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Constructing the virtual fundamental class
of a Kuranishi atlas

DUSA MCDUFF

Consider a space X, such as a compact space of J –holomorphic stable maps, that
is the zero set of a Kuranishi atlas. This note explains how to define the virtual
fundamental class of X by representing X via the zero set of a map SM W M !E,
where E is a finite-dimensional vector space and the domain M is an oriented,
weighted branched topological manifold. Moreover, SM is equivariant under the ac-
tion of the global isotropy group � on M and E. This tuple .M;E; �;SM / together
with a homeomorphism from S �1M .0/=� to X forms a single finite-dimensional
model (or chart) for X. The construction assumes only that the atlas satisfies a
topological version of the index condition that can be obtained from a standard, rather
than a smooth, gluing theorem. However, if X is presented as the zero set of an
sc–Fredholm operator on a strong polyfold bundle, we outline a much more direct
construction of the branched manifold M that uses an sc–smooth partition of unity.
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1 Introduction

1.1 Statement of main results

Let X be a compact space that is locally the zero set of a Fredholm operator F of
index d , such as a moduli space of J –holomorphic stable curves. The question of
how to define its fundamental class is central to symplectic geometry, since so much
information about the properties of this geometry depends on the ability to “count”
the number of elements in X. There are many possible approaches to this problem,
eg Fukaya and Ono [3], Hofer [5], Hofer, Wysocki and Zehnder [6] and Tehrani and
Fukaya [16]. In this note we develop the work of McDuff and Wehrheim [13; 14; 12]
and Pardon [15] that uses atlases, in an attempt to clarify the passage from atlas to
virtual fundamental class.

A d –dimensional atlas consists of a family of charts KI indexed by subsets I �
f1; : : : ; N gDWA, together with coordinate changes ŷ IJ for I � J, where the chart KI

is a tuple
KI D .UI ; EI ; �I ; sI ;  I /;

consisting of a manifold UI of dimension dCdimEI , a real vector space EI , actions
of the group �I on UI and on EI , a �I –equivariant map sI W UI ! EI , and finally
the footprint map  I W s�1I .0/!X that induces a homeomorphism from .s�1I .0//=�I

onto an open subset FI of X. The charts Ki that are indexed by sets fig of length
one are called basic charts, and we assume that their footprints .Fi /1�i�N cover X,
while the other charts KI with jI j > 1 form transition data. In applications, the
corresponding vector spaces Ei cover the cokernel of the Fredholm operator F at the
points in the footprint Fi �X, and are called obstruction spaces because they obstruct
the existence of solutions when F is deformed. The essence of the problem lies in
trying to assemble these local finite-dimensional models for X into one structure that
retains enough information to determine its fundamental class, which (when d D 0)
one can think of as the number of solutions of a “generic” perturbation of F .

The paper [12] explains one way to use a d –dimensional oriented atlas to define a Čech
homology class ŒX�vir

K 2
LHd .X IQ/. Roughly speaking, the idea is this. Using the

coordinate changes to identify different domains, one constructs a metrizable, Hausdorff
space jKj D

S
I UI=� that supports a (generalized) orbibundle jEKj ! jKj with a

canonical section jsjW jKj ! jEKj together with a natural identification

�X W X
Š
�! jsj�1.0/:
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With some difficulty, one then defines a multivalued perturbation section j�jW jVj!jEKj,
on a subset jVj � jKj, such that jsC �j is transverse to 0. Finally, one shows that the
perturbed zero set jsC �j�1.0/ represents a unique element in LHd .X IQ/.

Because it uses the notion of transversality, the above construction requires that the
atlas have some smoothness properties.1 In particular, the transition maps between
charts must satisfy the so-called tangent bundle (or index) condition. On the other
hand, Pardon [15] introduces a new way to extract topological information from an
atlas that satisfies a topological version of this condition that he calls the submersion
axiom. Instead of gluing the chart domains together to form a topological space jKj,
Pardon works with K–homotopy sheaves of (co)chain complexes defined on homotopy
colimits of spaces that are obtained from the chart domains. This gives a flexible way of
assembling local homological information into a global object. Though this approach
may be useful in many contexts, it is hard for a nonexpert in sheaf theory to understand
where the technical difficulties are, and what actually has to be checked to ensure that
the method works in any particular case. This becomes an issue if one wants to extend
the method to cases (such as Hamiltonian Floer theory, or symplectic field theory) in
which one must deal with a family of related moduli spaces and so should work on
the chain level. The current paper was prompted by the desire to develop a different
approach, that would replace Pardon’s sophisticated sheaf theory by more elementary
arguments that yet do not require smoothness.

This note only considers the simplest case, appropriate to Gromov–Witten theory, in
which the aim is to construct a homology class ŒX�vir

K 2
LHd .X IQ/. Working with

Pardon’s submersion axiom, we define a consistent thickening of the domains of the atlas
charts to make them all have the same dimension. In the case with trivial isotropy, one
thereby constructs an oriented topological manifold M of dimension D WDdCdimEA ,
together with a map SM W M ! EA whose zero set can be identified with X. If
the isotropy is nontrivial, M is a branched manifold with a weighting function ƒ
and a global action of the total isotropy group �A , and there is a homeomorphism
S �1M .0/=�A

Š
�! X.2 (A typical example of such a manifold .M;ƒ/ is the union of

two circles, each of weight 1
2

, identified along a closed subarc A, so that the points

1See Castellano [1; 2] for a weak form of these requirements.
2Another way to say this is that M WD j �M jH is the Hausdorff realization of a topological groupoid �M

that is étale but not proper; see Sections 1.2 and 1.3 for relevant definitions. However, just as in the case of
the construction of the zero set in [12], it is most natural to construct a topological category M in which
not all morphisms are invertible, ie it is a monoid, rather than a groupoid.
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x 2 A have weight ƒ.x/D 1, while the others all have weight ƒ.x/D 1
2

. See also
Section 1.4.)

Here is the first main result. (See Theorem 1.3.4 for a more precise statement.)

Theorem A Let K be a d –dimensional Kuranishi atlas on a compact space X that sat-
isfies the submersion condition (1.2.3) and has total obstruction space EA WD

Q
i2AEi

and total isotropy group �A WD
Q
i2A �i . Let D D d C dimEA . Then there is an

associated weighted branched D–dimensional manifold .M;ƒ/ with an action of �A ,
and a �A–equivariant map SM W M !EA with a compact zero set S �1M .0/. Moreover,
there is a map  W S �1M .0/!X that induces a homeomorphism S �1M .0/=�A

Š
�!X.

It is immediate from the construction that the bordism class of a neighborhood of
S �1M .0/ in M depends only on the concordance class of K .3 Further, if K and
hence .M;ƒ/ is oriented, we show in Lemma 2.3.4 that .M;ƒ/ carries a fundamental
class �M in rational Čech homology LH� . Hence, we have the following:

Theorem B If K is an oriented atlas on X as above, there is a unique element
ŒX�vir

K 2
LHd .X IQ/ that is defined as follows. For b 2 LHd .X IQ/ and DDdCdimEA ,

we have

hŒX�vir
K ; bi WD .SM /�.

yb/ 2 LHdimEA.EA; EA X f0gIQ/ŠQ;(1.1.1)

where yb is the image of b under the composite

LHd .X IQ/
 �
�! LHd .S �1M .0/IQ/ D

�! LHdimEA.M;M XS �1M .0/IQ/;

and D is given by cap product with the fundamental class �M . Moreover, ŒX�vir
K

depends only on the oriented concordance class of K , and in the smooth case agrees
with the class defined in [12].

A key element of the proof of Theorem A is Pardon’s notion of deformation to the
normal cone, which allows one to assemble different chart domains into a family of
topological manifolds YJ , albeit ones of the wrong dimension; see Proposition 2.1.1.
The second key point is the existence of compatible collars for these manifolds YJ .
Remark 1.3.6 outlines the proof in more detail.

As we explain in Remark 2.2.5, if we start with a smooth atlas then the proofs of
the above results can be somewhat simplified. In particular, by McDuff [9] we can

3Two atlases K0 and K1 on X are said to be concordant if there is an atlas K01 on Œ0; 1��X whose
restriction to f˛g �X is K˛ for ˛ D 0; 1 ; see [13, Definition 4.1.6]. Note also that as here, when there is
no danger of confusion, we often abbreviate “Kuranishi atlas” to “atlas”.
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construct M to be a simplicial complex, so that there is no need to use so much rational
Čech homology when proving Theorem B. Further, if one works with polyfolds, then
the proof can be radically simplified. Indeed, it is not difficult to define a smooth
Kuranishi atlas on any space X that appears as the (compact) zero set of a polyfold
bundle; see Hofer [5], Hofer, Wysocki and Zehnder [6], Yang [17] and McDuff and
Wehrheim (work in progress). Because the polyfolds of Gromov–Witten theory support
sc–smooth partitions of unity, if the isotropy is trivial, one can even define such an
atlas with just one chart. In other words, one obtains a finite-dimensional model

.U;RN ; s;  /;  W s�1.0/ Š�!X;

for the whole of X, in which U is a smooth manifold of dimension d C N and
sW U ! RN is a smooth map. As we show in Remark 1.3.8, this construction can
be adapted in the presence of isotropy. However, the domain of the single chart is no
longer a manifold, but a branched manifold with action of the total isotropy group �A .

Another simple example is the calculation of the Euler class of an oriented vector bundle
� W E!X of rank 2k over a compact manifold X. If E 0!X is an oriented complement
to E of rank 2` such that there is a vector bundle isomorphism �W E ˚ E 0 ŠRN �X,
where N D 2kC 2`, let

M D E 0; S W M !RN ; .e0; x/ 7! prRN .�.e
0; x//:(1.1.2)

Then S �1.0/Š X, and it is easy to check that the class ŒX�vir
K defined by (1.1.1) is

Poincaré dual to the Euler class of E!X ; see Lemma 1.4.1. This is an instance of
the construction in Pardon [15, Defition 5.3.1] for the bundle � W E!X with section
s� 0 in which the thickening �W RN �X ! E 0 is given by the projection.

Finally note that the methods of this paper should extend, eg to a more general notion
of atlas, or to spaces more general than topological manifolds; see Remark 1.3.7.

1.2 Basic definitions and facts about atlases

A weak Kuranishi atlas K of dimension d on a compact metrizable space X consists
of the following data:4

4These are essentially the same definitions as in [12], except that the smoothness requirements
mentioned in Remarks 1.2.1(ii) below have been replaced by an equivariant version of Pardon’s submersion
axiom. The notion of topological atlas introduced in [13] is somewhat different; in particular the domains
there need not be manifolds. For more details on all topics mentioned in this section, see the original
papers [13; 14; 12] or McDuff [10].
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156 Dusa McDuff

� Footprint cover A finite open cover of X by nonempty sets .Fi /i2A .

� A poset IK D
˚
I � A j FI WD

T
i2I Fi ¤∅

	
that indexes the charts.

� Charts For all I 2IK , FI is the footprint of a chart KI WD .UI ; �I ; EI ; sI ;  I /,
where

– UI is a finite-dimensional topological manifold of dimension d C dimEI ;

– EI WD
Q
i2I Ei is a product of even-dimensional5 vector spaces such that

dimUI � dimEI D d ;

– �I D
Q
i2I �i is a product of finite groups that acts on UI , and acts by a

product of linear actions on EI ;

– sI W UI !EI is a �I –equivariant map;

– the footprint map  I W s�1I .0/!X induces a homeomorphism

(1.2.1) s�1I .0/=�I
Š
�! FI :

� Coordinate changes If I � J there is a coordinate change ŷ IJ W KI !KJ

given by the following data, where we identify EI as a subspace of EJ in the
obvious way:

– a relatively open, �J –invariant subset zUIJ of s�1J .EI / � UJ containing
s�1J .0/ and with a free action of �JXI ;

– a covering map �IJ W zUIJ ! UI that quotients out by the (free) action
of �JXI and is equivariant with respect to the projection �J ! �I , and,
further,

sI ı �IJ D sJ ;  J D  I ı �IJ on s�1J .0/� zUIJ I

– if I � J �K , then

(1.2.2) �IK D �IJ ı �JK

whenever both sides are defined;

– in an atlas (rather than a weak atlas) we require in addition that the domain
��1JK.

zUIJ /\ zUJK of �JK ı �IJ is a subset of the domain zUIK of �IK ;

– in a tame atlas we require that both sides of (1.2.2) have the same domain
and that zUIJ D s�1J .EI /.

5For simplicity, we assume that Ei is even-dimensional, so that the orientation of a product of the Ei
does not depend on their order. In the Gromov–Witten situation we may always choose the Ei to have a
natural complex structure since the target of the linearized Cauchy–Riemann operator is a complex vector
space of .0; 1/–forms.
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� Equivariant submersion condition For each I �J, each point x 2 zUIJ �UJ
has a product neighborhood that is compatible with the section sJXI ; more
precisely, for each such x with stabilizer subgroup �x � �I , there is a �x –
equivariant local homeomorphism of the form

(1.2.3) �Ex W .EJXI;ı �Wx; f0g �Wx/! .UJ ; zUIJ /;

where EJXI;ı is a ı–neighborhood of 0 in EJXI and Wx is a �x –invariant
neighborhood of x in zUIJ , such that

sJXI ı�
E
x .e; y/D e; e 2EJXI;ı :

Remarks 1.2.1 (i) Although the submersion axiom in [15] does not assume equivari-
ance, this is needed in our set-up in order that M support an action of �A . Notice that
because �JXI acts freely on zUIJ , the stabilizer �x of x 2 zUIJ lies in the subgroup �I
of �J Š �I ��JXI . The standard proof of the submersion axiom for Gromov–Witten
moduli spaces adapts easily to yield �x –equivariance because it is an application of
the gluing theorem at the stable map x . The process of gluing depends on various
choices, for example of Riemannian metrics and of the complement to the image
of the linearized Cauchy–Riemann operator at x , and these can always be chosen
invariant under the finite stabilizer subgroup of x . This equivariance is built into the
smooth index condition, since the latter is expressed in terms of the equivariant section
maps sJXI .

(ii) The smooth case In this case the manifolds UI are assumed to be smooth, all
structural maps (the group action on UI , the section sI and coordinate changes �IJ )
are smooth, and the submersion axiom is replaced by the requirement that zUIJ be a
submanifold of UJ such that

(1.2.4) the derivative of sJXI W UJ !EJXI induces an isomorphism from the
normal bundle of zUIJ in UJ to EJXI � zUIJ .

In this case we claim that each of the maps �IJ in Proposition 1.3.3 can be chosen
to be a local diffeomorphism onto its image, so that M is a smooth manifold if the
isotropy is trivial, and otherwise is a smooth branched manifold. The construction of
such an M is sketched in Remark 2.2.5.

(iii) Orientations We will consider an atlas to be oriented if each domain UI (and
each obstruction space EI ) has a �I –invariant orientation that is respected by the
coordinate changes. In fact, in the current situation, since we have assumed that the Ei
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are all even-dimensional (eg that they are all complex vector spaces), then if they are
also invariantly oriented, the EI inherit natural orientations, and the local product
structure given by the submersion condition permits the transfer of an orientation
between charts. In the smooth case, a slightly more general notion of orientation is
discussed extensively in [14; 12]. ˘

We now briefly recall some other terminology that will be useful later. An atlas
K0 D .K 0I ; ŷ

0
IJ / is a shrinking of KD .KI ; ŷ IJ / if

� it has the same index set IK , obstruction spaces EI and groups �I ,

� each chart domain U 0I is a precompact subset of UI , written U 0I @ UI ,

� the coordinate changes are given by restriction.

For short, in this situation we write

U 0 @ U ; where U 0 WD
G
I2IK

U 0I ; U WD
G
I2IK

UI :(1.2.5)

It is shown in [13, Section 3.3; 12, Section 2.5] that every weak atlas has a tame
shrinking K0@K that is unique up to a natural equivalence relation called concordance.
A tame atlas K is called preshrunk if there is a double shrinking K @ K0 @ K00 such
that both K and K0 are tame.

Each atlas6 K determines a topological category BK with

(1.2.6) ObjBK
D

G
I2IK

UI ; MorBK D

G
I�J

zUIJ ��I ;

s� t W MorBK!ObjBK
�ObjBK

; .I; J; y; 
/ 7!
�
I; 
�1.�IJ .x//; .J; y/

�
:

We denote by jKj WD jBKj its (geometric or naive) realization. Thus,

jBKj WD
G
I

UI=�;

where � is the equivalence relation on ObjBK
that is generated by the morphisms, ie

.I; x/� .J; y/ if and only if there is a chain of morphisms

.I; x/D .I0; x1/! .I1; x1/ .I2; x2/! � � �  .Ik; xk/D .J; y/:

6The extra assumption in the definition of atlas stated just after (1.2.2) implies that the set MorBK
defined below is closed under composition.
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Though for a general atlas the quotient topology is non-Hausdorff, it is shown in
[13, Theorem 3.1.9] (see also [12, Section 2.5]) that if K is preshrunk and tame, the
quotient topology is Hausdorff and the natural maps

�KW UI ! jKj(1.2.7)

induce homeomorphisms from UI=�I onto their images. Further, the quotient topology
on jK0j restricts to a metrizable topology on jKj that agrees with the quotient topology
on each set �K.UI /. We will say that K is good if its realization jKj has these
properties.7

From now on we assume that K is good in this sense, eg preshrunk and tame.

There is a similar category EK formed by the obstruction bundles with

ObjEK
D

G
I2IK

UI �EI ; MorBK D

G
I�J

zUIJ �EI ��I ;

s� t W MorEK!ObjEK
�ObjEK

; .I; J; y; e; 
/ 7!
��
I; 
�1.�IJ .y/; e/

�
; .J; y; e/

�
:

The projections prI W UI �EI !UI , sections sI and footprint maps  I fit together to
give functors

prW EK!BK; sW BK!EK;  W s�1.0/!X ;

where X is the category with objects X and only identity morphisms, and one can
show that  induces a homeomorphism j jW jsj�1.0/!X.

Reductions and zero sets The situation when all the obstruction spaces EI vanish is
considered in McDuff [11]. In this case, the category BK is

� étale, ie the object and morphism spaces are manifolds, and the source and target
maps are local homeomorphisms, and

� proper, ie the equivalence relation � on the object space generated by the
morphisms is closed.8

7The proof given in [13] that preshrunk and tame atlases are good is abstract, ie the argument only
uses properties of the objects and maps in the category BK . However, because the atlas domains are often
constructed as subsets of an ambient Hausdorff metrizable space S (such as a space of stable maps), one
can sometimes use the existence of S to bypass some of the arguments in [13].

8If ObjB is a separable, locally compact metric space (as is the case for the categories considered in
this paper), then this properness condition implies that the realization jBj is Hausdorff; for a proof see
[13, Lemma 3.2.4]. If in addition B is a groupoid, then this condition is equivalent to the more standard
requirement that the map s � t W MorB ! ObjB �ObjB is proper.
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Moreover, by [11, Proposition 2.3] it has a natural completion to an EP (étale, proper)
groupoid yBK (ie a category in which all morphisms are invertible) that also has
realization jKj. Thus, yBK provides an orbifold structure on jKj.

If the obstruction spaces do not vanish, then the manifolds UI have varying dimensions.
However, if �I W UI ! EI is a perturbation section such that sI C �I W UI ! EI is
transverse to 0, then the perturbed zero set ZI WD .sIC�I /�1.0/ has fixed dimension d .
Hence, as is shown in [14, Lemma 7.2.7], if the isotropy groups vanish and if we can
choose the �I compatibly, ie they form a functor

�W BK!EK;

then these zero sets fit together to form a manifold. However, in general the domains UI
overlap too much for there to be such a functor.9

We deal with this by passing to a reduction V , ie a family of �I –invariant, precompact
open subsets VI @ UI with the following properties:

(1.2.8)
� the footprints

�
GI WD  I .VI \ s

�1
I .0//

�
I2IK

cover X;

� �K.V I /\�K.V J /¤∅ only if I � J or J � I;

where �KW UI!jKj is the projection in (1.2.7). In the construction given in Section 7.3
of [14] for the trivial isotropy case, we define the perturbation section as a functor

�W BKjV !EKjV

on the full subcategory BKjV of BK with objects
F
I VI .

If the isotropy groups are nontrivial then it is (in general) no longer possible to choose
a transverse equivariant section � , even on a reduction V . However, because the
morphisms in BKjV are described so explicitly, we show in [12, Proposition 3.3.3] that
we may construct the perturbation section as a (single-valued) functor

�W BKj
X�
V !EKj

X�
V ;

where BKj
X�
V is the (nonfull, nonproper) subcategory of BKjV obtained by discarding

the morphisms coming explicitly from the group actions. Thus,

(1.2.9) MorBKj
X�
V
D

G
I�J

zVIJ ;

9See the beginning of [13, Section 7.1]. The relation between U and its reduction V is similar to that
between the cover of a simplicial space by the stars of its vertices and the cover by the stars of its first
barycentric subdivision. In particular, though the footprints .Fi /1�i�N of the basic charts cover X, the
corresponding sets .Gi WD Fi \ jVi j/1�i�N are disjoint and do not form a cover; see Figure 1.
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where

s � t W .I; J; y/ 7!
�
.I; �IJ .y//; .J; y/

�
and zVIJ D VJ \ �

�1
IJ .VI /�

zUIJ :

We show in [12, Theorem 3.2.8] that if .sC �/ t 0, the full subcategory of BKj
X�
V

with objects G
I

.ZI WD .sI C �I /
�1.0//

with weights
wt.ZI /D 1=j�I j

can be completed to a weighted étale groupoid whose realization is therefore a weighted
branched manifold as defined in Section 1.3. We will see below that in the current
context the branched manifold structure of M appears in a similar way.

1.3 The weighted branched manifold .M; ƒ/

We will construct M from the realization of an étale category M whose objects are
thickened versions of the domains VI of a reduction V of the atlas K , and whose
morphisms have exactly the same structure as those in the category BKj

X�
V defined

in (1.2.9). In particular, in general M is not proper, so that its realization jM j is not
Hausdorff but rather branches along its locus of non-Hausdorff points (think of two
copies of a circle attached along a subarc.)

We begin with some relevant definitions from [9]. If G is a wnb groupoid as described
below, its realization jG j with the quotient topology is in general not Hausdorff. Hence,
we consider its maximal Hausdorff quotient jG jH , which has the following universal
property: any continuous map from jG j to a Hausdorff space factors through jG jH .
In the following we write jG j for the realization ObjG=� of an étale groupoid G, and
jG jH for its maximal Hausdorff quotient.10 We denote the natural maps by

�G W ObjG ! jG j; �H
jG jW jG j ! jG jH; �H

G WD �
H
jG j ı�G W ObjG ! jG jH:

Definition 1.3.1 [9, Definition 3.2] A weighted nonsingular branched groupoid (or
wnb groupoid) of dimension d is a pair .G ; ƒG / consisting of a nonsingular,11 étale

10The appendix to [12] gives succinct proofs of the results we use; in particular, the existence of jG jH
is established in [12, Lemma A.2]. Lemma 2.3.2 gives an explicit description of jG jH in the case we need
here.

11That is, there is at most one morphism between any two objects. Further, we restrict here to rational
weights, but clearly this condition could be generalized.
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groupoid G of dimension d , together with a rational weighting function ƒG W jG jH!

QC WD Q \ .0;1/ that satisfies the following compatibility conditions. For each
p 2 jG jH there is an open neighborhood N � jG jH of p , a collection U1; : : : ; U`
of disjoint open subsets of .�H

G
/�1.N /� ObjG (called local branches) and a set of

positive rational weights m1; : : : ; m` such that the following holds:

� Cover .�H
jG j
/�1.N /D jU1j [ � � � [ jU`j � jG j.

� Local regularity For each i D 1; : : : ; ` the projection �H
G
jUi W Ui ! jG jH is

a homeomorphism onto a relatively closed subset of N.

� Weighting For all q 2N, the number ƒG .q/ is the sum of the weights of the
local branches whose image contains q :

ƒG .q/D
X

i Wq2jUi jH

mi :

Now we can formulate the notion of a weighted branched manifold.12

Definition 1.3.2 A weighted branched manifold of dimension d is a pair .Z;ƒZ/
consisting of a topological space Z together with a function ƒZ W Z ! QC and
an equivalence class13 of tuples .G ; ƒG ; f /, where .G ; ƒG / is a d –dimensional
wnb groupoid and f W jG jH ! Z is a homeomorphism that induces the function
ƒZ WDƒG ıf

�1 .

We define the weighted branched manifold .M;ƒ/ of Theorem A as the realization
of a category M constructed as follows. First choose a �i –invariant norm k � k on
each Ei , and for any J � A give the vector space EJ WD

Q
i2J Ei the sup norm

keJ k D sup
i2J

keik:

Further, let

(1.3.1) EJ;" WD feJ 2EJ j keJ k< "g;

12In distinction to [9; 12], we will not assume from the outset that a weighted branched manifold is
oriented, since there is no need for this hypothesis until it comes to considering the fundamental class.
Analogous definitions for cobordisms may be found in [12, Appendix].

13The precise notion of equivalence is given in [9, Definition 3.12]. In particular, it ensures that the
induced function ƒZ WD ƒG ı f

�1 and the dimension of ObjG is the same for equivalent structures
.G ; ƒG ; f / .
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and

(1.3.2) " WD ."I /I2IK ;

where

I ¨ J D) 0 < �"I < "J for � WDmaxfjJ j j J 2 IKg:

Given a reduction V of an atlas K as in (1.2.8), for each I � J we let

VIJ D VI \�
�1
K .�K.VJ //� VI ; zVIJ D VJ \�

�1
K .�K.VI //� VJ ;(1.3.3)

where �KW VI ! jKj is the obvious projection. Thus, �IJ . zVIJ /D VIJ . Observe also
that the group �A acts on EAXJ;"J �VJ by


 � .e; x/D .
 jAXJ .e/; 
 jJ .x//; 
 2 �A;(1.3.4)

where 
 jJ denotes the projection of 
 2 �A WD
Q
i2A �i to �J WD

Q
i2J �i .

The following result is the key step in the proof of Theorem A. A more precise version
is stated and proved in Proposition 2.2.2 below.

Proposition 1.3.3 Let K be a good atlas on X of dimension d . Then there is a
reduction V and choice of constants ı > 0 such that the following holds.

(i) There is an étale category M of dimension D WD d C dimEA with

(1.3.5) ObjM D
G
I2IK

MJ WDEAXJ;ıJ �VJ ; MorM D

G
I�J; I;J2IK

�MIJ ;

s � t W MorM ! ObjM �ObjM ; .I; J; y/ 7!
�
.I; �IJ .y//; .J; y/

�
;

where �MIJ �MJ is an open �A–invariant subset containing f0g � zVIJ whose
closure cl. �MIJ / is disjoint from cl. �MHJ / unless I � H or H � I, and the
map

�IJ W �MIJ !MIJ WDEAXI;ıI �VIJ �MI

is a �A–equivariant covering map onto MIJ �MI such that

� �IJ restricts to �IJ on f0g � zVIJ ;

� if H � I � J then �HJ D �HI ı �IJ on �MIJ \
�MHJ , and

(1.3.6) graph �IJ �MI �MJ is closed.
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(ii) M supports an action of �A by (1.3.4) on objects, and by

.I; J; y/ 7! 
 � .I; J; y/ WD .I; J; 
�1 �y/; 
 2 �A; y 2 �MIJ ;

on morphisms.

(iii) There is a �A–equivariant functor S W M ! EA , where the category EA has
objects EA and only identity morphisms, that is given on objects by maps
SJ W MJ !EA such that

(1.3.7) SJ .0; x/D sJ .x/; S �1J .EJ /� f0g �VJ ;

so that
.SJ /

�1.0/D f.0; x/ 2EAXJ �VJ W sJ .x/D 0g:

The following result explains the construction and properties of the weighted branched
manifold .M;ƒ/ mentioned in Theorem A. Note that S denotes a functor M !EA ,
while SM W M !EA is the corresponding function on M.

Theorem 1.3.4 (i) The category M constructed in Proposition 1.3.3 has a unique
completion to a wnb groupoid �M with the same objects as M and the same
realization j �M j D jM j.

(ii) If we denote the composite ObjM ! jM j ! j �M jH by y 7! jyj 7! �H
M
.jyj/,

the function ƒW M WD j �M jH!QC defined by

ƒ.p/ WD
1

j�I j
� #fy 2MI j �

H
M .jyj/D pg for p 2 jMI jH

is a weighting function that gives .M;ƒ/ the structure of a weighted branched
manifold.

(iii) The group action by �A and functor S extend to �M, so that there is a �A–
equivariant map SM W M !EA . Moreover, the zero set S �1M .0/ is a compact
subset of M, and the footprint maps  I induce a homeomorphism

 W S �1M .0/=�A
Š
�!X:

(iv) If K is oriented, so are M and �M.

The category M has the same structure as the category Z � considered in Theorem 3.2.8
of [12], formed by the perturbed zero set of the atlas K ; and the proof of Theorem 1.3.4
(which is given in Section 2.3) is essentially the same as the corresponding result for Z � .
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Condition (1.3.6), that �IJ has closed graph, is automatically satisfied in the case of Z � ,
and is an important ingredient of the analysis of the branching structure of M. For
example, if the isotropy groups are trivial, then the maps �IJ are homeomorphisms
onto their images, and Lemma 2.3.1 implies that the only morphisms in the groupoid
completion �M are those given by the �IJ and their inverses. Hence, condition (1.3.6)
implies that the equivalence relation on ObjM has closed graph, so that the quotient
space j �M j is Hausdorff, and therefore a manifold. An example with nontrivial isotropy
is described in Example 1.4.3(IV).

Proof of Theorem A This is an immediate consequence of Theorem 1.3.4.

Remark 1.3.5 Instead of taking M to be a weighted branched manifold with action
of �A , one could add the morphisms in �A to the completed category �M to obtain
an étale groupoid �M ��A . In general, this groupoid is not proper. However, it does
inherit a weighting function and so the realization j �M ��AjH is a weighted branched
orbifold M=�A ; for an explicit example see Example 1.4.3(VI). Note also that the
action of the group �A on M only affects the fundamental class �M (and hence ŒX�vir

K )
via the weighting function ƒ, whose values depend on the groups �I as well as on the
category M. ˘

Remark 1.3.6 (outline of the argument) We will explain the main points of the proof
of Proposition 1.3.3 in Section 2. The first step is to use “deformation to the normal cone”
(see [15]) to construct manifolds .YU;J;"/J2IK of dimension dCdimEACjJ j�1 with
a natural boundary that lies over the boundary of a simplex �J of dimension jJ j�1. We
next consider the open submanifold YV;J;" � YU;J;" corresponding to a reduction, and
show that this has a partial boundary collar with “corner control”; see Proposition 2.1.4.
Then we use the collar to construct the covering maps �IJ W �MIJ !MI . Since the
general definition of these maps is quite complicated, we explain in Example 2.2.1 how
this works for an atlas with just three basic charts. Proposition 2.2.2 gives the general
construction.

Section 3.1 contains technical details about compatible shrinkings, and the proof that
each YU;J;" is a manifold. The argument here is based on the existence of the local
product structures provided by the submersion axiom. As we show in Step 1 of the
proof of Proposition 2.1.4 in Lemma 3.2.1, this axiom also allows one to construct
local collars that are compatible with the covering maps �IJ and with projection to the
vector spaces EJXI . In Step 2 of this proof we explain a standard method (described
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in Hatcher [4]) for assembling these local collars into a global collar for each YV;J;" ,
and show in Step 3 how to arrange that these collars have the consistency properties
listed in Proposition 2.1.4 that are needed in the definition of the maps �IJ . This last
step works under the assumption that the domains of the local collars are compatible
with the reduction V and choice " of thickening constants in a rather subtle way, which
is summarized in the notion of compatible reduction .V; "/ in Definition 3.1.9. ˘

Remark 1.3.7 (generalizations) The construction of M could be generalized in
various ways. The argument relies in an essential way on the submersion property in
order to construct the collars in Proposition 2.1.4, ie on the fact that along zUIJ the
space UJ is locally the product of the vector space EJXI with the domain UI . However,
it does not use the fact that the domains UI themselves are topological manifolds; for
example, since all we want in the end is information on homology, it would no doubt
suffice if they were (locally compact, metrizable) homology manifolds of dimension
dimEI Cd . One could also consider atlases (or equivalently categories BK ) whose
charts are indexed by a poset more general than that given by the subsets of A. However,
one does need to be able to restrict attention to a subcategory such as BKjV in which
there are morphisms between the elements of two components of the domain only if
the indices of those components are comparable in the given poset. Some possible
generalizations of this kind are discussed in the last section of [10]. ˘

Remark 1.3.8 (the polyfold approach) If X is the zero set of a Fredholm section s

of a polyfold bundle E!S of index d , then one can use the fact that the realization jSj
supports partitions of unity to give a very simple construction for a weighted branched
manifold M and section S whose corresponding relative Euler class agrees with that
of sW S! E . (In the applications of interest to us S is a category14 whose realization
is a space of stable maps with the Gromov topology; see Hofer [5] and Hofer, Wysocki
and Zehnder [7].) Here is a very brief outline of the construction; for full details see
McDuff and Wehrheim (work in progress).

Given x 2X with stabilizer subgroup �x , choose a lift qx 2ObjS , and a �x –invariant
open neighborhood O�ObjS of qx such that the map O! jOj � jSj factors through
a homeomorphism O=�x Š�! jOj. Because s is Fredholm, there is a �x –equivariant
linear map �W E!Sect.EjO/ from a �x –invariant normed linear space E to a subspace

14One can think of S as an infinite-dimensional version of an EP groupoid, where the objects ObjS
do not form a set but nevertheless the quotient jSj D ObjS=� is a topological space, where � is defined
by setting x � y()MorS.x; y/¤∅ .
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of scC–smooth sections that covers the cokernel of the linearization of s at x . It follows
that there is " > 0 such that the set

U WD f.e; q/ 2E �O j s.q/D �.e; q/; kek< "g(1.3.8)

is a manifold of dimension d C dimE. (The proof involves a nontrivial amount of
analytic detail that will appear in McDuff and Wehrheim (work in progress).) Choose
a finite covering of the compact set X WD js�1.0/j by the footprints . i .s�1i .0///i2A

of such charts
Ki WD .Ui ; Ei ; �i ; si ;  i /; si .e; q/D e;

and let .jOi j/i2A be the associated open cover of a neighborhood of X in the ambient
space jSj. Just as in [11], one can use the groupoid structure of S to show that the Ki

form the basic charts for a tame Kuranishi atlas KO;� whose transition charts are
given by tuples of composable morphisms. Instead of giving more detail about this
construction, we will outline how to modify these definitions so that the domains of
the charts all have the same dimension d C dimEA .

First choose a family of bump functions .�i /i2A with supp �i � jOi j such that

X D js�1.0/j �
[
i

fx j �i .x/ > 0 for some ig:

Then choose an ordering of the elements i 2 A and a reduction .jWI j/I2IK of the
covering .jOi j/i2A with the following properties:

� jWI j � jOI j WD
T
i2I jOi j for each I 2 IK ;

� X �
S
I2IK jWI j;

� jWI j \ jWJ j ¤∅ D) I � J or J � I ;

� if i … J then �i � 0 on jWJ j.

Then, given I D fi0; : : : ; ikg with i0 < i1 < � � � < ik , the space MW
I consists of all

tuplesn
.eA; qi0 ; ‰qi0qi1 ; : : : ; qik /

ˇ̌
jqi0 j 2 jWI j; ‰qq0 2Mor.q; q0/; keAk< ";

s.qi0/D
P
j

�ij .jqi0 j/‰
�.�ij .eij /.qij // 2 Eq0

o
;

where .qi0 ; ‰qi0qi1 ; q1i ; ‰qi1qi2 ; : : : ; qik / is a composable k–tuple of morphisms from
a point q0 2Oi0 to qk 2Oik . By [7, Theorem 7.4], we may choose the �j so that for
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each i; j 2 A the function

Oi ! Œ0; 1�; q 7! �j .jqj/;

is sc–smooth. It follows that if " > 0 is suitably small, then, for each I, MW
I is

a manifold of dimension d C dimEA with action of �A . Moreover, much as in
[11, Proposition 2.3], for each I � J one can define a �A–equivariant covering map

�IJ W M
W
J �

�MW
IJ !MW

IJ �M
W
I

by taking an appropriate combination of the structural maps in S (such as compositions
and source/target maps), where MW

IJ (resp. �MW
IJ ) consists of all elements in MW

I

(resp. MW
J ) with jqi0 j 2 jWI j \ jWJ j. This gives a category M whose structure is

precisely as described in Proposition 1.3.3. The resulting virtual fundamental class
(VFC) ŒX�vir is independent of all choices, and can be shown to agree with that defined
by the polyfold Fredholm section sW S! E .

Note that the equation satisfied by the elements in MW
I involves the bump functions �j ,

while the equation (1.3.8) defining the chart domains of the atlas KO;� does not. Hence,
the weighted branched manifold .MW ; ƒ/ constructed above is not identical to the
manifold obtained from the atlas KO;� by the collaring construction described below.
Nevertheless, these two constructions are closely related and, by adapting the arguments
in Section 2.3, one can show that they define the same VFC ŒX�vir . For more details,
see McDuff and Wehrheim (work in progress). ˘

1.4 Examples

We end this introduction by giving some examples. Though these are not needed for
the proofs of the main results, readers unfamiliar with the description of orbifolds via
atlases might find it useful to read at least some of this section before proceeding further.

We begin by discussing the definition of the relative Euler class of an oriented vector
bundle � W E!W over a manifold that is equipped with a section sW W ! E whose
zero set X WD s�1.0/ is compact. In particular, we explain why the method outlined in
equation (1.1.2) does compute the Euler class e.E/ of E!W when W is compact and
s� 0. In Remarks 1.4.2, we describe how to extend the construction to orbibundles.
Finally, we show in detail how our main construction works to calculate the Euler class
of the tangent bundle of S2 , starting from the atlas defined in [12]. Our approach easily
generalizes to the football orbifold S2p;q , which is S2 with orbifold points of orders p
and q at the two poles.
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Let � W E ! W be an oriented, vector bundle over the manifold W , together with a
section sW W ! E with compact zero set X �W . As always (see Remark 1.2.1(iii)),
we suppose that E has even rank to avoid problems with orientation.15 We build a
(Kuranishi) atlas whose charts are defined using tuples

.O; E; �; s/;
where

� O �W is open,

� E is an even-dimensional, oriented vector space,

� �W E �O! EjO is a surjective orientation-preserving bundle homomorphism
over idO , and

� � pushes sW O!E forward to sjO , ie �.s.x/; x/D s.x/ 2 Ejx for all x 2O .

Given such a tuple, the corresponding chart

K WD .U;E; s;  /; with footprint F;

is defined by setting

U D f.e; x/ 2E �O j �.e; x/D s.x/g; s.e; x/D e;  .0; x/ 7! x 2X:

One obtains an atlas as defined in Section 1.2 by taking the basic charts to be a finite
family .Ki /iD1;:::A of charts of this form whose footprints .Fi / cover the compact
set X D s�1.0/, and the transition charts .KI /I2IK to be the corresponding charts
.UI ; EI ; sI ;  I / with footprints FI WD

T
i Fi that are formed just as above but now

with EI D
Q
i2I Ei and �I D

P
i2I �i . In particular,

UI D
˚
..ei /; x/ 2EI �OI j

P
�i .ei ; x/D s.x/

	
; where OI WD

\
i2I

Oi :

This gives an atlas in which the coordinate changes KI !KJ are given by the obvious
identifications

zUIJ WD f.e; x/ 2 UJ j e 2EI ; x 2OJ g Š�! UIJ D f.e; x/ 2 UI j Ax 2OJ g:

To see that the submersion condition holds, choose for each I a right inverse �I W EjOI!
EI �OI to �I , so that �I ı �I D id, and define

E 0JXI D
˚�
e0� �I .s.x//; x

�
j e0 2EJXI ; x 2OIJ

	
�EJ �OJ :

15Of course, over Q the Euler class vanishes for bundles of odd rank anyway.
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Then E 0JXI is an affine subbundle of EJ �OJ !OJ , and we may identify UJ with
the pullback of E 0JXI to zUIJ by the projection zUIJ ! UJ , .e; x/ 7! x .

Since there is such an atlas for every collection of charts K whose footprints cover X,
any two such atlases K0 and K1 are directly commensurate, ie there is an atlas K
whose charts include those of K0 and K1 . Therefore, K0 and K1 are cobordant by
[14, Section 6.2]. Hence, they define cobordant manifold models .M;EA;S / by
Theorem A and the same class ŒX�vir

K by Theorem B.

If the bundle E!W is smooth, then we can define the VFC either as in the proof of
Theorem B given in Section 2.3, or via an inverse limit of the homology classes of the
zero sets of a family of perturbed sections sC�k of E!W . As explained in the proof
of Theorem B, these two approaches give the same answer. If W is just a topological
manifold, it is of course easiest to represent the Euler class by starting with an atlas
with just one basic chart (and hence just one chart). In this case, our general method of
building an atlas gives the tuple described in (1.1.2). We now show that if s� 0, so that
X D s�1.0/DW is a compact manifold, then ŒX�vir

K as defined in (1.1.1) is Poincaré
dual to the usual Euler class e.E/ 2H 2k.X IZ/, where 2k D rank E . In the following
lemma, we use simplicial (co)homology instead of the Čech theory discussed in the
appendix, since all spaces are manifolds, and take coefficients Z since the isotropy is
trivial.

Lemma 1.4.1 If E!X is an oriented 2k–dimensional vector bundle over an oriented
.2kCd/–dimensional manifold X with s� 0 and atlas K as above, then

ŒX�vir
K D �X \ e.E/ 2Hd .X/;

where �X is the fundamental class of X and e.E/ 2 H 2k.X IZ/ is the Euler class
of E .

Proof By Theorem B and the above remarks, it suffices to calculate ŒX�vir
K using an

atlas with one chart as in (1.1.2). Thus, we may take

M D E 0; S W M !RN ; .e0; x/ 7! prRN .�.e
0; x//;

where E 0 has rank 2`, N D 2kC2`, �W M ! E 0˚E is the inclusion and prRN is the
projection

prRN W E ˚ E 0 ŠONX WDRN �X !RN :
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Denote the Thom classes of E and E 0 by �E and �E 0 and their pullbacks to ONX by

z�E 2H
2k.ONX ;O

N
X X E 0/; z�E 0 2H 2`.ONX ;O

N
X X E/:

Then, if �RN 2H
N .RN ;RN X f0g/ is the canonical generator, we have

S �.�RN /D �
�.�ONX

/D ��.z�E [ z�E 0/ 2H
N .M;M XX/:

We may identify �M \ �E 0 with the fundamental class �X 2 H2kCd .X/, where
�M 2 H2kCd .M;M XX/ is the restriction of the fundamental class of M. Then,
for any class b 2 Hd .X/, we use the cap product in (A.7) with Y D M , A D ∅
and Y XU DX, and the relation between cap and cup products for even-dimensional
classes, to obtain

hŒX�vir
K ; bi WDhS�.�M \ b/; �RN iDh��.�M \ b/; z�E [ z�E 0iDh��.�M \ b\ �E 0/; z�Ei

Dh�X \ b; �
�
X .�E/iDh�X \ e.E/; bi;

where we have written �X W X ! E for the inclusion and used the fact that ��X .�E/ is
the Euler class e.E/ 2H 2k.X/ of E .

Remarks 1.4.2 (i) The above construction easily adapts to the case of an oriented
orbifold bundle E!W over an oriented orbifold W , where now we should think of the
spaces E and W as the realizations of suitable EP categories E and W . Thus, one can
build an atlas whose basic charts are as above with the addition of a group action, while
the transition charts are made using composable tuples of morphisms in E. For details,
see [10, Section 5.2]. One can then piece the corresponding fattened charts together
by the method explained in Sections 2 and 3 below to obtain a tuple .M;EA;S / as
in Theorem A. However, we can also build the category M directly from the set of
basic charts .Ui ; Ei ; �i ; si ;  i /, using a partition of unity, and an associated reduction
as explained in Remark 1.3.8.

(ii) In Gromov–Witten theory it sometimes happens that the space of J –holomorphic
maps in class A does form a compact manifold (or orbifold) X such that the rank of the
cokernel of the linearized Cauchy–Riemann operator Dx at x 2X is independent of x .
In this case, these cokernels fit together to form a bundle E!X such that the map s

induced by the Cauchy–Riemann operator is zero. We explain in [10, Remark 5.2.4]
why one can choose a Gromov–Witten type atlas (constructed as in [10, Section 4]
or [15]) with precisely the structure considered above.

(iii) Pardon [15, Proposition 5.3.4] proves the analog of Lemma 1.4.1 in the smooth case
using a transverse perturbation of s as in Step 3 of the proof of Lemma 2.3.4. ˘
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Example 1.4.3 (the tangent bundle of the 2–sphere and the football) We now illus-
trate the construction in the proof of Theorem A in the case of the bundle � W TS2!S2

with section s� 0, starting from the Kuranishi atlas with two basic charts that was
constructed in [12, Example 3.4.2]. We organize the details into several steps.

(I) (atlas for the tangent bundle of the 2–sphere) To build a Kuranishi atlas whose
associated “bundle” prW jEKj! jKj models TS2 , cover S2 by two copies D1 and D2
of the unit disc in C, whose intersection D1 \D2 DWD12 DW A Š Œ0; 1�� S1 is an
annulus, and for i D 1; 2 define

Ki WD .Ui WDDi ; Ei WDC; si WD 0;  i WD id/:

For i D 1; 2, choose unitary trivializations Ti W Di �C! TS2jDi , .x; e/ 7! Ti;x.e/,
and then define the transition chart

K12 WD .U12 �E1 �E2 �A; E1 �E2; s12 D prE1�E2 ;  12 D prAj0�0�A/

by setting
U12 WD f.e1; e2; x/ j x 2 A; T1;x.e1/CT2;x.e2/D 0g:

The coordinate changes ŷ i;12 are given by Ui;12Df.0; 0/g�A and �i;12.0; 0; x/D x .
To justify this choice of Kuranishi atlas, note that one can construct a commutative
diagram

jEKj

��

// TS2

��

jBKj

jsj

DD

// S2

s�0

BB

where the top horizontal map restricts on U12 �E12 to the map

..e1; e2; x/; e
0
1; e
0
2/ 7! T1;x.e

0
1/CT2;x.e

0
2/ 2 TxS2 � TS2jA:

Thus, it takes

graph s12 D f..e1; e2; x/; e1; e2/ j .e1; e2; x/ 2 U12g � U12 �E12

to the zero section of TS2 .

This construction is generalized to other (orbi)bundles in [10]. ˘

(II) (calculating the Euler class) In order to calculate the Euler class of TS2 it is
convenient to identify the annulus A with Œ0; 1� � S1 , and then consider the corre-
sponding trivialization TS2jA �A�Rt �R� , where t 2 Œ0; 1� and � 2 S1 �R=2�Z
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are coordinates. Then, for i D 1; 2 there is a section �i W Ui !Ei with one transverse
zero such that

Ti;x.�i .x//D .x; 1; 0/ 2 A�Rt �R� � TS2jA; x 2 A:

(Take suitably modified versions of the sections �1.z/ D z and �2.z/ D �z , where
Di � C.) Therefore, the �i fit together to give a global section of TS2 with two
transverse zeros, and it follows that the Poincaré dual of e.TS2/ is represented by
2Œpt� 2H0.S2/.

To see how e.TS2/ is calculated via the atlas, we start by choosing a reduction G of
the footprint covering. For example, we may take G12 D ."; 1� "/�S1 @A for some
" 2

�
0; 1
4

�
and choose Gi @Di so that

zV1;12 D .0; 0/�
�
"; 1
4

�
�S1 � U12; zV2;12 D .0; 0/�

�
3
4
; 1� "

�
�S1 � U12:

Choose a cutoff function ˇW Œ0; 1��S1 pr
�! Œ0; 1�! Œ0; 1� that equals 1 in

�
0; 1
4

�
�S1

and 0 in
�
3
4
; 1
�
�S1 . Then the map �12W zV12!E1 �E2 given by

�12.e1; e2; x/D
�
ˇ.x/�1.x/; .1�ˇ.x//�2.x/

�
2E1 �E2

restricts to �i on Vi;12 � .0; 0/�A for i D 1; 2. Thus, the tuple .�1; �2; �12/ is an
admissible perturbation section in the sense of [12]. Moreover, s12C �12 does not
vanish at any point .e1; e2; x0/ 2 V12 because the three equations

T1;x0.e1/CT2;x0.e2/D 0;

T1;x0.e1/Cˇ.x0/.1; 0/D T2;x0.e2/C .1�ˇ.x0//.1; 0/D 0 2 fx0g �Rt �R�

together imply that the vector .1; 0/ 2 Rt �R� is zero, a contradiction. Hence, as
before, the perturbed zero set consists of two points, each with weight one. ˘

(III) (construction of the corresponding manifold M and section SM W M ! E12 )
When, as in the case at hand, the isotropy groups are trivial, the current paper constructs
from the above reduction V of K a manifold M that is the union of three components

M D ..M1 DE2;" �V1/t .M2 DE1;" �V2/t .M12 D V12//=�;

where � identifies .ej ; x/2Mi;12 with ˛i;12.ej ;x/2 �Mi;12�M12 where ˛i;12 WD��1i;12 .
The submersion axiom (1.2.3) implies that the submanifold zVi;12 has local product
neighborhoods in V12 . In Section 2 we will describe how to assemble these into a more
global structure that can be used to relate the different components MI . However, in
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the current situation there is an obvious global product structure that directly gives the
needed attaching maps as follows. First, with i D 1 and j D 2, we define

�E W .E2;"� zV1;12; f0g� zV1;12/! .V12; zV1;12/; .e2; x/ 7!
�
�T �11;x .T2;x.e2//; e2; x

�
:

Then, the attaching map ˛1;12 D ��11;12 is given by

˛1;12W E2;" �V1;12! V12;

.e2; x/ 7! x0 D �E .� � e2; x/D
�
�T �11;x .T2;x.�e2//; �e2; x

�
;

where
� WD

p
ke2k:

Further, we take S12 D s12 , where

s12
�
�T �11;x .T2;x.e2//; e2; x

�
D
�
�T �11;x .T2;x.�e2//; �e2

�
;

and then define S1 by pullback over V1;12 , extended over M1 by a cutoff function

S1.e2; x/D ˇ1;12.x/
�
�T �11;x .T2;x.�e2//; �e2

�
C .1�ˇ1;12.x/.0; e2/;

where ˇ1;12W V1! Œ0; 1� equals 0 near xD0 and 1 on V1;12 . Note that �1;12 does have
closed graph in M1�M2 since M1 contains no points .e2; x/ with x 2

˚
1
4

	
�S1�A,

while M2 contains no points .e1; e2; x/ with x 2 f0g � S1 � A. There are similar
formulas for ˛2;12 and S2 .

This construction gives a 4–manifold M together with a map SM W M !E12 whose
zero set is homeomorphic to S2 . In fact, we can identify M with a neighborhood of the
zero section in TS2 that has width " > 0 over the discs .Vi XVi;12/iD1;2 and contains
the whole of TS2jG12 . This holds because V12 can be identified with TS2jG12 . ˘

(IV) (the normal bundle of S �1M .0/Š S2 in M is isomorphic to TS2 ) To see this,
note that there is an embedding

M1[˛1;12
�M1;12!C �D1

given on M1 DE2;" �V1 by the obvious inclusion (where we identify E2 �C ) and
on �M1;12 by�

�T �11;x .T2;x.e2//; e2; x
�
7! .��1e2; x/ 2E2 �A�C �D1; �D

p
ke2k:

Identifying A with ."; 1� "/� S1 as above, we may extend this embedding over a
neighborhood N1 �M12 of the set f.0; 0/g �

�
"; 1
2

�
�S1 so that it equals�

�T �11;x .T2;x.e2//; e2; x
�
7! .e2; x/ for all x 2

�
1
2
� ı; 1

2

�
�S1:
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The similar embedding

.E1;" �V2/[˛1;12 N2!C �D2

is given near the circle
˚
1
2

	
� S1 by the map

�
e1;�T

�1
2;x.T1;x.e1//; x

�
7! .e1; x/.

Therefore, this bundle over S2 is determined by the clutching map x 7! �T �12;x.T1;x/,
which is homotopic to the map x 7! T �12;x.T1;x/ that determines TS2 . ˘

(V) (the case of the football orbifold S2p;q ) This orbifold is topologically S2 , but has
orbifold points of orders p and q at the two poles. Thus, the bundle � W TS2p;q! S2p;q
is again modeled by a Kuranishi atlas16 with two basic charts K1 and K2 as above,
with �1 D Z=pZ acting by rotations on D1 and E1 and with �2 D Z=qZ acting by
rotations on D2 and E2 . Since si � 0 for i D 1; 2, the footprint maps

 i W s
�1
i .0/D Ui ! S2p;q; x 7! jxj;

simply quotient out by the action of the group �i . We choose the trivializations Ti;x
of TDi to be equivariant under the rotation action of the isotropy groups, and will
suppose for simplicity that .p; q/D 1, so that the domain U12 of the transition chart
is connected.17 Then, in terms of the coordinates .t; �/ 2A introduced in (II) we have

U12 D f.e1; e2; x/ 2E1 �E2 �A j jT1;�1;12.x/.e1/jC jT2;�2;12.x/.e2/j D 0g;

�1;12.t; �/D .t; q�/; �2;12.t; �/D .t; p�/ 2 AD Œ0; 1��R=Z;

where we denote the image of .e; x/ 2 E1 �D1 in TjxjS2p;q by jT1;x.e/j, and the
equation takes place in the tangent bundle of the orbifold. Because the maps �i;ij are
equivariant by hypothesis, this equation is preserved by the action of �12 on U12 by�

r

p
;
s

q

�
� .e1; e2; .t; �//D

�
r

p
� e1;

s

q
� e2;

�
t; � C

kr

p
C
`s

q

��
; kqC `p D 1:

16The reader should beware that the words “orbifold atlas” or “good atlas” are usually used in orbifold
theory with slightly different meaning, which is why [11] uses the words “strict atlas” to denote a Kuranishi
atlas with trivial obstruction spaces. As explained in [11], a strict atlas K for an orbifold Z defines an
EP groupoid GK whose realization is Z , and hence defines an orbifold structure on Z . Further, by
[11, Proposition 3.3], GK is Morita equivalent to the category constructed from any standard orbifold atlas
for Z . Finally one can obtain a standard orbifold atlas for Z from K by taking a collection of restrictions
of the basic charts in K whose footprints cover Z , with transition maps induced by the morphisms in GK .

17Since all points in U12 have trivial stabilizer, we need �12 to act freely on U12 in such a way
that the projection �j;12 quotients out by the action of �i , which is possible for connected U12 only if
.p; q/D 1 .
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We may calculate the Euler class by using essentially the same perturbation section
as before, since this may be chosen to be equivariant. But now the two zeros of the
section count with weights, 1

p
for the zero in V1 and 1

q
for the zero in V2 .

The corresponding category M has three components that are given by the same
formulas as before. Again, the attaching maps �i;12W �Mi;12!Mi;12�Mi are nontrivial
covering maps. However, in distinction to the case of an atlas, the �i;12 do not quotient
by the induced action of �j on �Mi;ij since they are constructed to be �12 equivariant,
and �12 acts (often effectively) on Mi , via

.
1; 
2/ � .ej ; xi /D .
j � ej ; 
i � xi /:

However, as explained at the end of the proof of Proposition 2.2.2 (see for example
(2.2.20)), they do quotient out by some action of �j on �M12 that extends its free action
on zVi;12 � �Mi;12 . For example, the map �1;12 quotients out by the free action of �q
on �M1;12 �E1 �E2 �

�
"; 1
4

�
�S1 given by


 � .e1; e2; x/ 7! .e1; e2; 
 � x/:

Therefore, in the quotient space M D jM j there are q branches of M12 that come
together over the 3–dimensional branching locus

Br1 WD
˚
j.e1; e2; x/j 2 jM12j � jM jH j x 2

1
4
�S1

	
:

This is consistent with the requirements of Definition 1.3.1 since the component M12

has weight 1
pq

while M1 has weight 1
p

.

The construction of SM W M ! E12 is as before. Moreover, one can identify a
neighborhood of its zero set S2p;q with a neighborhood of the zero section of the tangent
orbibundle to S2p;q . Hence, the Poincaré dual of e.TS2p;q/ is represented by�

1

p
C
1

q

�
Œpt� 2H0.S2p;q/: ˘

(VI) (the quotient space jM j=� for TS2p;q ) The only morphisms in the category M

come from the covering maps �j;12 . Since these are �12–equivariant, we can add the
action �12 �ObjM ! ObjM to the morphisms in M. The resulting quotient space
jM j=�12 has the following structure:

� It is covered by three branches M1 , M2 and M12 with weights 1=p2q , 1=pq2

and 1=p2q2 .

� The two poles Œ.0; 0/� 2Mi=�12 have stabilizer subgroup �12 .
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� The other points with nontrivial stabilizers lie on the two closed discs

f0g � .V i X f0g/=�12 � jMi j=�12; i D 1; 2;

with isotropy subgroups �j for j ¤ i .

� For i D 1; 2 there is branching of order j�j j over the 3–dimensional branching
locus Bri . For example, if �1 D fidg and �2 D Z=2Z, then jM1j=�2 is an
orbifold with a 2–dimensional family of points with nontrivial stabilizer (corre-
sponding to the points f0g�D1�E2�D1 ), while �2 acts freely on M12 and the
�2–equivariant map �1;12W M1;12!M1 quotients out by a different free action
of �2 that lifts the rotation action on A via the projection �M1;12�E12�A!A.
Thus, there is branching of order 2 along the boundary Br1 , which lies over the
circle t D

˚
1
4

	
.

We do not consider this space further, since it plays no role in the definition of the
fundamental class. ˘

2 The main arguments

In this section, we first explain how to construct an auxiliary family of collared manifolds
and then explain in Section 2.2 how to use this family to prove Proposition 2.2.2 and
hence Proposition 1.3.3. Finally, we prove Theorems A and B in Section 2.3.

The key notion is that of the manifold YU;J;" , which lies over the .jJ j�1/–dimensional
simplex �J . Its open submanifold YV;J;" , corresponding to a choice of reduction
V � U , has a partially defined boundary collar that is compatible both with shrinking
of chart domains and with projection to �J . We will define the attaching maps�MIJ !MIJ of the different components of ObjM by thinking of MJ as a subset
of YV;J;" .

Although strictly speaking the construction of the category M only uses the manifolds
YV;J;" , we also consider the manifolds YU;J;" to clarify the exposition. The latter
has elements that are relatively easy to understand (see (2.1.3)) and it has an easily
described boundary, while, as we see from Proposition 2.1.4, the collar is supported on
only a rather complicated part of the boundary of YV;J;" . Further, considering both
YU;J;" and YV;J;" will allow us in Section 3 to introduce the many technical conditions
satisfied by the pair .V; "/ in stages, first some conditions on .U ; "/ needed for YU;J;"
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to have good properties (Definition 3.1.1), and then more conditions needed to construct
a suitable collar on YV;J;" (Definition 3.1.9).

The first main results of this section are Proposition 2.1.1, which describes the structure
of YU;J;" , and Proposition 2.1.4, which describes the properties of the boundary
collars put on the manifolds YV;J;" . Proposition 2.2.2 then explains how to use these
boundary collars to construct the attaching maps �IJ whose existence is claimed in
Proposition 1.3.3. Since the general construction is quite complicated, we describe
it first by example (see Example 2.2.1). Since the proofs of Theorems A and B in
Section 2.3 depend only on the statement of Proposition 1.3.3, this subsection can be
read independently of Sections 2.1 and 2.2.

2.1 The collared manifold Y

Suppose given a tame atlas K with set of chart domains U WD .UI /I2IK . The next
definition uses a choice of constants "D ."I / as in (1.3.2), and the following notation:

� �J WD
˚
t D .ti /i2J j ti � 0; jt j WD

P
i2J ti D 1

	
is the .jJ j�1/–simplex;

� for ∅¤ I ¨ J, we denote by �IJ W �I !�J the natural inclusion with image

@JXI�J WD ft 2�J j tj D 0; j 2 J X I g ��J

(we often omit �IJ if there is no danger of confusion);

� t � e WD
P
i2J tiei , where t 2�J ; e 2EA ;

� � WDmaxfjJ j W J 2 IKg;
� I.x/ WD fj W sj .x/¤ 0g � J for x 2 UJ ; and

� " WD ."I /I2IK is a set of positive constants such that �"I � "J whenever I ¨ J.

Given J 2 IK , consider the set18

(2.1.1) YJ WD YU;J;" D
˚
.e; xI t / 2EA �UJ ��J j sJ .x/D t � e; kek< �"I.x/;

ksi .x/k< "I.x/ for all i 2 J
	
:

Here are some properties of this definition:

� �A acts on YU;J;" by


 � .e; xI t /D .
 � e; 
 � xI t /:

18To begin with, readers should ignore the rather fussy conditions involving the constants " ; in this
connection see (2.1.6) and Corollary 2.1.2 below. Notice that we do need some such constants since
the size of "J determines how thick the pieces MJ will be, and to construct M we need to embed (a
covering of) MIJ into MJ for all I � J .
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� The condition sJ .x/D t � e implies that

(2.1.2) I.x/ WD fj W sj .x/¤ 0g � I.t/ WD fi W ti > 0g:

In particular, if .e; xI t / 2 YU;J;" we must have

(2.1.3) x 2 s�1J .EI.x//D zUI.x/J � zUI.t/J ;

where the equality holds because K is tame (see (1.2.2)). Further, the components
of e in EI.t/ are determined by the pair .x; t/, while those in EAXI.t/ can vary
freely.

� There are three �A–equivariant projections of YU;J;" onto the factors of its
domain:

– prE W YU;J;"!EA , .e; xI t / 7! e . For I �A, we denote by eI the elements
of EI , and denote by prEI the projection to EI .

– The projection prU W .e; xI t / 7! x 2 UJ has contractible fibers that vary
with x 2 UJ .

– The fibers of pr�W YU;J;"!�J , .e; xI t / 7! t , also depend on the image
t 2�J . In particular, if for some I ¨ J we have t 2 int�I WD�I X@�I �
@�J , then, for any .e; xI t / 2 pr�1� .t/, we must have x 2 zUIJ while the
restriction prEAXI .e/ can vary freely.

� For each element of the form .e; xI �IJ .t// 2 YU;J;" there is a corresponding
element .e; �IJ .x/I t / 2 YU;I;" , where �IJ W zUIJ ! UIJ is part of the atlas
coordinate change. Thus, if we define

(2.1.4) @JXIYJ WD pr�1� .@JXIYJ / WD f.e; xI t / 2 YJ j tj D 0; j … I g;

there is a �A–equivariant covering map

(2.1.5) @JXIYJ ! YI \ .EA �UIJ ��I /� YI :

If the isotropy is trivial, we can therefore identify @JXIYJ with an open subset
of YI .

� The relevance of the conditions involving the constants " are explained by the
following remark. For each x 2 UJ such that ksi .x/k< "I.x/ for all i 2 J, and
every H satisfying I.x/�H � J, there is a corresponding element

(2.1.6) .e; xI �HJ .bH // 2 YU;J;";
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where bH is the barycenter of �H . Indeed, if we take e WD .jH jsi .x//i2A ,
then ej D 0 for j … I.x/, by definition of I.x/, while for i 2 I.x/ we have
keik D jH jksi .x/k< �"I.x/ , as required by (2.1.1).

The following result is proved in Corollary 3.1.4.

Proposition 2.1.1 Let U� be a family of chart domains for an atlas on X. Without
loss of generality, we may pass to a shrinking U @ U� and choose constants " > 0 so
that the following holds for all J :

(i) sJ .U J /�EJ;"J .

(ii) The space YJ WDYU;J;" defined in (2.1.1) is a manifold of dimension DCjJ j�1,
where D WD dimEAC d .

(iii) YJ has boundary given by

@YJ WD YJ \ pr�1� .@�J /D
[
I¨J

@JXIYJ

D

[
I¨J

f.e; xI t / 2 YJ W x 2 zUIJ ; t 2 @JXI�J g:

Corollary 2.1.2 If Proposition 2.1.1 holds, then for all I ¨ J there is an embedding
�EU W EAXI;"I �

zUIJ ! YU;J;" given by

�EU W .eAXI ; x/ 7! .eAXI C b
�1
I � sI .x/; xI bI /:

Proof Since sJ .U J /�EJ;"J by (i), this holds by (2.1.6).

Proposition 2.1.1 shows that the boundary of YJ lies over that of �J . It is well known
that the boundary of every topological manifold can be collared. The next step is to
show that we can construct this collar to have a special form, with control over the
components in EAXI near the “corner” pr�1� .@JXI�J /. However, to establish this we
need to pass to a reduction V D .VI /I2IK of the atlas (see (1.2.8)), since this severely
restricts the overlaps �K.VI / \ �K.VJ / in jKj of the different chart domains. We
define

YV;J;" WD YU;J;"\ .EA �VJ ��J /:(2.1.7)

Since YV;J;" is an open subset of YU;J;" , it is a manifold of dimension

d C dimEACjJ j � 1
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with boundary

@YV;J;" D YV;J;"\ @YU;J;" �
[
I¨J

EA � .VJ \ zUIJ /� @JXI�J :

We denote by

(2.1.8) �EV W EAXI;"I � @ zVIJ ! YV;J;"; .eAXI ; x/ 7! .eAXI C b
�1
I � sI .x/; xI bI /:

the restriction of the map �EU in Corollary 2.1.2, and will consider the projections

prV W YV;J;"! VJ ; .e; xI t / 7! x;

prjV jW YV;J;"! jVJ j; .e; xI t / 7! jxj WD �K.x/;

where �K is as in (1.2.7).

There is a corresponding category with objects
F
J2IK YV;J;" and morphisms given

by the covering maps

(2.1.9)
.�YIJ /�W YV;J;"\ .EA �

zVIJ � �IJ .�I //! YV;I;";

.e; xI �IJ .t// 7! .e; �IJ .x/I t /:

This category has realization

Y V WD
[
J2IK

YV;J;"=�;

where .e; xI t /I � .e0; x0I t 0/J for jI j � jJ j if I � J, e0 D e , t 0 D �IJ .t/ and
�IJ .x

0/D x . Notice that the projections to �J induce a map

pr�W Y V !�K D
[
J2IK

�J =�;

where the simplicial complex �K (with boundary identifications induced by the face
inclusions �IJ ) is the topological realization of the poset IK .19 There is also a projection

prjVjW Y V ! jVj@ jKj; Œe; xI t � 7! jxj:

Remarks 2.1.3 (i) The projection prjVj � pr� induces a map

Y V !kVk
0
� jVj ��K;

19The topological realization of a topological category has one k–simplex for each length-k compos-
able string of morphisms, with the “obvious” boundary identifications. Thus, �K has one k–simplex for
each I 2 IK with jI j D kC 1 . Observe that as the associated footprint covering .FI /i2IK of the zero
set X is refined, the space �K gives better and better approximations to the topology of X ; indeed the
Čech cohomology of �K converges to that of X.
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whose image kVk0 is closely related to, but not the same as, the topological realization
kBKj

X�
V k of the category BKj

X�
V in (1.2.9). For example, if x 2 VJ is such that its

image jxj WD �K.x/ in jKj lies outside all the other sets prK.VI / for I ¤ J, then it
gives rise to a single point in kBKj

X�
V k (since the only morphism involving x is the

identity morphism) while it corresponds to a whole simplex x ��J in kVk0.20 The
partial boundary @0YV;J;" � @YV;J;" that we consider below could be understood in
terms of an embedding of kBKj

X�
V k into kVk0. However, we will take a more naive,

geometric point of view.

(ii) We saw in Remark 1.3.8 that in the polyfold setting one can use an sc–smooth
partition of unity to construct a finite-dimensional branched manifold M with section
S W M ! EA that is a global chart for X. One can think of the extra coordinates
t 2 �J (with

P
ti D 1) as a kind of “external” partition of unity that gives a more

indirect way to patch the different coordinate charts together. ˘

The boundary collar We now consider lifts to YV;J;" of the collar on @�J

(2.1.10) c�J W @�J � Œ0; w/!�J ; .t; r/ 7! .1� r jJ j/t C r jJ jbJ ;

where bJ D .1=jJ j; : : : ; 1=jJ j/ is the barycenter of �J and w<1=.4jJ j/; see Figure 5.
Note that any t 2�J with at least one component ti <w is in the image of this collar.
In order to get maximal control over the collar we will not define it on all of @YV;J;"
since much of @YV;J;" is irrelevant to the task at hand. Indeed, we are only interested
in boundary points .e; xI t / with x 2 zVIJ for I ¨ J while, by Proposition 2.1.1, a
general boundary point has

x 2 VJ \ s
�1
J .EI /D VJ \ zUIJ ;

a set that is usually strictly larger than the overlap zVIJ (which is defined in (1.3.3)).
Although the submersion axiom (1.2.3) implies that each zVIJ is a submanifold in VJ
of codimension dim.EJXI /, we will make the following definition of the “boundary”
of VJ :

@VJ WD
[
H¨J

zVHJ ;(2.1.11)

which lies over the “boundary” @jVJ j D
S
H¨J jVHJ j of jVJ j.

20If the isotropy is trivial, there is an embedding kBKj
X�
V k! kVk

0, whose image can be described
using versions of the sets st�

J
.jxj/ in (2.1.13) below.
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We will define the collar

cYJ W @
0YV;J;" � Œ0; wJ /! YV;J;"

over a subset @0YV;J;" of points .e; xI t /2 @YV;J;" such that x 2 @VJ and t is restricted
to lie in the set st�J .jxj/ defined as follows. Recall that for each x 2 VJ the sets H
such that jxj WD�K.x/2�K.VH / (where �KW VJ !jKj is the projection (1.2.7)) form
a chain

I WD Imin.jxj/D I0.jxj/¨ I1.jxj/¨ � � �¨ Im.jxj/D Imax.jxj/DWK:(2.1.12)

If J D In.jxj/ with n�m, we will write

st�J .jxj/ WD conv.bI0 ; bI1 ; : : : ; bIn�1/� @JXIn�1.jxj/�J(2.1.13)

for the convex hull of the barycenters of the simplices corresponding to the elements
of this chain; see Figure 1. Note that st�J .jxj/ lies in the boundary of �J .

b13V23

V123

V12
V2

V1

b1 b2

b3

V12
V1

W

Figure 1: The figure on the left is schematic, showing the sets jVI j rather
than their (disjoint) lifts VI ; the sets V2;12 � V2 and V23;123 � V23 are
hatched, while for x in the shaded set W , we have Imin.jxj/D f1g; I1.jxj/D

f1; 2g; Imax.jxj/Df1; 2; 3g . The top-right illustrates the change in dimension
from V1 to V12 , while the bottom-right shows st�J .jxj/ for x 2 zV1;123 \
zV13;123 .

The domain @0YV;J;"�@YV;J;" of the collar map cYJ contains all the points in the image
of the injections �EV in (2.1.8), as well as the lifts to YV;J;" of all points in im.cYH /
where I ¨H ¨ J. To obtain points with more general t –coordinate we consider the
following rescaling operation: Suppose given t 2�J and a tuple �J D .�j /j2A such
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that �j D 1 if j … J, �j > 0 for all j , and �J � t 2 �J . Then, for any element
.e; xI t / 2 YV;J;" , there is a commutative diagram

(2.1.14)

.e; xI t /
_

prEAXJ �prV
��

� �J � // ..�J /
�1 � e; xI�J � t /_

prEAXJ �prV
��

.eAXJ ; x/
� D

// .eAXJ ; x/

where we assume k.�J /�1 � ek< �"I.x/ , so that the top arrow has target in YV;J;" .

The following result concerns a reduction V plus choice of constants " that are com-
patible in the sense of Definition 3.1.9. In particular this means that property (i) in
Proposition 2.1.1 holds, and that .V; "/ is compatible with a fixed choice of local
product structures as in (1.2.3). The proof is given in Lemma 3.2.1 below.

Proposition 2.1.4 Let .V; "/ be a compatible reduction of an atlas K . Then, for
each J 2 IK , there is an open subset @0YV;J;" � @YV;J;" , a constant wJ > 0 and a
�A–equivariant embedding

cYJ W @
0YV;J;" � Œ0; wJ /! YV;J;"; ..e; xI t /; r/ 7! .e0; x0I c�J .t; r//;(2.1.15)

with the following properties:21

� @0YV;J;"� f.e; xI t / W for some I ¨ J and x0 2 zVIJ ; x� x0 and t 2 st�J .jx
0j/g.

� cYJ is compatible with the projections to EAX� as follows: we have

(2.1.16) �EV .EAXI;"I �
zVIJ /� @

0YV;J;" for all I ¨ J:

Further,

(2.1.17)
cYJ ..e; xI t /; 0/D .e; xI t / for all .e; xI t / 2 @0YV;J;";

prEJXI .e/D 0 D) cYJ ..e; xI t /; r/D .e; xI c
�
J .t; r//;

and

prEAXI ı c
Y
J .�EV .e; x/; r/D prEAXI .e/ for all .e; x/ 2EAXI;"I � zVIJ :(2.1.18)

� The sets @0YV;J;" are compatible with covering maps as follows: if I ¨H ¨ J,
then the relevant part of the image of cYH lifts to the domain @0YV;J;" of cYJ . More
precisely, if .e; xI t / 2 @0YV;J;" has x 2 ��1HJ . zVIH /\ zVHJ

22 and t 2 @HXI�H ,

21The precise definition of @0YV;J;" may be found in (3.2.19) and (3.2.20). By slight abuse of language
we will call @0YV;J;" the domain of cY

J
.

22By (1.3.3), when I ¨H ¨ J any two of the sets zVIJ , zVHJ and ��1
HJ

. zVIH / determine the third.
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then .e; �HJ .x/I t / is in the domain @0YV;H;" of cYH and for all r 2 Œ0; wH /
there is .e0; x0I t 0/ 2 @0YV;J;" with x0 2 zVHJ such that

cYH ..e; xI t /; r/D .e
0; �HJ .x

0/I t 0/ 2 YV;H;":(2.1.19)

Further, the restriction of cYH to YV;H;"\ pr�1V . zVIH \VHJ / has a well defined
lift (also called cYH ) to YV;J;" such that, for all x 2 zVIJ \ zVHJ ,

.prYHJ /�.c
Y
H .e; xI t /; r/D

�
cYH .e; �HJ .x/; t/; r

�
2 YV;H;"; r 2 Œ0; wH /;(2.1.20)

where .prYHJ /� is as in (2.1.9).

� Each @0YV;J;" is invariant under rescaling as follows: if .e; xI t / 2 @0YV;J;" ,
where t 2 st�H .jxj/, then, for all �H as in (2.1.14) such that �H � t 2 st�H .jxj/,
we have

�H � .e; xI t / WD .�
�1
H � e; xI�H � t / 2 @

0YV;J;"

and

(2.1.21) prEAXH�V ı c
Y
J ..e; xI t /; r/

D prEAXH�V ı c
Y
J ..�

�1
H � e; xI�H � t /; r/ 2EAXH �VJ :

� The collar maps cYJ are compatible with shrinkings as follows: if .V 0; "0/@ .V; "/
is another compatible reduction, then there are constants 0 <w0J <wJ such that
the restrictions of the maps cYJ to @0YV 0;J;"0 WD @YV 0;J;"0 \ @0YV;J;" have all the
above properties with respect to the constants w0J.

� If K is oriented then the collar map cYJ is compatible with the natural induced
orientation on its domain and range.

By Lemma 3.1.11, any reduction V 00 has a shrinking V @ V 00 that is compatible with
respect to some choice of constants " and hence supports a collar .cYJ /J2IK as in
Proposition 2.1.4. Further, we show in Corollary 3.2.3 that .V1; "1/ has a further
nested shrinking that is collar compatible in the following sense.

Definition 2.1.5 Let .V1; "1/ be a compatible reduction, with collars .cY;1J /J2IK .
We say that a shrinking .V; "/@ .V1; "1/ is collar compatible if it is compatible as
in Definition 3.1.9 and if for all J 2 IK the collar map cY;1J restricts to a collar .cYJ /J
on .V; "/ whose widths wJ satisfy

p
"I <wJ for all I ¨ J.
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2.2 Construction of the category M and functor S W M ! EA

In (1.3.5), the component MJ of ObjM was defined as

MJ DEAXJ;"J �VJ ;(2.2.1)

which is a manifold of dimension d C dimEA . We take MIJ WDEAXJ;"J �VIJ , and
define the map �IJ W �MIJ !MIJ that attaches MJ to MI to have domain a suitable
open subset �MIJ �MJ and to extend the atlas structural map

�IJ W f0g � zVIJ ! f0g �VIJ �MIJ �MI :

We require that �IJ be a �A–equivariant covering map, induced by a free action of �JXI .
Further, to obtain a category, these maps must be compatible with composition, ie for
I �H � J we need

�HJ ı �IH D �IJ on �MIJ \
�MHJ \ �

�1
HJ .

�MIH /D �MIJ \
�MHJ :(2.2.2)

(Note that by (1.3.3) any two of the sets �MIJ , �MHJ and ��1HJ . �MIH / determine the
third.) For maximal elements J of IK , we then define SJ W MJ!EA as the projection

SJ W MJ !EA; .eAXJ ; x/ 7! .eAXJ ; sJ .x//:

The above should be considered as the default formula for SJ , which holds at points
.eAXJ ; x/ 2 MJ where x is far from any overlap VJK with J ¨ K . However, in
general it must be modified in ways explained in Example 2.2.1 below.

Before giving the general formulas for �J , �IJ and SJ , we discuss an example.
Part (i) shows the role of the collar in constructing �IJ , and also how to achieve the
closed graph condition in (1.3.6), while part (ii) explains the relevance of the collar’s
compatibility with projections and rescaling to the proof of the composition rule (2.2.2).
The usefulness of considering multiple collar compatible shrinkings .Vn; "n/ will also
become apparent. We will use cutoff functions .�IJ W VI ! Œ0; 1�/I¨J of the following
form: if V @ V 0, we have

supp.�IJ /�
[

I¨H�J

V 0IH and
[

I¨H�J

V IH � int.��1IJ .1//:(2.2.3)

Example 2.2.1 (attaching the MJ ) We begin by considering the case when the
isotropy groups are trivial, so that �IJ W �MIJ !MIJ is a homeomorphism. It is then
easiest to define its inverse

˛IJ WD �
�1
IJ W MIJ !

�MIJ ;
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since MIJ �MI is defined to be the product EAXI;ıI �VIJ (where VIJ is as defined
in (1.3.3)) while �MIJ will simply be defined as the image ˛IJ .MIJ /. As in [14], we
use the notation �IJ WD ��1IJ W VIJ ! zVIJ for the inverse of the atlas structural map �IJ .

(i) Consider the case when there are two basic charts with labels 1 and 2. Then M

has three components:23

M1 DE2;ı2 �V1; M2 DE1;ı1 �V2; M12 WD V12;

where we assume .V; ı/ is collar compatible as in Definition 2.1.5. In particular, this
means that for i D 1; 2 we have ıi <w212 , where w12 is the width of the collar cY12 .
We first define the attaching maps ˛1;12 and ˛2;12 , then define the sections SI and
finally prune the sets M12 so as to satisfy the closed graph condition.

We define ˛1;12 as a composite M1;12 WDE2;ı2 �V1;12! YV;12;ı !M12 :

(2.2.4) ˛1;12..e2; x//D prV
�
cY12.�EV .e2; x/; r/

�
(with r WD

p
ke2k/

D prV
�
cY12
�
.s1.x/; e2; �IJ .x/I b1/; r

��
D prV

�
.e01; e2; x

0
I .1� r; r//

�
D x0 2 V12 DM12;

where �EV is the map in (2.1.8), b1 D .1; 0/ is the barycenter of �1 considered as
a point in �2 , we have used formula (2.1.10) for c�12 , and we have used the fact from
(2.1.18) that e2 is unchanged by cY12. We note the following:

� Because .V; ı/ is collar compatible, Definition 2.1.5 implies that the collar width
satisfies w12 >

p
kı2k> r . Hence, the element cY12

�
.s1.x/; e2; �IJ .x/I b1/; r

�
is well defined for all .e2; x/ 2M1;12 .

� Because the collar variable r WD
p
ke2k vanishes for the points .0; x/ 2M1;12 ,

the map ˛1;12 extends the inclusion �IJ W VIJ ! zVIJ by (2.1.17), as is required
by Proposition 1.3.3(i). Further, for small enough ıi the closures of the images
of ˛1;12 and the similarly defined map ˛2;12 are disjoint.

� Because the points .e; xI t / 2 YV;J;" satisfy sJ .x/ D t � eJ and we chose
r D

p
ke2k, we have

r ke2k D .ke2k/
3=2
D ks2.x

0/k;

so that r D ks2.x0/k1=3 is determined by x0.

23Here we simplify notation by writing M12 WD Mf1;2g , M1;12 WD Mf1gf1;2g and so on. For an
example of this construction, see Section 1.4.
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� To see that ˛1;12 is injective, notice that because cYJ is injective it suffices to
check that the other elements, e01, e2 and r , that appear in the tuple

.e01; e2; x
0
I .1� r; r// 2 YV;12;"

are determined by x0 2 V2 . But we saw above that r D ks2.x0/k1=3 , so that the
equations s1.x/D .1� t /e01 and s2.x/D te2 determine e01 and e2 .

We now define S12 WD s12W M2 D V2 ! E12 , and define Si on ˛�1i;12. �Mi;12/ by
pullback; thus, on this set,

Si .ej ; x/D
�
kej k

1=2ej ; si .˛i;12.ej ; x//
�
; i ¤ j;

has the form claimed in (1.3.7). We then extend Si to the rest of Mi by patching it
to the default map .ej ; x/ 7! .ej si .x// 2Ej �Ei DE12 via the cutoff �i in (2.2.3):

(2.2.5) Si .ej ; x/D

�i;12.x/
�
kej k

1=2ej ; si .˛i;12.ej ; x//
�
C .1��i;12.x//.ej ; si .x// 2E12:

For this to be well defined, we need ˛i;12 to extend to a neighborhood of Mi;12 in Mi .
But we can always assume that V is a shrinking of some other reduction V 0. Then,
because the collar extends over V 0, we may extend ˛i;12 over the corresponding set
M 0i;12 by using the above formula (2.2.4). It is then clear that S �1i .0/D f0g� s�1i .0/.

It remains to arrange that ˛i;12 has closed graph. Note that its restriction to f0g�Vi;12
does have closed graph because V is a reduction of a good atlas K , which among other
things implies that the realization jVj � jKj is Hausdorff; see the discussion around
(1.2.7)–(1.2.8). Denote by

Fr.Mi;12/ WD cl.Mi;12/XMi;12(2.2.6)

the frontier of Mi;12 in Mi , where, as usual, cl denotes the closure. As above, we may
assume that ˛i;12 extends to a homeomorphism ˛i;12W cl.Mi;12/! V 012 , which evi-
dently has a closed graph. Hence, it suffices to arrange that V12\˛i;12.Fr.Mi;12//D∅.
But

V12\ cl
�
˛i;12.Fr.Mi;12//

�
� cl. zVi;12/X zVi;12

is a closed subset of V12 that is disjoint both from cl. zVj;12/ (by the separation property
of the sets zV1;12 and zV2;12 ) and from the zero set s�112 .0/ (because jVj is Hausdorff).
Hence, as in Figure 2, if this set is nonempty, we can simply remove it from V12 , ie
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M1 D V1 �E2;�

V1

˛i;12.Fr.Mi;12//
Fr.Mi;12/ Mi;12 V12

Figure 2: Removing points from V12 so that ˛i;12 has closed graph. Since
V12 is open, the point where the two heavy lines cross is not in V12 . The set�Mi;12 Š zVi;12 �Ei;"i � V12 is hatched.

we replace V12 by

V12 X
[
iD1;2

cl
�
˛i;12.Fr.Mi;12//

�
:(2.2.7)

(ii) Now suppose that the atlas K has three basic charts with labels 1, 2 and 3,
so that the sets VI in the reduction V intersect as in Figure 1. We assume that the
isotropy is trivial and all Ei ¤ 0, and again explain how to choose the constants ıi ,
and define the attaching maps ˛IJ and sections SI that involve the vertex 1, namely
those with labels 1, 12, 13 and 123. It is now convenient to assume that we have four
nested collar compatible shrinkings .V1; "1/ @ .V2; "2/ @ .V3; "3/ @ .V4; "4/ of V 0.
Correspondingly, for I � f1; 2; 3g and k � `� 4 we define

M k
I WDEI;"k

i
�V kI ; M

k;`
IH DEI;"k

i
�V

k;`
IH �M

k
I ;

where
V
k;`
IH D V

k
I \V

`
IH D V

k
I \�

�1
K .�K.V

`
H //:

We aim to define a category with basic domains of the form M
jI j
I and compatible

morphisms ˛IH W M
jI j;jH j
IH !M

jH j
H . However, to make these continuous and to define

the corresponding maps SI we have to define transition functions on larger sets such
as M jI jC1;jH jIH . As in (i), we will first define suitable maps ˛IH and sections SI , and
then will prune domains to achieve the closed graph condition.

If jI j D 1 and jH j D 2, we define ˛IH W M
1;2
IH !M 2

H as in (i) above. These methods
also easily adapt to define the maps ˛IH for jI j D 2 and SI W MI !EA for jI j � 2.
Indeed, if J WD f1; 2; 3g then

˛1i;J W M
2;3
1i;J !M 3

J
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can be defined much as in (2.2.4). The only new point is that because �1i is a 1–
simplex, we have to decide how to lift V1i;J to @YV;J;" in order to use the collar. For
now, we use the default choice given by the embedding �EV in (2.1.8), ie we embed
it over the barycenter b1i of �1i , which we identify with the corresponding point
�1i;J .b1i / in �J . Thus, for i ¤ j , i; j 2 f2; 3g, we define

(2.2.8) ˛1i;J W M
2;3
1i;J !M 3

J ; .ej ; x/ 7! x0;

as follows: with .ej ; x/ 2E3;"2
i
�V

2;3
1i and r D

p
kej k,

.ej ; x/ 7! cYJ
�
.�EV .e; x//; r

�
DW .e01i ; ej ; x

0
I c�J .b1i ; r// 2 YV3J;"3

7! x0 2M 3
J .

Since r depends on e3 and hence on s3.x0/ as above, it follows as before that ˛1i;J
is injective. Notice also that if x 2 V 2;`1i;J the point �1i;J .x/ would lie in zV `1i;J as
would its image x0 under the collar map since the collar maps preserve the shrinkings
by Proposition 2.1.4. Taking `D 4 here, we may therefore define S12 by pullback
from SJ on M 2;3

12;J , tapering it off to the product s12 � prEj outside the larger set
Ej;"1i �V

2;4
1i;J by using the cutoff functions ˇ1i;J as in (2.2.5).

The main new task is to define

˛1;J W M
1;3
1;J !M 3

J so that ˛1;J WD ˛1i;J ı˛1;1i in M 1;3
1;J \M

1;2
1;1i :

If x 2 V 1;31;J X
S
iD2;3 V

1:3
1;1i (ie x is “far” from V

1;2
1;1i ) then we may define

˛1;J .e23; x/D prE3�V
�
cYJ
�
.s1.x/; e23; �1;J .x/; b1/; r

��
; r D

p
ke23k;(2.2.9)

as in (2.2.4). Hence, the lift of ˛1;J .e23; x/ to YV3;J;"3 lies over the ray

c�J .b1 � Œ0; w0�/��J :

On the other hand, the composite ˛1i;J ı˛1;1i first uses the collar cY1i for b1 in �1i
and then the collar cYJ of b1i in �J , and hence its natural lift to YV3;J;"3 is rather
different. We interpolate between these two maps as follows, where we take i D 2
for clarity, and use cutoff functions ˇ1;12 as in (2.2.3), with support in V 1;31;12 and
that equal 1 near the closed set V 1;21;12 @ V

1;3
1;12 . Thus, with x 2 V 1;31;12 \ V

1;3
1;J and
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e23 D .e2; e3/ 2E23, we write

r WD ˇ1;12.x/
p
ke2k and

�
r 0 WDmax

�
.1�ˇ1;12.x//

p
ke2k;

p
ke3k

��
and define

(2.2.10) .e23; x/ 7! cY12
�
.s1.x/; e23; �1;12.x/I b1/; r

�
DW .e01; e23; x

0
I 1� r; r/ 2 YV3;12;"3

7! cYJ
�
.e01; e23; �12;J .x

0/I 1� r; r/; r 0
�

DW .e001 ; e23; x
00
I t 00/ 2 YV3;J;"3

7! x00 DW ˛1;J ..e23; x// 2M
3
J D V

3
J :

Note the following:

� Here (as in (2.1.20)), we consider cY12 to be the lift to @0YV;J;" of the collar for
@0YV;12;" , and the composite cYJ ı c

Y
12 is defined by (2.1.19).

� The above map .e23; x/ 7! x00 is continuous, and equals that given in (2.2.9)
when ˇ1;12.x/D 0 because ke23k Dmaxfkeik W i D 2; 3g by definition.

� If x 2 V 1;31;J \V
1;2
1;12 � V

1;3
1;J \ .ˇ

�1
1;12.1//, then

˛1;12.e23; x/D ˛12;J ı˛1;12.e23; x/:

Indeed, the invariance of the collar under rescaling in (2.1.21) shows that applying
the second collar map at .1� r; r/ with r 0 D

p
ke3k and then projecting to M 3

J

gives the same result as rescaling, then applying the second collar at b12 with the
same r 0, and then projecting to M 3

J . Note that by (2.1.18) this last claim holds
even if e3 D 0, so that the second collar map has r 0 D 0 when ˇ1;12.x/D 1.

� It remains to check that this map .e23; x/ 7! x00 is injective. Since the first two
maps in (2.2.9) are injective, it suffices to check that the projection

.e001 ; e23; x
00
I t 00/ 7! x00

is injective. But both collar maps preserve e2 and e3 by the extended corner con-
trol in (2.1.18). Hence, for iD2; 3 we know keik and therefore t 00i from si .x

00/D

t 00i ei . Since
P
i t
00
i D 1, we therefore know t 00 and hence also e00 D .e001 ; e23/.

As before, we define S1 by pullback via ˛1;� over E23;"1 �
S
f1g¨J V1;J , extending

to the rest of M1 via a cutoff function ˇ1;J . However, to do this we need the pullback
of S1 to be compatibly defined on a set that is larger than that on which we ultimately
want S1 to equal the pullback. But we can arrange that the identity ˛1;J D˛12;J ı˛1;12
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actually holds on a neighborhood of the closure of V 1;21;12 \ V
1;3
1;J , since in (2.2.10)

ˇ1;12 D 1 on a neighborhood of V 1;31;J , and we can always extend the domain of ˛1;12
to V 1;31;2 . Therefore, we can imitate the formula in (2.2.5).

It remains to prune the domains MJ so as to achieve the closed graph condition for all
maps ˛IJ . We will do this by downwards recursion on I. Thus, first taking jI j D 2,
we remove points from M123 so that the maps ˛I;123 have closed graph, and then
with I D fig remove points from all MJ with jJ j � 2 so that the maps ˛i;J have
closed graph. At each stage we use the analog of formula (2.2.7), removing from VJ

all points in clVJ .˛IJ .Fr.MIJ /// where Fr.MIJ / is the frontier of MIJ DM
jI j;jJ j
IJ in

MI WDM
jI j;jI j
I . Since Fr.MIJ /�M

jI j;jJ jC1
IJ , the points removed lie in the image of the

extension of the collar over YJ;V jJ jC1;" but not in the image of the collar over YJ;V jJ j;" .
Hence, because the ˛IJ are defined in terms of the collar map, these points do not lie in
im˛HJ for any H ¨ I ¨ J. Thus, the different steps do not interfere with each other.

(iii) If the isotropy is nontrivial, then we can still adopt the above approach, but now
must interpret ˛IJ as a local �x –invariant inverse to �IJ and then define �MIJ to be
the �A–orbit of its image. Further, we must make equivariant constructions, but this is
possible since the collar is equivariant, so that all the above formulas are appropriately
equivariant. In particular, the sets that must be removed in order to achieve the closed
graph condition for the local inverse ˛IJ are �x –invariant, so that we can arrange that
�IJ has closed graph by removing its �A orbit. ˘

The next result is essentially a restatement of Proposition 1.3.3, though it gives a little
more information on the nature of the map �IJ . Since the proof is rather complex, we
describe the strategy here. As in Example 2.2.1, we define the maps ˛IJ by downwards
recursion on the cardinality jI j of the index set I, shrinking domains at each step. In
order to extend the interpolation formula for ˛IJ D ��1IJ given in (2.2.10) to a chain of
inclusions I0 ¨ I1 ¨ � � �¨ Ik of length k > 1, we apply an iterated sequence of collar
maps over a family of paths P.e; x/ in the simplex �J as described in Step 2 below.
We then define the attaching maps �IJ and SI , and check that they have the needed
properties.

Proposition 2.2.2 Suppose given a good atlas K on X. Then there is a reduction V
and set of constants ı D .ıI /I2IK > 0 such that the following properties hold with
MI WDEAXI;ıI �VI and MIJ WDEAXI;ıI �VIJ :
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(i) For each I � J there are open sets �MIJ �MJ and �A–equivariant maps

�IJ W �MIJ !MIJ

that restrict to �IJ on f0g � zVIJ and are such that:

� �MIJ is a product EAXJ;ıI � �M 0
IJ , where zVIJ � �M 0

IJ � VJ , and cl. �M 0
IJ /

and cl. �M 0
HJ / are disjoint unless I and H are nested.

� �IJ D idE � �0IJ where �0IJ W �M 0
IJ ! EJXI;ıI � VIJ has the following

properties:

– �0IJ .x/D .0; �IJ .x// for x 2 zVIJ ,

– �0IJ has closed graph, and

– �0IJ quotients out by a free action of �JXI that extends to a free action
on a neighborhood of cl. �M 0

IJ / in VJ .

(ii) For I ¨ J ¨K we have

�JK. �MIK \
�MJK/D �MIJ \MJK and �IK D �IJ ı �JK :(2.2.11)

(iii) For each J there is SJ W MJ !EA such that, for all J �K , we have

(2.2.12) SJ ı �JK DSK j �MJK ; S �1J .EJ /� f0g �VJ ; SJ .0; x/D .0; sJ .x//:

(iv) If the initial atlas K is oriented, then so is the category M defined by the above
data as in (1.3.5).

Corollary 2.2.3 Proposition 1.3.3 holds.

Proof If the category M is defined as in (1.3.5) using the above data, MI , �MIJ

and �IJ , then all the properties of Proposition 1.3.3 hold.

Proof of Proposition 2.2.2 We proceed in five steps:

Step 1 (the set-up and basic strategy of proof) Fix a shrinking G0D .G0I /I2IK of the
footprint cover. By Corollary 3.2.3 we may choose a family of nested collar compatible
shrinkings as above,

 �1.G0/@ .V1; "1/@ � � �@ .V�C1; "�C1/@ .V1; "1/@ U1;
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with collar widths that increase with m. The projection �KW U
1
I ! jKj quotients out

by �I and its restrictions to the Vm have the property that

�K.V
k
I /\�K.V

`
J /¤∅ () I � J or J � I:

For m � ` we let V m;`IJ WD V mI \ �
�1
K .�K.V

`
J //, and for m � jI j and m � ` � jJ j

define

Mm
I WDEAXI;"mI �V

m
I ; M

m;`
IJ DEAXI;"mI �V

m;`
IJ :(2.2.13)

For each I ¨ J and m� jI j we will define SJ W M
jJ j
J !EA , a subset �Mm;`

IJ �M
`
J

and a �A–equivariant covering map

�
m;`
IJ W

�Mm;`
IJ !M

m;`
IJ

with the following properties:

(a) �
m;`
IJ has product form and closed graph as in (i), and quotients out by a free

action of �JXI on . �Mm;`
IJ /0 .

(b) For all m�m0� jI j and `� `0� jJ j, �Mm;`
IJ �

�Mm0;`0

IJ and �m
0;`0

IJ j �Mm;`
IJ

D �
m;`
IJ .

(c) If I ¨ H ¨ J then �
jI j;jJ j
IJ D �

jH j;jJ j
HJ ı �

jI j;jH j
IH on their common domain;

moreover, this domain maps onto

EAXI;"I � .V
jI j;jJ j
IJ \ �IJ .V

jH j;jJ j
HJ //�M

jI j
I :

(d) If I ¨ J then SI ı �IJ DSJ on �M jI j;jJ jIJ .

(e) S �1J .0/D f0g � s�1J .0/�M
jJ j
J .

In the end we will take

MI WDM
jI j
I ; MIJ WDM

jI j;jJ j
IJ

with the corresponding sets �M jI j;jJ jIJ , and the restrictions of the maps �IJ and SI . In
particular, ıI D "

jI j
I .

For simplicity, we first assume that the isotropy groups are trivial. As in Example 2.2.1
(see in particular (2.2.10)) for I ¨ J we will define a family of injective maps

˛IJ W M
jI jC1;jJ jC1
IJ \f.e; x/ j keJXIk< "

jI j
I g !M

jJ jC1
J ; �� 1
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(where eJXI WD prEJXI .e/), with well-defined restrictions

˛IJ WD ˛IJ jMm;k
IJ

W M
m;k
IJ !M k

J ; m� jI jC 1; k � jJ jC 1; m� k;(2.2.14)

such that

˛IJ D ˛HJ ı˛IH on M jI j;jJ jIJ \˛�1IH .M
jH j;jJ j
HJ / for all I ¨H ¨ J:(2.2.15)

Then we define �Mm;`
IJ D ˛IJ .M

m;`
IJ /; �IJ D ˛

�1
IJ :

With this, conditions (b)–(c) will hold and �IJ D ˛�1IJ has the required product form.
We will arrange the rest of (a) later.

b1234
b3

b2
pkC2

pkC3

pk D b1

b4

pkC1

b123

Figure 3: The path P.e; x/ with Ik D f1g; : : : ; IkC3 D f1; 2; 3; 4g

Step 2 (definition of ˛IJ via the paths P.e; x/) To define ˛IJ .e; x/ we consider
the chain of length mDm.jxj/ formed by the sets H such that jxj 2 jVH jjH jC1 ,

Imin.jxj/D I0.jxj/¨ I1.jxj/¨ � � �¨ Im.jxj/D Imax.jxj/;(2.2.16)

modifying the definition of st�J .jxj/ from (2.1.13) accordingly. Extending the pro-
cedure in (2.2.10), if I D Ik.jxj/ we define ˛IJ .e; x/ by applying collar maps in
YV�C1;Im;"�C1 a total of m� k times with initial points pn�1 2 pr�1� .�In/ and collar
lengths rn for nD kC 1; : : : ; mDm.jxj/. In fact, it is useful to think of applying the
iterated collar map that lies over the path P.e; x/ in st�J .jxj/ with the vertices

pk D bIk ; pn D .1� rn/pIn�1 C rnbIn D c
�
In
.pn�1; rn/; k < n�m.jxj/

(see Figure 3), where the rn are as described below. Note that by the collar compatibility
with covering maps in (2.1.20) it makes no difference whether at the nth step we apply
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the collar map over the segment Œpn�1; pn� in YV;In;" (where V WD V� ) and then
lift to the next level YV;InC1;" , or whether we first lift all the way to YV;Im;" (where
Im D Imax ), and then apply the collar maps. We take the second approach, first lifting
the initial point .eAXIk ; x/ to

.eAXIk C b
�1
Ik
� sIk .x/; �IkIm.x/I bIk / 2 @ImXIkYV;Im;"�C1 \ @

0
ImXI0

YV;Im;"�C1

and then applying successive collar maps that remain in the boundary @0YV;Im;"�C1
until the very last step. Note that by the collar compatibility with shrinkings we can
work in V WD V� rather than in the different V i .

To complete this definition of ˛IJ .eAXI ; x/ it remains to define the lengths rnD rn.x/
for kC 1� n�m. To achieve consistency with coordinate changes, for each I 2 IK ,
we choose a cutoff function �I W jKj ! Œ0; 1� such that

supp.�I /� �K.V
jI jC1
I /; ��1I .1/� �K.V

jI j
I /;(2.2.17)

and for each J denote its pullback to the set V jJ jC1J by the same letter. Then, writing
an WD

p
keInXIn�1k and �i WD �Ii , we define

rmC1.x/ WD �mC1.x/amC1;

rmC2.x/ WD �mC2.x/max
�
.1��mC1.x//amC1; amC2

�
;

:::

rn.x/ WD �n.x/
�

max
m<j�n

�jaj
�
;

�j WD

n�1Y
iDj

.1��i .x//; j < n;

�n WD 1:

To check that ˛IJ .eAXI ; x/ is well defined we note the following:

� The path P.e; x/ depends both on the position of jxj with respect to the sets
jVH j

jH jC1 in the chain (2.2.16), and on the relative sizes ak of the relevant
components of e ; see equations (2.2.10).

� In order for the collar maps to be defined over P.e; x/, we must have rn.x/<wIn
for all n. But

rn � max
m<j�n

q
keInXIn�1k<

p
keAXIk<

p
"Im <wIn

for all m> n because .V; "/ is collar compatible; see Definition 2.1.5.
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� Further, at each stage we need the image of the iterated collar map to lie in the
domain of the next collar map It follows from (2.1.16) that the initial point

.eAXIk C b
�1
Ik
� sIk .x/; �IkIm.x/I bIk /

of P.e; x/ does lie in @0YV;J;" . One then uses the fact that these domains
@0YV;J;" are compatible with covering maps, as explained in (2.1.19)–(2.1.20).

� To see that the path P.e; x/ varies continuously with x , it suffices to check con-
tinuity for a sequence of points x�!x1 for which just one of the functions � —
say �s — changes from a positive value to zero. But in this case (assuming
that e is fixed) the functions ri .x/ are continuous for i < s , while for i � s we
have

a�i D a
1
i ; i ¤ s; sC 1; a1s Dmax.a�s ; a

�
sC1/;

lim
�
ri .x

�/D ri .x
1/; i < s; lim

�
rs.x

�/D 0;

lim
�
ri .x

�/D ri�1.x
1/; i > s:

� If x 2 V jI jC1;jH jIH for H D Is with m< s < n , then �s.x/D 1. In this case, we
can divide P.e; x/ into two independent segments at the point ps , because the
lengths rn.x/ for n> s no longer depend on ai for i � s since �i D 0 for i � s .
Further, the second part of P.e; x/ projects to the path P.�IH .x// under the
natural projection

.conv.bI0 ; : : : ; bImax.jxj///X .conv.bI0 ; : : : ; bIs //! conv.bIs ; : : : ; bImax/:

Step 3 (definition of the maps ˛IJ and sections SI in the case of trivial isotropy)
With these formulas in hand, we now define the maps ˛IJ and sections SI by down-
wards recursion on jI j. For jJ j D � WDmaxfjJ j W J 2 IKg, we define

SJ WDS 0J ;

where
S 0J W MJ !EA; .eA�J ; x/ 7! .eAXJ ; sJ .x//:

If jI j D �� 1, for x 2 V jI jC1;jJ jIJ the path P.jxj/ has one segment of length �Iak WD
�I
p
keJXIk, and we define ˛IJ W M

jI j;jJ j
IJ ! M

jJ j
J by applying the collar map as

in (2.2.8). For these values of x we have �I .x/D 1. However, the fact that we have
defined ˛IJ over the larger set V jI jC1;jJ jIJ means that the function

SI WD
Y

J WI¨J

.1��J /S
0
I C

X
J WI¨J

�J˛
�
IJ .SJ /W V

jI j
I !EI(2.2.18)

is well defined and is compatible under pullback from VJ .
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Let us now suppose that maps ˛IJ W V
jI jC1;jJ jC1
IJ !V

jJ jC1
J , and functions SI W V

jI j
I !

EA have been defined for all I ¨ J with jI j> k so as to satisfy conditions (2.2.14)–
(2.2.15), and consider I with jI j D k . Because there are no transition functions ˛II 0
between these sets VI , we can work separately with each such I. Then define ˛IJ .x/
for x 2 V jI jC1;jJ jC1IJ by applying the collar maps cYHJ as described in Step 2 over the
part, called PIJ .x/ below, of the path P.e; x/ from pk D bI (where I D Ik.jxj/)
to pq , where J D Iq.jxj/.

We check the properties of ˛IJ as follows.

� The map ˛IJ depends continuously on x because we saw above that the path
P.e; x/ depends continuously on x , and because by (2.1.18) the collar map
along a path segment of length 0 is the identity.

� Both �MIJ and ˛IJ have the product form required by (a) because the collar
map cYJ does not change the components of eAXI that lie in EAXJ ; see (2.1.18).

� We repeatedly use the fact that the collar is compatible with all the shrinkings to
show that (b) holds.

� To prove the composition formula (c), we use the fact proved above that when
x 2M

jI jC1;jH j
IH , the path PIJ .x/ divides into two independent segments, the

first of which is simply PIH .x/, while the second projects onto PHJ .�IJ .x//.
Now use the invariance of the collar map under rescaling (2.1.21).

� To see that ˛IJ is injective, notice first that the path PIJ .x/ is determined by x .
Hence, the collar maps applied to the lift .e0; �IJ .x/I bI / of .e; x/ 2MII to
Y D YV;J;" give a point in Y that lies over a point tx 2�J , which is determined
by P.e; x/ because the collar cYJ lifts c�J by (2.1.15). But the collar maps are
injective, as is the projection YV;J;"\ pr�1� .tx/ to MJ .

Finally, we define SI as in (2.2.18). This clearly has the properties required in (iii).

Step 4 (completion of the proof in the case of trivial isotropy) The first claims in (i),
namely that �0IJ extends �IJ and that �MIJ is a product of the form EAXJ;ıI �

�M 0
IJ , are

clear. To establish the separation claim, namely that cl. �M 0
IJ /\cl. �M 0

HJ /D∅ unless I
and H are nested, notice that the intersections of cl. �M 0

IJ / and cl. �M 0
HJ / with f0g�VJ

certainly have this property by definition of a reduction. Hence, starting with maximal
jI j as usual, we may, if necessary, shrink the constants ıI so that this property holds.
Further, (iv) holds, because if K is oriented, then so are all the manifolds YU;J;" and
MI . Since the structural maps in K preserve orientation by definition, and the collar
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maps cYJ preserve orientation by Proposition 2.1.4, so do the maps �IJ constructed
above.

It remains to arrange that the maps ˛IJ have closed graph. We do this by the method
described in Example 2.2.1. Given I ¨ J, recall that MIJ WDM

jI j;jJ j
IJ �M

jI j;jJ jC1
IJ

and define Fr.MIJ / WD cl.MIJ /XMIJ , where we take the closure in M jI j;jJ jC1IJ . Then
the maps ˛IJ extend to give a compatible family of embeddings defined over cl.MIJ /.
The images ˛IJ .cl.MIJ // and ˛HJ .cl.MHJ // are disjoint unless I and H are nested.
Moreover, if H and I are nested, the intersection ˛IJ .MIJ /\˛HJ .Fr.MHJ // is empty
because ˛IJ .MIJ /�MJ DM

jJ j
J while ˛HJ .Fr.MHJ //�Fr.MJ /�M

jJ jC1
J XM

jJ j
J .

Hence, if we define

M 0J WDMJ X

[
I¨J

cl.˛IJ .Fr.MIJ ///;(2.2.19)

the maps ˛IJ for I ¨ J have image in M 0J and closed graph. Moreover, if we have
already arranged that all the maps ˛JK W MJK !MK for J ¨K have closed graph
and satisfy the compatibility conditions (2.2.15) for all I � J �K , then if we replace
the domain MJK by M 0J \MJK , the maps ˛JK W M 0JK !MK will still have these
properties. Hence, we may arrange that all the maps ˛IJ have closed graph by applying
these two steps for each J, starting with J such that jJ j is maximal and then working
down.

This completes the proof if the isotropy groups are trivial.

Step 5 (the case of nontrivial isotropy) To construct the maps �IJ in general, we
argue as above, taking �IJ .x/ to be the local inverse to the covering map �IJ at x2 zVIJ ,
and then defining �IJ to be the �A–equivariant extension of ˛�1IJ to a neighborhood
of the orbit of .0; x/ in �MIJ . To see that this definition is consistent and independent
of the choice of x 2 ��1IJ .�IJ .x0/, note that the collar map is equivariant and, once
the shrinkings .Vk; "k/ are chosen, the only other choice in the above construction
is that of the cutoff functions �I in (2.2.17), whose pullbacks to the sets VI are also
equivariant. Hence, the local inverse �IJ .x0/ is invariant under the stabilizer group �x ,
and so the extension is well defined.

Since all the previous arguments apply without essential change, it remains to check
that �0IJ quotients out by a free action of �JXI on �M 0

IJ that extends to a neighborhood
of cl. �M 0

IJ /. To establish this, we must define an appropriate action of �JXI on �M 0
IJ .

If �JXI acts trivially on EJXI , then this action is simply the restriction of the given
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action of �JXI on VJ . However, in general this is not the case, and the new action

�JXI � �M 0
IJ !

�M 0
IJ ; .
; x/ 7! 
 � x;

is described as follows. Notice first that because the collar cYJ is �A–equivariant and
injective, each point x0 2 zVIJ � �M 0

IJ with �0IJ .x0/D .0; x
0
0/ 2EJXI;ıI �VIJ has a

neighborhood N .x0/ on which �0IJ is injective and has image N 0 of product form,
namely N 0DEJXI;ıI �O

0 �EJXI;ıI �VIJ . Further, �JXI acts on N 0 via its action
on EJXI;ıI , since it fixes the points of VIJ � VI . If ��1IJ;x0 W N

0!N .x0/ is the local
inverse to �IJ at x0 , we now define


 � x WD 
 �J �
�1
IJ;x0

.
�1 �I �IJ .x//; x 2N .x0/;(2.2.20)

where for clarity we have written x 7! 
 �I x (resp. x 7! 
 �J x ) for the standard action
of 
 2 �JXI on EJXI;ıI �VIJ �EJXI;ıI �VI (resp. on �M 0

IJ � VJ ). Then

�IJ .
 � x/D �IJ
�

 �J �

�1
IJ;x0

.
�1 �I �IJ .x//
�

D 
 �I
�
�IJ ı �

�1
IJ;x0

.
�1 �I �IJ .x//
�
D �IJ .x/;

where the second equality uses the equivariance of �IJ with respect to the actions �J
and �I . Now extend this action over the whole orbit by setting ı � .
 � x/ WD .ı
/� x .
This new action x 7! 
 � x is free, since �JXI acts freely on zVIJ . Further, this action
extends to a free action on a neighborhood of the closure of �M 0

IJ since it is determined
by �IJ , and hence by the collar, both of which can be extended.

Lemma 2.2.4 The action x 7! 
 � x of �JXI on �MIJ has the following properties:

(i) If H; I � J, then the action of �JXI on �MIJ preserves the subset �MIJ \
�MHJ .

(ii) If H � I � J then the restriction to �MIJ \
�MHJ of the action of �JXI on�MIJ agrees with that obtained by considering �JXI as a subgroup of �JXH

and restricting the corresponding action from �MHJ to �MIJ \
�MHJ .

(iii) If H � I � J and y 2 �MIJ \
�MHJ , then

�IJ .
JXH �y/D .
JXH jIXH /� �IJ .y/;

where 
JXH jIXH is the image of 
JXH under the projection �JXH ! �IXH .

(iv) Properties (i) and (ii) continue to hold for the extension of the action to the
closure cl. �MIJ / of �MIJ in MJ .

Algebraic & Geometric Topology, Volume 19 (2019)



Constructing the virtual fundamental class of a Kuranishi atlas 201

Proof (i) follows from (2.2.20) because the action x 7! 
 �J x preserves the sets�MHJ for all H � J. (ii) also follows immediately from (2.2.20) and the fact that
�HJ D �HI ı �IJ on �MIJ \

�MHJ . (iii) holds because the maps �IJ are equivariant
with respect to the projection �J ! �I and take �MIJ \

�MHJ to MIJ \
�MHI by

(2.2.11). Finally, (iv) holds because the extended action is defined by extending the
domain of the maps in (2.2.20).

Remark 2.2.5 (the smooth case) Note first that if we apply the above construction
to a smooth atlas (ie one that satisfies the smooth submersions condition in (1.2.4)),
then the charts used in (3.1.4) to give YV;J;" the structure of a topological manifold do
not have differentiable inverses. A related problem may also be seen in Example 2.2.1:
the attaching map ˛1;12 in (2.2.4) is given by the collar, which by (3.2.3) has the form
.e2; x/ 7! x0 WD �.ke2k

1=2e2; x/, where � is the local product structure along zVIJ
in (1.2.3). Thus, even if � were a diffeomorphism, ˛1;12 would not have a smooth
inverse along the submanifold e2 D 0. Thus, just as in standard blow-up constructions,
in order to obtain a smooth category M from a smooth atlas one needs to choose a
smoothing of YV;J;" along its boundary.

Alternatively, one could use a different construction that avoids introducing the mani-
fold Y . Instead, one can construct the all-important collar structure used to define the
maps �IJ by using the exponential map with respect to a suitable family of metrics
on the sets VJ . Indeed, recall that by the smooth tangent bundle condition (1.2.4) the
derivative dsJXI induces an isomorphism from the normal bundle T?. zVIJ / of zVIJ
in VJ to the product EJXI;"I � zVIJ . To explain the idea, let us suppose for simplicity
that the cover V is refined so that the group �JXI acts freely on the components on zVIJ ,
so that the restriction of �IJ to each component is a diffeomorphism onto VIJ . Then
we can think of VIJ as a subset of zVIJ and the task is to define a consistent family of
injections ˛IJ W EJXI;"I � VIJ ! VJ . To this end, choose a family of �I –invariant
Riemannian metrics gI on VI and constants "I that are compatible in the following
sense:

� For each I ¨ J, zVIJ is a totally geodesic submanifold of .VJ ; gJ / and

.�IJ /�.gJ j zVIJ
/D gI jVIJ :

� 0 < "I < "J if I ¨ J .

� For each I ¨ J, the gJ –exponential map along directions perpendicular to zVIJ
defines an embedding ˛IJ W EJXI;"I �VIJ ! VJ .
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� The corners are locally flat, ie if x 2 zVIJ \ zVHJ for I ¨H ¨ J then

˛IJ .eJXH C eHXI ; x/D ˛HJ .eJXH ; ˛IH .eHXI ; x//:

The last condition means that the composition rule holds directly, without having
to introduce analogs of the paths P.e; x/. Of course, the choice of the gI and "I
requires some attention to detail as in the proof of Lemma 3.1.11 below; see also
the construction of the perturbation section in [14, Section 7.3]. Thus, one begins
with a family of shrinkings V� @ � � � @ V1 @ V0 of an initial reduction V0 , where
� WD maxfjJ j j J 2 IKg, and then chooses metrics gJ on V jJ jJ , starting with J of
length jJ j D 1, that satisfy the above conditions for the submanifolds zV jJ jIJ of V jJ jJ

for some constant "0I > 0. Finally, once gJ is defined on V �J for all J, one chooses
suitable constants "J , now starting with maximal jJ j and working down. Further
details are left to the reader, as is the proof that the resulting branched manifold is
cobordant to the topological one constructed in detail above. For this last step one
would need to adapt the proof of uniqueness in Step 2 of the proof of Theorem B in
Section 2.3.

Besides obtaining a smooth rather than topological branched manifold, there are no real
advantages to this construction unless one wants to work with the virtual fundamental
class on the chain level using de Rham cochains. Another point is that by [9] we can
construct the branched manifold M to be a simplicial complex, so we could simplify
the proof of Lemma 2.3.4 by using (locally finite) singular homology instead of Čech
homology. However, because we know nothing about X except that it is compact and
Hausdorff, the VFC has still to be considered as an element in Čech homology. For
further discussions of the smooth case, see Step 3 of the proof of Theorem B. ˘

2.3 Proof of Theorems A and B

To prove Theorem A, we must show that the category M constructed in Section 2.2 has
a unique completion to a weighted branched groupoid, and then analyze the structure of
this groupoid and the associated weighted branched manifold .M;ƒ/. The arguments
needed here are very similar, but not identical, to those in [11, Proposition 2.3] (which
considers the case of the category BK defined by an atlas with trivial obstruction spaces)
and in [12, Section 3.3] (which analyzes the zero set of a transverse perturbation section).
Theorem B has two parts. It first states that if K is oriented the weighted branched
manifold .M;ƒ/ carries a natural fundamental class ŒX�vir

K , a result that was proven
in [9] in the case when M is smooth and compact, with or without boundary. Although
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smoothness is assumed throughout [9], the only place where this condition is essential
is in the construction of the fundamental class in the proof of [9, Proposition 3.25]. In
this case, we may replace M by an equivalent wnb groupoid that is tame in the sense
that its branching loci are piecewise smooth and hence triangulable, which allows us
to work with singular homology in the proof of Lemma 2.3.4. In the present case, we
must use rational Čech cohomology, and the appropriate dual homology theory for
noncompact manifolds as described in the appendix. The second and more substantial
part of the proof of Theorem B explains why ŒX�vir

K is independent of all choices made
in its construction, and why, in the smooth case, the new definition is consistent with
the previous definition via perturbation sections.

We begin with a lemma about groupoid completions of étale categories; for definitions,
see Sections 1.2 and 1.3. As usual we denote by I a collection of subsets of a finite
set A, and say that I;H 2 I are nested if I �H or H � I. We state the condition
identity below for completeness; it follows immediately from the fact that every category
has identity morphisms.

Lemma 2.3.1 Let I be a collection of subsets of a finite set A and M be an étale
category with

ObjM D
G
I2I

MJ ; MorM D

G
I�J; I;J2I

�MIJ ;

s � t W MorM ! ObjM �ObjM ; .I; J; y/ 7!
�
.I; �IJ .y//; .J; y/

�
;

where �MIJ � MJ is an open subset and the maps �IJ W �MIJ ! MIJ satisfy the
following conditions:

� Identity For all I 2 I , �II D id on �MII DMII DMI .

� Composition For all H � I � J, ��1IJ . �MHI \MIJ / D �MHJ \
�MIJ and

�HJ D �HI ı�IJ on �MHJ \
�MIJ ; hence, if z 2 �MIJ \

�MHJ , where H � I �J,
we have .H; I; y/ ı .I; J; z/D .H; J; z/.

� Separation cl. �MIJ /\ cl. �MHJ /D∅ unless I and H are nested.

� Group actions For each i 2 A there is a finite group �i such that, for all
I � J, �IJ quotients out by the restriction to �MIJ of a free action of �JXI on
cl. �MIJ /�MJ , where �JXI WD

Q
i2JXI �i . Moreover, these actions x 7! 
 �x

satisfy the compatibility conditions listed in Lemma 2.2.4.
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Then, there is a unique nonsingular groupoid �M with the same object space and
realization as M. Its morphism spaces for I � J are

Mor �M .MI ;MJ / WD
[

∅¤F�I

. �MIJ \
�MFJ /��IXF ;(2.3.1)

D f.y; 
/ 2MJ ��J j y 2 �MIJ ; 
 2 �IXHy g;

where Hy WDminfH W y 2 �MHJ g, with

s � t .I; J; y; 
IXHy /D
�
.I; 
�1IXHy � �IJ .y//; .J; y/

�
;(2.3.2)

.I; I; y; 
IXHy /
�1
D .I; I; 
�1IXHy �y; 


�1
IXHy

/:

In particular, �M is étale, and there is an injective functor M ! �M.

Proof Observe first that because a nonsingular category has at most one morphism
between any two objects, �M must have precisely one morphism between any two
objects .I; x/ and .J; y/ that are equivalent under the equivalence relation �M

on ObjM generated by MorM . Hence, there is precisely one nonsingular groupoid
with Obj �M D ObjM and j �M j D jM j. Since there is an injection

MorM .MI ;MJ /D �MIJ ,!
[

∅¤F�I

. �MIJ \
�MFJ /��IXF

when I � J, and the structural maps described in (2.3.2) are étale, it remains to check
that the formula (2.3.1) does describe Mor �M .MI ;MJ /.

The separation property implies that for each y 2MJ the set of F such that jyj 2
j �MFJ j � jM j is nested. Let Hy be the minimal such element. By Lemma 2.2.4,
for all Hy � I � J the group �IXHy acts freely on �MHyI . Hence, each element
in
S

∅¤F�I .
�MIJ \

�MFJ /��IXF has a unique description of the form .y; 
/ with
y 2 �MIJ and 
 2 �IXHy . Further, given such .y; 
/ it follows from Lemma 2.2.4(iii)
that �HyJ .y/D �HyI .


�1 � �IJ .y// for any I with y 2 �MIJ , so that

.J; y/�M .Hy ; �HyJ .y//D
�
Hy ; �HyJ .


�1
� �IJ .y//

�
�M .I; �IJ .y//:

Hence, for each I with y 2 �MIJ and each 
 2 �IXHy there must be a morphism m

in �M from .I; 
�1��IJ .y// to .J; y/. To see that these are the only morphisms in �M
it remains to observe that each equivalence class Œ.J; y/� contains a unique element
of the form .Hy ; z/ where z 2MHy ; further if Hy � I � J then Œ.J; y/�\MI D

fx2��1HyI .z/g consists of the �IXHy –orbit of �IJ .y/. Since each morphism is uniquely
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specified by its source and target, there is no need to write out the composition rule
in �M explicitly.

Lemma 2.3.2 Suppose in the situation of Lemma 2.3.1 that for each I � J the map
�IJ has closed graph. Then:

(i) The maximal Hausdorff quotient jM jH is the realization of a nonsingular
groupoid �MH with objects ObjM and morphisms from MI to MJ with I � J
given by

Mor �MH
.MI ;MJ / WD

[
∅¤F�I

. �MIJ \ cl. �MFJ //��IXF :

(ii) For each I, the map �H
I W MI ! j

�MHj is a local homeomorphism with open
image, and in particular is a proper map onto its image.

(iii) The space M WD jM jH D j �MHj can be given the structure of a weighted nonsin-
gular branched manifold with weighting function ƒM W M !QCDQ\ .0;1/

given for p 2 jMI jH by

ƒM .p/ WD
1

j�I j
#fy 2MI j �

H
M .y/D pg D

j�IXFy j

j�I j
;

where Fy WD minfF W y 2 cl. �MFI /g D minfF W �H
M
.y/ 2 cl.�MH.MF /g.

Moreover, the wnb manifold M is oriented if M is.

Proof Denote by �M the equivalence relation on ObjM corresponding to the quotient
map ObjM ! jM jH . Its graph is the closure in ObjM �ObjM of the graph of �M .
First consider the component in Mor �M consisting of morphisms from MI to MJ for
I � J with 
 D id. This set can be identified with �MIJ and has closed graph by
hypothesis. Next consider the set of morphisms in �M from MJ to MJ ,

Mor �M .MJ ;MJ / WD
[

∅¤F�J

. �MFJ /��JXF ;

s � t .J; J; y; 
/D ..J; 
�1 �y/; .J; y//:

These morphisms form a group with closure

Mor �MH
.MJ ;MJ / WD

[
∅¤F�J

.MJ \ cl. �MFJ //��JXF

D f.y; 
/ j y 2MJ ; 
 2 �JXFy g;
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where
s � t .J; J; y; 
/D ..J; 
�1 �y/; .J; y//:

Next observe that every morphism .I; J; y; 
/ 2Mor �M .MI ;MJ /, where I � J may
be written as the composite

.J; J; y; 
/ ı .I; J; 
�1 �y; id/

of a morphism of the second type followed by one of the first type. Therefore, because
the action of �IXF on �MFI \

�MIJ �MJ (where F � I � J ) extends to an action on
cl. �MFJ /\ �MIJ by Lemma 2.2.4(iii), the limit of a convergent sequence of morphisms
also is such a composite. Claim (i) then follows easily.

Since j �MHj has the quotient topology, to establish (ii) it suffices to show that the
inverse image .�H

J /
�1.�H

I .MI // is open in MJ for all J. This set is empty unless
I � J or J � I. In the former case, .�H

J /
�1�H

I .MI / D �
�1
IJ .MIJ / D �MIJ , which

is open. In the latter case, .�H
J /
�1�H

I .MI / D �IJ . �MIJ /, which is also open. This
proves (ii).

To prove (iii), note that by (ii) we may define the local branches at pD�H
I .y/2 jMI jH

to be the image under �IXFp of an open neighborhood U �MI of y that is disjoint from
cl. �MFI / unless Fy � F and is also disjoint from its images under �IXFy . Each such
local branch is given weight 1=j�I j. It then follows easily from Lemma 2.2.4 that ƒM is
well defined and has the required properties. For more details, see [12, Lemma 3.2.10].
Finally, the statement about orientations is clear.

Remark 2.3.3 As in [12, Lemma 3.2.10], it follows from part (ii) of Lemma 2.3.2
that the topology on j �MHj is second countable, locally compact and metrizable. ˘

With these preliminaries in hand, it is easy to show that in, the oriented case, M Dj �MHj

has a fundamental class.

Lemma 2.3.4 Let M be oriented with corresponding oriented wnb groupoid �MH

constructed as in Lemma 2.3.2, and let M WD j �MHj. Then there is a class �M 2
LH1N .M/ with the following property: if U WD �H

I .MI / for some I 2 IK , then

�M;U .�M /D
1

j�I j
.�H
I /�.�I / 2

LH1N .U /;(2.3.3)

where �I 2 LH1N .MI / is the fundamental class in (A.3) and �M;U is the restriction
map on homology in (A.4).
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Proof It follows from Lemma 2.3.2 that the statement of the lemma makes sense:
the class �I exists by property (a 0 ) in the appendix, the restriction exists by (b 0 )
because U is open, and the pushforward exists by (c 0 ) because the map �H

I W MI!jM j

is proper. We prove the lemma by showing that for k D 1; 2; : : : there is a class �k
on Wk WD

S
I WjI j�k �

H
I .MI / such that

�kj�H
I .MI /

D .�H
I /�

�
1

j�I j
�I

�
for all I; jI j � k:

When k D 1, W1 is a disjoint union of sets �H
I .MI /, where jI j D 1, and we simply

define �1 to be the given pushforward. Let us suppose that �k is constructed, and
consider the definition of �kC1 . Since the sets .�H

J .MJ //jJ jDkC1 are disjoint, it
follows from (e 0 ) that we can consider each of them separately. Further, by apply-
ing Mayer–Vietoris with U D Wk and V D �H

I .MJ / it suffices to show that the
classes �k 2 LH1N .Wk/ and .�H

J /�..1=j�J j/�J / 2
LH1N .V / have the same restriction

to Wk \V D
S
I¨J �

H
I .MIJ /. But because restriction commutes with pushforward

by (d 0 ), it suffices to prove the corresponding statement for the fundamental classes of
the spaces MJ . Namely, we must check that

1

j�J j
.�IJ /�.�J j �MIJ /D 1

j�I j
.�I jMIJ /:

But on manifolds the homology theory LH1 agrees with the usual locally compact
singular homology. Hence, the above property holds because, by hypothesis, the maps
�IJ W �MIJ !MIJ are orientation-preserving covering maps of degree j�J j=j�I j.

We are now in a position to prove the main theorems. We begin with the proof of
Theorem 1.3.4, which as already noted in Section 1.3 immediately implies Theorem A.

Proof of Theorem 1.3.4 Given the oriented atlas K we construct the category M as
in Proposition 2.2.2. We saw in Lemma 2.3.2(i) that this category has a unique Haus-
dorff groupoid completion �MH , which proves (i). Part (ii) follows immediately from
Lemma 2.3.2(iii). Further, the action of the group �A on M and EA induces an action
on �MH and EA , and the functor S W M !EA extends to a �A–equivariant functor�MH!EA . Therefore, it remains to check that the induced map SM W M ! EA on
the realizations has compact zero set S �1M .0/ and that there is a map  W S �1M .0/!X

that induces a homeomorphism S �1M .0/=�A
Š
�!X.

Since MI \S �1I .0/ D f0g � .VI \ s
�1
I .0// by (1.3.7), the full subcategory of M

with objects
F
I MI \S �1I .0/ includes into the full subcategory of BK with objects
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F
I VI \ s

�1
I .0/. Hence, there is an induced map on the realizations

jM j \S �1.0/! jKj \ jsj�1.0/ŠX:

This is continuous and surjective, but not injective because we have not yet quo-
tiented out by the group actions. Nevertheless, because X is Hausdorff, the universal
property satisfied by the Hausdorff quotient implies that it factors through a map
 W j �MHj \S �1.0/DS �1M .0/!X. Further, because  I induces a homeomorphism
VI\s

�1
I .0/=�I!GI �X (where GI is the footprint of the reduced chart domain VI )

and �AXI acts trivially on S �1I .0/D VI \ s
�1
I .0/, this map  W S �1M .0/! X does

factor through a bijective and continuous map S �1M .0/=�A! X. To see that it is a
homeomorphism, it suffices to check that S �1M .0/ is compact.

To this end, notice first that because the topology on M is metrizable by Remark 2.3.3,
we need only check that S �1M .0/ is sequentially compact. Thus, consider a sequence of
points pk 2S �1M .0/. Because M is the union of the finite number of sets jMI jH , we
may suppose that pk 2jMI jH for all k . Choose a sequence yk 2MI\S �1I .0/ such that
�H
I .yk/Dpk . Then ykD .0; zk/2EAXI;"I �.VI\s

�1
I .0//, and  .yk/D I .zk/2X.

By passing to a subsequence, we may suppose that the sequence  I .zk/ converges to
x1 2X. Since the footprints GJ WD  J .s�1J .0// of the reduced charts form an open
covering of X, we may further suppose that there is J such that  I .zk/ 2 GJ for
all k and that this sequence has limit x1 D  J .z1/ 2GJ . Because GI \GJ ¤∅,
the sets I and J are nested, and the original sequence pk 2 jMI jH must lie in the
intersection pk 2 jMI jH \ jMJ jH . Therefore, the pk also have lifts y0

k
D .0; z0

k
/ 2

EAXJ;"J �.VJ \s
�1
J .0//, and now it follows from the fact that the map VJ \s�1J .0/!

GJ � X is finite-to-one that some subsequence of the z0
k

must converge to a some
point z01 in the finite set .VJ \ s�1J .0//\ �1J .x1/. Hence, .pk/ has a subsequence
that converges to �H

J .0; z
0
1/ 2 jMJ jH �M. This completes the proof of Theorem A.

The proof of Theorem B is somewhat longer, and hence we restate it for the convenience
of the reader. Here we assume that K and X are as in Theorem A.

Theorem B If K is oriented, there is a unique element ŒX�vir
K 2

LHd .X IQ/ that is
defined as follows. For b 2 LHd .X IQ/ and D D d C dimEA , we have

hŒX�vir
K ; bi WD .SM /�.

yb/ 2 LH c
dimEA.EA; EA X f0gIQ/ŠQ;
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where yb is the image of b under the composite

LHd .X IQ/
 �
�! LHd .S �1M .0/IQ/ D

�! LH c
dimEA.M;M XS �1M .0/IQ/;

and D is given by cap product with the fundamental class �M 2HdCdimEA.M/ con-
structed in Lemma 2.3.4. Moreover, ŒX�vir

K depends only on the oriented concordance
class of K , and in the smooth case agrees with the class defined in [12].

Proof We proceed in three steps:

Step 1 (definition of ŒX�vir
K ) Since the fundamental class �M exists by Lemma 2.3.4,

and an appropriate cap product exists by point (f 0 ) in the appendix, in order to see that
hŒX�vir

K ; bi is well defined it remains to note that the map

.SM /�W LH
c
dimEA.M;M XS �1M .0/IQ/! LH c

dimEA.EA; EA X f0gIQ/ŠQ

is well defined. Further, it takes values in Q, because EA is oriented by the definition
in Remark 1.2.1(iii) and the theory LH c

� coincides with singular homology theory on
simplicial spaces.

Step 2 (proof of uniqueness) To prove the uniqueness of ŒX�vir
K , one must state

and prove the analog of Proposition 1.3.3 for cobordism atlases, and also prove that
all choices made in the construction are unique modulo oriented cobordism. For
the constructions that involve atlases, such results are proved in [13; 14; 12]; see
[13, Proposition 4.2.3] for different choices of metrics and [13, Theorem 4.2.7] for
different choices of tame shrinkings, [13, Theorem 5.1.6] for a discussion of reductions,
[14, Section 8] for orientations (in particular [14, Theorem 8.1.12]) and [12, Appendix]
for weighted branched cobordisms. The present construction also requires a choice of
local product structures (as in (1.2.3)) and partition of unity (as in (3.2.17)) in order to
define the collar of the manifolds YV;J;" . However, in distinction to the smooth case,
it is not necessary to arrange that cobordism atlases have specified collars (ie local
product structures) near the two boundary components because the VFC ŒX�vir

K is now
defined via diagram (A.7), which involves restriction to the boundary rather than via a
perturbation section that must be extended from the boundary to the interior.

Thus, we define a cobordism atlas K01 over Œ0; 1��X between two d –dimensional
atlases K0 and K1 on X to be an atlas K01 over Œ0; 1��X of dimension d C 1 such
that:

(i) The charts whose footprints intersect @.Œ0; 1��X/D
F
˛ ˛ �X are manifolds

with boundary.
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(ii) For ˛ D 0; 1 there are functorial inclusions

�˛W K˛! K01; �I˛W IK˛ ! IK01 ; ˛ D 0; 1;

that (for simplicity) we assume to have disjoint images, and for each I 2 IK˛
take the chart domain U ˛I onto the boundary @U 01I 0 of the corresponding chart
in K01 , where I 0 WD �I˛.I /, preserving orientation for ˛D 1 and reversing it for
˛ D 0.

(iii) We further require that the local product structures in (1.2.3) for the chart
domains in K˛ extend to local product structures near the boundary points of
the corresponding chart domains in K01 .

We show in [14, Theorem 7.1.5] that any pair of reductions V˛ of K˛ may be extended
to a reduction V01 of K01 such that there are natural inclusions �V˛ W jV˛j ! jV01j that
are homeomorphisms to their image. Further, if J 2 IK˛ for ˛D 0; 1, then for suitable
small "˛ > 0 there is a commutative diagram

EA01XA˛;"˛ �YV˛;J;"

prV
��

�Y˛
// YV01;�˛.J /;"

prV
��

V ˛J
�V˛

// V 01
�˛.J /

Notice here that we take the product of YV˛;J;" with the extra obstruction spaces
EA01XA˛;"˛ in order to increase its dimension to that of YV01;�˛.J /;" . Because the
maps (1.2.3) in the submersion axiom for V01 extend those for V˛ , we can choose the
covering and partition of unity in Step 2 of the proof of Lemma 3.2.1 for V01 to extend
those already chosen for V˛ . Therefore, we can construct the collars on YV01;�˛.J /;" to
extend already constructed collars on the sets YV˛;J;" . Hence, after possibly shrinking
" > 0, we can arrange that for small "˛ > 0 there are embeddings

�M˛ W EA01XA˛;"˛ �M
˛
!M 01 such that

G
˛

im.�M˛ /D @M
01;

and also that the map S 01
M W M

01!EA satisfies

S 01
M ı �

M
˛ DS ˛

M ı pr˛M W EA01XA˛;"˛ �M
˛
!EA;(2.3.4)

where pr˛M W EA01XA˛;"˛ �M
˛!M ˛ is the projection.
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Because M 01 is constructed from an atlas for the product Œ0; 1� � X, the natural
projection .S 01

M /�1.0/! Œ0; 1��X factors through a homeomorphism

.S 01
M /�1.0/=�01 Š�! Œ0; 1��X:

Notice here that for ˛ D 0; 1, the group �01 decomposes as a product, which we will
write as � 001X˛ � �̨ , where � 001X˛ acts trivially on .S 01

M /�1.0/\ .im�M˛ /. Therefore,
there are natural identifications

..S 01
M /�1.0/\ .im�˛M //=�

01
Š ..S ˛

M /
�1.0//=�˛ Š f˛g �X � Œ0; 1��X:

Thus, M 01 is an oriented branched manifold of dimension N 01C 1, where N 01 D

d C dimEA01 , with boundary that decomposes as a union

@M 01
D

G
˛D0;1

EM ˛; where EM ˛
W D �˛M .EA01XA˛;"˛ �M

˛/:(2.3.5)

For ˛ D 0; 1, the branched manifold EM ˛ carries a fundamental class

�EM˛ WD �E
A01XA˛

��M˛ :

Because the isotropy group of the boundary chart labeled I˛ in K˛ equals that of
the corresponding cobordism chart in K01 , the equation (2.3.3) is consistent with the
boundary map in the long exact sequence (A.5) for the pair .M 01; @M 01/. Hence, the
proof of Lemma 2.3.4 adapts to show that the interior of M 01 also carries a fundamental
class

�M01 2 LH1N 01C1.M
01
X @M 01/(2.3.6)

such that

@.�M01/D .�EM1 ;��EM0/ 2 LH1N 01.EM
0/˚ LH1

N 01
.EM 1/Š LHN 01.@M

01/;

where @ is the boundary map in the long exact sequence in (A.5).

We now apply the cap product in (A.7) with

Y DM 01; U D .S 01
M /�1.EA01 X f0g/�M

01; AD
G
˛D0;1

EM ˛:

Then Y X U D .S 01
M /�1.0/ is compact with a natural projection to Œ0; 1� �X and

hence to X. Since these maps are proper, any class b 2 LHd .X/ pulls back to a
class bY 2 LHd .Y XU/ such that ��.bY /D bA where �W A! Y is the inclusion, and
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bAD .b0; b1/, where b˛ can be identified with the pullback of b to .S ˛
M /
�1.0/�M˛ .

Hence, the cap product

.@�M01/\ bA 2 LH
c
N 01

.A; U \A/

is in the image of the map @0 in (A.7) and hence vanishes when pushed forward to
LH c
N 01

.Y; U /. But there is a commutative diagram

.@�M01/\ bA_

��

��

LH c
N 01

.A; U \A/

��
��

SM
// LH c

N 01
.EA01 ; EA01 X f0g/

D

��

0 LH c
N 01

.Y; U /
SM

// LH c
N 01

.EA01 ; EA01 X f0g/

Hence, .SM /�..@�M01/ \ bA/ D 0. Since .@�M01/ \ bA measures the difference
between the two classes �EM˛ \ b˛ , these classes have the same image in

LH c
N 01

.EA01 ; EA01 X f0g/;

as claimed.

Step 3 (agreement with previous definition in the smooth case) It remains to show
that in the smooth case the class ŒX�vir

K constructed here agrees with that constructed in
[12, Section 3]. The idea there was to construct a small smooth perturbation functor24

� D .�I /W BKj
X�
V !EKj

X�
V

such that sI C �I is transverse to zero for all I, and then assemble the resulting zero
sets Z�I WD .s1 C �I /

�1.0/ � VI into a weighted branched manifold Z� WD j yZ�Hj.
Note that Z� is oriented and has a weight-preserving natural inclusion into M, ie each
branch of Z� is a submanifold of a branch of M with the same weight. Now choose
a sequence �k of perturbation sections with k�kk ! 0. There is a corresponding
nested sequence of neighborhoods B"k .�K.X// of the zero set X Š �K.X/� jVj with
intersection equal to �K.X/. Then the zero sets Z�k map to B"k .�K.X//� jVj, and
we showed in [12, Theorem 3.3.5] that for all ` > k the two branched manifolds
Z�` and Z�k are cobordant in B"k .�K.X// and hence represent the same homology
class in B"k .�K.X//. It follows from the tautness property of rational Čech homology
(see property (h 0 ) in the appendix) that the inverse limit of this sequence of classes in
B"k .�K.X// determines a unique element of LHd .�K.X/IQ/Š LHd .X IQ/, which we
called ŒX�vir

K and showed to be independent of all choices.

24For notation see (1.2.9).
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We now interpret this construction in the current setting. As above, fix a compact
neighborhood25 N 0 of S �1M .0/, so that

ı0 WD inffkSM .x/k W x 2 Fr.N0/ WDN 0 XN0g> 0;

and choose a nested sequence N k of compact neighborhoods of S �1M .0/ such that\
k

N k DS �1M .0/; SM .N k/�EA;ık ; where ıkC1 < ık < ı0:

Choose a corresponding sequence of transverse perturbation sections �k D .�k;I / such
that the perturbed zero set .sI C �k;I /�1.0/ is contained in VI \��1K .Nk/ for all I,
and for each k , consider the map

y�k W M !EA; y�k.�I .eAXI ; x//D �k.x/ 2EI �EA:

This is well defined because �k W BKj
X�
V !EKj

X�
V is a functor. Then

prEAXI
�
.SM Cy�k/.�I .eAXI ; x//

�
D prEAXI

�
SM .�I .eAXI ; x//

�
¤ 0 if eAXI ¤ 0;

while

prEI
�
.SM Cy�k/.�I .eAXI ; x//

�
D .sI C �k;I /.x/:

Therefore, we may identify the weighted branched manifold Z�k with the perturbed
zero set

.SM Cy�k/
�1.0/�Nk �S �1M .EA;ık /:

Given b 2 LHd .X IQ/, choose a sequence bk 2 LHd .N kIQ/ such that lim
 ��

bkD 
�.b/;

where  W S �1M .0/!X is the footprint map, and let �k W Z�
k

!Nk be the inclusion.
We must show that

lim
k
h�Z�k ; �

�
k.bk/i D .SM /�.�M \ 

�.b// 2Q:

Consider the diagram below, in which the top and bottom square commute while the
middle homotopy commutes:

25One important difference between jVj and M is that the zero set jsj�1.0/ does not have compact
neighborhoods in jVj by [14, Example 6.1.11], while it does in the branched manifold M.
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.M;M XS �1M .0//
SM

// .EA; EA X f0g/

.M;M XN k/

�

OO

SM
// .EA; EA X f0g/

.M;M XN k/

�

��

SMC�k
// .EA; EA X f0g/

.M;M XZ�k /
SMC�k

// .EA; EA X f0g/

Because Z�k is a weighted branched smooth submanifold of M with orientation and
weights compatible with that of EA and M, its fundamental class �Z�k satisfies

�Z�k D �M \ ..SM C �k/
�.oE // 2Hd .Z

�k ;Q/;

where oE 2 H
dimEA.EA; EA X f0g/ is the natural generator.26 This immediately

implies that

h�Z�k ; �
�
k.bk/i D h.SM C �k/�.�M \ �

�
k.bk//; oE i 2Q:

Now note that the commutativity of the above diagram implies that

lim
 ��
.SM C�k/�.�M \ �

�
k.bk//D .SM /�.�M \ 

�.b// 2HdimEA.M;M XS �1M .0//:

The result follows.

With a little more work, we can prove that our construction extends to atlases for
compact pairs .W;X/ as in [15, Lemma 5.2.4]. The following lemma defines

ŒW �vir
K 2

LH1dC1.W XX/D Hom. LHdC1.W XX/IQ/:

Note that LH1
dC1

.W XX/D LH c
dC1

.W;X/ by property (g 0 ) in the appendix.

Lemma 2.3.5 Given an oriented .dC1/–dimensional Kuranishi atlas KW with bound-
ary on a compact pair .W;X WD @W /, there is an associated virtual fundamental class
ŒW �vir

K 2
LH1
dC1

.W XX/ such that

@.ŒW �vir
K /D ŒX�

vir
K 2

LH1d .X/D
LH c
d .X/;(2.3.7)

26We can use singular homology since we can assume that Z�k and M are simplicial complexes
by [9].
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where @ is the differential in the long exact sequence (A.5). In particular, the image of
ŒX�vir

K in LH1
d
.W /D LH c

d
.W / is zero.

Proof We define the notion of an oriented .dC1/–dimensional Kuranishi atlas
.K; @K/ for the pair .W; @W / by replacing Œ0; 1��X by W in the above definition
of a cobordism atlas. Thus, we take K01 DW KW to be an atlas for W , K1 DW KX an
atlas for X and K0 to be empty, and assume the obvious analogs of (i)–(iii) above.
Then, given a branched manifold .MX ; ƒX / constructed from KX, we may construct
a branched manifold .MW ; ƒW / with boundary

@.MW /DEAWXAX �M
X ;

and extend id � SX from @.MW / to a map SW W M
W ! EAW that satisfies the

analogs of equations (2.3.4) and (2.3.5) above. Further, using the fundamental class
�WM 2H

1

NW
.MW X @MW / defined as in (2.3.6), we define an element

ŒW �vir
K 2

LH1dC1.W XX/

by setting

hŒW �vir
K ; bi WD .SMW /�.yb/ 2 LHdimE

AW
.EAW ; EAW X f0gIQ/ŠQ;

where yb is defined as follows. Let

Y DMW ; AD @MW ; U DS �1W .EAW X f0g/:

Then the pullback  �b 2 LHdC1.Y X.U[A/IQ/ of b 2 LHdC1.W XX IQ/ determines

yb WD �WM \ 
�b 2 LH c

dimE
AW
.Y XA;U XAIQ/;

where \W LH1pCq.Y XA/˝ LH
p.Y XU/! LH c

q .Y; U [A/ is as in (A.6) with AD∅.

To prove (2.3.7), note that in the diagram (with the same Y , U and A)

LH1pCqC1.Y XA/˝
LHpC1.Y X .A[U//

@
��

\
// LH c

q .Y XA;U XA/
��
// LH c

q .Y; U /

LH1pCq.A/˝
LHp.AXU/

ı

FF

\
// LH c

q .A;A\U/

j�
77

we have

j�..@�
W
M /\ b

0/D ��.�
W
M \ .ıb

0// 2 LH c
q .Y; U /

Algebraic & Geometric Topology, Volume 19 (2019)



216 Dusa McDuff

for all � 2 LH1pCqC1.Y XA/ and b0 2 LHp.AXU/, where ı is as in (A.1).27 Since  �

commutes with ı , this implies

h@.ŒW �vir
K /; bi D hŒW �

vir
K ; ıbi for all b 2 LHd .X/:

The result follows.

3 Further details and constructions

In Section 3.1 we first define the notion of a compatible shrinking .U ; "/ and prove
Proposition 2.1.1. We then introduce the more intricate notion of a compatible reduction
.V; "/, which involves not only the compatibility of V with a set of constants " but
also its compatibility with a suitable cover of the set of overlaps in jVj, properties
that are essential for the proof in Section 3.2 that YV;J;" has a collar that satisfies the
conditions listed in Proposition 2.1.4.

3.1 Shrinkings and the manifold Y

We assume given an ambient preshrunk tame28 atlas K� with chart domains U� ,
together with a tame shrinking U1 @ U� , and then choose a further shrinking F0

of the footprints F1 of U1 . For short we write  �1.F0/ @ U1 @ U� . By the
submersion axiom and the precompactness of zU1IK in zU�IK for each I ¨K , we may
choose a finite set of points z˛ 2 zU�IK , constants "˛ > 0 and �z˛ –equivariant local
homeomorphisms

�EIK;z˛ W EKXI;"˛ �
�WIK;z˛ ! U�K ; 1� ˛ � AIK ;(3.1.1)

where �WIK;z˛ � zU�IK is open, such that

(3.1.2)
sKXI ı�

E
IK;z˛

.e; y/D e;

zU1IK �
[

1�˛�AIK

�WIK;z˛ � zU�IK for all I ¨K:

We may and will assume that each �EIK;z˛ is �K –equivariant. (To do this, first shrink
the �WIK;z˛ so that they have disjoint images under the group �K=�z˛ , and then replace
them by their orbit under �K=�z˛ .)

27This extension to property (B5) on [8, page 336] holds by combining properties (B4) and (B6).
28For terminology see Section 1.2.
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Our first task is to make a preliminary choice of shrinking so that the space YU;J;" is
a manifold with boundary. In the following definition, condition (b) ensures that the
charts are compatible with a fixed shrinking of the zero sets, while conditions (a) and (c)
have already been used in the proof of Corollary 2.1.2. Some version of condition (d)
is an essential ingredient in the proof that YU;J;" is a manifold with boundary; see
(3.1.4) below. As we saw in (2.1.4) and (2.1.5), the elements .e; xI t / 2 @JXIYU;J;"
have x 2 zUIJ and kek < �"I.x/ , where I.x/ � I ¨ J. Therefore, in order for the
domain of the local chart in (3.1.4) to include all the boundary points of YU;J;" , we
do need the map �EIK;" to be defined using a constant " that is > �"I , and we have
chosen to use .�C 1/"I for convenience and precision. Note also that we do not insist
that the image of the map �EIK in (3.1.3) below is contained in U or even in U1 . Such
a requirement comes later; see (3.1.9).

Definition 3.1.1 Given  �1.F0/@U1@U� as above, we will say that a shrinking U
and set of positive constants " WD ."K/K2IK are .G0;U1/–compatible if the following
holds:

(a) 0 < �"I < "K if I ¨K (see (1.3.2)).

(b)  �1.F0/@ U @ U1 .

(c) sI .U I /�EI;"I for all I.

(d) For all I ¨K , each z 2 zUIK � UK has a neighborhood zOIK � zUIK such that
one of the homeomorphisms �EIK;z˛ in (3.1.1) restricts to give a map

�EIK WEKXI;.�C1/"I �
zOIK ! U�K(3.1.3)

that is a homeomorphism to its image, where � WDmaxfjKj WK 2 IKg.

For simplicity we call the pair .U ; "/ a compatible shrinking.

Lemma 3.1.2 Suppose given  �1.G0/@ �1.F0/@U1@U� as above. Then there
is an .F0;U1/–compatible shrinking .U ; "/.

Proof First choose any tame shrinking U 0 such that  �1.F0/@ U 0 @ U1 , which is
possible by [13, Proposition 3.3.5]. Then each set U 0I is covered by a finite number of
the sets �WIK;z˛ in (3.1.1) and we choose any set of constants " satisfying (a) and also
so that "I < "˛=.�C 1/ for all relevant ˛ . Then, if we define UI WD U 0I \ s

�1
I .EI;"I /,

property (d) holds. Further, U WD .UI / is a tame shrinking of U1 because the coordinate

Algebraic & Geometric Topology, Volume 19 (2019)



218 Dusa McDuff

changes commute with the section maps sI and preserve the norms k �k on EA . (More
precisely,

y�IK ı sI ı �IK D sK W zUIK !EK ;

where the canonical inclusion y�IK W EI ! EK preserves k � k, ie ky�IK.e/k D kek.)
Hence, U satisfies (c) and (b), as required.

From now on, we fix .F0;U1/, and hence cease to refer to them explicitly.

Lemma 3.1.3 If .U ; "/ is compatible, then for each J, YU;J;" is a manifold of dimen-
sion D WD d C dimEACjJ j � 1, with boundary equal to

YU;J;"\ pr�1� .@�/D
[
I¨J

@JXIYU;J;" D
[
I¨J

f.e; xI t / W x 2 zUIJ ; t 2 @JXI�J g:

Proof We show that each point .e; xI t / 2 YU;J;" has a neighborhood homeomorphic
to an open subset of .R�0/k�RD�k , where kD#fj 2J j tj D0g. Thus, the projection
pr�W YU;J;"!�J is compatible with the boundary structure of �J .

First consider a point .e; xI t /2YU;J;" with ti ¤0 for all i 2J. Then the coordinates ej
for j 2 J are determined by .x; t/ via the requirement sJ .x/ D t � ejJ while the
components of ejAXJ WD .ei /i2AXJ can vary freely. Hence, the tuple .e; xI t / is
uniquely determined by the point .ejAXJ ; xI t / 2 EAXJ �UJ � int�J , and so has a
manifold neighborhood of dimension D.

It remains to define boundary charts at the points .e0; x0; t0/ 2 YU;J;" with

t0 2 @�J D
[
I¨J

@JXI�J DW
[
I¨J

int�I :

Suppose first that

I.x0/ WD fi W si .x
0/¤ 0g D fi W t0i > 0g DW I.t

0/DW I;

so that x02 zUIJ . By (3.1.2), there is a neighborhood zO of x0 in zUIJ that is contained in
one of the sets �WIJ;z˛ in (3.1.1), and below we denote by � the associated map �EIJ;z˛ .
There is a corresponding neighborhood of .e0; x0; t0/ in

@JXIYU;J;"\f.e; xI t / W ejJXI D 0g

given by

zO0I;J;" WD f.eAXJ C t
�1
I � sI .x/; xI tI / j x 2

zO; tI � t0I ; keAXJ k< �"I g � @JXIYU;J;":
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Now consider the map

(3.1.4)  W EJXI;.�C1/"I � Œ0; ı/
jJXI j

� zO0I;J;"! YU�;J;";�
eJXI ; rJXI ; .eAXJ C t

�1
I � sI .x/; xI tI /

�
7! .eAXJ C eJXI C .�tI /

�1
� sI .x

0/; x0I�tI C rJXI /;

where

x0 WD �.rJXI � eJI ; x/ for � WD �EIJ;z˛ and � WD 1� jrJXI j D 1�
X

j2JXI

rj :

To see that  does have image in YU�;J;" for sufficiently small ı > 0 and zO , we check
the conditions in (2.1.1) as follows:

� By (3.1.2),

rJXI � eJXI D sJXI ı�.rJXI � eJI ; x/D sJXI .x
0/;

so that the image .e; xI t / of  does satisfy the equation sJ .x/D t �e if x0� x0

and ı > 0 is sufficiently small.

� Next, we check that sJ .x0/ 2EA;"I.x0/ . To this end, note first that because we
started by assuming I.x0/D I, the definition of YU;J;" implies ksI .x0/k< "I .
Second, because sI .x0/� sI .x0/, we have sI .x0/ < "I for sufficiently small ı
and zO . But if rJXI ¤ 0 we have I.x0/© I.x0/, so that "I < 1

�
"I.x0/ by (1.3.2).

Therefore, because �� 1 and we use the sup norm on the product EA , we have

sJ .x
0/D eJXI C .�tI /

�1
� sJXI ı�.rJXI � eJXI ; x/ 2EA;"I.x0/

for sufficiently small ı > 0.

� Since elements in the domain of  have keAXJ k < �"I < "I.x0/ , elements in
its image also satisfy this condition.

It is now easy to check that  is a local homeomorphism that equals the identity map
when rJXI D 0 since �.0; x/D x . Hence, its restriction to a suitable open subset of
its domain provides a local boundary chart for YU;J;" at .e0; x0; t0/.

It remains to consider the case when I D I.x0/ ¨ H D I.t0/. In this case, write
t0 D t0I C t

0
HXI . Then the above formula for  must be modified as follows: Denote

the elements of I.t0/ by t 0H D t
0
I C t

0
HXI . Then, for rJXI � 0, we define

(3.1.5)  
�
eJXI ; rJXI ; .eAXJ C .t

0
H /
�1
� sI .x/; xI t

0
H /
�

D .eAXJ C eJXI C .t
00
I /
�1
� sI .x

00/; x00I t 00J /;
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where

� x varies in a neighborhood zO � zUHJ of x0 ;

� � < 1 is chosen so that t 00J WD ..ti /
00/i2J has jt 00J j WD

P
i2J t

00
i D 1, where

t 00i D �t
0
i if i 2 I; t 00h D �t

0
hC rhif i 2H X I;

t 00j D rj if j 2 J XH I

� x00 D �.t 00JXI � eJXI ; x/ 2 VJ .

Then one can check as above that im is a neighborhood of .e0; x0; t0/ in YU;J;" .
This completes the proof.

Corollary 3.1.4 Proposition 2.1.1 holds.

Proof Combine Lemmas 3.1.2 and 3.1.3.

Remark 3.1.5 In (3.1.5) the coordinates rHXI 2RHXI parametrize directions tangent
to @JXHYU;J;" , while the coordinates rJXH 2RJXH parametrize the directions normal
to the codimension-jJXH j face @JXHYU;J;" . ˘

We now define and construct compatible reductions .V; "/. In order to prove Proposition
2.1.4, it turns out that we need more control over the sets OIK in Definition 3.1.1(d).
Indeed, because of the consistency requirements on the collar, it is not sufficient to
choose the OIK separately for each pair I ¨K ; rather they must be chosen consistently
for all pairs, as we now describe. Further, because the collar has fixed width and image
in YV;J;" , the product maps in (d) must have image in VK rather than in V �K . Then, as
we will see in the first step of the proof of Lemma 3.2.1 below, they can be used to
provide local collars along the boundary of YV;J;" .

Note first that because the local product structures

�EIK;z˛ W EKXI;"˛ �
�WIK;z˛ ! U�K ; 1� ˛ � AIK ;(3.1.6)

in (3.1.1) are equivariant and satisfy sKXI ı�EIK;z˛.e; y/D e , they descend via �HK
whenever I ¨H ¨K . More precisely, for such H,

�EIK;z˛ W EHXI;"˛ � .
zUHK \ �WIK;z˛ /! zU�HK D s�1K .EH /

is the lift of a well-defined map

(3.1.7) �EIH;�HK.z˛/W EHXI;"˛ � �HK.
zUHK \ �WIK;z˛ /! U�H :
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Before defining the notion of compatible reduction, we describe certain covers of the
set OL.jVj/ of “overlaps” in jVj, which is the image in jVj of the relevant part of the
boundary of

S
J YV;J;" . See Figure 4.

jV123j jV13j

jV1j
jV12j

Figure 4: Here OL.jVj/ is shaded, and the sets V �I are given by dotted lines;
note that sets jV �I j and jV �J j are disjoint unless I and J are nested.

Definition 3.1.6 Given a subset jW j � jV�j we say that W � V �I is a lift of jW j if

�K.W /D jW j; W D V �I \�
�1
K .jW j/;

ie W is a “full” inverse image of jW j in V�I .

Lemma 3.1.7 If .U ; "/ is compatible, and V @ V� @ U is any nested reduction,
denote by

OL.jVj/ WD
[
I¨K

jV IK j � jV�j;(3.1.8)

the closure of the set of overlaps in jVj. Then we may cover OL.jVj/ by a finite number
of sets .jW˛j/1�˛�N , where for each ˛ there is �WIK;z˛ as in (3.1.6) such that

W˛ WD zV
�
IK \�

�1
K .jW˛j/� �WIK;z˛

is a lift of jW˛j. Moreover, we require that I is minimal and K is maximal in the
sense that

(i) W˛ is an open subset of zV �IK ,

(ii) jVH j \ jW˛j ¤∅ D) I �H �K .

In this situation, we say that V is adapted to the cover .jW˛j/1�˛�N .
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Proof Choose compatible shrinkings V @ V1 @ � � � @ V� @ V� @ U . Work by
downwards induction on jI j D `� � � 1, so that at the `th stage we have a covering
.jW `

˛ j/˛2B` of [
I¨K;`�jI j

jVIK j

with lifts W `
˛ satisfying (i) and such that (ii) holds if jH j � `. When `D � � 1, the

existence of the finite covering holds by the precompactness of jVj in jU j while (ii) is
easy to arrange because the sets jVH j with jH j D ` are disjoint. Now let us suppose
that this holds for `C 1 with the sets .jW `C1

˛ j/˛2B`C1 and consider the statement
for `.

The covering .jW `
˛ j/ will consist of sets of two kinds:

� If jW `C1
˛ j lifts to W `C1

˛ � V �I , where jI j � `C 1 is as in (i), then we take the
set jW 0˛j where

W 0˛ WDW
`C1
˛ X

[
jH jD`

cl. zV `HI /:

This is open in V �I since we have removed a closed set, and satisfies (ii) for `.
These sets cover� [

I¨K;`C1�jI j

jV `IK j

�
X

� [
H¨K; jH jD`

cl.jV `HK j/
�
:

� Next add a finite cover of the compact set
S
H¨K; jH jD` cl.jV `HK j/ by sets jW˛j

whose lifts lie in V �HK , where jH j D `. These obviously satisfy (ii).

This completes the proof.

Remarks 3.1.8 (i) If V is adapted to the cover .jW˛j/1�˛�N , and V 0 @ V is any
shrinking, then V 0 is also adapted to the cover .jW˛j/1�˛�N .

(ii) If I ¨H then in general zVIH is not closed in VH . Therefore, in order to cover
OL.jVj/ by sets jW˛j that satisfy condition (ii) in Lemma 3.1.7 one cannot insist that
each set jW˛j lift to an open subset of some VI , but rather as in Lemma 3.1.7(i) that it
have a lift to an open subset of some V �I A VI . ˘

Definition 3.1.9 Suppose that  �1G0 @ V� @ U , where G0 @ F is a reduction of
the footprint cover (ie G0I @ FI for all I and

S
I G

0
I DX ), and choose a shrinking

V1 @ V! that is adapted to the cover .jW˛j/1�˛�N where jW˛j � jV�j. With
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these choices fixed, we then say that the pair .V; "/ is precompatible if the following
conditions hold:

(a0) 0 < �"I < "J for all I ¨ J.

(b0)  �1.G0/@ V @ V1 .

(c0) sI .V I /�EI;"I for all I .

(d0) For all ˛ with W˛ � zV �IK and I ¨H �K ,

�EIH;˛
�
EHXI;.�C1/"I � .

zVIH \ �HK.W˛ \ zVHK//
�
� VH :(3.1.9)

Further, we say that .V; "/ is compatible if it is precompatible and if .V; "/@ .V 0; "0/,
where .V 0; "0/ is also precompatible and "� "0, ie "J � "0J for all J 2 IK .

Remark 3.1.10 If .V; "/ is compatible, so that it is a shrinking of the precompatible
.V 0; "0/, then we may assume that each set jW˛j of the associated covering of jVj lifts
to some subset zV 0IK . In other words, we can equivalently define .V; "/ to be compatible
if .V; "/@ V1 is precompatible as above for some reduction V1 that is provided with
constants "1 � " such that (a0) and (c0) hold. ˘

The next lemma shows that the hypothesis in Proposition 2.1.4 can be satisfied.

Lemma 3.1.11 Suppose given  �1.G0/ @  �1.F0/ @ V1 @ V� such that V1 is
adapted to the covering .jW˛j/1�˛�N , where jW˛j � jV�j. Then:

(i) There is a precompatible shrinking .V; "/@ V1 .

(ii) Any precompatible .V 0; "0/ has a compatible shrinking .V; "/@ .V 0; "0/.

Proof The proof of (i) is somewhat similar to that of Lemmas 3.1.2 and 3.1.7, except
that now we have to make sure that (d0) holds, ie that we can choose V so that the image
of �EIH;˛ lies in VH for all I ¨H �K rather than just in the fixed ambient space U�J
as in (3.1.3). Claim (ii) then follows by the same argument, with V1 replaced by V 0.

To prove (i), we first choose any reduction V� of U , where .U ; "�/ is compatible,
so that .V; "/ satisfies (a0), (b0) and (c0). We then work by downwards induction on
` WD jJ j, so that after the `th stage we have chosen a reduction .V`; "`/ with

 �1.G0/@ V` @ V� ; "` � "�

that satisfies (a0), (b0) and (c0) for all I and K , and satisfies (d0) for all I with jI j � `.
Since (d0) is vacuous when `D � , it suffices to suppose that we have found suitable
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.V`C1; "`C1/ for some 1 < `C 1� � , and consider the construction of .V`; "`/. Our
method gives "` , where "`J D "

`C1
J if jJ j> ` and "`I � "

`C1
I if jI j � `. Further, for

jJ j> ` we construct V `J by removing some points in zV `C1IJ from V `C1J for jI j D `.
Note that removing these points does not affect the validity of (d0) for pairs I ¨ K

with jI j � `C 1.

Choose an intermediate reduction V 0 such that V0 @ V 0 @ V`C1 . Because the subsets
�K.V

1
I /� jKj with jI j D ` are disjoint, we may work separately with each such I.

Given x2VI with I ¨KDImax.jxj/, the set zV 0IKDV
0
K\�

�1
K .�K.V

0
I // is precompact

in zV `C1IK D V `C1K \��1K .�K.V
`C1
I // and hence there is 0 < "`I � "

`C1
I such that for

each ˛ with W˛ � V �I and each I ¨H �K we have

�EIJ
�
EHXI;.�C1/"I � .

zV 0IH \ �
�1
IH .W˛//

�
� V `C1H :(3.1.10)

For J with jJ j> ` we now define

V `J WD V
`C1
J X

[
I�J;jI jD`

�
s�1J .EI /\ .V

`C1
J XV 0J /

�
:

Then V `J is an open subset of V `C1J , since we have removed a closed subset. Now
choose "`J for jJ j< ` so as to satisfy (a0) and then define

V `J WD
˚
x 2 V `C1J j sH .x/ <

1
2
"`J
	
; jJ j � `:

Then (c0) holds, and (b0) still holds for J with jJ j> ` because it holds for V 0, and it
holds when jJ j � ` because we did not change the zero sets s�1J .0/. Moreover, (d0)
holds because when jJ j> ` the only points in V `C1J that were removed to form V `J
lie in s�1J .EI / for I D `. But this does not affect the validity of (3.1.10) (and hence
(3.1.9)) because

�EIJ ..EJXI;.�C1/"I X f0g/� fzg/\ s
�1
J .EI /D∅

by the first equation in (3.1.2). This completes the proof.

3.2 Construction of the boundary collar

It remains to establish the existence of a collar with the properties stated in Proposition
2.1.4. Recall from (2.1.10) that �J has a collar of the form29

c�J W @�J � Œ0; ı�!�J ; .t@; r/ 7! .1� r jJ j/t@C r jJ jbJ ;(3.2.1)

29Here for the sake of clarity we write t@ for the coordinate of a general point in @�J , while t could
be any point in �J .
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where bJ is the barycenter of �J and 0 < ı < 1
4

; see Figure 5. It is convenient to
write

N�
ı .@JXI�/ WD ft 2�J j tj < ı for all j 2 J X I g:

Notice that

c�J
�
.@�\N�

ı .@JXI�//� Œ0; ı/
�
�N2ı.@JXI�/I(3.2.2)

ie the width-ı collar of the corner @�\N�
ı
.@JXI�/ lies in N�

2ı
.@JXI�/. We now

show that for each J this collar lifts to a (partial) collar for @YV;J;" with the properties
stated in Proposition 2.1.4.

Lemma 3.2.1 Suppose that .V; "/ is a compatible reduction. Then, for each J 2 IK ,
there is a constant wJ > 0, subset @0YV;J;" � @YV;J;" and map cYJ as in (2.1.15) with
the properties detailed in Proposition 2.1.4.

Proof The proof has three steps.

Step I (construction of local collars) As in Remark 3.1.10 we will assume that
.V; "/@ .V1; "1/ is precompatible, where each set jW˛j lifts to some zV1IK . In this
step, we fix ˛; I D I˛ , and K D K˛ , and define a local collar of width w˛ over a
subset O1K;˛ of @YV1;K;"1 . This subset is determined by the set W˛ � zV1IK , and is
the inverse image of an open subset jO1K;˛j of the set of overlaps OL.jV1j/ in (3.1.8).

To this end, consider the coordinate chart for YV1;K;"1 given much as in (3.1.4) by

(3.2.3)  W EAXI;.�C1/"I �W˛ � Œ0; ı˛�
jKXI j

! YV1;K;"1 ;

.eAXI ; x; rKXI / 7! .eAXI C .�bI /
�1
� sI .x

0/; x0I�bI C rKXI /;

where

x0 D �EIK;z˛ .rKXI � eKXI ; x/; � WD 1� jrKXI j DW 1�
X

j2KXI

rj :

For each x 2W˛ WDW˛ \ zV1IK , restrict to those r@KXI such that

�@bI C r
@
KXI 2 st�K.jxj/� @�K ;

where the superscript @ indicates that the corresponding point lies in the boundary. The
above map provides coordinates

(3.2.4) Cı W .eAXI ; x; r@KXI / 7!  .eAXI ; x; r
@
KXI /D .eAXI C e

00
I ; x
00
I t@/
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for an open subset

O1K;˛ � f.e; xI t
@/ W t@ 2 st�K.jxj/; t

@
� 0g(3.2.5)

of the boundary @YV1;K;" . We will assume, as we may, that O1K;˛ D pr�1V .jO1K;˛j/,
where jO1K;˛j is open in OL.jV1j/� jVj.

bK

bI tı

�bI C rKnI D c
�
K .t

ı ; r2/

r2

r1

Figure 5: Here K D I [ f1; 2g and tı lies on the boundary with t2 D 0 .
Hence, rKXI D .r1; r2/ , where r2 is the collar coordinate along the ray from
tı to bK , while tı D c�K .bI ; r/ for r D .tı/1 .

We now define a collar over O1K;˛ of width w˛ < 1
2
ı˛ (see (3.2.2)) as follows. Given

.t@; r/ 2 st�K.jxj/� Œ0; ı/; where .t@; r/� .bI ; 0/;

choose r@KXI and rKXI (both � 0) so that

t@ WD �@bI C r
@
KXI ; c�K .t

@; r/D �bI C rKXI ;(3.2.6)

where �@ WD 1�jr@K�1j and � WD 1�jrK�1j; see Figure 5. Then, with Cı as in (3.2.4),
define

(3.2.7) cYK;˛W O
1
K;˛ � Œ0; w˛/! YV1;K;";

..eAXI Ce
00
I ; x
00
I t@/; r/

.Cı/�1�id
7�����! ..eAXI ; x; r

@
KXI /; r/ 7! .eAXI ; x; rKXI /;

where rKXI 2 Œ0; ı/KXI is the function of rıKXI and ı is as defined in (3.2.6). In
particular, if jK X I j D 1 then rKXI has only one component, and so is the same as
the collar variable r , while tı D bI . Therefore, the collar is simply given by  :

(3.2.8) cYI[fj g;˛W O
1
I[fj g;˛ � Œ0; w˛/! YV1;I[fj g;";

..eAXI C eI ; xI bI /; r/ 7!  .eAXI ; x; r/:
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The next task is to extend the domain of this collar to

st.O1K;˛/ WD f.�H � .e; xI t / j .e; xI t / 2O˛; �H � t 2 st�K.jxj/g(3.2.9)

by rescaling as follows. Consider a tuple �H (as in (2.1.21)), where I �H ¨K , and
point tı 2 st�K.jxj/\ .fbI g � Œ0; ı�

jKXI j/ such that

�H � t
@
2 st�K.jxj/\ .fbI g � Œ0; ı�

jKXI j/;

and let �0H � with .�0H /i D 1 for i … H give the corresponding rescaling in the
coordinates �I � Œ0; ı˛�jKXI j . Thus, if c�.t@; r/ D .1 � jrKXI j/bI C rKXI as in
(3.2.6), we have

c�K .�H � t
@; r/D �0H � .�bI C rKXI /:(3.2.10)

Note that this rescaling in the boundary @KXH�K does not affect the collar variable r
along this part of the boundary. Then the following diagram commutes, where we write
e0I D .tI /

�1 � sI .x
0/ and y WD .eI ; xI tI / 2 @Y :

.eAXI ; y; rKXI /_

�0H �

��

�  
// .eAXICe

0
I ; x
0 D �.rKXI �eKXI ; x/I�bICrKXI /

_

�0H �

��

..�0H /
�1�eAXI ; y; �

0
H �rKXI /

�  
// ..�0H /

�1�.eAXICe
0
I /; x

0I�0H �.�bICrKXI //

because the rescaling on the left does not affect the image x0D�.rKXI �eKXI ; x/2VK
on the right. Therefore, because cYK;˛ is a composite of  �1 (at r D 0) with  ,
and because rescaling does not affect the collar variable r , the following diagram
commutes:

(3.2.11)

..eAXI C e
00
I ; x
00I t@/; r/

_

�H �

��

� cYK;˛
// .e0; x0I t 0/

_

�H �

���
.��1H � .eAXI C e

00
I /; x

00I�H � t
@/; r

� � c
Y
K;˛
// ..�H /

�1 � e0; x0; �H � t
0/

In other words, if we apply the collar and then rescale (a little) by �H , we get the
same result as rescaling by �H and then applying the collar. It follows that we can
unambiguously extend the domain of the local collar to st.O1K;˛/ by defining

(3.2.12) cYK;˛..eAXI C e
00
I ; x
00
I t /; r/ WD ��1H � c

Y
K;˛.�H � .e

0; x0; t 0//;
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where �H is chosen so that �H � .e0; x0; t 0/ lies in the domain of the map in (3.2.7).
Note that cYK;˛ is equivariant because the maps in (3.1.6) and (3.2.3) used to construct
it are equivariant.

Although we assumed in the above construction that K was maximal, so that W˛�V1IK
this condition was not used in any essential way in the above construction. Thus, for
any J such that I ¨ J � K , by using the map in (3.1.7) instead of (3.1.6) we can
define a collar cYJ;˛ over

(3.2.13) cYJ;˛W st.O1J;˛/� Œ0; w˛/! YV1;J;"1 ;

where

st.O1J;˛/ WD f.e; �JK.x/; t
@/ 2 @YV1;J;"1 j x 2 zVJK \W˛; .e; xI t

@/ 2 st.O1K;˛/g;

and st.O1K;˛/ is as defined in (3.2.9).

Further, we can restrict these collars to the corresponding subsets st.OJ;˛/ of @YV;J;"
for all I ¨ J �K , obtaining a set of locally defined collars of width w˛ . Note that this
collar still has width w˛ because we used the constant "I in (3.2.3) rather than "1I .
Hence, although " < "1 in general, when we restrict the domain of � in (3.2.3) to the
points in @YV;K;" the image of � lies in YV;K;" by condition (d0) in Definition 3.1.9.

We claim that these collars satisfy all the conditions in Proposition 2.1.4. In particular,
if I ¨H ¨K the domain of cYK;˛ contains the image of the collar cYH;˛ by (3.2.5).
They are compatible with projections and invariant under rescaling by construction.

The domains st.OJ;˛/ of these collars are not open in @YV;J;" because of the restriction
t 2 st�J .jxj/, and because the condition that .e; xI t@/ 2 st.OK;˛/ places certain extra
(but unimportant) restrictions on kprEKXI ek when t@ has been rescaled far from bI .
However, modulo these provisos, for each such J they consist of the full inverse image
in @YV;J;" of the open subset jO˛j WD jO1K;˛j of the “boundary” @jV1K j of jV1K j,

(3.2.14) jO˛j WD jO1K;˛j � @jV
1
K j WD

[
H¨K

jV1HK j �OL.jV1j/;

where O1K;˛ is as defined in (3.2.5).

Step 2 (construction of a global collar from a covering by local collars) We now
explain a method from [4, Proposition 3.42] that combines local collars

.c˛W U˛ � Œ0; w˛/! Y /1�˛�N
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defined over open subsets U˛ � @Y of the boundary of a manifold Y into a global
collar over @0Y of width w , where @0Y is any precompact subset of

S
˛ U˛ and

w <min˛ 12w˛ .

To this end, choose a partition of unity .�˛/˛ subordinate to the covering of @0Y by
the sets .U˛/˛ , and define

Y 0 WD Y [� .@
0Y � Œ�w; 0�/;

where � identifies @0Y � f0g with @0Y in the obvious way. We claim that there is a
homeomorphism

‰W .Y 0; @0Y � Œ�w; 0�/!

�
Y;
[
˛

c˛.U˛ � Œ0; 2w//
�
:

Granted this, we define the collar by

cY W @0Y � Œ0; w/! Y; .y; r/ 7!‰J .y; r �w/:

The homeomorphism ‰ is a composite

‰ D‰N ı � � � ı‰1

of homeomorphisms

‰`W Y
0

�
�1C

X
˛<`

�˛

�
! Y 0

�
�1C

X
˛�`

�˛

�
;

where for any function � W @0Y ! Œ0; 1� we define

Y 0.�1C �/ WD Y [� f.y; r/ j y 2 @
0Y; .�1C �.y//w � r � 0g:

To define ‰` , first extend the product structure of the external collar @Y � Œ�w; 0� via
the local collar c` to obtain an extended collar neighborhood

yc`W U` � Œ�w;w`/! Y 0:

Then define
‰`.yc`.y; r//D yc`.y; fy;`.r//;

where

fy;`W

��
�1C

X
˛<`

�˛.y/

�
w; 2w

�
!

��
�1C

X
˛�`

�˛.y/

�
w; 2w

�
is a homeomorphism that translates by �`.y/ if r �

P
˛<` �˛.y/w . This completes

the construction.
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Remark 3.2.2 If each local collar c˛ lifts a map pr�W .Y; @Y /! .Œ0; 1/; f0g/, then
the global collar does as well; ie we have

pr� ı c.y; r/D r:

This holds because each fy;` is a translation by �`.y/w on the relevant part of its
domain, where

P
` �`.y/ D 1. Further, if for some map prE W Y ! E we have

c˛.y; r/D prE .y/, then the global collar also satisfies cY .y; r/D prE .y/. ˘

Step 3 (completion of the proof) Once the cover and partition of unity are chosen,
the construction in Step 2 depends only on the ordering of the sets in the cover. Even
though we saw in Step 1 that the local covers satisfy all the compatibility conditions
required in Proposition 2.1.4, we will have to organize the construction rather carefully
in order to achieve this for the global collars.

Recall from the discussion of (1.2.7) that because the atlas K is assumed tame and
preshrunk and hence good, the subspace topology on jV1j (considered as a subset
of jKj) is metrizable, and so we may fix a metric on jV1j. Since the sets jVI j and jVJ j
have disjoint closures unless I � J or J � I, we may choose

ı0 > 0 smaller than half the distance between any two such sets.(3.2.15)

We next order the sets jW˛j1�˛�N of the cover of OL.V/ so that as ˛ increases the
cardinality jI˛j of the minimal set I in Lemma 3.1.7(i) increases. Thus, we assume
that there are numbers 0D n0 � n1 � n2 � � � � � n��1 DN such that

Nk�1 < ˛ �Nk D) jI˛j D k:

By (3.2.14), the sets .jO˛j/1�˛�N cover a neighborhood of the compact subset OL.jVj/
in jV1j. Further, by condition (ii) in Lemma 3.1.7 and our choice of Nk , if ˛ > Nk ,
the set jO˛j does not meet any jVI j with jI j � k . Hence, we may choose ı0 > ı1 > 0
so that for each k , the sets .jO˛j/1�˛�Nk cover the closed ı1–neighborhood

N ı1.k/ WDN ı1

� [
jI j�k;L2IK

jV ILj

�
�OL.jVj/

of the compact subset
S
jI j�k;L2IK jV IK j. By shrinking the sets O˛ to O0˛ , we may

then assume in addition that for some 0 < ı2 < ı1 we have

(3.2.16) .˛ > Nk/ D) jO0˛j \N ı2.k/D∅ for all k:
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For each k � � , choose a partition of unity .�k˛/1�˛�Nk for N ı2.k/ with respect to
the covering by .jO0˛j/1�˛�Nk such that

1� ˛ �Nk�1 D) �k˛ D �
k�1
˛ :(3.2.17)

Finally, choose w0 > 0 such that

2w0 <min
˛
w˛:(3.2.18)

Now define

@kYV;J;" D
[

1�˛�Nk

f.e; xI t / j .e; xI t / 2 st.O0J;˛/g;(3.2.19)

where st.O0J;˛/ is defined as in (3.2.13) but with O1K;˛ replaced by O1K;˛\�
�1
K .jO0˛j/.

Then, for each I ¨ J with jI j D k , we may use the local collars cYJ;˛ together with
the partition of unity on @kYV;J;" obtained by pulling back .�k˛/ to construct a collar

cYJ;k W @
kYV;J;" � Œ0; w

0
J /! YV;J;"

as in Step 2. Condition (3.2.17) implies that cY
J;k

agrees with cY
J;k�1

on their common
domain of definition. Hence, the collars fit together to give a well-defined collar

(3.2.20) cYJ W @
0YV;J;" � Œ0; w

0
J /! YV;J;"; where @0YV;J;" WD

[
k<jJ j

@kYV;J;":

Note that cYJ lifts c�J by Remark 3.2.2. Thus, it does have the form required by (2.1.15).

It remains to check that we can choose collar widths wJ � w0J so that the resulting
collars have all the required properties.

� The maps cYJ are equivariant, because the local collars are, and the partition of
unity is pulled back from jV1j.

� To see that the cYJ are compatible with projection to EAX� , suppose that I ¨ J has
jI j D k < jJ j. Then cYJ has the properties in (2.1.17) because all the local collars do.
Further, the points �EV .e; x/D .b�1I � e; xI bI / mentioned in (2.1.18) lie in @kYV;J;" .
Therefore, cYJ .�EV .e; x/; r/ is made by combining the local collars .cYJ;˛/˛�Nk . But
we saw in Step 1 that all these local collars satisfy (2.1.18) for EAXI . It follows that
the combined collar formed in Step 2 must also satisfy (2.1.18) for EAXI .

� Similarly, the fact that the relevant local collars that form cYJ are invariant under
rescaling as in (2.1.21) implies that cYJ also satisfies (2.1.21).
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� To prove that the pairs .cYJ ; wJ / are compatible with covering maps we need to
check two things:

(a) that their domains are large enough (ie that (2.1.19) holds for all I ¨H ¨J ), and

(b) that when H ¨ J, the collar cYH has a natural lift to YV;J;" .

Claim (b) again follows because the local collars used to form cYH (as well as the
partition of unity) can be lifted in this way. (This is just a consequence of equivariance.)
Claim (a) has two parts. The first claims that if .e; xI t /2 @0YV;J;" has x 2 zVIH \ zVHJ ,
where I ¨H ¨ J, then .e; �HJ .x/I t / is in the domain @0YV;H;" of cYH . To see this,
note that @0YV;J;" is the union over k of the sets @kYV;J;" of (3.2.19). But we have

@kYV;J;"\f.e; xI t / j x 2 zVIH \ zVHJ g D @
jH jYV;J;"\f.e; xI t / j x 2 zVIH \ zVHJ g

D f.e; xI t / j .e; �HK.x/I t / 2 @
jH jYV;H;g;

where the first equality holds by (3.2.16), while the second holds because the sets
st.O1J;˛/ are compatible with the covering maps �HJ by (3.2.13).

The second part of (a) concerns the choice of suitable widths wH � w0H for all
H 2 IK . Since the domains of the collars are by now fixed, we can choose each wH
independently: its choice depends only on the domains of the collars cYJ for J ©H.
Notice that by the definition of the set O1K;˛ in (3.2.5), it holds (with wH D 1

2
ı˛ for

example) for the original domains O1K;˛ of the local collars. Moreover, because ı2<ı0
(where ı0 is the separation distance in (3.2.15)), this property is not affected by the
shrinking from jO1K;˛j to jO0˛j in (3.2.16). Hence, it is easy to see that one can choose
suitable wH for the global collars.

� We must check that this collar restricts to any compatible shrinking .V 0; "0/@ .V; "/.
But this is immediate since the above construction depends only on the choice of
coordinate charts in (3.2.3), which restrict to .V 0; "0/ by the definition of compatibility,
and the choice of an appropriate partition of unity, which we can also restrict to V 0.

� Finally we must check that if K is oriented, the collar map cYJ preserves the natural
induced orientation on its domain and range. But this is clear from its construction.

This completes the proof of Lemma 3.2.1.

Corollary 3.2.3 Any reduction V 0 has a collar compatible shrinking .V; "/.

Proof By Definition 2.1.5, it suffices to construct a compatible .VJ ; "J / such that

(e) for all pairs I ¨ J we have "I � w2J , where wJ is the collar width for VJ .
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Without loss of generality, let us suppose that .V 0; "0/ is compatible, with collars cYJ
of widths w0J. As in the proof of Lemma 3.1.11 we work by downwards induction
on jJ j. Hence, at the kth stage, we assume that we have compatible .VkC1; "kC1/
such that condition (e) holds for all I ¨ J with jI j � k C 1, and aim to construct
compatible .Vk; "k; wkJ / so that (e) holds whenever jI j � k . As before we take
.V kJ ; "

k
J ; w

k
J / D .V kC1J ; "kC1J ; wkC1J / if jJ j � k C 1. The key point is this: if we

shrink the set .V kC1I ; "kC1I /, where jI j � k , by decreasing "kC1I and hence V kC1I

(because of condition (c) in Definition 3.1.1), then this does not decrease the collar width
cY
J;kC1

of any V kC1J with I ¨ J, since this change only affects points that either lie
in the boundary of YVkC1;J;"kC1 or are interior points with I.x/D fi j si .x/¤ 0g � I
that do not occur in im.cY

J;kC1
/ because of its construction. Hence, it makes sense

to choose "kI � "
kC1
I for the elements jI j D k so that condition (e) holds at level k ,

and then shrink V kC1I to a set V kI that satisfies (a)–(c). As usual, this can be done
independently for each I at level k . To complete the inductive step, we then make
appropriate choices for lower-level I as in Lemma 3.1.11 to obtain a compatible
shrinking .Vk; "k/ that satisfies (e) at levels � k . This completes the proof.

Appendix Rational Čech cohomology and homology

We briefly describe the properties of the (co)homology theories in [8] that are based on
the properties of Alexander–Spanier cochains. We do not need the full generality of this
theory because the space M D jM jH is locally compact and Hausdorff. Throughout
we assume that Y is locally compact and Hausdorff, with A� Y closed and U � Y
open, and take coefficients in Q. Further, we denote these theories by LH to distinguish
them from singular (co)cohomology.30

We need the following properties of the cohomology theory:

(a) [8, Theorem 3.21] If Y is a connected orientable n–dimensional manifold then
LH i .Y /D 0 unless i D n, in which case LHn.Y /DQ, ie LH� is like rational singular

cohomology with compact supports.

(b) [8, Section 1.2] If f W A! Y is proper, there is an induced map f �W LH i .Y /!

LH i .A/.

30In [8, Chapter 10] the theory we call LH� below is denoted by H�c to distinguish it from another
theory that does not concern us here.
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(c) [8, Section 1.3] If U �Y is open, there is an induced map f�W LH i .U /! LH i .Y /.
Further, if Y is as in (a) and U is an open n–disc, then f� is an isomorphism.

(d) [8, Theorem 1.6] If A� Y is closed then there is an exact sequence

� � � ! LH i .Y XA/! LH i .Y /! LH i .A/ ı
�! LH iC1.Y XA/! � � � ;(A.1)

ie the group LH i .A/ plays the role of the relative group H i .Y; Y XA/.

The dual homology theory developed in [8, Chapter 4] is denoted by H1� in [8,
Chapter 10] to emphasize that it is analogous to locally finite singular homology; we
shall call it LH1� . It follows from the universal coefficient theorem [8, Theorem 4.17]
that

LH1k .X/D Hom. LHk.X/IQ/:(A.2)

Further, because Y is locally compact and Hausdorff, it follows from the uniqueness
property for LH�c stated in [8, Section 6.7] that the dual theory LH1

k
is isomorphic to

rational Borel–Moore homology.

As shown by the following, the functorial properties of LH1� are different from the
usual singular theory.

(a0) If Y is a connected orientable n–manifold, then LH1i .Y / D 0 unless i D n, in
which case LH1n .Y /DQ; more generally, any orientable n–manifold has a fundamental
class

�Y 2 LH
1
n .Y /:(A.3)

(b0) [8, Section 4.6] If U � Y is open, there is an induced restriction

�Y;U W LH
1
i .Y /!

LH1i .U /I(A.4)

moreover, for U1 � U2 � Y we have �Y;U1 D �U2;U1 ı �Y;U2 .

(c0) [8, Section 4.6] If f W A! Y is continuous and proper, then there is an induced
pushforward f�W LH1i .A/! LH1i .Y /; moreover, given a proper inclusion �W A! Y,
there is a functorial long exact sequence

(A.5) � � � ! LH1i .A/
��
�! LH1i .Y /

�Y;YXA
����! LH1i .Y XA/

@
�! LH1i�1.A/! � � � :
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(d0) [8, Section 4.3(3c)] If f W A!Y is proper and U is open in Y, then the following
diagram commutes:

LH1i .A/
f�

//

�
A;A\f�1.U/

��

LH1i .Y /

�Y;U
��

LH1i .A\f
�1.U //

f�
// LH1i .U /

(e0) [8, Section 4.9(6)] If Y D U [ V, where U and V are open, then there is an
exact Mayer–Vietoris sequence of the form

� � � ! LH1iC1.U \V /!
LH1i .Y /!

LH1i .U /˚
LH1i .V /!

LH1i .U \V /! � � � :

In particular, if U is the disjoint union of a finite number of sets of Ui , then

LH1� .U /Š˚i
LH1� .Ui /:

(f0) [8, page 334] If U � Y is open while A� Y is closed, there is a cap product

\W LH1pCq.Y XA/˝
LHp.Y XU/! LH c

q .Y; U [A/:(A.6)

This takes values in compactly supported Čech homology, a theory whose functorial
properties are analogous to those of the usual singular homology. In particular, if the
triple .U [AIU;A/ is excisive for LH c (ie LH c

q .A; U \A/Š
LH c
q .U [A;U /), then there

is a commutative diagram

(A.7)

LH1pCqC1.Y XA/˝
LHp.Y XU/

@˝.�1/p��

��

\
// LH c

qC1.Y; U [A/

ı
��

LH1pCq.A/˝
LHp.AXU/

\
// LH c

q .A; U \A/

Note that the above diagram exists when Y is locally compact, A is closed and Y XU is
compact. To see this, choose a nested sequence Nk of precompact open neighborhoods
of Y XU in Y with

Y XU D
\
k

Nk; U D
[
k

.Y XNk/:

Since by definition

LH c
� .Y; U [A/D lim

 ��
LH c
� .Y; .Y XNk/[A/; LH c

� .A; U \A/D lim
 ��
LH c
� .A;AXNk/;
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and the triple of closed sets .Y; Y XNk; A/ is excisive by [8, Corollary 9.5], it follows
that .Y; Y XU;A/ is excisive, as required.

(g0) [8, Exercise 5, page 272] If X is Hausdorff and X XA is a precompact open
subset of X, then LH1� .X XA/D LH

c
� .X;A/.

(h0) This homology is taut; ie if X � Y is closed, where Y is locally compact and
Hausdorff, and NkC1 �Nk is a nested sequence of closed neighborhoods of X in Y,
then (by [8, Theorem 6.4])

LH1d .X/D lim
 ��
. LH1d .Nk//:

List of symbols

I Related to atlases

Theorem A K , X, EA , �A , SM W M !EA

Theorem B ŒX�vir
K

Section 1.2 K , A, IK
for I 2 IK , KI D .UI ; EI ; �I ; sI ;  I /, FI �X
for I � J , zUIJ � UJ , UIJ � UI , �IJ W zUIJ ! UIJ

(1.3.4) 
 jJ ; �A

(1.2.3) �Ex
(1.3.2) "

(1.3.1) EI;" for I � A
(1.2.5) K0 @ K , U 0 @ U D .UI /I2IK
Section 3, beginning F D .FI /I2IK
(1.2.6) ff BK and EK

(1.2.7) jKj WD jBKj, �KW UI ! jKj
(1.2.8) ff reduction V D .VI /, GI , BKjV
(1.3.3) VIJ � VI , zVIJ � VJ and �KW VI ! jKj

II Related to wnb manifolds

Definition 1.3.1 .G ; ƒG /, jG jH , �H
G

Proposition 1.3.3 .M ; ƒM /, .M;ƒ/, MI , MIJ , �MIJ , �IJ , SJ , S , SM

Theorem 1.3.4 M D j �M jH , j �M j, j �MHj
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III Related to the manifolds Y

Section 3.1, beginning t 2�J , @JXI�J , �IJ , t � e , �
(2.1.2) I.x/, I.t/
(2.1.1) .e; xI t / 2 YJ D YU;J; "

(2.1.7) YV;J; "

(2.1.3) prE , prU , pr�
(2.1.5) @JXIYJ

(2.1.6) bH 2�H

Corollary 2.1.2 �EU

(2.1.8) �EV

IV Related to the collar

(2.1.10) c�J
(2.1.15) cYJ W @

0YV;J; " � Œ0; wj /! YV;J; "

(2.1.13) st�J .jxj/
(2.1.11) @VJ

(2.2.6) Fr, cl
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