2.20)), they do quotient out by some action of I'; on Mj, that extends its free action
on 12,12 C ]\7,',12. For example, the map 71,12 quotients out by the free action of Ij
on Ml,lz C Eq1x Ey % (8, %) x S1 given by

y-(e1.e2,x) — (e1,e2,y-Xx).

Therefore, in the quotient space M = |M | there are g branches of M1, that come
together over the 3—dimensional branching locus

Bry := {|(e1,e2.X)| € [M12| C [M |3 | x € § x S}.

This is consistent with the requirements of Definition 1.3.1 since the component M,
has weight - while M, has weight .

The construction of #y: M — Ej15 is as before. Moreover, one can identify a
neighborhood of its zero set S 1%, 4 With a neighborhood of the zero section of the tangent
orbibundle to S 3} 4+ Hence, the Poincaré dual of e(TS ;’q) is represented by

1 1
(, +)lp € Ho(S5.,). o

(VI) (the quotient space |M|/T" for TSIi ¢) The only morphisms in the category M
come from the covering maps 7;,12. Since these are I'12—equivariant, we can add the
action I'12 x Objps — Obj,, to the morphisms in M. The resulting quotient space
|M |/ T2 has the following structure:

e It is covered by three branches My, M, and My, with weights 1/p?q, 1/ pg?
and 1/p2q?.

e The two poles [(0,0)] € M; /1, have stabilizer subgroup I7,.
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e The other points with nontrivial stabilizers lie on the two closed discs
{0} x (Vi~1{0)/Ti2 C M|/ Thz, i =12,

with isotropy subgroups I'; for j #i.

e For i = 1,2 there is branching of order |I';| over the 3—dimensional branching
locus Br;. For example, if 1 = {id} and [, = Z/27Z, then |M;|/ T is an
orbifold with a 2—dimensional family of points with nontrivial stabilizer (corre-
sponding to the points {0} x D1 C E»x D), while T’ acts freely on M1, and the
I, —equivariant map p1,12: M1,12 = M7 quotients out by a different free action
of I, that lifts the rotation action on A via the projection M 1,12 CEppxA—A.
Thus, there is branching of order 2 along the boundary Br;, which lies over the
circle £ = {$}.

We do not consider this space further, since it plays no role in the definition of the
fundamental class. <

2 The main arguments

In this section, we first explain how to construct an auxiliary family of collared manifolds
and then explain in Section 2.2 how to use this family to prove Proposition 2.2.2 and
hence Proposition 1.3.3. Finally, we prove Theorems A and B in Section 2.3.

The key notion is that of the manifold Y, s ¢, which lies over the (|J|—1)—dimensional
simplex Aj. Its open submanifold Yy j ., corresponding to a choice of reduction
V C U, has a partially defined boundary collar that is compatible both with shrinking
of chart domains and with projection to Ajy. We will define the attaching maps
M; J — Mjy of the different components of Obj,;,; by thinking of M as a subset
of Yy je.

Although strictly speaking the construction of the category M only uses the manifolds
Yy, e, we also consider the manifolds Y, s . to clarify the exposition. The latter
has elements that are relatively easy to understand (see (2.1.3)) and it has an easily
described boundary, while, as we see from Proposition 2.1.4, the collar is supported on
only a rather complicated part of the boundary of Yy, j .. Further, considering both
Yi,7,¢ and Yy, o will allow us in Section 3 to introduce the many technical conditions
satisfied by the pair (V, ¢) in stages, first some conditions on (¢, ¢) needed for Yy, 7 ¢
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to have good properties (Definition 3.1.1), and then more conditions needed to construct
a suitable collar on Yy, j ¢ (Definition 3.1.9).

The first main results of this section are Proposition 2.1.1, which describes the structure
of Yy, 7,¢, and Proposition 2.1.4, which describes the properties of the boundary
collars put on the manifolds Yy ;.. Proposition 2.2.2 then explains how to use these
boundary collars to construct the attaching maps 777 whose existence is claimed in
Proposition 1.3.3. Since the general construction is quite complicated, we describe
it first by example (see Example 2.2.1). Since the proofs of Theorems A and B in
Section 2.3 depend only on the statement of Proposition 1.3.3, this subsection can be
read independently of Sections 2.1 and 2.2.

2.1 The collared manifold Y

Suppose given a tame atlas X with set of chart domains ¢/ := (Ur)sez,. . The next

definition uses a choice of constants & = (&) as in (1.3.2), and the following notation:
o Aj:= {t =(t)ies | =0, |t| = e ti = 1} is the (|J|—1)-simplex;

for @ # 1 < J, we denote by t77: Aj — Ay the natural inclusion with image

dyaAy:={teAy|t;=0,jeJ~I}CAy

(we often omit ¢7y if there is no danger of confusion);

t-e:=) .cytie;,wheret € Ay, ec Ey;
Kk :=max{|J|:J € Ix};
I(x):={j:sj(x)#0} CJ for x e Uy; and

e &:=(e1)1e1, 1s aset of positive constants such that ke; < ey whenever I & J.

Given J € I, consider the set!3

Q1) Yy:=Yyse={(e.x:t) e ExxUsxAy|sy(x)=t-e, |e] <ker),
si (x)|| < er(x) foralli € J}.
Here are some properties of this definition:
e I'qactson Yy j . by
y-(e.xit)=(y-e.y-x:1).

18To begin with, readers should ignore the rather fussy conditions involving the constants ¢; in this
connection see (2.1.6) and Corollary 2.1.2 below. Notice that we do need some such constants since
the size of &7 determines how thick the pieces My will be, and to construct M we need to embed (a
covering of) My into My forall I C J.
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e The condition sj(x) =1 -e implies that
(2.1.2) I(x):={j:s;(x) #0} CI():={i:t; >0}
In particular, if (e, x;t) € Y34,7,¢ we must have
(2.1.3) x €57 (Erx) = Uinys €Uy

where the equality holds because K is tame (see (1.2.2)). Further, the components
of e in Ej(;) are determined by the pair (x, 7), while those in E4 () can vary
freely.

e There are three I'y—equivariant projections of Y, y . onto the factors of its
domain:

- pre: Yu,76— Ea, (e, x;t)—e. For I C A, we denote by ey the elements
of Ey, and denote by prg, the projection to Ej .

— The projection pry;: (e, x;t) = x € Uy has contractible fibers that vary
with x e Uy .

— The fibers of pra: Y,5c — Ay, (e, x;t) — ¢, also depend on the image
t € Ay. In particular, if for some / & J we have f €int Ay := A;~0dA7 C
dAy, then, for any (e, x;t) € per(t), we must have x € (71] while the
restriction prg, , (e) can vary freely.

» For each element of the form (e, x;t77(t)) € Yy, 7,¢ there is a corresponding
element (e, pry(x);t) € Yy 1,6, where pyy: l711 — Uyjy is part of the atlas
coordinate change. Thus, if we define

(2.1.4) dyaYyi=prat(@ygYy):i={(e,x;t) €Yy |t; =0, j ¢ I},
there is a I'y—equivariant covering map
(2.1.5) 0y gYy—=>YN(EqgqxUpy xAp) CYy.

If the isotropy is trivial, we can therefore identify d 7Y with an open subset
of Y7.

¢ The relevance of the conditions involving the constants ¢ are explained by the
following remark. For each x € Uy such that ||s; (x)|| < &y(x) forall i € J, and
every H satisfying I(x) C H C J, there is a corresponding element

(2.1.6) (e, x5ty (bH)) € Yi, g6,
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where by is the barycenter of Ap . Indeed, if we take e := (| H|s; (x))ica,
then e; = 0 for j ¢ I(x), by definition of /(x), while for i € I(x) we have
leill = |H||lsi (x)|| <«ef(x), as required by (2.1.1).

The following result is proved in Corollary 3.1.4.

Proposition 2.1.1 Let ¢/ be a family of chart domains for an atlas on X. Without
loss of generality, we may pass to a shrinking U = U*? and choose constants & > 0 so
that the following holds for all J :

(i) s7(Uj)CEye,.
(ii) The space Yy :=Yy, j ¢ definedin (2.1.1) is a manifold of dimension D +|J|—1,
where D :=dim E4 +d.

(iii) Yy has boundary given by

oYy =Yy Npra' @A) = ) 871y
1¢J
= U {le,x;t)eYy:ixeUy, tedyuiy).
I1<J

Corollary 2.1.2 If Proposition 2.1.1 holds, then for all I ¢ J there is an embedding
LEU: Ea<1,e; XUy — Yy, 5,6 given by

LEU: (ea~r. X) > (eaws + b7t sp(x), x:by).
Proof Since S_](U_]) C Ej ¢, by (i), this holds by (2.1.6). O

Proposition 2.1.1 shows that the boundary of Yy lies over that of A ;. It is well known
that the boundary of every topological manifold can be collared. The next step is to
show that we can construct this collar to have a special form, with control over the
components in E 4. j near the “corner” per (071 ). However, to establish this we
need to pass to a reduction V = (V)ez, of the atlas (see (1.2.8)), since this severely
restricts the overlaps mic(Vy) N mc(Vy) in |K| of the different chart domains. We
define

2.1.7) Yv e =Yu N (EaxVyxAy).
Since Yy s ¢ is an open subset of Y, j ¢, it is a manifold of dimension

d+dimEq+|J| -1
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with boundary

0¥y, e =Yy 7N 0YyseC | ) Eax(VinU) x0d51Ay.
IGJ
We denote by
(2.1.8) tgv: Eq<1,6; X BVU =Yy e (ea<r,X) = (ea~r +b1_1 -s7(x), x:br).
the restriction of the map tgy in Corollary 2.1.2, and will consider the projections
pry: Yy g e —Vy, (e,x;t)—~ x,
privi: Yvue = IVsl, (e, x;50) = |x] := me(x),
where i is as in (1.2.7).
There is a corresponding category with objects |_| Jezy. Yv,7,¢ and morphisms given
by the covering maps
2.1.9) (017)%: Yv.1.6 N (Eax Vg x 117 (AD)) = Yy 16,
(e.x1tpy (1)) = (e, pry(x):1).

This category has realization
Y= Wie/~
J €l
where (e, x;t); ~ (¢/,x";t')y for |[I| < |J|if I C J, ¢ =e, t' = 177(t) and
p17(x") = x. Notice that the projections to Ay induce a map
pra: Yy = Ac= ) As/~,
J €Tk
where the simplicial complex Ax (with boundary identifications induced by the face

inclusions ¢77 ) is the topological realization of the poset Zi:.1® There is also a projection

Pr\v|:Zv_>|V|E|IC|’ [e,x;t]l—>|X|.

Remarks 2.1.3 (i) The projection pr)y, X prp induces a map
Yy, > VI c VI x A,

19The topological realization of a topological category has one k —simplex for each length-k compos-
able string of morphisms, with the “obvious” boundary identifications. Thus, Ax has one k—simplex for
each I € Txc with |/| =k 4 1. Observe that as the associated footprint covering (Fy);ez,. of the zero
set X is refined, the space Ax gives better and better approximations to the topology of X ; indeed the
Cech cohomology of A converges to that of X.
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whose image || V| is closely related to, but not the same as, the topological realization
||B;C|;F|| of the category B;g|]jF in (1.2.9). For example, if x € V; is such that its
image |x| := mx(x) in |K] lies outside all the other sets pri-(V7) for I # J, then it
gives rise to a single point in || B;C|;F | (since the only morphism involving x is the
identity morphism) while it corresponds to a whole simplex x x Ay in ||V||".2° The
partial boundary 'Yy, s . C Yy, s . that we consider below could be understood in
terms of an embedding of || B K|;F | into ||V||. However, we will take a more naive,
geometric point of view.

(ii)) We saw in Remark 1.3.8 that in the polyfold setting one can use an sc—smooth
partition of unity to construct a finite-dimensional branched manifold M with section
. M — E4 that is a global chart for X. One can think of the extra coordinates
t € Ay (with ) t; = 1) as a kind of “external” partition of unity that gives a more
indirect way to patch the different coordinate charts together. o

The boundary collar We now consider lifts to Yy, y . of the collar on Ay
(2.1.10) B A x[0,w) > Ay, (t,r)> (1—r|JDt+r|J|by,

where by =(1/|J|,...,1/|J]|) is the barycenter of Ay and w <1/(4|J]); see Figure 5.
Note that any ¢ € Ay with at least one component #; < w is in the image of this collar.
In order to get maximal control over the collar we will not define it on all of 9Yy, j ¢
since much of dYy j is irrelevant to the task at hand. Indeed, we are only interested
in boundary points (e, x;7) with x € V; for I C J while, by Proposition 2.1.1, a
general boundary point has

xeVynsyYE) =VynUy,

a set that is usually strictly larger than the overlap V17 (which is defined in (1.3.3)).
Although the submersion axiom (1.2.3) implies that each 171 7 1s a submanifold in V;

of codimension dim(E y. ), we will make the following definition of the “boundary’
of Vj:

Q.1.11) vy = Vay.
HSJ

which lies over the “boundary” 0|V | = Ugc s [Vas| of [Vi].

201f the isotropy is trivial, there is an embedding || Bi |;F | = V]I, whose image can be described
using versions of the sets ?t? (Ix]) in (2.1.13) below.
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We will define the collar
c}/: 8/YV,J!§ x[0,wy) = Yy, j¢

over a subset 8'Yy, s . of points (e, x;¢) € dYy, s such that x € dV; and ¢ is restricted
to lie in the set s_t§(|x|) defined as follows. Recall that for each x € V; the sets H
such that |x|:= mxc(x) € mic(Vy) (where mic: Vy — |K] is the projection (1.2.7)) form
a chain

(2-1-12) I:= Imin(|x|) = IO(|X|) -,C«- 11(|X|) -,C«- e .,C«. Im(|x|) = Imax(lxl) = K.
If J = 1I,(]x|) with n <m, we will write
(2.1.13) st (|x]) := conv(bry, b1y b1, ) C gt (x)AS

for the convex hull of the barycenters of the simplices corresponding to the elements
of this chain; see Figure 1. Note that s_t§(|x|) lies in the boundary of Aj.

’¢ ~ ,f ~ V
. . ‘. S 1
. \ . \
. V .
/ 1 > 7 V- ¥
1 1 2

Ly w Ve 10111 5 I b3
Vi23 ;
: V23 b1
by by

Figure 1: The figure on the left is schematic, showing the sets |V;| rather
than their (disjoint) lifts Vj; the sets V5 12 C V, and V33,123 C Va3 are
hatched, while for x in the shaded set W, we have I, (|x]) = {1}, I1 (|x]|) =
{1,2}, Imax(]x]) = {1, 2, 3}. The top-right illustrates the change in dimension
from Vj to Vp,, while the bottom-right shows s_t§(|x|) for x € 171,123 N

V13,123.

The domain 'Yy, j , C 0Yy, j ¢ of the collar map c}/ contains all the points in the image
of the injections gy in (2.1.8), as well as the lifts to Yy, j ¢ of all points in im(c}:I)
where I & H < J. To obtain points with more general ¢ —coordinate we consider the
following rescaling operation: Suppose given ¢ € Ay and a tuple py = (it;)jea such
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that u; =11if j ¢ J, u; >0 forall j, and py -t € Ay. Then, for any element
(e,x;t) € Yy j ¢, there is a commutative diagram

(€, x:0) —2s ()™ e, x; g 1)
(2.1.14) PrE g XPTVI IPTEA\J Xpry
(ea~s,X) —— (€4~ X)

where we assume ||(uy) "1 e| < KEI(x)» 50 that the top arrow has targetin Yy ;.

The following result concerns a reduction V plus choice of constants ¢ that are com-
patible in the sense of Definition 3.1.9. In particular this means that property (i) in
Proposition 2.1.1 holds, and that (V, ) is compatible with a fixed choice of local
product structures as in (1.2.3). The proof is given in Lemma 3.2.1 below.

Proposition 2.1.4 Let (V,¢) be a compatible reduction of an atlas K. Then, for
each J € Iy, there is an open subset 0'Yy j, C 0Yy j,, a constant wy > 0 and a
I'4 —equivariant embedding

2.115) ) 0V rex[0.w)) = Yoge  ((ex:0).r) = (€' xicP (t.r).
with the following properties:>!
o Yy seC{(e.x;t):forsome I S J and x° € Viy, x ~x%and t € s_t§(|x0|)}.

o c}/ is compatible with the projections to E4-, as follows: we have

(2.1.16) tEV(Eg<g,e, X Vig) CYy g forall I S J.
Further,
c}/((e,x;t),O) = (e,x;t) forall (e,x;t) €Yy sg,
LD prg, () =0 = cY((e.xit).r) = (e.x1c5(t.1)),
and

(2.1.18) prg,, oc}/(LEV(e,x),r) =prg,_,(e) forall (e,x) € Eq<ye; X Vir.

e The sets 0'Yy, j o are compatible with covering maps as follows: if I S H < J,
then the relevant part of the image of C{I lifts to the domain 0'Yy, j ¢ of c}/ . More
precisely, if (e, x;t) € 'Yy, j has x € ,01}1](17111) NVygs22and t € 9y Ag,

21The precise definition of 'Yy, y ¢ may be found in (3.2.19) and (3.2.20). By slight abuse of language
we will call 0'Yy, 7, the domain of c¥.
22By (1.3.3), when I € H & J any two of the sets VH , VHJ and pEb(VIH) determine the third.
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then (e, pgj(x);t) is in the domain 0'Yy, g of c}; and for all r € [0, wpy)
there is (¢/,x';t") € 0'Yy, j o with x" € Vi such that

(2.1.19) ch((e.xit).r)=(e.pas(x'):it") € Yy H.

Further, the restriction of c}/] to Yy HeN prI_,1 (VI g N Vygy) has a well defined
lift (also called cg) to Yy, j ¢ such that, for all x € VU N VH 7,

(2.1.20) (priyp)x(che,xit),r) = (ch(e, prs (x),1),7) € Yy e, 1 €[0,wp),
where (pr;/”)* is as in (2.1.9).

e Each d'Yy j . is invariant under rescaling as follows: if (e,x;t) € 'Yy j ¢,
where t € s_t§(|x|), then, for all g as in (2.1.14) such that g -t € s_t£1(|x|),
we have

pr (e, x3t) = (g e, x; pup 1) €'Yy g g

and

(2.1.21) prg, <y ocy ((e.x;t),r)

Y -1 .
:prEA\HXVOcJ ((I’LH ‘e, X, ULH '[),r) € EA\H X VJ

e The collar maps c}’ are compatible with shrinkings as follows: if (V',&')C (V, &)
is another compatible reduction, then there are constants 0 < w’, <wy such that
the restrictions of the maps c§ to 'Yyr g o :=0Yyr j o NO'Yy g have all the
above properties with respect to the constants w’;.

e [If K is oriented then the collar map c}’ is compatible with the natural induced
orientation on its domain and range.

By Lemma 3.1.11, any reduction V" has a shrinking V " V" that is compatible with
respect to some choice of constants & and hence supports a collar (c}/) JeT, asin
Proposition 2.1.4. Further, we show in Corollary 3.2.3 that (V°°, £°°) has a further
nested shrinking that is collar compatible in the following sense.

Definition 2.1.5 Let (V°°, &%) be a compatible reduction, with collars (cf’oo) JeTy -
We say that a shrinking (V, &) C (V°°, &%) is collar compatible if it is compatible as
in Definition 3.1.9 and if for all J € Zx the collar map cf’oo restricts to a collar (c}/) J
on (V,¢) whose widths w satisfy /ey <wy forall I ¢ J.
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2.2 Construction of the category M and functor .¥: M — E 4

In (1.3.5), the component M of Obj,, was defined as
(2.2.1) Mj=Eq<je, xVy,

which is a manifold of dimension d 4 dim E4. We take My := Eq<j,¢, X V17, and
define the map tyy: Mj; — My that attaches My to M to have domain a suitable
open subset Mj; C M and to extend the atlas structural map

prr: {0} x Vig — {0}y x Viy C My C My,

We require that t77 be a I'4 —equivariant covering map, induced by a free action of I'y ;.
Further, to obtain a category, these maps must be compatible with composition, ie for
I C HCJ weneed

2.2.2) THJOTIH = Tyrj oOn M]] ﬂMHJ ﬂr;IIJ(MIH) = ]\71_] QMHJ.

(Note that by (1.3.3) any two of the sets M; T My J and r;IIJ (1\7 g ) determine the
third.) For maximal elements J of Zx, we then define .;: M j; — E 4 as the projection

Ly My — Eq, (eg<g,x) = (eq4~g,57(x)).

The above should be considered as the default formula for .y, which holds at points
(e4~J,x) € My where x is far from any overlap Vjgx with J & K. However, in
general it must be modified in ways explained in Example 2.2.1 below.

Before giving the general formulas for wy, t77 and .5, we discuss an example.
Part (i) shows the role of the collar in constructing t77, and also how to achieve the
closed graph condition in (1.3.6), while part (i1) explains the relevance of the collar’s
compatibility with projections and rescaling to the proof of the composition rule (2.2.2).
The usefulness of considering multiple collar compatible shrinkings (V", &) will also
become apparent. We will use cutoff functions (yz7: V7 — [0, 1]);cy of the following
form: if V C V’, we have

(2.2.3) supp(x17) C U V/g and U Vg Cint(yg7(1)).
ISHCJ IGHCT

Example 2.2.1 (attaching the M ;) We begin by considering the case when the
isotropy groups are trivial, so that t77: Mj; — Mj; is a homeomorphism. It is then
easiest to define its inverse

. —1. v
arpy =15, My — Mjy,
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since M7y C Mj is defined to be the product E4. 5, X Viy (where Vj; is as defined
in (1.3.3)) while MU will simply be defined as the image o775 (Mjy). Asin [14], we
use the notation ¢zy := p;}: Vir — VI J for the inverse of the atlas structural map pjy.

(i) Consider the case when there are two basic charts with labels 1 and 2. Then M
has three components:2>

My =Eys5, xVi, My=E 5 xV2, My:=Vi2,

where we assume (V, §) is collar compatible as in Definition 2.1.5. In particular, this
means that for i = 1,2 we have §; < w%z, where wiz is the width of the collar cfz.
We first define the attaching maps o712 and o3 12, then define the sections .7 and
finally prune the sets M1, so as to satisfy the closed graph condition.

We define «q,12 as a composite My 12 := E3 5, X V1,12 = Yy 12,6 = M12:

(224) a112((e2, %)) = pry (e (tEv (e2, %), 7)) (with r:= /[le2])
= pry (12 ((s1(x), €2, 91 (x): b1). 7))
= pry ((e}. ez, X" (1 =7.7)))
=x" € Via = My,

where (g is the map in (2.1.8), b1 = (1,0) is the barycenter of A considered as

a point in A, , we have used formula (2.1.10) for clAz, and we have used the fact from
(2.1.18) that e is unchanged by C{z- We note the following:

e Because (V,§) is collar compatible, Definition 2.1.5 implies that the collar width

satisfies w1z > 4/|82] > r. Hence, the element c{z((sl(x), e, P17 (x); b1), r)
is well defined for all (e, x) € My 12.

e Because the collar variable r := \/m vanishes for the points (0,x) € M1, 12,
the map o1,12 extends the inclusion ¢zy: Viy — 171 7 by (2.1.17), as is required
by Proposition 1.3.3(i). Further, for small enough §; the closures of the images
of 1,12 and the similarly defined map a5 12 are disjoint.

e Because the points (e,x;t) € Yy j, satisfy sj(x) = t-e; and we chose
r = +/|lez||, we have

rllezll = (lle2ll)*? = lls2 ("),
so that r = ||s2(x)||}/? is determined by x'.

23Here we simplify notation by writing M1, := M1y, M1,12 :== Mgyyq1,2y and so on. For an
example of this construction, see Section 1.4.
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* To see that 1,12 is injective, notice that because c}’ is injective it suffices to

check that the other elements, e}, e and r, that appear in the tuple

(el,ea.x"s(1—rr)) €Yy 12,

are determined by x” € V5. But we saw above that r = ||s2(x)]|}/3, so that the
equations s1(x) = (1 —1)e] and s2(x) = te, determine e} and e;.

We now define .%15 := s12: M = Vo — Ej2, and define .%; on a;llz(ﬂi,lz) by
pullback; thus, on this set,
Fi(ej, x) = (llej |V 2e;, si(@inalej, x))), i # J,

has the form claimed in (1.3.7). We then extend .%; to the rest of M; by patching it
to the default map (e;, x) — (e;si(x)) € Ej x E; = E12 via the cutoff y; in (2.2.3):

(22.5) Hi(ej.x) =

112¢;, 51 (i 12(ej, x))) + (1= xi,12(x)) (e}, 5: (x)) € E1a.

For this to be well defined, we need «; 12 to extend to a neighborhood of M; 12 in M;.
But we can always assume that V is a shrinking of some other reduction V’. Then,

xi,12(x)(llej|

because the collar extends over V', we may extend «;,12 over the corresponding set
M/ |, by using the above formula (2.2.4). It is then clear that 5’1._1 (0) = {0} x sl._1 (0).

It remains to arrange that «; 12 has closed graph. Note that its restriction to {0} x V; 12
does have closed graph because V is a reduction of a good atlas X, which among other
things implies that the realization |V| C |K| is Hausdorff; see the discussion around
(1.2.7)—(1.2.8). Denote by

(2.2.6) Fr(M; 12) := cl(M;,12) ~ M; 12

the frontier of M; 12 in M;, where, as usual, cl denotes the closure. As above, we may
assume that «; 12 extends to a homeomorphism «; 12: cl(M; 12) — Vl’z, which evi-
dently has a closed graph. Hence, it suffices to arrange that Vi2Ne; 12(Fr(M; 12)) = 9.
But

Vi Nel(ai,12(Fr(M;,12))) C cl(Vi12) ~ V12

is a closed subset of V;, that is disjoint both from c1(17j,1 2) (by the separation property
of the sets 171,12 and 172,12) and from the zero set S1_21 (0) (because |V| is Hausdorff).
Hence, as in Figure 2, if this set is nonempty, we can simply remove it from Vj,, ie

Algebraic € Geometric Topology, Volume 19 (2019)



Constructing the virtual fundamental class of a Kuranishi atlas 189

@i 12(Ft(M; 12))

Fr(M;,12) M; 12
T
My =VixEye

Figure 2: Removing points from Vi, so that o; 12 has closed graph. Since
V1, is open, the point where the two heavy lines cross is not in Vj,. The set
M; 12 = Vi12 X Eig; C Via is hatched.

we replace Vi, by

22.7) Via~ | (e 12(Fr(M; 12))).
i=1,2
(ii) Now suppose that the atlas IC has three basic charts with labels 1, 2 and 3,
so that the sets V7 in the reduction V intersect as in Figure 1. We assume that the
isotropy is trivial and all E; # 0, and again explain how to choose the constants &;,
and define the attaching maps o7y and sections .#; that involve the vertex 1, namely
those with labels 1, 12, 13 and 123. It is now convenient to assume that we have four
nested collar compatible shrinkings (V!,e!) = (V2,2) C (V3,¢3) C (V4. &%) of V.
Correspondingly, for I C {1,2,3} and k <{ <4 we define

k._ k kit _ k.t k
M; -—EI,S{FXVI’ MIH—EI,s{FXVIH C My,
where

k., _
Vig = VeV = vEaac (me (V).

We aim to define a category with basic domains of the form M Illl and compatible
morphisms ayg: M };I'"Hl - M }IH‘ . However, to make these continuous and to define
the corresponding maps .7 we have to define transition functions on larger sets such
as M I|§I|+1’|H|' As in (i), we will first define suitable maps «yg and sections .7, and
then will prune domains to achieve the closed graph condition.

If |[I|=1and |H| =2, we define ayg: MIle — MI%, as in (i) above. These methods
also easily adapt to define the maps ayg for |/| =2 and .¥7: My — E4 for |I| > 2.
Indeed, if J :={1,2, 3} then

. Ag2.3 3
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can be defined much as in (2.2.4). The only new point is that because Aj; isa 1-
simplex, we have to decide how to lift V7; s to dYy, s in order to use the collar. For
now, we use the default choice given by the embedding tgy in (2.1.8), ie we embed
it over the barycenter by; of Aj;, which we identify with the corresponding point
t1,7(b1;) in Ay. Thus, for i # j, i, j € {2,3}, we define

(2.2.8) ari g M5 — M3, (ej.x) X,

as follows: with (ej,x) € E3’8i2 X Vlzl-’3 and r = /|lej ||,
(¢j.x) > ¢y ((gv(e.x)).7)
= (elli’ e;, x/; CJA(bli, I’)) S YV3J,§3
—x' € M3.

Since r depends on e3 and hence on s3(x’) as above, it follows as before that ;s
is injective. Notice also that if x € Vlzl.’zj the point ¢1; s(x) would lie in 171€ J as
would its image x” under the collar map since the collar maps preserve the shrinkings
by Proposition 2.1.4. Taking £ = 4 here, we may therefore define .1, by pullback
from %y on M 1223 7 » tapering it off to the product s12 X pr E; outside the larger set
Eje; % Vlzl."} by using the cutoff functions B1; s as in (2.2.5).

The main new task is to define
ay,J: Mlly’; — M;’ sothat «q,7:=0ay;yoa1,1; in Mllj N Mll,’lzi'
If x € Vll”;’ ~ Ui=2’3 Vll,ﬁ. (ie x is “far” from Vll,’lzl.) then we may define
(2.2.9) a1,7(e23.%) = prg ey (c) ((51(x). €23, 1,7 (x). b1).7)). = +/[eas]|.
as in (2.2.4). Hence, the lift of a1, 7(e23,x) to Yy3 5 3 lies over the ray

¢ (b1 x [0, wo]) C Ay,

On the other hand, the composite «1; y o or1,1; first uses the collar cfi for by in Aq;
and then the collar c}’ of by; in Ay, and hence its natural lift to Yy3 j 3 is rather
different. We interpolate between these two maps as follows, where we take i = 2
for clarity, and use cutoff functions B,12 as in (2.2.3), with support in Vﬁf’z and
that equal 1 near the closed set 17}:%2 C Vlly’fz. Thus, with x € Vlly’ls2 N Vllj and
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€23 = (e2,e3) € E3, we write

ro=PBri2(x)yllezll and (r':=max((1—B1,12(x)) v llezll. Vle3l))

and define

(22.10) (€23, %) = c]o((51(x), €23, $1,12(x); b1), 7)
=:(e].e23. X1 1=1.1) € Yy3 15 3
Y ((e]. e23. pr12,0 (X)) 1=r.7). 1)
= (6,1,, €723, X”; t,,) (S YV3,J,§3
> x" =101, 7((e23, X)) € M3 = V5.
Note the following:
e Here (as in (2.1.20)), we consider cfz to be the lift to 0'Yy, s of the collar for
B/nglz,g, and the composite c}/ o c{z is defined by (2.1.19).

e The above map (ez3,x) > x” is continuous, and equals that given in (2.2.9)
when f1,12(x) = 0 because |le23|| = max{||e;| :i = 2,3} by definition.

13 - 1,2 1,3 _
o Ifxe VI,J N V1,12 C Vl,J N (,31’}2(1)), then
a1,12(e23, x) = 12,7 oaq,12(e23, x).

Indeed, the invariance of the collar under rescaling in (2.1.21) shows that applying
the second collar map at (1 —r, r) with r’ = \/W and then projecting to M }
gives the same result as rescaling, then applying the second collar at by, with the
same r’, and then projecting to M J3 Note that by (2.1.18) this last claim holds
even if e3 = 0, so that the second collar map has ' = 0 when f1,12(x) = 1.

o It remains to check that this map (ez3, x) — x” is injective. Since the first two
maps in (2.2.9) are injective, it suffices to check that the projection

(e/ll, 623,x//; t//) — x//

is injective. But both collar maps preserve e, and es by the extended corner con-
trolin (2.1.18). Hence, for i =2, 3 we know | ¢; || and therefore ¢/’ from s; (x”) =
t/'e;. Since ), t/' = 1, we therefore know #” and hence also ¢” = (e}, e23).

As before, we define .7 by pullback via oy x over Ez3,, x| (e V1,7, extending
to the rest of M; via a cutoff function B y. However, to do this we need the pullback
of .1 to be compatibly defined on a set that is larger than that on which we ultimately
want .71 to equal the pullback. But we can arrange that the identity o1,y = 12, 701,12
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actually holds on a neighborhood of the closure of 1/11”122 N Vll’;, since in (2.2.10)
B1,12 = 1 on a neighborhood of 171’3, and we can always extend the domain of aq,12

to V11’23. Therefore, we can imitate the formula in (2.2.5).

It remains to prune the domains M so as to achieve the closed graph condition for all
maps o7y . We will do this by downwards recursion on /. Thus, first taking |/| = 2,
we remove points from M123 so that the maps oy 123 have closed graph, and then
with I = {i} remove points from all M; with |J| > 2 so that the maps «; ; have
closed graph. At each stage we use the analog of formula (2.2.7), removing from Vy
all points in cly, (azs (Fr(Myy))) where Fr(M ;) is the frontier of My = M}ﬁl’ljl in
My = MI‘IMI| . Since Fr(Myy) C MI|§"|J|+1 , the points removed lie in the image of the
extension of the collar over Y 17141 , but not in the image of the collar over Y yisi .
Hence, because the o7y are defined in terms of the collar map, these points do not lie in
imagy forany H C I ¢ J. Thus, the different steps do not interfere with each other.

(iii) If the isotropy is nontrivial, then we can still adopt the above approach, but now
must interpret a7y as a local I'x—invariant inverse to t7; and then define M 1J to be
the I'4—orbit of its image. Further, we must make equivariant constructions, but this is
possible since the collar is equivariant, so that all the above formulas are appropriately
equivariant. In particular, the sets that must be removed in order to achieve the closed
graph condition for the local inverse oy are I'yx—invariant, so that we can arrange that
777 has closed graph by removing its I'4 orbit. o

The next result is essentially a restatement of Proposition 1.3.3, though it gives a little
more information on the nature of the map t;7. Since the proof is rather complex, we
describe the strategy here. As in Example 2.2.1, we define the maps o« 77 by downwards
recursion on the cardinality |/| of the index set /, shrinking domains at each step. In
order to extend the interpolation formula for aj; = ‘L’I_Jl given in (2.2.10) to a chain of
inclusions Io & I1 S --- & Iy of length k > 1, we apply an iterated sequence of collar
maps over a family of paths P(e, x) in the simplex A as described in Step 2 below.
We then define the attaching maps 777 and .7, and check that they have the needed
properties.

Proposition 2.2.2 Suppose given a good atlas K on X. Then there is a reduction V
and set of constants § = (§7)1ez,. > 0 such that the following properties hold with
M[ = EA\I,SI X V] and M[J = EA\I,SI X V]J.‘

Algebraic € Geometric Topology, Volume 19 (2019)



Constructing the virtual fundamental class of a Kuranishi atlas 193

(i) Foreach I C J there are open sets M 17 C Mj and T4 —equivariant maps
T My — My
that restrict to pyy on {0} x VU and are such that:

e Mjy is a product Eqvy.s, X MI(’J, where Vi; C M}’J c Vy, and cl(ﬂ}’])
and cl(M Ig 7) are disjoint unless I and H are nested.

e 777 =idg X ‘L'?J where ‘L’?JI M})J — Ej.1,8;, X Vis has the following
properties:

- 19,(x) = (0, prs(x)) for x € Vi,
- r? 7 has closed graph, and

- t? 7 quotients out by a free action of T’y that extends to a free action
on a neighborhood of cl(M?J) inVy.

(i) For I £ J & K we have
(2.2.11) TJK(M]K N MJK) = M]J NMjg and t7x =TJj0TJK.
(iii) Foreach J thereis .¥j.: Mj — E4 such that, for all J C K, we have
(22.12) Lyork = Ixlgg, o L7 (Ep) {0y x Vs, Z5(0.x) = (0.57(x)).
(iv) If the initial atlas KC is oriented, then so is the category M defined by the above
data as in (1.3.5).

Corollary 2.2.3 Proposition 1.3.3 holds.

Proof If the category M is defined as in (1.3.5) using the above data, My, M 1J
and 777, then all the properties of Proposition 1.3.3 hold. a
Proof of Proposition 2.2.2 We proceed in five steps:

Step 1 (the set-up and basic strategy of proof) Fix a shrinking G% = (G?) Iz, of the
footprint cover. By Corollary 3.2.3 we may choose a family of nested collar compatible

shrinkings as above,

1/,—1(g0) C (Vl,gl) e (VK+1,§K+1) O (VOO’§OO) I:Z/{OO’
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with collar widths that increase with m. The projection mic: UP® — |K| quotients out
by I'7 and its restrictions to the V™ have the property that

(VR Nme(VH £ @ < I cJorJCI.

For m < { we let VI';’Z =V ﬂﬂEl(ﬂK(V})), and for m < |I| and m <€ < |J|
define

(2.2.13) MJ" = Eqpep x V", Myt = Eqpep x Vit
For each 1 € J and m < |I| we will define . : M|JJ| — E4, a subset ]\71"}’{Z C Mf
and a I'y—equivariant covering map
ml. Tym/i m,l
Ty My —> My
with the following properties:

(a) r;"J’E has product form and closed graph as in (i), and quotients out by a free
action of 'y on (MI”}’K)O.
m, L

’ ’ ~m,l ~m’ L m’ .
(b) Forallm=<m'<[I|and £ <{'<|J|, M;;”" CM;;” and 1}, |1171}'}“_TIJ .

(c) If I € H < J then r'IIJ"m = T}{HJ|,\J| ° TIIIF}IHI on their common domain;

moreover, this domain maps onto
Edwle; X (VII;I,IJI anJ(VI‘.II:I]qu)) c MI|I|.
(d) If I S J then .%oty =%y on ML,
© #71(0) = {0y xs31(0)c M.
In the end we will take
Mp=M", My =M

with the corresponding sets M 1'5"”', and the restrictions of the maps t77y and 7. In

: _
particular, §; =& '.

For simplicity, we first assume that the isotropy groups are trivial. As in Example 2.2.1
(see in particular (2.2.10)) for I & J we will define a family of injective maps

I|+1,|J]+1 I J|+1
aU:MI|J| /1 ﬂ{(e,x)|||eJ\1||<e|I|}—>M}| , A>1
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(where ej<j :=prg,_, (e)), with well-defined restrictions

22.14)  ayi=aglyme MpS > MY m<|I|+1, k<|J|+1,m<k,
1J

such that

2215  ag =aggoary on M narh (MEHY foral 1 ¢ H C U

Then we define
MI"}’Z = OtIJ(MI"}’Z), Ty =gy
With this, conditions (b)—(c) will hold and ;5 = aI_Jl has the required product form.
We will arrange the rest of (a) later.
b4

Pk =b1 « by

Pk+1
Figure 3: The path P(e, x) with Iy ={1},..., [+3 =1{1,2,3,4}

Step 2 (definition of «yy via the paths P(e,x)) To define ajy(e, x) we consider
the chain of length m = m(|x|) formed by the sets H such that |x| € |V |[[HI+1,

(2.2.16) Imin(Ix]) = To(Ix) & 11 (X)) G -+ G Tm(Ix]) = Tmax (Ix1).

modifying the definition of s_t§(|x|) from (2.1.13) accordingly. Extending the pro-
cedure in (2.2.10), if I = I;(]x|) we define ayy(e, x) by applying collar maps in
Yy 1, gc+1 @ total of m —k times with initial points p,—1 € prZ1 (Ap,) and collar
lengths rnifor n=k+1,...,m=m(x|). In fact, it is useful to think of applying the
iterated collar map that lies over the path P(e, x) in s_t§(|x |) with the vertices

Pk =br., pn=0=rn)pr,_, +rabr, = CIAn(pn—l,”n)’ k <n <m(|x|)

(see Figure 3), where the r, are as described below. Note that by the collar compatibility
with covering maps in (2.1.20) it makes no difference whether at the n" step we apply
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the collar map over the segment [p,_1, ps] in Yy 1, ¢ (Where V := V*) and then
lift to the next level Yy 1, e, or whether we first lift all the way to Yy 1,, . (Where
Iy = Imax), and then apply the collar maps. We take the second approach, first lifting
the initial point (e4~y, , x) to

—1 )
(ea~r, +b1 -51,(X), b1,1,,(X); b1) € 31,1y Yy 1,y pc+1 D a}m\IOYV’,Mm

and then applying successive collar maps that remain in the boundary 9'Y), ; s
until the very last step. Note that by the collar compatibility with shrinkings we can
work in V := V¥ rather than in the different V' .

To complete this definition of ayy(e4-7, x) it remains to define the lengths r, = r;, (x)
for k +1 <n < m. To achieve consistency with coordinate changes, for each I € Ty,
we choose a cutoff function yj: |K| — [0, 1] such that

2.2.17) supp(xr) C me (VY 471 () € me(v)'h,

and for each J denote its pullback to the set VJ|J|+1 by the same letter. Then, writing
an = +/ller,~1,_, || and yx; := xy,, we define

Fm+1(X) = Ym+1(X)am+1,

m+2(X) 1= Ym+2(x) max((1 = Ym+1(X))am+1, dm+2),

ra(x) = Xn(x)(mrgj}x Ajaj)’

<n
n—1
A= Ta=x), Jj<n,
i=J
An =1,

To check that ayy(e4~7, x) is well defined we note the following:

e The path P(e, x) depends both on the position of |x| with respect to the sets
|V ||H I+1 in the chain (2.2.16), and on the relative sizes ay of the relevant
components of e; see equations (2.2.10).

* In order for the collar maps to be defined over P(e, x), we must have r, (x) <wy,
for all n. But

rn < max Vier,~p, | < Vleasrll < er,, <wi,

for all m > n because (V, ¢) is collar compatible; see Definition 2.1.5.
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¢ Further, at each stage we need the image of the iterated collar map to lie in the
domain of the next collar map It follows from (2.1.16) that the initial point

(eary + b7, 51, (X). b1, 1, (X): br,)

of P(e,x) does lie in 0'Yy, j .. One then uses the fact that these domains
d'Yy,j ¢ are compatible with covering maps, as explained in (2.1.19)—(2.1.20).

¢ To see that the path P(e, x) varies continuously with x, it suffices to check con-
tinuity for a sequence of points x” — x° for which just one of the functions y —
say ys —changes from a positive value to zero. But in this case (assuming
that e is fixed) the functions r; (x) are continuous for i < s, while for i > s we
have
al =a®, i#s,s+1, ad® =max(ay,ay ),

limr; (x”) =r; (x*°), i<s, limrg(x¥) =0,
v v

limr; (x") =ri—1(x*°), i>5.
%

e Ifxe V)g“"Hl for H = I with m <s <n, then ys(x) = 1. In this case, we
can divide P(e, x) into two independent segments at the point pg, because the
lengths r,(x) for n > s no longer depend on a; for i <s since A; =0 fori <s.
Further, the second part of P(e, x) projects to the path P(¢7g (x)) under the
natural projection

(conv(byy,....br,. (xp)) > (conv(by,, ..., by,)) = conv(by,,....by, . ).
Step 3 (definition of the maps «yy and sections .7 in the case of trivial isotropy)
With these formulas in hand, we now define the maps «j; and sections .7 by down-
wards recursion on |/ |. For |J| =k :=max{|J|:J € Ik}, we define
Sy =7,
where
S My — Egq,  (ea—y.x) > (e4<y.57(x)).

If|[I|=x—1,for x € VI|JI|+1’|J| the path P(|x|) has one segment of length yjay :=
x1+/ lles~r|l, and we define ayy: MI|§|’|J| — Myl by applying the collar map as
in (2.2.8). For these values of x we have yj(x) = 1. However, the fact that we have

defined ayy over the larger set VI|5|+1’|‘” means that the function
1
(2.2.18) gr= ] Q=g+ > xsaj v = E;
JICT JICT

is well defined and is compatible under pullback from V;.
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Let us now suppose that maps oz : Vlljlﬂ’mﬂ — VJ”IJrl , and functions .7 : Vlll| —

E 4 have been defined for all / C J with |/| > k so as to satisfy conditions (2.2.14)—
(2.2.15), and consider I with || = k. Because there are no transition functions oy’
between these sets V7, we can work separately with each such /. Then define oy (x)

VI|§|+1’|J|+1 by applying the collar maps Clg 7 as described in Step 2 over the

for x €
part, called Pyy(x) below, of the path P(e, x) from p; = by (where I = I;(|x]))

to pg, where J = I,(|x]).
We check the properties of o7y as follows.

e The map oy depends continuously on x because we saw above that the path
P(e, x) depends continuously on x, and because by (2.1.18) the collar map
along a path segment of length O is the identity.

e Both M 77 and o7 have the product form required by (a) because the collar
map c§ does not change the components of e4- 7 thatliein E4- s ; see (2.1.18).

e We repeatedly use the fact that the collar is compatible with all the shrinkings to
show that (b) holds.

¢ To prove the composition formula (c), we use the fact proved above that when
xeM I'ﬁ,“’lHl , the path Pr;(x) divides into two independent segments, the
first of which is simply Pyg (x), while the second projects onto Pg j(¢1s(x)).
Now use the invariance of the collar map under rescaling (2.1.21).

¢ To see that ayy is injective, notice first that the path Py (x) is determined by x.
Hence, the collar maps applied to the lift (¢’, ¢77(x);br) of (e,x) € My to
Y =Yy j¢ giveapointin Y that lies over a point 7, € Ay, which is determined
by P(e, x) because the collar c§ lifts c? by (2.1.15). But the collar maps are
injective, as is the projection Yy j ¢ N prz1 (tx) to Mj.

Finally, we define .#7 as in (2.2.18). This clearly has the properties required in (iii).

Step 4 (completion of the proof in the case of trivial isotropy) The first claims in (i),
namely that r? 7 extends pyy and that M 17 is a product of the form E4; 5, X ]\710] , are
clear. To establish the separation claim, namely that CI(M?J) N cl(]\? 191 7) =2 unless [
and H are nested, notice that the intersections of CI(M?J) and CI(MV 191 7) with {0} x Vy
certainly have this property by definition of a reduction. Hence, starting with maximal
|7] as usual, we may, if necessary, shrink the constants §; so that this property holds.
Further, (iv) holds, because if K is oriented, then so are all the manifolds Y, 7 . and
M7 . Since the structural maps in X preserve orientation by definition, and the collar

Algebraic € Geometric Topology, Volume 19 (2019)



Constructing the virtual fundamental class of a Kuranishi atlas 199

maps c}’ preserve orientation by Proposition 2.1.4, so do the maps t;; constructed
above.

It remains to arrange that the maps o7y have closed graph. We do this by the method
described in Example 2.2.1. Given I & J, recall that My := M%"m C M%"'”H
and define Fr(Mjy) :=cl(Mjy)~ Mjy, where we take the closure in MI|5|’|J|+1 . Then
the maps o7y extend to give a compatible family of embeddings defined over cl(Myy).
The images a7y (cl(M7y)) and oy (cl(Mgy)) are disjoint unless / and H are nested.
Moreover, if H and [ are nested, the intersection a7y (M7)Nag g (Fr(Mpgs)) is empty
because ajy (Mpy) C My = M|JJ| while ag j (Fr(Mgy)) CFr(My) C M|JJH_1 \MlJJ| .
Hence, if we define

(22.19) My = My~ | el (Fr(Myy))),
1<J

the maps o7y for I & J have image in M and closed graph. Moreover, if we have
already arranged that all the maps ajx: Mjx — Mg for J & K have closed graph
and satisfy the compatibility conditions (2.2.15) for all I C J C K, then if we replace
the domain M jg by M} N Mk, the maps o jg: M}K — Mg will still have these
properties. Hence, we may arrange that all the maps oy have closed graph by applying
these two steps for each J, starting with J such that |J| is maximal and then working
down.

This completes the proof if the isotropy groups are trivial.

Step 5 (the case of nontrivial isotropy) To construct the maps 777 in general, we
argue as above, taking ¢y (x) to be the local inverse to the covering map pyy at x € Vir,
and then defining 775 to be the I'4—equivariant extension of oz;Jl to a neighborhood
of the orbit of (0, x) in Myy. To see that this definition is consistent and independent
of the choice of x € ,0711 (p17(x0), note that the collar map is equivariant and, once
the shrinkings (Vk, §k ) are chosen, the only other choice in the above construction
is that of the cutoff functions y; in (2.2.17), whose pullbacks to the sets V7 are also
equivariant. Hence, the local inverse ¢ (x¢) is invariant under the stabilizer group I,

and so the extension is well defined.

Since all the previous arguments apply without essential change, it remains to check
that ‘L’? 7 quotients out by a free action of I'y<; on M IOJ that extends to a neighborhood
of cl(M?J). To establish this, we must define an appropriate action of I'y; on M?J.
If I’y acts trivially on E .y, then this action is simply the restriction of the given
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action of I'yy on Vy. However, in general this is not the case, and the new action
770 770
Ly xMp; — Mpy, (y.x) =y xx,

is described as follows. Notice first that because the collar c§ is I’y —equivariant and
injective, each point xo € Viy C ]\7}’1 with r?J (x0) =(0,xy) € Ejy5, x Vs hasa
neighborhood N (x¢) on which r? ', is injective and has image N/’ of product form,
namely N’ = E;_j 5, xO' C Ej_15, X Viy. Further, Iy acts on N via its action
on Ej_js,,since it fixes the points of Vz; C V7. If TI_JI,xO: N — N(xp) is the local
inverse to 777 at xo, we now define

(2.2.20) yRx =Yg U (VT Ty (), x € N(xo),
where for clarity we have written x +— y -; x (resp. x — y -y x) for the standard action
of yely<yon Ej s, XVig CEjys, X Vi (resp. on MIOJ C Vy). Then
(v xx) =11 (V7 T, V1 T (1))
=y (to ffjl,xo()/_l 1t (x)) = Ty (%),

where the second equality uses the equivariance of t7; with respect to the actions -
and -7 . Now extend this action over the whole orbit by setting § * (y * x) := (§y) * x.
This new action x — y * x is free, since I’y acts freely on 171 7 . Further, this action
extends to a free action on a neighborhood of the closure of ]\7}’] since it is determined
by 777, and hence by the collar, both of which can be extended. O

Lemma 2.2.4 The action x +— y x x of I'y_y on M 7 has the following properties:

(1) If H,I C J, then the action of I'y; on ]\711 preserves the subset ]\711 HMHJ.

(i1) If H C I C J then the restriction to MVU N MH] of the action of I'y.7 on
My agrees with that obtained by considering I'yj as a subgroup of I'y_ g
and restricting the corresponding action from Mgy to My " Mgy .

(i) If HCICJ and y € Myy N Mgy, then
(Vi< *Y) = (Yi~HI|1~H) *T17(¥),

where vy g |1~ g 1s the image of yj- g under the projection I'y g — I'1 g .

(iv) Properties (i) and (ii) continue to hold for the extension of the action to the
closure cl(ﬂu) of 1\711 inMy.
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Proof (i) follows from (2.2.20) because the action x > y -y x preserves the sets
M gy forall H C J. (ii) also follows immediately from (2.2.20) and the fact that
TgJ = THJ ©T[J7 On MU N MHJ (iii) holds because the maps 7y are equlvarlant
with respect to the projection Iy — Iy and take M N M s to My N M HI by
(2.2.11). Finally, (iv) holds because the extended action is defined by extending the
domain of the maps in (2.2.20). |

Remark 2.2.5 (the smooth case) Note first that if we apply the above construction
to a smooth atlas (ie one that satisfies the smooth submersions condition in (1.2.4)),
then the charts used in (3.1.4) to give Yy s, the structure of a topological manifold do
not have differentiable inverses. A related problem may also be seen in Example 2.2.1:
the attaching map 1,12 in (2.2.4) is given by the collar, which by (3.2.3) has the form
(e2,x) — x":= ¢(||lez]|}/%e2, x), where ¢ is the local product structure along Vs
in (1.2.3). Thus, even if ¢ were a diffeomorphism, «1,12 would not have a smooth
inverse along the submanifold e, = 0. Thus, just as in standard blow-up constructions,
in order to obtain a smooth category M from a smooth atlas one needs to choose a
smoothing of Yy, y . along its boundary.

Alternatively, one could use a different construction that avoids introducing the mani-
fold Y. Instead, one can construct the all-important collar structure used to define the
maps t77 by using the exponential map with respect to a suitable family of metrics
on the sets V. Indeed, recall that by the smooth tangent bundle condition (1.2.4) the
derivative dsy.j induces an isomorphism from the normal bundle TJ-(I71 ) of 171 7
in Vy to the product Ej_ ¢, X Vis. To explain the idea, let us suppose for simplicity
that the cover V is refined so that the group I'y; acts freely on the components on Vis,
so that the restriction of 77; to each component is a diffeomorphism onto V. Then
we can think of Vjy as a subset of 171 7 and the task is to define a consistent family of
injections ayy: Ej<r¢, X Vg — Vy. To this end, choose a family of I'7 —invariant
Riemannian metrics g7 on V; and constants &7 that are compatible in the following
sense:

e Foreach I € J, VU is a totally geodesic submanifold of (Vy, gs) and
(p1)+(8sly,,) = 81lvy, -
e O<egr<egyiflI CJ.

e Foreach I ¢ J, the gj—exponential map along directions perpendicular to Vi
defines an embedding o yy: Ej<je;, X Vig = Vy.
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e The corners are locally flat, ie if x € 171 7N I7H g for I € H < J then

arjejH +em~r.x) =apjlejm.ara(eg~r.x)).

The last condition means that the composition rule holds directly, without having
to introduce analogs of the paths P(e, x). Of course, the choice of the g; and &;
requires some attention to detail as in the proof of Lemma 3.1.11 below; see also
the construction of the perturbation section in [14, Section 7.3]. Thus, one begins
with a family of shrinkings V¥ C --- C V! £ V°? of an initial reduction V°, where
k :=max{|J| | J € Zx}, and then chooses metrics gy on VJ|J| , starting with J of
length |J| = 1, that satisfy the above conditions for the submanifolds 171|JJ| of VJ”|
for some constant 8’1 > 0. Finally, once g is defined on V}‘ for all J, one chooses
suitable constants ¢y, now starting with maximal |J| and working down. Further
details are left to the reader, as is the proof that the resulting branched manifold is
cobordant to the topological one constructed in detail above. For this last step one
would need to adapt the proof of uniqueness in Step 2 of the proof of Theorem B in
Section 2.3.

Besides obtaining a smooth rather than topological branched manifold, there are no real
advantages to this construction unless one wants to work with the virtual fundamental
class on the chain level using de Rham cochains. Another point is that by [9] we can
construct the branched manifold M to be a simplicial complex, so we could simplify
the proof of Lemma 2.3.4 by using (locally finite) singular homology instead of Cech
homology. However, because we know nothing about X except that it is compact and
Hausdorff, the VEC has still to be considered as an element in Cech homology. For
further discussions of the smooth case, see Step 3 of the proof of Theorem B. o

2.3 Proof of Theorems A and B

To prove Theorem A, we must show that the category M constructed in Section 2.2 has
a unique completion to a weighted branched groupoid, and then analyze the structure of
this groupoid and the associated weighted branched manifold (M, A). The arguments
needed here are very similar, but not identical, to those in [11, Proposition 2.3] (which
considers the case of the category By defined by an atlas with trivial obstruction spaces)
and in [12, Section 3.3] (which analyzes the zero set of a transverse perturbation section).
Theorem B has two parts. It first states that if X is oriented the weighted branched
manifold (M, A) carries a natural fundamental class [X ]V,Clr , a result that was proven
in [9] in the case when M is smooth and compact, with or without boundary. Although
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smoothness is assumed throughout [9], the only place where this condition is essential
is in the construction of the fundamental class in the proof of [9, Proposition 3.25]. In
this case, we may replace M by an equivalent wnb groupoid that is tame in the sense
that its branching loci are piecewise smooth and hence triangulable, which allows us
to work with singular homology in the proof of Lemma 2.3.4. In the present case, we
must use rational Cech cohomology, and the appropriate dual homology theory for
noncompact manifolds as described in the appendix. The second and more substantial
part of the proof of Theorem B explains why [X ]Vlr is independent of all choices made
in its construction, and why, in the smooth case, the new definition is consistent with
the previous definition via perturbation sections.

We begin with a lemma about groupoid completions of étale categories; for definitions,
see Sections 1.2 and 1.3. As usual we denote by Z a collection of subsets of a finite
set A, and say that I, H € 7 are nested if / C H or H C I. We state the condition
identity below for completeness; it follows immediately from the fact that every category
has identity morphisms.

Lemma 2.3.1 Let Z be a collection of subsets of a finite set A and M be an étale
category with

ObjM=|_|M_], Morps = I_l M]J,
Iez 1cJ,1,Jez

s xt: Morpys — Objpg x Objpg, (1,1, y) = (I, Ty (1), (J. ),

where M[J C My is an open subset and the maps tjj: ]\71] — M7y satisty the
following conditions:
e Identity Forall I € Z, t7; =id on ]\711 =M;; = Mj.

e Composition Forall H C I C J, TIJ (MHI N M]_]) = MHJ N MIJ and

THJ =TH[OT[J on MHJDMU hence, 1fZ€MIJﬂMHJ where H C I C J,
we have (H,1,y)o(I,J,z)=(H, J,z).

¢ Separation CI(M )N cl(]\? Hy) =@ unless I and H are nested.

e Group actions For each i € A there is a finite group I such that, for all
I C J, tj; quotients out by the restriction to ]\711 of a free action of Iy on
cl(ﬁu) C My, where Ty 1 :=]];cs; Ii . Moreover, these actions x > y * x
satisfy the compatibility conditions listed in Lemma 2.2.4.

Algebraic € Geometric Topology, Volume 19 (2019)



204 Dusa McDuff

Then, there is a unique nonsingular groupoid M with the same object space and
realization as M. Its morphism spaces for I C J are

(2.3.1) Mor g (Mp. My):= | ) (MynMpy)xTi<r.
o#FCl

={(r.y) e My xTy|yeMy,yelim,}
where Hy :=min{H : y € MVHJ}, with

(2.3.2) sxt(1,J.y,yi~m,) = (U, VI_\IHy *177(1)). (J, ),
(I Ly yim) " = Lyily, * vy,

In particular, M is étale, and there is an injective functor M — M.

Proof Observe first that because a nonsingular category has at most one morphism
between any two objects, M must have precisely one morphism between any two
objects (/,x) and (J,y) that are equivalent under the equivalence relation ~ s
on Obj,,s generated by Moras. Hence, there is precisely one nonsingular groupoid
with Obj ;; = Obj,s and |1\2 | = |M|. Since there is an injection

Morp(Mp. My) =My — | ) (Myy0Mpy)xTier
o#FCI

when I C J, and the structural maps described in (2.3.2) are étale, it remains to check
that the formula (2.3.1) does describe Mor g7 (M7, M ).

The separation property implies that for each y € M the set of F such that |y| €
|]\7 FJ| C |M]| is nested. Let Hy be the minimal such element. By Lemma 2.2.4,
for all Hy, C I C J the group I'7< g, acts freely on M H,1- Hence, each element
in U2¢FC1(A711 N Mpy) x Ty has a unique description of the form (y,y) with
y € My and y € I'7 g, . Further, given such (y, y) it follows from Lemma 2.2.4(iii)

that g, 7 (y) = rHyI(y_l x777(y)) for any I with y € My, so that

(J.y) ~m (Hy, w1, 7(») = (Hy. ta, 0 (v " 5ty (0))) ~m (L T15 (0)).

Hence, for each I with y € M 17 and each y € I'7 g, there must be a morphism m
in M from (I,y~Yx177(y)) to (J, y). To see that these are the only morphisms in M
it remains to observe that each equivalence class [(/, y)] contains a unique element
of the form (Hy,z) where z € My, ; further if Hy, C I C J then [(J,y)]N M| =
{xe p;Ii 7 (2)} consists of the I'7 g, —orbitof 777 (y). Since each morphism is uniquely
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specified by its source and target, there is no need to write out the composition rule
in M explicitly. |

Lemma 2.3.2 Suppose in the situation of Lemma 2.3.1 that for each I C J the map
t7J has closed graph. Then:

(i) The maximal Hausdortf quotient |M |3 is the realization of a nonsingular
groupoid My, with objects Obj, and morphisms from My to My with [ C J
given by

Mor g (My, M) = U (M Nel(Mpy)) x Ty<p.
o#FCl

(i) For each I, the map n}*: M; — |]\//iH| is a local homeomorphism with open
image, and in particular is a proper map onto its image.

(iii) The space M := |M |y = |]\//iq{| can be given the structure of a weighted nonsin-
gular branched manifold with weighting function Apr: M — QT = QN (0, c0)
given for p € |My|y by

_ )|
Ty

A (p) = |r1_,|#{y e My | 725 () = p}

where Fy := min{F :y € CI(MFI)} = min{F : n}l{l(y) e cl(mpyyn(MF)}.
Moreover, the wnb manifold M is oriented if M is.

Proof Denote by ~ s the equivalence relation on Obj,, corresponding to the quotient
map Obj,, — |M |y Its graph is the closure in Obj,, x Objy, of the graph of ~py.
First consider the component in Mor 5, consisting of morphisms from My to M for
I C J with y = id. This set can be identified with Mj; and has closed graph by
hypothesis. Next consider the set of morphisms in M from M Jto My,

Mor (M, My):= ) (MFs)xTi<r,
o#FCJ

sxt(J, 1,y y)=((J.y " ). (J.y)).

These morphisms form a group with closure

Morg, (My.My):=J (MyOcl(Mps)xTysr
og#FCJ

={.»|yeMy, yelyr,},
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where
sxt(J, T,y y)=((J,y " %), (J, ).

Next observe that every morphism (7, J, y,y) € Mory; (M, M), where I C J may
be written as the composite

(J.J.y.y)o(I,J,y % y,id)

of a morphism of the second type followed by one of the first type. Therefore, because
the action of FI\F on MFI N MIJ C My (where F C I C J )extends to an action on
cl(M FJ7)N M 77 by Lemma 2.2.4(iii), the limit of a convergent sequence of morphisms
also is such a composite. Claim (i) then follows easily.

Since |1\2H| has the quotient topology, to establish (ii) it suffices to show that the
inverse image (7 J) 1(71;‘£(M 7)) is open in My for all J. This set is empty unless
I C J or J C I. In the former case, (JT )~1 7y (MI) =1 Y(Mpy) = MU which
is open. In the latter case, (nj) m; H(Mp) =1y (MU) which is also open. This
proves (ii).

To prove (iii), note that by (ii) we may define the local branches at p = Jr;* (y) €| Mp|n
to be the image under I'7 f, of an open neighborhood U C M of y that s disjoint from
cl(ﬂ F1) unless F,, C F and is also disjoint from its images under I'7<f, . Each such
local branch is given weight 1/|I7|. It then follows easily from Lemma 2.2.4 that A s is
well defined and has the required properties. For more details, see [12, Lemma 3.2.10].
Finally, the statement about orientations is clear. O

Remark 2.3.3 As in [12, Lemma 3.2.10], it follows from part (ii) of Lemma 2.3.2
that the topology on |]\2H| is second countable, locally compact and metrizable. o

With these preliminaries in hand, it is easy to show that in, the oriented case, M = |]\2H|
has a fundamental class.

Lemma 2.3.4 Let M be oriented with corresponding oriented wnb groupoid ]\//i;.[
constructed as in Lemma 2.3.2, and let M := |]\2H| Then there is a class iy €
H ~ (M) with the following property: if U := n;{(M 1) for some I € Iy, then

1 .
(2.3.3) oMU (m) = v |(7T x(up) € HF (U),

where uy € I:IX,o (My) is the fundamental class in (A.3) and pp,y is the restriction
map on homology in (A.4).
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Proof It follows from Lemma 2.3.2 that the statement of the lemma makes sense:
the class py exists by property (a’) in the appendix, the restriction exists by (b”)
because U is open, and the pushforward exists by (¢”) because the map 71 Mp—|M|
is proper. We prove the lemma by showing that for k = 1,2, ... there is a class g
on Wi := Up,11<k 77" (M7) such that

iz gy = (1) (lF |M1) forall I, |I| <k.

When k =1, W is a disjoint union of sets 7; H(My), where |I| =1, and we simply
define 11 to be the given pushforward. Let us suppose that wuy is constructed, and
consider the definition of pgy;. Since the sets (n}{ (My))|7|=k+1 are disjoint, it
follows from (e’) that we can consider each of them separately. Further, by apply-
ing Mayer—Vietoris with U = W; and V = n;"(M J) it suffices to show that the
classes uy € I-?]f,o(Wk) and (n}")*((l/|FJ|),uJ) € ﬁ]?,o(V) have the same restriction
to W NV =y n}"(M 17). But because restriction commutes with pushforward
by (d'), it sufﬁces"to prove the corresponding statement for the fundamental classes of
the spaces M. Namely, we must check that

= @)l gg,,) = = (wrlmg,)-

IFI IFI

But on manifolds the homology theory H® agrees with the usual locally compact
singular homology. Hence, the above property holds because, by hypothesis, the maps
t77: My — Mjy are orientation-preserving covering maps of degree |I'y|/|I7|. O

We are now in a position to prove the main theorems. We begin with the proof of
Theorem 1.3.4, which as already noted in Section 1.3 immediately implies Theorem A.

Proof of Theorem 1.3.4 Given the oriented atlas K we construct the category M as
in Proposition 2.2.2. We saw in Lemma 2.3.2(i) that this category has a unique Haus-
dorff groupoid completion ﬁH, which proves (i). Part (ii) follows immediately from
Lemma 2.3.2(iii). Further, the action of the group I'y on M and E,4 induces an action
on ]\//iq.[ and E4, and the functor ¥: M — E 4 extends to a I'y—equivariant functor
Z\//i;.[ — E4. Therefore, it remains to check that the induced map “js: M — E4 on
the realizations has compact zero set 5”1‘}1 (0) and that there is a map : 5”];[1 0)—-X
that induces a homeomorphism .#;,'(0)/ T4 => X.

Since Mj N 5”1_1(0) ={0} x (V; N sI_I(O)) by (1.3.7), the full subcategory of M
with objects |_|; My N ,5”1_1 (0) includes into the full subcategory of By with objects
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L, vin sI_1 (0). Hence, there is an induced map on the realizations
IM|N.7710) - |K| N |s|~1(0) = X.

This is continuous and surjective, but not injective because we have not yet quo-
tiented out by the group actions. Nevertheless, because X is Hausdorff, the universal
property satisfied by the Hausdorff quotient implies that it factors through a map
v |MH| N.7710) = ;7];11 (0) — X. Further, because 17 induces a homeomorphism
Vin sI_1 (0)/T7 — G; C X (where Gy is the footprint of the reduced chart domain V7 )
and T'4-; acts trivially on YI_I(O) =Vrn 51_1(0), this map : Y&l (0) — X does
factor through a bijective and continuous map 5”1‘}1 (0)/T4 — X. To see that it is a
homeomorphism, it suffices to check that fﬂ}l (0) is compact.

To this end, notice first that because the topology on M is metrizable by Remark 2.3.3,
we need only check that 5/1‘;1 (0) is sequentially compact. Thus, consider a sequence of
points py € 5”]‘}1 (0). Because M is the union of the finite number of sets | M7 |3, we
may suppose that pj € |My|y forall k. Choose a sequence yj € My ﬂyl_l (0) such that
7 (vi) = pr- Then yg = (0. zx) € Eg<1,6, x(V1 Ns71(0)), and ¥ (y) =1 (zx) € X.
By passing to a subsequence, we may suppose that the sequence ¥ (z;) converges to
Xoo € X. Since the footprints Gy := ¥y (s;1 (0)) of the reduced charts form an open
covering of X, we may further suppose that there is J such that ¥;(z;) € Gy for
all k£ and that this sequence has limit xoo = ¥ j(2Zs0) € Gy. Because Gy NGy # O,
the sets / and J are nested, and the original sequence p; € |Mj|y must lie in the
intersection py € | M|z N |M|3. Therefore, the py also have lifts y, = (0,z;) €
Eq<ge, x(Vy ﬂs;l (0)), and now it follows from the fact that the map V; ﬂs;l 0) —
Gj C X is finite-to-one that some subsequence of the Z;C must converge to a some
point z in the finite set (V; N s;l )N wj_l(xoo). Hence, (py) has a subsequence
that converges to JT}" (0,z.,) € [M |3 C M. This completes the proof of Theorem A.

O

The proof of Theorem B is somewhat longer, and hence we restate it for the convenience
of the reader. Here we assume that I and X are as in Theorem A.

Theorem B If K is oriented, there is a unique element [X ]Er € Hy(X;Q) that is
defined as follows. For b € I:Id(X; Q) and D = d + dim E4, we have

(XTI ) = (Fp)x(b) € HE g, (Ear Ea~1{0}:Q) = Q,
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where b is the image of b under the composite
AU Q) Y HY (7371 (00:Q) B> HE, g, (M M~ 7371 (0): Q)

and D is given by cap product with the fundamental class s € H2T4mEa(Af) con-
vir

structed in Lemma 2.3.4. Moreover, [X]}}" depends only on the oriented concordance
class of IC, and in the smooth case agrees with the class defined in [12].

Proof We proceed in three steps:

Step 1 (definition of [X ]V,Cir) Since the fundamental class pps exists by Lemma 2.3.4,
and an appropriate cap product exists by point (f') in the appendix, in order to see that
([X ]V,Cir, b) is well defined it remains to note that the map

(Im)w: HG g, (MM~ 7341 (0): Q) — HE, 5 (Eq. E4~{01:Q) = Q

is well defined. Further, it takes values in QQ, because E4 is oriented by the definition
in Remark 1.2.1(iii) and the theory H S coincides with singular homology theory on
simplicial spaces.

Step 2 (proof of uniqueness) To prove the uniqueness of [X ],Vcir, one must state
and prove the analog of Proposition 1.3.3 for cobordism atlases, and also prove that
all choices made in the construction are unique modulo oriented cobordism. For
the constructions that involve atlases, such results are proved in [13; 14; 12]; see
[13, Proposition 4.2.3] for different choices of metrics and [13, Theorem 4.2.7] for
different choices of tame shrinkings, [13, Theorem 5.1.6] for a discussion of reductions,
[14, Section 8] for orientations (in particular [14, Theorem 8.1.12]) and [12, Appendix]
for weighted branched cobordisms. The present construction also requires a choice of
local product structures (as in (1.2.3)) and partition of unity (as in (3.2.17)) in order to
define the collar of the manifolds Yy ;.. However, in distinction to the smooth case,
it is not necessary to arrange that cobordism atlases have specified collars (ie local
product structures) near the two boundary components because the VFC [X ]",Cir is now
defined via diagram (A.7), which involves restriction to the boundary rather than via a

perturbation section that must be extended from the boundary to the interior.

Thus, we define a cobordism atlas K°! over [0, 1] x X between two d —dimensional
atlases K® and X! on X to be an atlas X°! over [0, 1] x X of dimension d + 1 such
that:

(i) The charts whose footprints intersect d([0, 1] x X) =[ |, @ x X are manifolds
with boundary.
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(i1) For o = 0, 1 there are functorial inclusions
La:IC"‘—HCOl, ng Ixe — Iyo1, a=0,1,

that (for simplicity) we assume to have disjoint images, and for each I € Ty«
take the chart domain U onto the boundary dU 10,1 of the corresponding chart
in K0!, where I’ := «Z(I), preserving orientation for & = 1 and reversing it for
a=0.

(iii)) We further require that the local product structures in (1.2.3) for the chart
domains in £* extend to local product structures near the boundary points of
the corresponding chart domains in K01,

We show in [14, Theorem 7.1.5] that any pair of reductions V* of X% may be extended
to a reduction V0! of K01 such that there are natural inclusions ¢} : |[V¥| — [VO1] that
are homeomorphisms to their image. Further, if J € Zx« for @ =0, 1, then for suitable
small ¢* > 0 there is a commutative diagram

Y
LD{
EAOI\Aa,gtx X Yya j e — YVOI,L"‘(J)@

Prvl val
1%

Lo 01
vy Vie (1

Notice here that we take the product of Yy« j . with the extra obstruction spaces
E 401 ga g in order to increase its dimension to that of Yyo1 «() .. Because the
maps (1.2.3) in the submersion axiom for VO extend those for V*, we can choose the
covering and partition of unity in Step 2 of the proof of Lemma 3.2.1 for V°! to extend
those already chosen for V¥. Therefore, we can construct the collars on Yy01 ja( ) . t0
extend already constructed collars on the sets Yy« j .. Hence, after possibly shrinking
& > 0, we can arrange that for small % > 0 there are embeddings

tgli EAOI\Aa’gaXMa—)M()l such that Llim(ty)zaMOl,

o
and also that the map 5”1811: MO — E4 satisfies
(2.3.4) 7 oM = Iar 0Py Eqo1 g go X M* — Ey,

where pr;: Eg01go go X M* — M* is the projection.
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Because M°! is constructed from an atlas for the product [0, 1] x X, the natural
projection (5’]‘041 ~1(0) — [0, 1] x X factors through a homeomorphism

~

(o1 0)/ T =5 [0, 1] x X.

Notice here that for @ = 0, 1, the group Ip; decomposes as a product, which we will
write as T'); _, % Iy, where T, _,, acts trivially on (5)~1(0) N (imM). Therefore,
there are natural identifications

(L) 7H0) N (imi%)))/ T = (78)71(0)/T¥ = {a} x X C[0,1] x X.

Thus, M°! is an oriented branched manifold of dimension N°! + 1, where NO! =
d + dim E 401, with boundary that decomposes as a union

(2.3.5) MO = | | EM®, where EM®: =5y (Eqoi_y,, eu X M®).
a=0,1

For ¢ = 0, 1, the branched manifold EM% carries a fundamental class
MEMa = ILEAOI\A(X X Upgee.

Because the isotropy group of the boundary chart labeled 7, in Xy equals that of
the corresponding cobordism chart in K°!, the equation (2.3.3) is consistent with the
boundary map in the long exact sequence (A.5) for the pair (M°!, 9M°1). Hence, the
proof of Lemma 2.3.4 adapts to show that the interior of M °! also carries a fundamental
class

(2.3.6) ppgor € Hiygy  (MO1 oMy
such that
0(iaror) = (REar - —H o) € Ho (EM®) @ HYS (EM') 2= Hyoi (IM°)),
where 0 is the boundary map in the long exact sequence in (A.5).
We now apply the cap product in (A.7) with

Y =M, U= (Equ~{0)c M 4= || EM”
a=0,1

Then ¥ ~U = (y]&l)_1 (0) is compact with a natural projection to [0, 1] x X and
hence to X. Since these maps are proper, any class b € H d(x) pulls back to a
class by € I:Id(Y ~U) such that «*(by) = bg where 1: A — Y is the inclusion, and
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b = (bo, b1), where by can be identified with the pullback of b to (5’1&)_1 0)C Mgy.
Hence, the cap product

(Oppgo1) Nba € Hio (A, U N A)

is in the image of the map 9’ in (A.7) and hence vanishes when pushed forward to
I-Vljf]ol (Y, U). But there is a commutative diagram

@ppgor) b Ho (AU N A) =225 HE L (E gor, E qon ~{0)

l J» I-

v 7 v
0 HS o, (Y.U) —— HE o, (E go1. E 401 ~{0})

Hence, (“a)«((0ppg01) Nbyg) = 0. Since (dppp01) N by measures the difference
between the two classes (g N by, these classes have the same image in

I:I]f]m (E 01, Eqo1 ~{0}),

as claimed.

Step 3 (agreement with previous definition in the smooth case) It remains to show
that in the smooth case the class [X ]VKir constructed here agrees with that constructed in

[12, Section 3]. The idea there was to construct a small smooth perturbation functor?*
. I ~T
v =(v7): Bgly, — Exly

such that s; + vy is transverse to zero for all /, and then assemble the resulting zero
sets Zj = (s1 + v7)~1(0) C V7 into a weighted branched manifold ZV := |2,‘Q|.
Note that Z" is oriented and has a weight-preserving natural inclusion into M, ie each
branch of ZV is a submanifold of a branch of M with the same weight. Now choose
a sequence v of perturbation sections with |vg| — 0. There is a corresponding
nested sequence of neighborhoods B, (tx(X)) of the zero set X = (X)) C [V| with
intersection equal to (x(X). Then the zero sets ZY* map to Bg, (1x(X)) C |V|, and
we showed in [12, Theorem 3.3.5] that for all £ > k the two branched manifolds
ZVt and ZVk are cobordant in By, (1x(X)) and hence represent the same homology
class in Bg, (txc(X)). It follows from the tautness property of rational Cech homology
(see property (h’) in the appendix) that the inverse limit of this sequence of classes in
Bg, (1x(X)) determines a unique element of I:Id (te(X); Q) = bvld (X;Q), which we
called [X]}" and showed to be independent of all choices.

24For notation see (1.2.9).
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We now interpret this construction in the current setting. As above, fix a compact
neighborhood?> Ng of 5’]‘_41 (0), so that

8o 1= inf{||.7u (x)|| : x € Fr(Np) :=No~Np} > 0,
and choose a nested sequence N of compact neighborhoods of yﬁl (0) such that

(\ Nk =7 0).  Fu(Ni) CEqg,.  where §iyq <8 < So.
k

Choose a corresponding sequence of transverse perturbation sections vg = (vg, 7) such
that the perturbed zero set (s7 + vg, 1)~ 1(0) is contained in V7 N T 1(WNg) forall I,
and for each k, consider the map

i)\ki M — Ey4, ﬁk(nl(eA\I,x)) = vk(x) € Ef CEy.
This is well defined because vy: B;d;r — E,d;r is a functor. Then
pre,, (Om + ) (s (easr, X)) = prg, , (Ym(nr(eass, X)) #0 if eass #0,

while

pre, ((Fa + D) (1 (ea~r. x))) = (51 + vie, 1) (x).

Therefore, we may identify the weighted branched manifold Z % with the perturbed
zero set

(S +9)7H0) C N € Z3 (Eas,)-

Given b € Fld(X; @), choose a sequence by € H4 (Nk: Q) such that limby = v*(b),
where : fﬁl (0) — X is the footprint map, and let ¢;: Z vl N be the inclusion.
We must show that

1ilgl<uzvk e (0) = (I« (um NYTE(D)) € Q.

Consider the diagram below, in which the top and bottom square commute while the
middle homotopy commutes:

250ne important difference between |V| and M is that the zero set |s|~1(0) does not have compact
neighborhoods in |V| by [14, Example 6.1.11], while it does in the branched manifold M.
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(M, M ~.7331(0) —2 (E 4, E4~{0})

|

(M, M ~Ny) M, (E4. E4~1{0})

(M, M \/\_fk)

|

(M, M ~ Z)

TMIV (B4, Eq~{0})

M (g, Eq~1{0})

Because ZV* is a weighted branched smooth submanifold of M with orientation and
weights compatible with that of £4 and M, its fundamental class pzvi satisfies

pzve = pu N (Sm +vi)*(0F)) € Ha(Z*,Q),

where o € HY™Ea(E, E4 ~{0}) is the natural generator.2® This immediately
implies that

(mzve, (b)) = (S + i)« (m Nig(br)), o) € Q.

Now note that the commutativity of the above diagram implies that

Wm(.Sas + vie) s (upr NG (b)) = (Fan)s (i NP (D)) € Haim £, (M, M~ 734 (0)).

The result follows. O

With a little more work, we can prove that our construction extends to atlases for
compact pairs (W, X) as in [15, Lemma 5.2.4]. The following lemma defines

W e HY (W ~ X) = Hom(H/ T (W ~ X); Q).

Note that [_“150 S~ X)= I-Vlg

W, X) by property (g’) in the appendix.
+ y property (g pp

+1

Lemma 2.3.5 Given an oriented (d +1)—dimensional Kuranishi atlas K with bound-
ary on a compact pair (W, X := dW), there is an associated virtual fundamental class
(W e HSS (W ~ X) such that

(2.3.7) J(IWID = (X € HP(X) = HG(X),

26We can use singular homology since we can assume that Z"k and M are simplicial complexes
by [9].
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where 0 is the differential in the long exact sequence (A.5). In particular, the image of
[X]Vlr in I-VI;;O(W) = ﬁ;(W) is zero.

Proof We define the notion of an oriented (d+1)—dimensional Kuranishi atlas
(KC, 0K) for the pair (W, dW) by replacing [0, 1] x X by W in the above definition
of a cobordism atlas. Thus, we take K1 =: £ to be an atlas for W, K! =: KX an
atlas for X and K° to be empty, and assume the obvious analogs of (i)—(iii) above.
Then, given a branched manifold (M X , AX ) constructed from KX , we may construct
a branched manifold (M", AW with boundary

IMWY) = Eyw _yx x MX,

and extend id x .% from d(MW) to a map : MW — E,w that satisfies the
analogs of equations (2.3.4) and (2.3.5) above. Further, using the fundamental class
A v €HY N (MY <~ 9OMW) defined as in (2.3.6), we define an element

Wi e HS (W~ X)
by setting
(W b) := (Fpw)s(b) € HimE y (Eqw . Eqw ~{0}:Q) = Q.

where b is defined as follows. Let

Yy =MW, A=aMV, U= (Ew~{0}).
Then the pullback ¥*b € Ht1 (Y ~(UUA): Q) of b€ H¥t1 (W < X: Q) determines

b:=u¥ny*beH dimE g Y ~A4.U~ A4:Q),

where N: H (Y ~A) @ HP(Y ~U) — HZ(Y,U U A) is as in (A.6) with A = .

p+q

To prove (2.3.7), note that in the diagram (with the same Y, U and A)

H (Y~ A @ HPTHY ~(AUU)) — HE(Y ~ AU A) — HE(Y.U)

N e

H (A ® HP(ANU) ———— HS (A, ANU)

we have
Je(@ppy) Nb') = tugy N (8B))) € Hy (Y, U)
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forall ue H Jqurl(Y\A) and b’ € HP(A\U) where § is as in (A.1).27 Since y¥*
commutes with §, this implies

(O(W1IN), by = (W), 8b)  forall b e HY(X).

The result follows. O

3 Further details and constructions

In Section 3.1 we first define the notion of a compatible shrinking (U4, &) and prove
Proposition 2.1.1. We then introduce the more intricate notion of a compatible reduction
(V, ), which involves not only the compatibility of V with a set of constants ¢ but
also its compatibility with a suitable cover of the set of overlaps in |V|, properties
that are essential for the proof in Section 3.2 that Yy, y ¢ has a collar that satisfies the
conditions listed in Proposition 2.1.4.

3.1 Shrinkings and the manifold Y

We assume given an ambient preshrunk tame?® atlas K with chart domains /2,
together with a tame shrinking &/ C ¢*?, and then choose a further shrinking F°
of the footprints F*° of 2/*. For short we write ¥ ~!(F°) C 4 C U®. By the
submersion axiom and the precompactness of U g inU IS}{ foreach I € K, we may
choose a finite set of points zy € U Is}(, constants &, > 0 and I’ —equivariant local
homeomorphisms

E . e Q
(3.1.1) Prk.z,: Exk~leo X Wik z, > Uy, 1=a=<Ajk,
where WI K.zo C U IS}{ is open, such that

SK~1I O¢IEK,za (e’ y) =e,

Urc |J Wiz, cU forall I K.

1<a<A;x

(3.1.2)

We may and will assume that each ¢Z 1K .z is 'k —equivariant. (To do this, first shrink
the W1 K.z, S0 that they have disjoint images under the group I'x / I';,, , and then replace
them by their orbit under I'x /1%, .)

27This extension to property (B5) on [8, page 336] holds by combining properties (B4) and (B6).
28For terminology see Section 1.2.
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Our first task is to make a preliminary choice of shrinking so that the space Yy, j ¢ is
a manifold with boundary. In the following definition, condition (b) ensures that the
charts are compatible with a fixed shrinking of the zero sets, while conditions (a) and (c)
have already been used in the proof of Corollary 2.1.2. Some version of condition (d)
is an essential ingredient in the proof that Yz, s . is a manifold with boundary; see
(3.1.4) below. As we saw in (2.1.4) and (2.1.5), the elements (e, x;t) € 05<1Y, 76
have x € Uy and lell < ker(xy, where I(x) C I & J. Therefore, in order for the
domain of the local chart in (3.1.4) to include all the boundary points of Y, j ¢, we
do need the map ¢IEK’ . to be defined using a constant ¢ that is > ke, and we have
chosen to use (x + 1)e; for convenience and precision. Note also that we do not insist
that the image of the map ¢IEK in (3.1.3) below is contained in I/ or even in &/*°. Such
a requirement comes later; see (3.1.9).

Definition 3.1.1 Given v ~!(Fo) CU™® C U as above, we will say that a shrinking ¢
and set of positive constants ¢ := (¢x) ez, are (Go, U)—compatible if the following
holds:

(a) O<ker <eg if I € K (see (1.3.2)).
b)) v HFHYC U u*.
(¢) s;(Ur) CEjpg, forall 1.
(d) Forall I € K,each z € (71K C Uk has a neighborhood @IK C l71K such that
one of the homeomorphisms qbe 2, I (3.1.1) restricts to give a map
(3.1.3) Ot Ex<1(e+1)e; X O1x — U
that is a homeomorphism to its image, where « := max{|K|: K € Zx}.

For simplicity we call the pair (I, &) a compatible shrinking.

Lemma 3.1.2  Suppose given ¥~ (Go) T ¥ 1 (Fo) CU® C UL as above. Then there
is an (Fo,U°°)—compatible shrinking (U, ).

Proof First choose any tame shrinking ¢/ such that ¥~ 1(F%) C ¢’ © ¢4, which is
possible by [13, Proposition 3.3.5]. Then each set U; is covered by a finite number of
the sets Wyk ;, in (3.1.1) and we choose any set of constants ¢ satisfying (a) and also
so that &7 < &4/(k 4 1) for all relevant o. Then, if we define Uy := Uy ﬂsl_l(EI,g,),
property (d) holds. Further, U/ := (Uy) is a tame shrinking of Z/°° because the coordinate
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changes commute with the section maps sy and preserve the norms ||-|| on E4. (More
precisely,

¢rk osroprk = sk: Uik — Ek,
where the canonical inclusion $1K: E; — Eg preserves || - ||, ie ||$1K(e)|| = |le|l.)
Hence, U satisfies (c) and (b), as required. O

From now on, we fix (F°,2/*°), and hence cease to refer to them explicitly.

Lemma 3.1.3 If (U, ¢) is compatible, then for each J, Yy, j ¢ is a manifold of dimen-
sion D :=d +dim E4 + |J| — 1, with boundary equal to

Y7 Nprat 0A) = | 0r<1Vuge = | Jle.xs0):x € Ury 1 €0y Ay
gy 1<y

Proof We show that each point (e, x;t) € Y3, 5 ¢ has a neighborhood homeomorphic
to an open subset of (Rzo)k xRP=k where k =#{j € J | tj =0}. Thus, the projection
pra: Yu,s,e — Ay is compatible with the boundary structure of A .

First consider a point (e, x;1) € Yy, y ¢ with #; #0 forall i € J. Then the coordinates e;
for j € J are determined by (x,?) via the requirement sy (x) = ¢ - ¢|; while the
components of e|4-y := (¢j)ica~Js can vary freely. Hence, the tuple (e, x;?) is
uniquely determined by the point (e|47,x;t) € Eq4<y x Uy xint Ay, and so has a
manifold neighborhood of dimension D.

It remains to define boundary charts at the points (e?, x°, %) € Y3, y , with

tO edAy = U N AN A= U intAy.
1<J 1<J
Suppose first that

1) :={i i5i(xO) # 0y ={i ) >0y = 1(°) = 1.

sothat x®e U 8 By (3.1.2), there is a neighborhood Oof x°in U 1J thatis contained in
one of the sets WI J,zo, 10 (3.1.1), and below we denote by ¢ the associated map ¢ 1724
There is a corresponding neighborhood of (e?, x°,¢9) in

dy~1Yu, g6 Nie, x:1) rely<r =0}
given by

@},J,§ = {(eaws +t7 s1(x), x3t1) | x €O, tr ~ 1), lleaws || <kery CyrYuje.
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Now consider the map
(3.1.4) Vi Ejr,e+1)e; X [0, 5)”\“ X @/I,J,g = Yy2 g

(eg<r.Ty~1,(€a~y +17 " s1(x), x517))
> (ea~y +egap + At) T sp (), x5 At +ryp),
where

X' i=¢(ryr-esr,x) for g:=¢f;,  and A:=1—|rjs|=1- Z A
jeJ~I

To see that ¥ does have image in Yo ; , for sufficiently small § > 0 and O, we check
the conditions in (2.1.1) as follows:

« By(3.1.2),

ri<r-ej~q1 =Sj~1o¢(ry<r-ejr,x)=syq(x’),

so that the image (e, x; 1) of ¥ does satisfy the equation sy (x) =¢-e if x’ ~ x°

and § > 0 is sufficiently small.

e Next, we check that s;(x") € E4 ¢ 1y - To this end, note first that because we
started by assuming I(x®) = I, the definition of Yy, s, implies [|s7(x°)| < e7.
Second, because s7(x’) &~ s7(x°), we have s7(x") < &7 for sufficiently small §
and O. Butif rj_s # 0 we have I(x") 2 1(x°), so that &7 < 1/(,/) by (1.3.2).
Therefore, because A & 1 and we use the sup norm on the product E 4, we have

-1
sp(x"y=ejr+ Q)" sy qod(ryr-es~1,X) € Eae,

for sufficiently small § > 0.

* Since elements in the domain of v have |leq<s|| < ke; < &j(x7), elements in
its image also satisfy this condition.

It is now easy to check that i is a local homeomorphism that equals the identity map
when ry; = 0 since ¢ (0, x) = x. Hence, its restriction to a suitable open subset of
its domain provides a local boundary chart for Yz, ;. at (€9, x9,19).

It remains to consider the case when I = I(x°) € H = I(¢°). In this case, write
19 =) + 1} ;. Then the above formula for ¥ must be modified as follows: Denote
the elements of 1(:°) by t}; =1} +1t}; ;. Then, for ry<; ~ 0, we define
(3.1.5) Y(esur,rywr.(eaws + ()~ s1(x), x51p))

= (ea~s +es1 + ()" s (x"). X" 1)),
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where
e x varies in a neighborhood Oc ﬁH 7 of x9;
* A< lischosenso that 1] := ((t;)")ies has [t]]|:=) ;c;t/' =1, where
i/ =At] ifiel,  t) =At +rpifi € H~1,
t!=r; if jeJ~H;
o x"= ¢(t‘/]/\1 -ej1,x)eVy.

Then one can check as above that im ¥ is a neighborhood of (e?, x°,¢%) in Yige.
This completes the proof. |
Corollary 3.1.4 Proposition 2.1.1 holds.

Proof Combine Lemmas 3.1.2 and 3.1.3. O

Remark 3.1.5 1In (3.1.5) the coordinates rg; € R > parametrize directions tangent
to 0 m Yu,s ¢, While the coordinates rj g € RIH parametrize the directions normal
to the codimension-|J~H | face 07 g Yy Js. o

We now define and construct compatible reductions (V, ). In order to prove Proposition
2.1.4, it turns out that we need more control over the sets Oyg in Definition 3.1.1(d).
Indeed, because of the consistency requirements on the collar, it is not sufficient to
choose the Oy g separately for each pair I & K'; rather they must be chosen consistently
for all pairs, as we now describe. Further, because the collar has fixed width and image
in Yy j ¢, the product maps in (d) must have image in Vg rather than in VI?. Then, as
we will see in the first step of the proof of Lemma 3.2.1 below, they can be used to
provide local collars along the boundary of Yy j ..

Note first that because the local product structures
E (7 Q
(3.1.6) ¢IK,Z¢X: EK\I,saXWIK,za_)UKv l<a <Ak,

in (3.1.1) are equivariant and satisfy sx-j o ¢IEK Za(e, y) = e, they descend via pgg
whenever I C H C K. More precisely, for such H,

bfx 2, E~Is0 x Uk N Wik.z) = Ustx = sg (En)
is the lift of a well-defined map

(3.1.7) ¢fH,pm<(za): En<ie, xpaxUnx N\ Wik..,) — U
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Before defining the notion of compatible reduction, we describe certain covers of the
set OL(|V]) of “overlaps” in |V|, which is the image in |V| of the relevant part of the
boundary of | J; Yy, 7. See Figure 4.

Figure 4: Here OL(|V|) is shaded, and the sets VIQ are given by dotted lines;
note that sets |VIQ| and |VJQ| are disjoint unless / and J are nested.

Definition 3.1.6 Given a subset |W| C |V| we say that W C VIQ is a lift of |W| if
W) =Wl W=VEnxg (W),

ie W is a “full” inverse image of |W| in VIQ.

Lemma 3.1.7 If (U,¢) is compatible, and V T V¢ C U is any nested reduction,

denote by

(3.1.8) oLV = J IVikl c V2.
ISK

the closure of the set of overlaps in |V|. Then we may cover OL(|V|) by a finite number
of sets (|Wx|)1<a<n » where for each « there is Wik -, as in (3.1.6) such that

We = V% O (\Wal) € Wik 24

is a lift of |Wy|. Moreover, we require that I is minimal and K is maximal in the
sense that

(i) Wy is an open subset of Vﬁ(,
() |VeHIN|Wy|#2 =1 CHCK.

In this situation, we say that V is adapted to the cover (|Wy|)1<a<N -
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Proof Choose compatible shrinkings V C V! C --- C V* © V¥ C Y. Work by
downwards induction on |I| = £ < k — 1, so that at the £!" stage we have a covering

(IW£)aes, of
U Vil

IGK L<|1|

with lifts W} satisfying (i) and such that (ii) holds if |H| > €. When £ =« — 1, the
existence of the finite covering holds by the precompactness of V| in |U/| while (ii) is
easy to arrange because the sets | V| with |H| = £ are disjoint. Now let us suppose
that this holds for £ + 1 with the sets (|W. ! ])qe B¢y, and consider the statement
for £.

The covering (| Wof |) will consist of sets of two kinds:

o If (W difts to WETT € VS, where |I] > €+ 1 is as in (i), then we take the

set |W,| where

Wy =Wt | (.
|H|=¢
This is open in VIQ since we have removed a closed set, and satisfies (ii) for £.
These sets cover
L 14
( U |V1K|) ~ ( U Cl(|VHK|))-
ISK, 4+1<|1| HSK,|H|=¢

* Next add a finite cover of the compact set | Jg g, 11 |=¢ c1(] Vfl x|) by sets [Wy|

whose lifts lie in VI?K, where |H | = £. These obviously satisfy (ii).

This completes the proof. a

Remarks 3.1.8 (i) If V is adapted to the cover (|Wy|)1<a<n, and V' C V is any
shrinking, then V' is also adapted to the cover (|Wy|)1<a<n -

(i) If I € H then in general 171 g 1s not closed in Vg . Therefore, in order to cover
OL(|V|) by sets |W,| that satisfy condition (ii) in Lemma 3.1.7 one cannot insist that
each set |W,| lift to an open subset of some V7, but rather as in Lemma 3.1.7(i) that it
have a lift to an open subset of some VIQ V. o

Definition 3.1.9 Suppose that ¥~ 1G% © V = U/, where G° C F is a reduction of
the footprint cover (ie G? C Fy forall [ and | J; G? = X), and choose a shrinking
V® C V@ that is adapted to the cover (|Wy|)i<a<ny Where |[W,| C [V|. With
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these choices fixed, we then say that the pair (V, ¢) is precompatible if the following
conditions hold:

@) O<ker<ey foral I < J.

o) v G vy

(c") s;(Vy)CEjg, forall I.

(d") Forall a with Wy C V% and I ¢ H C K,

(3.1.9) OF o (Err e+ e, x Vim0 prkx (Wa 0 Vek))) C Vi

Further, we say that (V, €) is compatible if it is precompatible and if (V,¢) C (V', &),
where (V', ') is also precompatible and ¢ < ¢, ie &5 <&, forall J € Z.

Remark 3.1.10 If (V, ¢) is compatible, so that it is a shrinking of the precompatible
(V', ¢’), then we may assume that each set |Wy| of the associated covering of |V] lifts
to some subset 171’ k- In other words, we can equivalently define (), ¢) to be compatible
if (V, ) C V™ is precompatible as above for some reduction V*° that is provided with
constants £ > ¢ such that (a’) and (c¢’) hold. o

The next lemma shows that the hypothesis in Proposition 2.1.4 can be satisfied.

Lemma 3.1.11 Suppose given ¥~ 1(Go) C ¥~ (Fo) C V™ C V¥ such that V™ is
adapted to the covering (|Wy|)1<a<n » Where |Wy| C [VS}|. Then:

(i) There is a precompatible shrinking (V, &) C V*°.

(ii) Any precompatible (V',¢’) has a compatible shrinking (V,s) C (V', ¢').

Proof The proof of (i) is somewhat similar to that of Lemmas 3.1.2 and 3.1.7, except
that now we have to make sure that (d’) holds, ie that we can choose V so that the image
of qﬁfH’ o liesin Vg forall I € H C K rather than just in the fixed ambient space UJQ
as in (3.1.3). Claim (ii) then follows by the same argument, with V°° replaced by V.

To prove (i), we first choose any reduction V* of U/, where (U, £“) is compatible,
so that (V, g) satisfies (a’), (b’) and (¢’). We then work by downwards induction on
€ :=|J|, so that after the £ stage we have chosen a reduction (V¢, &) with

w—l(g()) I: V(f I: VK, gﬂ < §K

that satisfies (a’), (b") and (¢’) for all I and K, and satisfies (d’) for all  with |I|>£.
Since (d’) is vacuous when £ = k, it suffices to suppose that we have found suitable
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(VEHL gtt1) for some 1 < £ + 1 < k, and consider the construction of (V¢, et). Our
method gives &, where 8‘} = eeJH if |J| > ¢ and af < s‘}“ if |I| <{. Further, for
|J| > £ we construct VJZ by removing some points in 1716"'1 from VJ“'1 for |[I|=2¢.
Note that removing these points does not affect the validity of (d’) for pairs I € K
with || > £+ 1.

Choose an intermediate reduction V' such that V0 =V’ = V¢*1 . Because the subsets
mic(VP°) C |K| with |I] = £ are disjoint, we may work separately with each such /.
Given x € V7 with I € K = I, (]x]), the set VI/K =V} Nt (i (V})) is precompact
in VIZI}H = Vlgﬂ N yrlgl(mc(VIeH)) and hence there is 0 < 8§ < 8§+1 such that for
each o with W, C VIQ and each I & H C K we have

(3.1.10) 317 (Er~r,6e+0er X (Vg 0 gy Wa))) C Vit
For J with |J| > ¢ we now define

vi=vitts | (FTEDN@ITISV)).
ICJ,|I|=¢

Then VJE is an open subset of VJEle , since we have removed a closed subset. Now
choose 86 for |J| < £ so as to satisfy (a’) and then define

Vi={xeVit sp(x) <ief) 7)<t

Then (¢’) holds, and (b’) still holds for J with |J| > £ because it holds for }’, and it
holds when |J| < £ because we did not change the zero sets s;l (0). Moreover, (d')
holds because when |J| > £ the only points in VJ£+1 that were removed to form VJK
lie in s;l (Eg) for I ={£. But this does not affect the validity of (3.1.10) (and hence
(3.1.9)) because

317 (Egretve, ~10) x4z Ns7 ' (Ep) = @
by the first equation in (3.1.2). This completes the proof. |
3.2 Construction of the boundary collar

It remains to establish the existence of a collar with the properties stated in Proposition
2.1.4. Recall from (2.1.10) that A s has a collar of the form?°

(3.2.1) B ANy x[0.8] > Ay, (21> (L=r I +7|J by,

29Here for the sake of clarity we write 19 for the coordinate of a general point in dA y, while ¢ could
be any pointin Ajy.
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where by is the barycenter of Ay and 0 < § < %; see Figure 5. It is convenient to
write

NP@ygA):={teAs|tj<§ forall j e J~T}.
Notice that

(3.2.2) cH(OANNE @1 A)) x[0,8)) C Nag (51 A);

ie the width-§ collar of the corner dA N NgA (071 A) lies in J\/ZA5 (07<1A). We now
show that for each J this collar lifts to a (partial) collar for 0Yy, s with the properties
stated in Proposition 2.1.4.

Lemma 3.2.1 Suppose that (V, €) is a compatible reduction. Then, for each J € Ty,
there is a constant wy > 0, subset 0'Yy, j  C 0Yy j and map c}/ as in (2.1.15) with
the properties detailed in Proposition 2.1.4.

Proof The proof has three steps.

Step I (construction of local collars) As in Remark 3.1.10 we will assume that
(V, &) C (V*°, &%) is precompatible, where each set | W] lifts to some 171012. In this
step, we fix o, I = I, and K = K,, and define a local collar of width w, over a
subset O, of dYyoo k goo. This subset is determined by the set Wy C 171012, and is
the inverse image of an open subset |O?(°’ o of the set of overlaps OL(|V>°|) in (3.1.8).

To this end, consider the coordinate chart for Y)oo g ¢oo given much as in (3.1.4) by

(3.2.3) ¥ Egvt (et 1)e; X Wa X [0,80] K> = Yyoo g goo,
(eawr.X.Tk~1) = (ea~g + Abp) 1 osp (X)), X" s Abr +ri<1),

where

E . .
x,:¢IK,Za(rK\I.eK\I7x)s Ar-: 1—|rK\I| = 1_ Z r]'
jeK~I

For each x € Wy := Wy N 171013, restrict to those rlz’(\ ; such that
Aby +rd, este(|x]) C dAk,

where the superscript d indicates that the corresponding point lies in the boundary. The
above map provides coordinates

(3.2.4) C¥: (eqwy, x, rla(\l) > W(eawr, X, r13<\1) = (ea~1 + e, x"; )
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for an open subset
(3.2.5) 0, C{le.x:1?) 1% est@(|x]), 17 ~ 0}

of the boundary dYye g .. We will assume, as we may, that Og , = pr;1(|0?(° ol
where |OF, | is open in OL(V>®)) C |V|.

’
’
- P

P SE L Abp vy = g (18, r2)
a2 /
vl !
br 8
<------ =
ri

Figure 5: Here K = I U {1,2} and ¢’ lies on the boundary with #, = 0.
Hence, rx-; = (r1, r2), where r; is the collar coordinate along the ray from
1% to bk, while t¥ = c2(by,r) for r = (t%);.

We now define a collar over Olo;ia of width wy < %Sa (see (3.2.2)) as follows. Given
(t%,r) e st (x]) x [0,8), where (¢2,r) ~ (b1,0),

choose r13<\1 and rg-7 (both =~ 0) so that

(3.2.6) =20 413, B r)=Abr + 1k,

where 19 :=1— |r13(_1| and A :=1—|rg_1|; see Figure 5. Then, with C® as in (3.2.4),
define

(3.2.7) Kot OF o % [0, wg) = Yyoo ke
€% xid
((eawr +ef, x";1%), 1) (25 ((eawr, x, 12 ). 1) > Yleawr, x, Tk 1),

where rg.y € [0, 8)K>1 s the function of r18<\1 and § is as defined in (3.2.6). In
particular, if |K ~ 7| =1 then rg.; has only one component, and so is the same as
the collar variable r, while 18 = b; . Therefore, the collar is simply given by ¥:

(3.2.8) CIYU{J-},O,: O%{j},a X [0, wa) = Yyoo 1U{j}e5

((ea~r +er,x:b1), 1) = Y(ea~y.x,1).
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The next task is to extend the domain of this collar to

(3.2.9) SUOR) = {(up - (e.x;1) | (e.x:1) € O, pyg -1 €StR(Ix])}

by rescaling as follows. Consider a tuple pug (as in (2.1.21)), where I C H ¢ K, and
point % € st& (|x|) N ({br} x [0, 8]K>11y such that

- t? e st (lx)) N ({by} x [0, 8] K>,

and let p7y - with (upy); =1 for i ¢ H give the corresponding rescaling in the
coordinates Ay x [0, 8] K11 Thus, if ¢2@%,r) = (1 — |rk<z)br + rx~s as in
(3.2.6), we have

(3.2.10) cB(um -12,r) = Wy - Abr +rg1).

Note that this rescaling in the boundary dx . g Ag does not affect the collar variable r
along this part of the boundary. Then the following diagram commutes, where we write
ey =(tr)"'-sp(x') and y := (es. x:17) € 0Y :

v
(eA~I. Y. TK~1) ———— (ea~y+e}. X' = p(rg~1-ex~1.X): Abr+rK1)

M/I{.I M/I{.I

(W) teawr. y. Wy rr~r) —— (W) (eawr+eh). x's Wy -(Abr+rr<1))

because the rescaling on the left does not affect the image x' = ¢ (rxy-ex<y,x) € Vg
on the right. Therefore, because c}g’ o 18 @ composite of vl (at r = 0) with v,
and because rescaling does not affect the collar variable r, the following diagram
commutes:

Y
‘K.a

((eg~r —i—e’l/,x”;ta),r): (e/,x';t))

3.2.11) M”I MHI
Y

c o —
((ug' - (ea~s +€)).x":pp -1%). 1) s () e X 1)

In other words, if we apply the collar and then rescale (a little) by wg, we get the
same result as rescaling by pug and then applying the collar. It follows that we can
unambiguously extend the domain of the local collar to st(Og’,,) by defining

(3.2.12) c};a((eA\I +ef xX"it),r) = ug .c};a(ﬂ[_] (e, x', 1)),
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where g is chosen so that ug - (¢/, x’,1’) lies in the domain of the map in (3.2.7).
Note that c}g o 18 equivariant because the maps in (3.1.6) and (3.2.3) used to construct
it are equivariant.

Although we assumed in the above construction that K was maximal, so that Wy, C V¢
this condition was not used in any essential way in the above construction. Thus, for
any J such that I € J C K, by using the map in (3.1.7) instead of (3.1.6) we can

define a collar c}/ o over

(3.2.13) ¥ 41 SHOFY) X [0, wg) = Yyeo, s goo,
where

SUOT%) = {(e. prx (x).17) € 0Vyoo s oo | X € Vg N Wa, (6. x:17) € SUOFE L)},
and s_t(Oloéa) is as defined in (3.2.9).

Further, we can restrict these collars to the corresponding subsets st(Oy ) of dYy, s ¢
forall I € J C K, obtaining a set of locally defined collars of width w,, . Note that this
collar still has width w, because we used the constant &7 in (3.2.3) rather than 8?".
Hence, although & < £ in general, when we restrict the domain of ¢ in (3.2.3) to the
points in Yy g . the image of ¢ lies in Yy, g, by condition (d’) in Definition 3.1.9.

We claim that these collars satisfy all the conditions in Proposition 2.1.4. In particular,
if I ¢ H ¢ K the domain of c}g o contains the image of the collar c}; o by (3.2.5).
They are compatible with projections and invariant under rescaling by construction.

The domains st(Oy o) of these collars are not open in Yy, s . because of the restriction
te s_t§( |x|), and because the condition that (e, x; %) € st(Ok.«) places certain extra
(but unimportant) restrictions on ||prg, e[ when 19 has been rescaled far from b; .
However, modulo these provisos, for each such J they consist of the full inverse image
in 0Yy_j ¢ of the open subset |Oy| := |O%‘ja| of the “boundary” d|Vg°| of [V°],

(3.2.14) 04| := 0%, COIVE| == | ] IVFkI € OL(V™)).
HGK

where O, is as defined in (3.2.5).

Step 2 (construction of a global collar from a covering by local collars) We now
explain a method from [4, Proposition 3.42] that combines local collars

(ot U X [0, wg) — Y)lgocsN

Algebraic € Geometric Topology, Volume 19 (2019)



Constructing the virtual fundamental class of a Kuranishi atlas 229

defined over open subsets U, C 0Y of the boundary of a manifold Y into a global
collar over 0'Y of width w, where 0'Y is any precompact subset of | J, Uy and
w < ming %wa.

To this end, choose a partition of unity (1) subordinate to the covering of d'Y by
the sets (Uy)q , and define

Y =Y Uy ('Y x [-w,0]),

where 6 identifies 'Y x {0} with 9'Y in the obvious way. We claim that there is a
homeomorphism

W (Y, 9Y x[-w,0]) —> (Y, | ca e x [0, 2w))).

Granted this, we define the collar by
Y9y x O, wy—=Y, G, r)—=>¥Yy(y,r—w).
The homeomorphism W is a composite

lIJ:\IJNO---O‘-I’l

of homeomorphisms
Wy: Y’(—l + Zka) — Y’(—l + Zx\a),
a</{ a</t
where for any function ¢: 9'Y — [0, 1] we define
Y/(—14+0):=Y Up{(y.r) | y €'Y, (-1 +o(y)w =r <0}

To define Wy, first extend the product structure of the external collar 0Y x [—w, 0] via
the local collar ¢y to obtain an extended collar neighborhood
Co: Up X [—w, wyg) = Y.
Then define
We(Ce(y.r)) =ce(y, fye(r)),

where

fye: [(—1 + Zka(y))wlw] - [(—1 + Zka(y))w,zw]

a<l a<t

is a homeomorphism that translates by A,(y) if r <), _; Aq(y)w. This completes
the construction.
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Remark 3.2.2 If each local collar ¢, lifts a map pru: (Y,9Y) — ([0, 1), {0}), then
the global collar does as well; ie we have

praoc(y,r)=r.

This holds because each f), ¢ is a translation by Ay(y)w on the relevant part of its
domain, where ) , A¢(y) = 1. Further, if for some map prg: ¥ — E we have
ca(y.7) = prg(y), then the global collar also satisfies ¢ (y,7) = prg (y). o

Step 3 (completion of the proof) Once the cover and partition of unity are chosen,
the construction in Step 2 depends only on the ordering of the sets in the cover. Even
though we saw in Step 1 that the local covers satisfy all the compatibility conditions
required in Proposition 2.1.4, we will have to organize the construction rather carefully
in order to achieve this for the global collars.

Recall from the discussion of (1.2.7) that because the atlas K is assumed tame and
preshrunk and hence good, the subspace topology on |V°°| (considered as a subset
of |K]) is metrizable, and so we may fix a metric on |V°°|. Since the sets |V7| and |Vy]|
have disjoint closures unless / C J or J C I, we may choose

(3.2.15) 60 > 0 smaller than half the distance between any two such sets.

We next order the sets |Wy|1<q<n of the cover of OL(V) so that as « increases the
cardinality |/4| of the minimal set / in Lemma 3.1.7(i) increases. Thus, we assume
that there are numbers 0 =ng <n; <np <--- <ng—1 = N such that

N1 <a <N, = |ly| =k.

By (3.2.14), the sets (|Og|)1<a<n cover a neighborhood of the compact subset OL(|V|)
in |[V°°|. Further, by condition (ii) in Lemma 3.1.7 and our choice of N, if o« > Ny,
the set |Oy| does not meet any | V7| with |I| < k. Hence, we may choose 69 > §1 > 0
so that for each k, the sets (|Oy|)1<q¢<n, cover the closed §;—neighborhood

/\_fsl(k):/val( U |V1L|)c0—£(|w>

|I|<k,LeIx

of the compact subset | J||<k, Lez, |V 1k|. By shrinking the sets Oy to O}, we may
then assume in addition that for some 0 < §, < §; we have

(3.2.16) (@ >Np) = |0,|NNg, (k) =2 forall k.
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For each k <k, choose a partition of unity (Aﬁ)lsag N, for Ng, (k) with respect to
the covering by (|0, |)1<a<n, such that

(3.2.17) l<a<Np_ = Ak =21

Finally, choose w’ > 0 such that

(3.2.18) 2w’ < minwgy.
o
Now define
(3.2.19) Fvyre= |J fle.x:0)|(e.xir) €sUO) )}
1<a<Ng

where st(0’; ) is defined as in (3.2.13) but with O, replaced by O, N (|OL]).

Then, for each I € J with |I| =k, we may use the local collars c}/ o together with
the partition of unity on ok Yy, j ¢ obtained by pulling back ()L’O‘l) to construct a collar

Y . qk
Crk- d YVJ@ x [0, w,/]) - YV,J,§

as in Step 2. Condition (3.2.17) implies that c}/  agrees with c}’ x—1 on their common
domain of definition. Hence, the collars fit together to give a well-defined collar

(3220) ) Yy ex[0.w)) > Yy e where ¥y sei= ) ¥y .
k<|J]|

Note that c}’ lifts c? by Remark 3.2.2. Thus, it does have the form required by (2.1.15).

It remains to check that we can choose collar widths wy < w’; so that the resulting
collars have all the required properties.

e The maps c}/ are equivariant, because the local collars are, and the partition of

unity is pulled back from |[V°|.

e To see that the c§ are compatible with projection to E4-., suppose that I C J has
|| =k < |J|. Then c}/ has the properties in (2.1.17) because all the local collars do.
Further, the points (gy (e, x) = (bI_1 -e,x:;by) mentioned in (2.1.18) lie in 9% Yy e
Therefore, c}/ (tgv (e, x),r) is made by combining the local collars (c{ o)a<Nj - But
we saw in Step 1 that all these local collars satisfy (2.1.18) for E4- ;. It follows that
the combined collar formed in Step 2 must also satisfy (2.1.18) for E4-;.

e Similarly, the fact that the relevant local collars that form ¢ }/ are invariant under

rescaling as in (2.1.21) implies that c§ also satisfies (2.1.21).
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e To prove that the pairs (c}/, wy) are compatible with covering maps we need to
check two things:

(a) that their domains are large enough (ie that (2.1.19) holds forall / € H < J), and
(b) that when H < J, the collar c}; has a natural lift to Yy, j .

Claim (b) again follows because the local collars used to form c{l (as well as the
partition of unity) can be lifted in this way. (This is just a consequence of equ1var1ance )
Claim (a) has two parts. The first claims that if (e, x;¢) € 'Yy, j has x € Vig NV,
where I C H C J, then (e, pgy(x);?) is in the domain 9'Yy g, of cH. To see this,
note that 0'Yy, s . is the union over k of the sets ok Yy, j,e of (3.2.19). But we have

3ka,J,§ N{le,x;t) | x € Vi N I7HJ} = 8|H|YV’J,§ N{(e,x;t) | x € Vig N I7HJ}
={(e.x;1) | (e, prx (x);1) € 3H1Yy 3,

where the first equality holds by (3.2.16), while the second holds because the sets
st((’) ,) are compatible with the covering maps pgy by (3.2.13).

The second part of (a) concerns the choice of suitable widths wg < w}{ for all
H € Ix. Since the domains of the collars are by now fixed, we can choose each wg
independently: its choice depends only on the domains of the collars c}/ for J 2 H.
Notice that by the definition of the set (’)j’;j o 10 (3.2.5), it holds (with wy = %Sa for
example) for the original domains O%o’ o of the local collars. Moreover, because 8> < 8o
(where Jp is the separation distance in (3.2.15)), this property is not affected by the
shrinking from |O%° | 10104 in (3.2.16). Hence, it is easy to see that one can choose
suitable wy for the global collars.

e We must check that this collar restricts to any compatible shrinking (V', ") C (V, €).
But this is immediate since the above construction depends only on the choice of
coordinate charts in (3.2.3), which restrict to (V’, ¢’) by the definition of compatibility,
and the choice of an appropriate partition of unity, which we can also restrict to V".

e Finally we must check that if I is oriented, the collar map c}/ preserves the natural
induced orientation on its domain and range. But this is clear from its construction.

This completes the proof of Lemma 3.2.1. |
Corollary 3.2.3 Any reduction V' has a collar compatible shrinking (V, €).

Proof By Definition 2.1.5, it suffices to construct a compatible (Vy, ey) such that

(e) for all pairs I & J we have g5 < w}, where w is the collar width for V.
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Without loss of generality, let us suppose that (V’, ¢’) is compatible, with collars c}/
of widths w’;. As in the proof of Lemma 3.1.11 we work by downwards induction
on |J|. Hence, at the k™ stage, we assume that we have compatible (VK+1, gk+1)
such that condition (e) holds for all / € J with |/| > k + 1, and aim to construct
compatible (V¥ gk, w’}) so that (e) holds whenever |/| > k. As before we take
(VE ek wky = (VETT A+ k1) §f || > k + 1. The key point is this: if we
shrink the set (VIk +1 gk 1) where |I| < k, by decreasing 8]; *1 and hence Vlk +1
(because of condition (c) in Definition 3.1.1), then this does not decrease the collar width
c{ k41 Of any V}‘ 1 with 1 < J, since this change only affects points that either lie
in the boundary of Yyk+1 j c+1 or are interior points with 7(x) = {i | s;i (x) # 0} C 1
that do not occur in im(c}’,k +1
to choose 8’; < s]; *1 for the elements |/| = k so that condition (e) holds at level k,
and then shrink VIkJrl to a set VIk that satisfies (a)—(c). As usual, this can be done
independently for each I at level k. To complete the inductive step, we then make

) because of its construction. Hence, it makes sense

appropriate choices for lower-level I as in Lemma 3.1.11 to obtain a compatible
shrinking (V¥, £¥) that satisfies (e) at levels > k. This completes the proof. O

Appendix Rational Cech cohomology and homology

We briefly describe the properties of the (co)homology theories in [8] that are based on
the properties of Alexander—Spanier cochains. We do not need the full generality of this
theory because the space M = |M |4 is locally compact and Hausdorff. Throughout
we assume that Y is locally compact and Hausdorff, with A C Y closedand U C Y
open, and take coefficients in Q. Further, we denote these theories by H to distinguish
them from singular (co)cohomology.3°

We need the following properties of the cohomology theory:

(a) [8, Theorem 3.21] If Y is a connected orientable n—dimensional manifold then
H! (Y) =0 unless i = n, in which case I:I”(Y) =Q,ie H* is like rational singular
cohomology with compact supports.

(b) [8, Section 1.2] If f: A — Y is proper, there is an induced map f*: H'(Y) —
H(A).

301n [8, Chapter 10] the theory we call H* below is denoted by H} to distinguish it from another
theory that does not concern us here.
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(c) [8, Section 1.3] If U CY is open, there is an induced map f: I:Ii(U) — I—VIi(Y).
Further, if Y is as in (a) and U is an open n—disc, then fi is an isomorphism.

(d) [8, Theorem 1.6] If A C Y is closed then there is an exact sequence

(A.1) e > HI(Y N A) > HI(Y) > H(A) L5 A (Y~ A) > -,

ie the group H' (A) plays the role of the relative group H'(Y,Y ~ A).

The dual homology theory developed in [8, Chapter 4] is denoted by HZ° in [8,
Chapter 10] to emphasize that it is analogous to locally finite singular homology; we
shall call it H 2°. It follows from the universal coefficient theorem [8, Theorem 4.17]
that

(A.2) HX(X) =Hom(H*(X); Q).

Further, because Y is locally compact and Hausdorff, it follows from the uniqueness
property for PVIC* stated in [8, Section 6.7] that the dual theory H o is isomorphic to
rational Borel-Moore homology.

As shown by the following, the functorial properties of I-VI,;>O are different from the
usual singular theory.

(') IfY is a connected orientable n—manifold, then I—VIZ.°°(Y ) =0 unless i = n, in
which case H >°(Y') = Q; more generally, any orientable n—manifold has a fundamental
class

(A.3) py € H®(Y).

(') [8, Section 4.6] If U C Y is open, there is an induced restriction
(A4 pru: HPP(Y) — HP(U):;

moreover, for Uy C U, C Y we have py,y, = pu,,u, © PY,Us-

(c’) [8, Section 4.6] If f: A — Y is continuous and proper, then there is an induced
pushforward fi: I:Ii°° (A) — bvll.oo(Y); moreover, given a proper inclusion ¢: 4 — Y,
there is a functorial long exact sequence

(A5) - HP(A) 2> HXO(Y) 224 ooy < A) 25 H® (4) > - .
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(d") [8, Section4.3(3¢c)] If f: A—Y isproper and U is open in Y, then the following

diagram commutes:

Aoy — T Hey)

lpA.Aﬁfl(U) LOY,U

AN £ U)o A w)

(€’) [8, Section 4.9(6)] If Y = U UV, where U and V are open, then there is an
exact Mayer—Vietoris sequence of the form

o= HR(UNV) = HP(Y) — HP(U) @ HP(V) — HP(UNV) — -
In particular, if U is the disjoint union of a finite number of sets of U;, then
HP(U) = & HP(U;).
(f') [8, page 334] If U CY is open while A C Y is closed, there is a cap product
(A.6) N: HY ,(Y ~A) @ HP(Y ~U) — H{(Y.U U A).

This takes values in compactly supported Cech homology, a theory whose functorial
properties are analogous to those of the usual singular homology. In particular, if the
triple (U U A; U, A) is excisive for H (ie HS(A,UNA) = HE (U U A, U)), then there
is a commutative diagram

T 00
HP+£I+

(A7) 8®(—1)1’L*l (Sl

v v N v
HS (A ® HP(ANU) ———— HG (A, UNA)

(¥ ~A)®HP(Y NU) —"= HS, (Y.UUA)

Note that the above diagram exists when Y is locally compact, A4 is closed and ¥ ~ U is
compact. To see this, choose a nested sequence N} of precompact open neighborhoods
of Y ~U in Y with

YU =M. U={Jr~M).
k k

Since by definition

HE(Y.UUA) =lm HE(Y, (Y ~Np) UA),  HE(AUNA) =lim HE (A, AN,
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and the triple of closed sets (Y, Y ~ Nk, A) is excisive by [8, Corollary 9.5], it follows
that (Y, Y ~ U, A) is excisive, as required.

(g) [8, Exercise 5, page 272] If X is Hausdorff and X ~ A is a precompact open
subset of X, then H®(X ~ A) = HE(X, A).

(h') This homology is taut; ie if X C Y is closed, where Y is locally compact and
Hausdorff, and Ni 1 C Ng is a nested sequence of closed neighborhoods of X in ¥,
then (by [8, Theorem 6.4])

HZ(X) = im(HZ (Ny)).

List of symbols

I Related to atlases

Theorem A K, X, Eq, T4y, Sm: M — Ey4
Theorem B [X ]gr
Section 1.2 K, A, Ix

for I €I, Ky = (U, Er, Iy, 81, Y1), F1 C X

for I ¢ J, Uy cUy, Uy C Uy, pry: Upy — Ugy

(1.3.4) Ylr.Ta

(1.2.3) oE

(1.3.2) &

(1.3.1) Erefor I C A

(1.2.5) K'ck, U cu=Ur)rez

Section 3, beginning F=(Fr)rez,

(1.2.6) ff By and Ex

1.2.7) |/C| = |B]C|, mie: Up — |’C|

(1.2.8) ff reduction V = (V7), Gy, Bil|y

(1.3.3) Viy C Vi, Viy CVy and mic: Vi — |K|

II Related to wnb manifolds

Definition 1.3.1 (G, Ag). |Gy, nlt
Proposition 1.3.3 (M, Apm), M, AN), My, Mgy, Mgy, t15, Sy, L M
Theorem 1.3.4 M= |M|y, M|, | My|
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IIT Related to the manifolds Y

Section 3.1, beginning telNy, 05 Ay, 1y, t-€, K
(2.1.2) 1(x), 1(t)

2.1.1) (e,x;t)eYy =Yy,

2.1.7) Yy J,e

(2.1.3) Pre, Pry,» Pra

(2.1.5) 051Yy

(2.1.6) bH € AH

Corollary 2.1.2 LEU

(2.1.8) LEV

IV Related to the collar

(2.1.10) ch

(2.1.15) Y Yy g x[0,w) = Yy g
(2.1.13) st4 (|x])

(2.1.11) vy

(2.2.6) Fr, cl
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