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E; structures and derived Koszul duality in string topology

ANDREW J] BLUMBERG
MICHAEL A MANDELL

We construct an equivalence of E, algebras between two models for the Thom
spectrum of the free loop space that are related by derived Koszul duality. To do
this, we describe the functoriality and invariance properties of topological Hochschild
cohomology.

55P50; 16D90, 16E40

Introduction

Chas and Sullivan started the subject of string topology with their observation that
the homology of the free loop space LM of a closed oriented manifold M admits a
Gerstenhaber structure that can be defined geometrically in terms of natural operations
on loops and intersection of chains on the manifold. Contemporaneously, the solu-
tion to Deligne’s Hochschild cohomology conjecture (by Kontsevich—Soibelman [14],
McClure—Smith [23], Tamarkin [30], Voronov [31], Berger-Fresse [3], and perhaps
others) established a Gerstenhaber algebra structure on the Hochschild cohomology of
a ring or differential graded algebra or even an A ring spectrum. Cohen—Jones [8],
in the course of giving a homotopical interpretation of the string topology product,
connected these two ideas by relating a certain Thom spectrum of LM with the
topological Hochschild cohomology THC(DM) of the Spanier—Whitehead dual DM.
The homology of THC(DM) is canonically isomorphic to the Hochschild cohomology
of the cochain algebra C*(M); Cohen—Jones [8] in particular produces a shifted
isomorphism from the homology of the free loop space to the homology of THC(DM)
that takes the string topology product to the cup product in Hochschild cohomology.
Subsequent work of Malm [20] and Félix-Menichi—-Thomas [10] give an isomorphism
of Gerstenhaber algebras.

The Félix—Menichi—-Thomas work derives from work of Keller [13] (see also [12])
building on unpublished work of Buchweitz. Keller [12] shows that (under mild
hypotheses) the Hochschild cochains of Koszul dual dg algebras are equivalent as E»
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algebras (or, more specifically, B, algebras; compare Gerstenhaber—Voronov [11] and
Young [32]). When M is simply connected, the derived Koszul dual of C*M is the
cobar construction 2CyxM, which is the Adams—Hilton model for the chains on the
based loop space Cx(2M); Félix—Menichi—-Thomas [10] constructs an isomorphism
of Gerstenhaber algebras

HH*(C*M)= HH*(QC«M).

Since HH*(Q2C«M) is isomorphic to the homology of THC(XPQ2M), in spectral
models, we should look for an equivalence of E; ring spectra between THC(DM)
and THC(ZQ2M). Our main result is the following theorem, proved in Section 5.

Theorem A Let X be a simply connected finite cell complex; then THC(DX)) and
THC(ZFQX) are weakly equivalent as E ring spectra.

Beyond the technical role of HH*(QCy«M) in the comparison of Gerstenhaber algebra
structures, the spectral analogue THC(XS°2M) in the previous theorem also provides
a connection between string topology and topological field theory, as explained in
Blumberg—Cohen—Teleman [4]. Furthermore, [4] sketches a relationship between
THC(XS°2M) and the wrapped Fukaya category of 7'* M, motivated by the work of
Abbondandolo—-Schwarz [1] and Abouzaid [2]. (See also Seidel [28] for discussion of
the significance of Hochschild cohomology of Fukaya categories.) Indeed, the previous
theorem (and the machinery we develop to prove it) fills in results stated in [4] but
deferred to a future paper.

In the discussion above and in the statement of Theorem A, we are using THC to
denote a derived version of the topological Hochschild cohomology spectrum. What
this means is slightly complicated by the fact that the standard cosimplicial construction
is not functorial. In the setting of differential graded categories, Keller [13; 12] made
sense of this for Hochschild cochains and proved limited functoriality and invariance
results for Hochschild cohomology. Part of the purpose of this paper is to provide a
spectral version of this theory.

For the E; structure, we use the McClure—Smith theory of [23; 24], which establishes
the action of a specific E, operad D, on the totalization (Tot) of the topological
Hochschild construction of a strictly associative ring spectrum in any modern category
of spectra (such as symmetric spectra, orthogonal spectra, or EKMM S-modules). We
denote this point-set topological Hochschild cohomology construction as CC in the
following theorem, proved in Section 6.
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Theorem B Let . denote either symmetric spectra, orthogonal spectra, or EKMM
S—modules; let .’[Ass] be the category of associative ring spectra (in . ); and let
Ho [ Ass] denote its homotopy category. Let Ho [ Ass]™ denote the subcategory of
Ho .| Ass] where the maps are isomorphisms. There is a contravariant functor THC
from Ho .| Ass]~ to the homotopy category of E, ring spectra together with canonical
isomorphisms THC(R) — CC(R) for those R whose underlying objects of . are
fibrant and cofibrant relative to the unit.

The correct generality for THC is the setting of small spectral categories, which gener-
alize associative ring spectra. In Section 3, we explain that the McClure—Smith theory
extends to construct an E5 structure on the Tot of the topological Hochschild—Mitchell
construction CC(%) for a small spectral category %. The natural weak equivalences
for spectral categories are the Dwyer—Kan equivalences, or DK—equivalences. A
spectral functor ¢: ¥ — € is a DK—embedding if it induces a weak equivalence
D(a,b) — E(Pp(a),p(b)) for all objects a,b of Z; a DK—equivalence is a DK~
embedding that induces an equivalence of homotopy categories 7o % — mwo%6.

The following theorem, proved in Section 6, is the natural generalization of Theorem B
to this setting; the theorem roughly says that THC is functorial in DK—embeddings.
In it, we use the condition for small spectral categories analogous to the condition we
used for associative ring spectra in Theorem B: We say that a small spectral category €
is pointwise relatively cofibrant if the mapping spectra €’(c, ¢) are cofibrant relative to
the unit for all objects ¢ in € and the mapping spectra € (c, d) are cofibrant for all
pairs of objects ¢ # d in %. Similarly, we say a small spectral category is pointwise
fibrant if each mapping spectrum % (c, d) is fibrant.

Theorem C Let .”%at denote the category of small spectral categories, and let
Ho(.%at) denote the category obtained by formally inverting the DK—equivalences.
Let Ho(.#%at)PX be the subcategory of Ho(.# %at) generated by the DK—embeddings.
There is a contravariant functor THC from Ho(.#%at)PX to the homotopy category
of E, ring spectra together with canonical isomorphisms THC(%) — CC(¥) for
those € which are pointwise relatively cofibrant and pointwise fibrant.

For any small spectral category %, we can construct a functorial “thick closure”
Perf(%¢’) [7, Section 5] (after fixing a cardinal bound); roughly speaking, this is the
full subcategory of spectral presheaves on ¥ generated by the Yoneda image of
under finite homotopy colimits and retracts. A spectral functor ¢: 2 — % is a Morita
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equivalence when the induced functor Perf(%’) — Perf(Z) is a DK—equivalence. One
reason for interest in the Morita equivalences is that the Bousfield localization of
the category of small spectral categories at the Morita equivalences is a model for
the co—category of small stable idempotent-complete co—categories; see Blumberg—
Gepner—Tabuada [5, Remark 4.24]. The following theorem, proved in Section 5, shows
that THC descends to a functor on a subcategory of this localization.

Theorem D If ¢: 9 — % is a Morita equivalence, then THC(¢): THC(¥¢)—THC(2)
is an isomorphism in the homotopy category of E, ring spectra.

Theorems B and D describe invariance properties of THC analogous to the well-
established invariance properties of THH. However, THC in fact has more general
invariance properties. For example, if & is a small spectral subcategory of the cate-
gory of cofibrant-fibrant right ¥—modules that factors the Yoneda embedding, then
THC(%) — THC(Z) is an isomorphism in the homotopy category of E, ring spectra
(see Example 5.3). The most general expression of this invariance we know can be
expressed in terms of the double centralizer condition, which is also a generalization
of derived Koszul duality.

Let ¥ and 2 be small spectral categories and let .#Z be a (%, 2)-bimodule (a
commuting left ¥—module and right Z—module structure; see Definition 1.8 or 2.5).
Then there are canonical maps in the categories of homotopical (%, ¢)—bimodules
and homotopical (2, Z)-bimodules, respectively,

% — RHomgow (A, #) and 2 — RHomg (A, #).

A standard definition is that ./ satisfies the double centralizer condition when both
these maps are weak equivalences. Working backward from this terminology, we say
that ./ satisfies the single centralizer condition for € when the first map (out of %)
is a weak equivalence and the single centralizer condition for 2 when the second map
(out of 2) is a weak equivalence. The following is the spectral version of the main
theorem of Keller [12]; we prove it in Section 5.

Theorem E Let € and & be small spectral categories and .# a (¢, ¥)—bimodule
that satisfies the single centralizer condition for & ; then there is a canonical map in the
homotopy category of E, ring spectra THC(%') — THC(Z). If .# satisfies the double
centralizer condition, then THC(%) — THC(Z) is an isomorphism in the homotopy
category of E, ring spectra.
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We deduce Theorem A in Section 5 as an immediate corollary of the previous theorem.
Dwyer—Greenlees—Iyengar [9, Section 4.22] relates the double centralizer condition
for the sphere spectrum S as a (XX, DX)-bimodule to the Eilenberg-Moore
spectral sequence; in Section 3 of [6], we describe nice models of DX and ZFQX
and explicitly prove the double centralizer condition when X is a simply connected
finite cell complex for a bimodule whose underlying spectrum is equivalent to S.

Theorems C and D have an oco—categorical extension. Specifically, we prove the
following theorem in Section 6.

Theorem F Let Gat™ denote the co—category of small stable idempotent-complete
oo—categories and exact functors. Then THC extends to a functor from the subcategory
of ¢at™ where the morphisms are fully faithful inclusions to the oo—category of E,
ring spectra.

Conventions

In this paper, . denotes either the category of symmetric spectra (of topological
spaces), or the category of orthogonal spectra, or the category of EKMM S-modules.
For brevity we call . the category of spectra and objects of . spectra. We regard
the stable category as the homotopy category obtained from .# be formally inverting
the weak equivalences. (The words “spectrum” and “spectra” when used in this paper
should not be construed as referring to any other notion or category.)
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1 Bi-indexed spectra and the tensor-Hom adjunctions

The purpose of this section is to establish technical foundations for proving tensor-Hom
adjunctions for modules over small spectral categories. To do this, we work here
with the theory of “bi-indexed” spectra, which are like spectrally enriched directed
graphs but where the source and target vertices can be in different sets, or like spectra
parametrized over a discrete space of the form A x B.
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Definition 1.1 For sets A and B, an (A, B)—spectrum 2" consists of a choice of
spectrum % (a,b) for each object (a,b) of A x B; we call (a,b) a bi-index. A
morphism of (A, B)—spectra 2~ — % consists of a map of spectra 2 (a,b) — Y(a, b)
for all bi-indexes (a, b) € Ax B. A bi-indexed spectrum 2 is an (A, B)—spectrum for
some A and B; we define the source of 2" (denoted by S(Z7)) to be B and the target
of Z tobe A (denotedby T(Z)). If S(X)=S(Y) and T(X)=T(Y), then the set of
maps of bi-indexed spectra from 2" to % is the set of maps of (T (Z"), S(Z"))—spectra
from 2 to % ; otherwise, it is empty.

For a bi-indexed spectrum 2", let 2 °P denote the bi-indexed spectrum with

e S(Z?)=T(Z),

e T(Z°P)=S8(Z),and

o ZP(s,t)=Z(¢t,s) forall (¢,5) e T(Z)xS(Z).
We have written and typically write generic bi-indexed spectra with the target variable
first and the source variable second; we refer to this as the 7'S—indexing convention.
For the bi-indexed spectra associated to small spectral categories (see Definition 2.1),
it is more usual to use the S T—indexing convention, writing the source variable first
and the target variable second, and we follow this convention for spectral categories

and their bimodules. When it is unclear from the context which indexing is used, we
add a superscript st or ts, SO

25 a,b) = 215 (b, a).

We emphasize the distinction between (—)*? and (—)°P: (—)*? just reverses the notation
of source and target, while (—)°P reverses the notion of source and target.

As defined above, the category of bi-indexed spectra only admits maps between objects
whose source sets agree and target sets agree, so it is sometimes useful to alter these sets.

Definition 1.2 Given functions f: A’ — A, g: B'— B and an (A4, B)-spectrum 2,
define the restriction of 2" along (f. g) to be the (A", B)-spectrum Ry, 2" where

(Rrg 2)(a',b") = 2 (f(a'),g()) forall (a’,b) e A" x B

We define the target restriction of 2 along f and the source restriction of 2 along g
to be the (A", B)—spectrum Tr 2" and (A, B')—spectrum Sy 2" where

(T 2)(a',b) = 2'(f(a'),b) and (SgZ)(a,b') =2 (a,g(D))
for all (a’,b) € A’ x B and (a,b’) € Ax B'.
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E, structures and derived Koszul duality in string topology 245

Since bi-indexed spectra are determined by their constituent spectra on each bi-index,
we have

TgSy = Rype = STy,
and for f/: A” - A" and ¢’: B” — B/,
SpiS = Stoss R(prg)Rpg = Rfofrgogr, and TgrTg = Tgogr.

We could use the preceding definition to define a more sophisticated category of bi-
indexed sets incorporating nonidentity maps on source and target sets, but the advantage
of the current approach is that this category of bi-indexed spectra has a partial monoidal
structure, constructed as follows.

Construction 1.3 For 2" an (A, B)—spectrum and % a (B, C)—spectrum, define
Z @Y to be the (A, C)—spectrum

(2 @%)(a,c)=\pep Z(a,b) N (b,c).

For & a (C, D)—spectrum, the associativity isomorphism for the smash product and
the universal property of coproduct induce an associativity isomorphism

a2 (ZXRWNQRL =X QW Q).

For aset A, let S4 be the (A, A)—spectrum where

k ifa1 75 as,

S(ai.az) = S ifa; =a

The left and right unit isomorphism for the smash product induce left and right unit
isomorphisms

" SA® 2 =2 and 1y 2 QSp= 4.
When viewing (A, B)-spectra as spectra parametrized over the discrete set A x B, the
previous construction gives a point-set version of the May—Sigurdsson composition ©

of [22, Construction 17.1.3]. (For the construction of the right adjoints <1 and >, ibid,
see Construction 1.5 below.)

The coherence of associativity and unit isomorphisms for spectra then imply the
following proposition.
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Proposition 1.4 The category of bi-indexed spectra is a partial monoidal category
under ®: the object ' ® % is defined when T (%) = S(X"), and whenever defined,
the following associativity

N RQAE)YRYW RZ)
(P R2X)RY)Z WX RV QL))

378 z@/@m /Mm%,@/,ff

W RNNZXLRIUNRY —— W QUL RY)RZ)
Ay, X QW%

and unit
Qo Rz
(2 @Sp) @Y — 87 . 9 @(Sp@¥)

k\/ﬁy

XY
diagrams commute.

The tensor product has two partially defined right adjoints and we also construct a third
closely related functor.

Construction 1.5 If 2 is an (A4, B)—spectrum, % is an (A, C)-spectrum, and %
is a (D, B)-spectrum, we define the (B, C)-spectrum Homé(% , %) as

(Homz(%, %)) (b,c) = 1_[ F(%Z (a,b), % (a,c))
acA
and the (D, A)-spectrum Hom" (2", &) as
(Hom" (%, £))(d,a) = 1_[ F(Z (a,b), Z(d,b))
beB

(where F denotes the function spectrum construction, adjoint to the smash product).
For 2" an (A, B)-spectrum, we define the spectrum Hom?(2, 27) as

Hom”(2.2"y= [] F(Z(a.b). 2"(a.b)).
(a,b)eAxB

We note that Hom? provides a partial spectral enrichment of bi-indexed spectra: when
Hom? (%, 2”) is defined, maps of spectra from S into Hom? (2", 2"') are canonically
in one-to-one correspondence with maps of bi-indexed spectra from 2" to 27, and
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when Hom? (2, 27) is not defined, the set of maps of bi-indexed spectra from 2~
to 2" is empty. An easy check of definitions shows the following adjunction property.

Proposition 1.6 Let 2 be an (A, B)—spectrum, % a (B, C)—spectrum, and %
an (A, C)—spectrum. Then there are canonical isomorphisms of spectra

Hom? (2", Hom” (%, %)) = Hom? (2" ® #, %) = Hom® (%, Hom‘ (2, %)).

If S(Z7)=T(Z) = O for some set O, then 2 is precisely a small spectral O—
graph (with the reverse convention on the order of variables, ie with the T'S—indexing
convention). The tensor product above restricts to a monoidal product on O-graphs
and it is well known that the category of small spectral O—categories is isomorphic
to the category of monoids for this monoidal product (see [26, Section 6.2]; com-
pare [19, Section II.7]). We say more about this in Section 2. Partly to avoid confusion
with the indexing conventions, we will call the monoids under this convention bi-indexed
ring spectra.

Definition 1.7 A bi-indexed ring spectrum is a monoid for ® in bi-indexed spectra.
For a bi-indexed ring spectrum 2, the object set O(Z) is S(Z)=T(Z).

Note that with this definition, the natural morphisms for bi-indexed ring spectra only
allow maps between small spectral categories with the same object sets. Instead of
defining the analogue of spectral functors directly, it is more convenient to work with
bimodules.

Definition 1.8 Let 2" and % be bi-indexed ring spectra. An (2, %#')—bimodule
consists of a bi-indexed spectrum .# together with a left .2"—object structure (for ®)
and a commuting right % —object structure. We write .#od 4 » for the category
of (Z, % )-bimodules.

Commuting here means that for the left object structure &: 2" ® .# — .4 and the
right object structure v: .# ® ¥ — ., the diagram

X, MY

(ZRMRSYW ————— X Q(MRSY)

E®idgl lids{@v

MY QM

S A
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commutes. The left and right object structures require (and are defined by the require-
ment that) the associativity

Qo x.u ®F

(X @)Y M EET (X @ M) 22 v

M%@id/ﬂl lg

2 QM M

idz nwa

MRI)VQW 222 W QW) 1Y, yow

U®id@l lv

MY - M
and unit
Sowry ® 4 2 2 @ .4 M RS0 L2 W
\ lé \ lv
n* n"
M M

diagrams commute, where ©4- and pua denote the multiplications and 12 and na
denote the units for the monoid structures on 2~ and %/

Given a function ¢: O(%#') — O(Z"), we getan (O(Z"), O(¥'))—spectrum Sy X =
Z (—, ¢(—)), which has a canonical left 2 —object structure, given by the monoid
structure of 2". We explain in Section 2 why the following definition captures the
correct notion of spectral functor.

Definition 1.9 Let 2" and % be bi-indexed ring spectra. A spectral functor ¢p: ¥ — 2
consists of a function ¢: O(#') - O(Z") and an (£, %')-bimodule structure on the
left 2 —object S 2" = X' (—, ¢ (—)).

The Hochschild—Mitchell construction requires a version of Hom? “over” a pair of
small spectral categories and the adjunction of Proposition 1.6 suggests the utility of
analogues of ®, Hom?!, and Hom” over small spectral categories.

Construction 1.10 Let 2, %, and & be bi-indexed ring spectra. If .# is an
(2, %)-bimodule and .4 is a (¥, Z)-bimodule, then we define the (2, Z)-
bimodule .#Z ®2 ./ to be the usual coequalizer

MIY QN ZMIN — MRy N
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of the left and right % —actions. If ./# is an (£, % )-bimodule and &7 is an (£, Z&)-
bimodule, we define the (%, Z°)-bimodule Homg{- (A, P) to be the usual equalizer

Hom', (#, ) — Hom‘ (4, ) = Hom (2 @ 4, P),

where one map is induced by the left 2 —action on .# and the other map is the
composite of the left 2 —action on & and the map

Hom!(.#, ) — Hom" (2 ® M4, 2 ® P)

adjoint to the map
X @ . # QHom (M, P) > X @ P

that applies the counit of the .#Z ® (—), Hom(.#, —) adjunction. If .#Z isan (Z, % )-
bimodule and 2 is a (%, % )-bimodule, then we define the (2, 2 )-bimodule
Hom, (.#, 2) to be the usual equalizer

Hom, (A4, 2) — Hom' (A4, 2) = Hom" (# ® ¥, 2)

using the analogous pair of maps for Hom” . If .# is an (2", %')-bimodule and .#’
is an (2, %')-bimodule, we define the spectrum Homb%@(/// , /") to be the usual
equalizer

Hom®,., (A . ") — Hom? (.t , .4') = Hom® (2 @ M @ Y. M)

with the analogous pair of maps for Hom? .

An easy check shows that the spectrum of maps Hom’jg{,g, provides a spectral enrichment
of the category of (2, #')-bimodules.

Proposition 1.6 now generalizes to the following proposition. The proof is again purely
formal.

Proposition 1.11 Let 2, %, and Z be bi-indexed ring spectra. Let .# be an
(%, %)-bimodule, let A" be a (¥, Z)-bimodule, and let & be an (X, Z)-bimodule.
Then there are canonical isomorphisms of spectra

Hom?, , (/. Hom'y (N, #)) = Hom,. , (M @ N, P)
= Hom?, , (4, Hom’, (4, 2)).

We note that @ and ® commute with target restriction (Definition 1.2) on the first
variable and source restriction on the second variable; Hom! and Homgg- convert
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source restriction on the first variable to target restriction and preserve source restriction
on the second variable. Likewise, Hom" and Hom, convert target restriction on the
first variable to source restriction and preserve target restriction on the second variable.

The balanced tensor product produces the composition of spectral functors for the
definition of spectral functors (Definition 1.9) above. Given a spectral functor ¢
from % to 2" and a spectral functor 6 from 2 to %/, using the (2, %')-bimodule
structure on Sy 2 inherent in ¢, we can make sense of the tensor product over % on
the right and construct a map of left 2 —objects

S X Qw So% — Spop X

This map is an isomorphism because ®2 commutes with source restriction in the
second variable; intrinsically, for every fixed x € O(%Z") and z € O(%), the diagram

[ 2G00DAZ (o, yDAZ(31,0z) = I Z(x,0(0))AZ(y,0(2))
Y0,Y1€0(%) yeO (%)
— 2(x,¢(0(2)))

is a split coequalizer. Using the isomorphism to give Sgog9 2" aright 2Z’—action makes
it an (£, Z)-bimodule. We define the composite of the spectral functors ¢ o 6 to
consist of the object function ¢ o § and this bimodule structure on Sy 2.

2 Small spectral categories and the tensor-Hom adjunctions

This section translates the work from the previous section to the framework of small
spectral categories. When working in this framework, we use the S7T—indexing con-
vention as this is standard in this context. We begin by reviewing the definitions.

Definition 2.1 A small spectral category is a small category enriched over spectra. It
consists of

(i) a set of objects O(%),
(i) a spectrum %'(a, b) for each pair of objects a, b € O(%),
(iii) a unit map S — % (a, a) for each object a € O(%’), and
(iv) a composition map € (b,c) A €(a,b) — €(a,c) for each triple of objects
a,b,ce 0(%),

satisfying the usual associativity and unit properties. A strict morphism € — ¢’
of small spectral categories with the same object set consists of a map of spectra
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¢ (a,b) — %' (a, b) for every pair of objects a,b € O(%) = O(%”) that commutes
with the unit and composition maps; there are no strict morphisms between small
spectral categories with different object sets.

We have inverse functors between the category of bi-indexed ring spectra and small
spectral categories (with strict morphisms) defined as follows. For a bi-indexed ring
spectrum 2, let C2- be the small spectral category defined by setting

(i) the object set O(Cq) = O(Z),
(i) the mapping spectra Cy (a,b) = 2" (a,b) = 2*5(b,a) forall a,b € O(Cy),

(iii) the unit S — Cg (a,a) to be the map induced by the monoid structure unit
So(z) — Z forall a € O(Cy), and

(iv) the composition
Ca(b,c)nCyx(a,b) = Cy(a,c)

to be the map 2 (c, b)) A2 (b,a) — Z (c, a) that appears as a wedge summand
in the monoid structure multiplication 2" ® 2" — 2.

Similarly, for a small spectral category %, we define a bi-indexed ring spectrum By
with the same object set by taking By(a,b) = %(b,a) and the obvious unit and
multiplication. These assignments are evidently functorial.

Proposition 2.2 The functors C and B above are inverse isomorphisms of categories
between the category of bi-indexed ring spectra and the category of small spectral
categories (with strict morphisms).

The more usual category of small spectral categories has morphisms given by spectral
functors, which are simply the spectrally enriched functors. The following theorem
relates this notion to Definition 1.9. We prove it at the end of the section after reviewing
more of the theory of small spectral categories and their modules.

Theorem 2.3 There is a canonical bijection between the set of spectral functors of
small spectral categories 9 — % and the set of spectral functors of the corresponding
bi-indexed ring spectra. This bijection is compatible with composition.

Left and right modules are basic notions for small spectral categories that do not
precisely correspond to left and right objects for bi-indexed ring spectra.
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Definition 2.4 Let € be a small spectral category. The (spectrally enriched) category
AMody of left €—modules is the (spectrally enriched) category of spectrally enriched
functors from % to spectra; the (spectrally enriched) category .Zodyo of right ¢—
modules is the (spectrally enriched) category of spectrally enriched contravariant
functors from % to spectra.

For any one-point set {a}, the category of left ¥—modules is isomorphic to the full
subcategory category of left By—objects with source set {a} and is isomorphic as a
spectrally enriched category to the category of (B¢, S¢4})-bimodules. Likewise, the
category of right ¥—modules is isomorphic to the full subcategory category of right
Bs—objects with target set {a} and is isomorphic as a spectrally enriched category to
the category of (S¢4}, By)—bimodules. The category of left By—objects is essentially
the category of (singly) indexed left Bx—modules: a left By—object .# consists of a
left ¥—module .#5! (a,—) for each a in S(A).

Bimodules for small spectral categories do correspond precisely with bimodules for
bi-indexed ring spectra. In the context of bimodules of small spectral categories, just
as in the context of bi-indexed spectra, we take the convention that the category on the
left has the left action and the category on the right has the right action. However, as
always in the context of small spectral category concepts, we follow the S 7—indexing
convention implicit in the definition below that the righthand variable is the covariant
one while the lefthand variable is the contravariant one.

Definition 2.5 Let ¢ and Z be small spectral categories. Let 2°P A € be the small
spectral category with objects O(Z°P A €) = O(Z) x O(%), mapping spectra

(2P ANE)(d,c),(d',c))y=2(d d)AE(c,c),

unit induced by the units of ¥ and Z (and the canonical isomorphism S A'S = S),
and composition induced by the composition on & (performed backwards) and the
composition on %:

(ZPAE)N(@', ). (@". ") NDPAE)(d. o), (d. )
=(2(d", dYANE(c', ) A(D(d'.d) NE(c. "))
= (P(d',d)AD(d",d") A(E(c ") AE (e, "))
— P(d".d)NEC(c,c") = (2 AE)((d.c),(d",c")).

The (spectrally enriched) category .Zody, of (¢, Z)—bimodules is the (spectrally
enriched) category of spectrally enriched functors from Z°P A € to spectra.
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Given a (%, )-bimodule .%, we write Bz for the (O(%), O(2))-spectrum
Bz(c,d)=B(d,c)=F(d,c)

for (¢,d) € O(¥) x O(2). This has a canonical (By, By)-bimodule structure with
action maps induced by

By(c,dYABz(c',d)=€(c",c)ANF(d,c')— F(d,c)=Bz(c,d)

and
Bz(c,d)ABgy(d,d')y=F(d,c)A2(d’,d)— F(d',c)= Bz(c,d).

This is evidently functorial, and indeed extends canonically to a spectrally enriched func-
tor from the category of (%, Z)-bimodules to the category of (B¢, By)-bimodules
(in bi-indexed spectra).

Proposition 2.6 The spectrally enriched functor B from (¢, %)-bimodules to
(B¢, Bg)—bimodules (in bi-indexed spectra) is an isomorphism of spectrally enriched
categories.

We write the inverse isomorphism as C; evidently, C 4(c,d) = .#(d,c) for all
(c,d) € O(F)x 0(2).

In light of the previous proposition, for (%, Z)-bimodules .# and ¥, we write
Hom%’@(ﬁ ,¥9) for the spectrum of bimodule maps from .# to ¢ and we more
generally define ®, ®, Hom?, Homfg, Hom", and Hom?, in terms of the inverse
isomorphisms B and C (for spectral categories/bi-indexed ring spectra and bimodules).
In explicit terms, we have:

Proposition 2.7 Let o/, A, and € be small spectral categories.
(i) Foran (g, %)-bimodule % and a (%, ¢ )—bimodule ¥, the (<, €')—bimodule
F ®%9Y = Cp,eB, Satisfies
(F ®9)(c.a) = Vpeos) F (b.a) NG (c.,b),
and ¥ @29 = Cp, B By is the coequalizer
FRQBRYI I FRY—>FRpY.
(ii) Foran (&7, 9)—-bimodule .% and an (/' , € )—bimodule ¥, the (A, €' )—-bimodule
Hom‘(#,9) = Cy

om’(B.,Bey) satisfies

(Home(ﬂ,g))(c,b)= l_[ F(%(b,a),9(c,a)),
acO()
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l _ . .
and Hom ,(#,9) = CHomeBm/ (B.B) 18 the equalizer

Hom!,(#,%) — Hom*(#,%) = Hom (& ® .7 .9).
(iii) Foran (<, #)—bimodule .# and a (¢, 98)-bimodule ¥, the (¢ , /') -bimodule
Hom' (% ,9) = Cyom’ (B»,B) Satisfies
(Hom"(Z.9))(a.c)= [] F(F(b.a).9(b.c)),
beO(B)

and Hom7,(#,9) = CHom%%(B%Bg) is the equalizer

Hom’,(%#,%) — Hom' (#,¥) = Hom' (¥ ® #,9).

As an immediate consequence of Proposition 1.11, we obtain the corresponding ad-
junction in the context of small spectral categories.

Proposition 2.8 Let o/, %, and € be small spectral categories. Let .# be an
(o, B)—bimodule, 4 be a (#, €)-bimodule, and ¢ be an (<7, ¢’ )-bimodule. Then
there are canonical isomorphisms of spectra

Hom?, (7 Homl (4. 7)) = Hom®, ,(F ®4 Y. )
= Hom]Zj’%(%, Homﬁ,(ﬂ, ).
Comparing the formulas in Proposition 2.7 with the intrinsic definition of the spectral

enrichment of a category of spectral functors reveals the following relationship between

Homf;; and the spectral enrichment on the category of left ¥—modules, which is

essentially a special case of the observation on Homgf and source restriction in the

previous section. An analogous result holds for Hom{, and the spectral enrichment on
the category of right ¥—modules.

Proposition 2.9 In the notation of Proposition 2.7(ii),
(Homf?/(,?, G)) (c,b) = Mody (F (b, —), 9 (c,—))
forall b€ O(A) and c € O(%).

Finally, we return to Theorem 2.3.

Proof of Theorem 2.3 Let 2" and % be bi-indexed ring spectra and let ¥ and &
denote the corresponding small spectral categories.
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Given a spectral functor V: 4 — €, let %, denote the (¢, Z)-bimodule with com-
ponent spectra 9’5,’ (d,c) =€ (¥(d),c) and the evident bimodule structure. Then the
underlying left 2 —object of the (2", %')-bimodule Bz, is Sy 2. Let By be the
spectral functor 2~ — ¢ that uses the underlying object function of v as the function

on object sets and B, as specifying the bimodule structure on Sy 2.

Given a spectral functor ¢: % — 2°, we obtain a spectral functor Cy from Z to €
using the same object function and the map on morphism spectra defined as follows.
The map of left 2 —objects Sy 2" ® # — Sp 2" is adjoint to a map of bi-indexed
spectra % — Hom%(ng X, 8¢ Z"). Because Hom?! converts source restriction in
the first variable and preserves source restriction in the second variable, we have a
canonical isomorphism

Hom, (Sy 2, Sp2) = Ry Hom",- (2, Z) = Ry 4 .

The map of bi-indexed spectra % — Ry 42 then specifies a map Z(a,b) —
E(p(a),p(b)) forall a,b e O(2). Inlight of Proposition 2.9, this map is the composite

D(a.b) = Fg(€(p(b). -). € (p(a), —) = C(p(a). ¢())

of the adjoint of € (¢(h), —) AP (a,b) — € (¢(a),—) and the enriched Yoneda lemma
isomorphism. From here it follows easily that the constructed map on morphism spectra
preserves units and composition.

It is clear that B¢, = ¢ and Cp, = ¥, and moreover that B preserves composition
of spectral functors. a

Using the enriched form of the Yoneda lemma, it is straightforward to check that natural
transformations of spectral functors between small spectral categories correspond to
maps of bimodules for spectral functors between bi-indexed ring spectra; we do not
use this result.

3 Hochschild-Mitchell and McClure-Smith constructions

In this section, we review the point-set construction of topological Hochschild coho-
mology of a small spectral category in terms of the Hochschild—Mitchell complex CC.
We then observe that this fits into the framework of the McClure—Smith approach to
the Deligne conjecture; in particular, there is a canonical E5 ring spectrum structure
on CC.
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Construction 3.1 (topological Hochschild—Mitchell construction) Let & be a small
spectral category and .# a (€, ¥)-bimodule. Let CC*(%¢’; .#) be the cosimplicial
spectrum Hom%’%;(B. (¢:.¢:¢), #), where B, denotes the two-sided bar construc-
tion for the monoidal product ®. More concretely, CC*(%’; .#) is the cosimplicial
spectrum which in cosimplicial degree n is

b
Homg (6 ® €®--®C €, /)

n factors

with coface map 8’ induced by the product € ® € — % (see Proposition 2.2 and
Definition 1.7) on the i™™ and (i +1)*' factors (starting the count from zero outside the
braces) and codegeneracy o maps the unit map Cg ocey — € (see Proposition 1.4)
inserting the % as the i factor. We write CC*(%) for CC*(%; €) in the case .# = €.
Let CC(¢; #) and CC(%’) denote the spectra obtained by applying Tot.

Construction 3.1 is evidently covariantly functorial in maps of the bimodule .# and
contravariantly functorial in spectral functors of the small spectral category % (pulling
back the bimodule structure along the spectral functor). Without hypotheses on %
and ./, the topological Hochschild—Mitchell construction may not preserve weak
equivalences. However, when % is pointwise relatively cofibrant (see Definition 4.5)
and .# is pointwise fibrant, CC preserves weak equivalences in each variable; see
Proposition 7.4 and Theorem 7.5.

The free, forgetful adjunction arising from the interpretation of small spectral categories
as monoids for ® (Proposition 2.2) allows us to rewrite the cosimplicial object in
Construction 3.1 more explicitly as

CCUE..M) =[] #(c.c)
and ¢

(3.2) CC(¢; #) =2Hom? (¢ Q@ ---QC, M)
N e’

n factors
= [] F(G(c1.co) A+ AC(cn.cnr). M (cn. o).
CQyeeey Cn
In this form, the cofaces §1,...,8""1: CC"~! — CC" are induced by the composition

in the category with §° and §” induced by the bimodule structure on ./ ; the codegen-
eracies o1 CC" — CC" ™! are induced by S — €(c;, ¢;), inserting the identity map
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in the i position. This is the usual explicit description of the Hochschild—-Mitchell
construction for an enriched category.

Thinking in terms of the partial monoidal category of bi-indexed spectra (Section 1),
the description of CC*(%) as Hom?(¢ ® --- ® €, %) identifies CC*(¥) as the
(nonsymmetric) endomorphism operad £ nd? (B¢) of the corresponding bi-indexed
spectrum B¢ . Because By is a monoid for the monoidal product, there is a canonical
map S — & nd? (B¢)(n) for all n induced by the iterated multiplication

By ®---® By — Byg.

These assemble to a map of nonsymmetric operads Ass — Sndb(B%), where Ass
denotes the nonsymmetric associative operad in spectra Ass(n) = S. This is precisely a
“operad with multiplication” in the terminology of McClure—Smith [24, Definition 10.1].
The point of identifying this structure is that it is the data required in the McClure—
Smith theory to induce an E; ring structure on Tot. Specifically, as a consequence of
[24, Theorem 9.1, Proposition 10.3], we can immediately deduce the following propo-
sition.

Proposition 3.3 The topological Hochschild-Mitchell construction CC(%)) has a
canonical structure of a Dy—algebra (E» ring spectrum), where D, is the E» operad of
McClure—-Smith [24, Section 9].

Proof In terms of the maps e: S — &nd?(B«)(0) and w: S — End®(B4)(2), under
the isomorphism of & nd? (By)(n) with CC" (%), the coface and codegeneracy maps
for CC(%’) above coincide with the ones described on page 1136 of [24] in the proof
of Theorem 10.3: for f € End? (By)

noy f ifi =0,
o'lf:foi+1€ and Slf: fol'lj, ifi=1,...,n,
pnoy f ifi=n+1. O

There is no naturality statement in the preceding proposition because CC(%) is not
functorial in % (on the point-set level) in any reasonable way. It does have a very
limited functoriality for spectral functors that induce isomorphisms on mapping spectra;
we refer to these as strictly fully faithful spectral functors. For a strictly fully faithful
spectral functor ¢: 2 — €, there is a restriction map ¢*: £ nd? (%) — Endb (2), which
is a map of operads with multiplication, constructed as follows.
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On arity n, the map takes the form

end®(@)m)= [] F(6(c1.co) A= A% (cn.cn1). % (cn.c0))

CQ,.--5Cn
~ 1 F@@.do) A+ A D, dn-1). Pdn. do)) = End®(2) (),
do,...,dn
where on the do, ..., d, factor of the target, we use projection onto the ¢; = ¢(d;)

factor of the source and the isomorphism €' (¢(d;), ¢(d;)) = Z(d;, d;) of the strictly
fully faithful spectral functor ¢.

It is straightforward to verify that this map is compatible with the operad structures
and commutes with the inclusion of Ass.

Proposition 3.4 The topological Hochschild—Mitchell construction CC extends to a
functor from the category of small spectral categories and strictly fully faithful spectral
functors to Dp—algebras (E, ring spectra).

4 Homotopy theory of objects and bimodules over small
spectral categories

Proposition 3.4 established a very limited naturality for the functor CC. To extend this
functoriality to the more general derived statement of Theorems C and E, we need to
introduce in the next section some conditions on bimodules that we call centralizer
conditions. These are phrased in terms of the derived functors of Hom% and Hom?, ; the
purpose of this section is to set up the homotopical algebra and review some conditions
that ensure that the point-set functors represent the derived functors.

Before beginning the discussion of model category structures, it is convenient to
introduce terminology for extending conditions and properties on spectra and maps of
spectra to small spectral categories, left and right objects, and bimodules.

Definition Schema 4.1 For any property or condition on spectra or maps of spectra,
we say the property holds pointwise on a bi-indexed spectrum, bi-indexed spectrum
with extra structure, or a map of bi-indexed spectra with extra structure when it holds
at every bi-index. We say that such a property holds pointwise for a small spectral
category, bimodule, strict morphism of small spectral categories, or map of bimodules
when it holds for the underlying bi-indexed spectrum or map of bi-indexed spectra.
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For the model structures on the category of bi-indexed spectra and for bi-indexed ring
spectra 2" and ¢/, the categories of left 2 —objects, right ' —objects, and (2, % )—
bimodules, we take the weak equivalences to be the pointwise weak equivalences
and the fibrations to be the pointwise fibrations. To describe the cofibrations, let /
denote the standard set of generating cofibrations for the model category of spectra.
Then given sets A and B, elements a € A and b € B, and element i: C — D in [,
let Cq4,B.qp:i and Dy p.4 p.; be the (A, B)—spectra that are C and D (respectively)
on (a,b) and * elsewhere, and let f4 B.q 5:i: Ca,B:a,b:i = DA,B:a,b;i be the map of
bi-indexed spectra that does i: C — D on (a, b). Although the collection BI of such
maps does not form a small set, for any given bi-indexed spectrum %, the collection of
maps from the domains of the elements of B/ does form a small set (or is isomorphic
to one) since only those Cyq p.4p;; With A = T(Z) and B = §(Z) admit a map
to Z. This allows the small object argument to be applied with the collection BI.
The cofibrations of bi-indexed spectra are exactly the pointwise cofibrations (maps
that are cofibrations at each bi-index (a, b)) and these are exactly the maps that are
retracts of relative cell complexes built by attaching cells from B/ (in the sense
of [21, Definition 5.4]). The cofibrations in the category of left .2 —objects, right
% —objects, and (2, #')-bimodules are the retracts of relative cell complexes (in the
sense of [21, Definition 5.4]) built by attaching cells of the form 2" ® fo(2°),B:a.b;i »
f4,0@):a,b;i @Y, and Z ® fo(2),0(#):a,b:i ® Y , respectively. The usual arguments
(eg [21, Section 5]) prove the following proposition.

Proposition 4.2 The category of bi-indexed spectra and, for bi-indexed ring spectra
2 and ¥, the categories of left 2 —objects, right % —objects, and (2", %) —bimodules
are topologically enriched closed model categories with fibrations and weak equiva-
lences the pointwise fibrations and pointwise weak equivalences, and cofibrations the
retracts of relative cell complexes. The category of (2, %)—bimodules is a spectrally
enriched closed model category.

Proposition 4.3 For small spectral categories ¢ and ¥, the category of (¢, %)—
bimodules is a spectrally enriched closed model category with fibrations and weak
equivalences the pointwise fibrations and pointwise weak equivalences and cofibrations
the retracts of relative cell complexes.

In the statement “topologically enriched” or “spectrally enriched” means that the
categories satisfy the topological or spectral version of Quillen’s Axiom SM7, which is
called the “Enrichment Axiom” in [15, Section 3].
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For identifying cofibrant resolutions in Section 7, we need to know when cofibrant
bimodules are pointwise cofibrant; a sufficient condition is for the small spectral
categories in question to be pointwise “semicofibrant”: Recall from Lewis—Mandell
[15, Definition 1.2, Proposition 6.4] that a spectrum X is semicofibrant when X A (—)
preserves cofibrations and acyclic cofibrations, or equivalently, F (X, —) preserves
fibrations and acyclic fibrations. Cofibrant spectra are in particular semicofibrant; in
the standard model structure on symmetric spectra and orthogonal spectra, the sphere
spectrum is cofibrant and all semicofibrant objects are cofibrant. In the positive stable
model category and in EKMM S—-modules, the sphere spectrum is not cofibrant but
is only semicofibrant. It follows formally that a weak equivalence of semicofibrant
spectra X — X’ induces a weak equivalence X AY — X’ A Y for any spectrum Y
(to see this, smash with a cofibrant approximation of S) and a weak equivalence
F(X',Z) — F(X, Z) for any fibrant spectrum Z [15, Theorem 6.2]. The explicit
description of cofibrations in the bimodule model structures implies the following
proposition.

Proposition 4.4 A cofibrant bi-indexed spectrum is pointwise cofibrant. If 2~ and %
are pointwise semicofibrant bi-indexed ring spectra then the cofibrant objects in left
Z —objects, right % —objects, and (2", %)-bimodules are pointwise cofibrant. In
particular it ¢ and & are pointwise semicofibrant small spectral categories then
cofibrant (¢, ¥)-bimodules are pointwise cofibrant.

In later work, we use the following slightly stronger hypothesis on the small spectral
categories.

Definition 4.5 A small spectral category € is pointwise relatively cofibrant when for
every object ¢ in O(%), the unit map S — %(c, ¢) is a cofibration of spectra, and
for every pair of distinct objects ¢ and d in O(%), the mapping spectrum € (c,d) is
cofibrant as a spectrum.

Pointwise relatively cofibrant small spectral categories are in particular pointwise
semicofibrant [15, Proposition 1.3(c)]. The following proposition produces suffi-
cient examples of such small spectral categories. We made the following observa-
tion in [7, Propositions 2.6 and 2.7] based on the earlier work of Schwede—Shipley
[26, Proposition 6.3], extending functoriality in strict morphisms to functoriality in
arbitrary spectral functors. Although stated there in the context of symmetric spectra of
simplicial sets, the same arguments prove it for the other modern categories of spectra.
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Proposition 4.6 Let € be a small spectral category. There are functorial spectral
categories € and € and natural DK—equivalences that are isomorphisms on
object sets (or, equivalently, strict morphisms that are pointwise weak equivalences)

G «— chell N chell,Q

such that € is pointwise relatively cofibrant and €% is pointwise relatively
cofibrant and pointwise fibrant. Moreover, if € is pointwise fibrant, then so is €¢I,

Next we move on to derived functors. We concentrate on the case of
Hom',-(—, —): (6bj%) x b — B.7,

which takes a pair of left 2 —objects to a bi-indexed spectrum, where 2 is an arbitrary
bi-indexed ring spectrum. The discussion for Hom” has an exact parallel for Hom?,
switching left/right and source/target, with all corresponding results holding. In essence,
Section 5 of [15] discusses this kind of derived functor, although the story here is
complicated because bi-indexed spectra and categories of left objects are not enriched
over spectra, but are only partially enriched: once we fix a source set A, the full
subcategory of left 2 —objects with source set A is isomorphic to the category of
(%, S4)-bimodules and then is enriched, while there are no maps between left 2 —
objects with different source sets. Therefore, constructing “partially enriched” derived
functors of two variables for the entire category of left 2 —objects is equivalent to
constructing enriched derived functors of two variables on each pair of these categories
of bimodules. Applying [15, Theorem 5.8], we have the following result.

Theorem 4.7 Let 2" be a bi-indexed ring spectrum. For the functor
Hom, (-, -): (6bj%)® x 6bj%) — B,

the partially enriched right derived functor R Home% (—, —) exists and is constructed
by cofibrant replacement of the first variable and fibrant replacement of the second
variable.

Proof As indicated above, we restrict the source set to A for the first variable (the
contravariant variable) and the source set to B for the second variable (the covariant
variable) to apply [15, Theorem 5.8] directly. In the statement of [15, Theorem 5.8],
to reach this conclusion, we need to observe (1) that Homf;{ fits into an enriched
parametrized adjunction, (2) that each adjunction of one variable is a Quillen adjunction
when the parametrizing variable is cofibrant, and (3) that the left adjoint preserves
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weak equivalences between cofibrant objects in the parametrizing variable when the
adjunction variable is cofibrant (or, equivalently, the analogous condition for fibrant
objects on the right adjoint). In this case, the enriched parametrized left adjoint is given
by the functor ® that takes a left 2 —object with source set A and an (A, B)—spectrum
to a left 2 —object with source set B. (Here the (A, B)—spectrum is the adjunction
variable and the left .2 -object with source set A is the parametrizing variable.) From
the explicit description of cofibrations, it is clear that ® preserves cofibrations in each
variable when the other is cofibrant. Since smash product of spectra preserves acyclic
cofibrations of spectra and the smash product with a cofibrant spectrum preserves
arbitrary weak equivalences, it is clear from the formula for ® that it preserves acyclic
cofibrations in each variable when the other variable is cofibrant. This then verifies the
hypotheses of [15, Theorem 5.8]. O

When 2" — £ is a map of bi-indexed ring spectra, we obtain a canonical forgetful
or pullback functor from left 2 '—objects to left .2 —objects, which induces a natural
transformation Hom?%/ — Hom{% and a natural transformation of derived functors
R Homg{, —R Homér . The argument for [15, Theorem 8.3] then implies the following
result.

Proposition 4.8 If 2" — 2/ is a weak equivalence of bi-indexed ring spectra, then the
forgetful functor from left Z'—objects to left 2 —objects is the right adjoint of a Quillen
equivalence and the natural map R Homgp —-R Homgf is a natural isomorphism in
the homotopy category of bi-indexed spectra.

We prefer to phrase the centralizer conditions in the next section in terms of small
spectral categories and bimodules over small spectral categories. One technical wrinkle
that arises (and indeed is the main issue studied by [15] as a whole) is that when we
plug bimodules into Homgf and consider functors of the form

4.9) Hom®,: (A#od y2)® X Mod gy — Mody, 5,

even when the enriched right derived functor exists, it may not agree with the derived
functor R Homfy{ of Theorem 4.7 without hypotheses on %. We return to this question
below.

The technical issue just mentioned causes some awkwardness in trying to state a version
of Theorem 4.7 for small spectral categories. We dealt with this in the introduction
by phrasing the centralizer conditions in terms of homotopical bimodules, which
are defined as follows. By neglect of structure, small spectral categories become
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small categories enriched over the stable category; in the definition below 2°° AL &
denotes the small category enriched over the stable category that is defined analogously
to Z°°P A% in Definition 2.5, but using the smash product in the stable category.

Definition 4.10 A homotopical (%, 2)-bimodule is an enriched functor from 2P AL %
to the stable category. More generally, for a category %at (partially) enriched over
spectra or over the stable category, homotopical left ¥—modules in %at, homotopical
right Z-modules in %at, and homotopical (%, Z)-bimodules in %at are functors
enriched over the stable category from %, 2°, and 2°° AL % into %at, respectively.

When . is a (%, Z)-bimodule, by neglect of structure it is a homotopical right
2-module in the homotopy category of left €’ —objects and any cofibrant approximation
in the category of left ¥—objects inherits the canonical structure of a homotopical
right Z-module. Similar observations apply to the fibrant approximation of a (%, &)—
bimodule, giving

4.11) R Hom, (.#,.#) = R Homj_(B.s. B.y)

the canonical structure of a homotopical (2, &)-bimodule, for R HomEB% the right
derived functor in Theorem 4.7.

We now return to the question of when the right derived functor of (4.9) exists and
is compatible with the right derived functor in Theorem 4.7. Although written in the
context of symmetric monoidal categories, Theorems 1.7(a) and 1.11(a) of [15] show
that both of these hold when the underlying bi-indexed spectrum of % is pointwise
semicofibrant. In our context, the following gives the most convenient statement; as
always, the analogous result for Hom?, also holds.

Theorem 4.12 Let ¢ and & be small spectral categories and assume that & is
pointwise semicofibrant.

(i) The forgetful tunctor from (¢, ¥)—bimodules to left € —objects preserves cofi-
brations (and all weak equivalences).

(i1) The enriched right derived functor of
Homf,)): (Aody, )P X Mody,9 — Modg, g

exists and is constructed by cofibrant replacement of the contravariant variable
and fibrant replacement of the covariant variable.

(iii) Moreover, the underlying functor to homotopical (2, 9)-bimodules of the right
derived functor of (i) agrees with the derived functor of (4.11).
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Proof The explicit description of the cofibrations shows that when & is pointwise semi-
cofibrant, a cofibration of (4", Z)-bimodules forgets to a cofibration of left ¥’—objects.
From here it is straightforward to check the conditions of [15, Theorem 5.4] that ensure
the existence of the enriched right derived functor, and the comparison with the derived
functor of (4.11) is immediate. m|

5 Centralizer conditions, maps of CC, and the proof of the
main theorem

In this section we begin the process of extending the functoriality of CC by constructing
zigzags associated to bimodules that satisfy centralizer conditions that we review below.
We do enough work that we can prove the main theorem of the introduction, Theorem A,
which gives an equivalence of E, ring spectra for the two THC constructions commonly
studied in string topology. We also prove Theorems D and E.

We begin with the centralizer conditions.

Definition 5.1 Let ¥ and Z be small spectral categories and let .# be a (¢, )—
bimodule. The centralizer map for 2 is the map in the category of homotopical

9—modules
2 — R Hom4,(Z, .F)

adjoint to the map ¥ ® ¥ — %, where R Hom% is as in (4.11) (that is, the right
derived functor in Theorem 4.7). The centralizer map for € is the analogous map

¢ — RHoml,(#,.7).
We say that:

(1) Z satisfies the double centralizer condition when both centralizer maps are
weak equivalences.

(i) & satisfies the single centralizer condition for € or 2 when the centralizer
map for ¢ or & (resp.) is a weak equivalence.

We have the following motivating examples.

Example 5.2 (DK-embeddings) If ¢: Z — € is a spectral functor and .7 is the
bimodule %4 = € (¢(—),—) then the enriched form of the Yoneda lemma shows
that Hom%(ﬁ , %) is canonically isomorphic to € (¢ (—), ¢ (—)) and the centralizer
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map  — Hom%(,?, ) is the map ¢: D(—,—) — €(dp(—),¢(—)); moreover,
E(p(—), p(—)) also represents the derived functor R Homf;; (F,.F). It follows that
F satisfies the single centralizer condition for & if and only if ¢ is a DK—embedding.
Moreover, if ¢ is a DK—equivalence then the enriched Yoneda lemma in the homotopy
category shows that ¢ — R Hom?,(.%, .%) is a weak equivalence and .% satisfies the
double centralizer condition.

Example 5.3 (2 and Perf(2)) Let 2 be a pointwise fibrant small spectral cate-
gory, and % be a small full spectral subcategory of the category of right Z-modules
consisting of only cofibrant-fibrant objects. Assume the Yoneda embedding factors
¢: P — €, and let .# = F4. For example, ¢ = Perf(Z) (for any large enough
cardinality) fits into this context. Then the bimodule .# satisfies the double centralizer
condition. Since ¢ is a DK—embedding, as per the previous example, .7 satisfies the
single centralizer condition for Z. To see that the centralizer map for ¢ is a weak
equivalence, we consider the map

%(x,y) > RHoml,(Z(—,x), Z(—,y))

for fixed x and y. Recalling that x and y are Z-modules, the enriched Yoneda lemma
gives isomorphisms x(d) = .%(d, x) and y(d) = .%(d, y) for all d in &, and hence
an isomorphism

Hom{ (7 (=, x), # (=, y)) = Homy(x (=), y(-)) = .#0dgm(x. y) = €(x. y)

(see Proposition 2.9). Since we have assumed that x and y are cofibrant-fibrant right
Z-modules, the point-set functor represents the right derived functor, and we see
that .# also satisfies the single centralizer condition for %.

Example 5.4 (Morita contexts) Let .# be a cofibrant (%, 2)-bimodule (and we
assume without loss of generality that 4" and & are pointwise semicofibrant). Then
the left derived functor of .# ®4 (—) from the derived category of %-modules
to the derived category of ¥—modules is an equivalence of homotopy categories
if and only if .#Z ®4 (—) restricts to a DK—equivalence Perf(%) — Perf(¥¢’) (for
models of large enough cardinality). When this holds, the derived functor of the
right adjoint Homé(./// ,—) induces the inverse equivalence and represents the right
derived functor R Hom% (. ,—) in Definition 5.1. In particular, the unit of the derived
adjunction for & is the centralizer map ¥ — R Homf;(,- (A, #) and so . satisfies the
single centralizer condition for Z. Although written in the context of associative ring
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spectra, the proof of Theorem 4.1.2 of [27] implies that there exists a cofibrant (&, €)—
bimodule .4 such that .#Z ® 4 ./ is weakly equivalent to € as a (%, ¥)—bimodule
and 4 Q¢ A is weakly equivalent to Z as a (2, Z)-bimodule. It then follows that
the left derived functor of (—) ®¢ .# from the derived category of right ¥—modules
to the derived category of right Z—modules is an equivalence of categories, which
implies that .# satisfies the single centralizer condition for €. Thus, .# satisfies the
double centralizer condition.

Example 5.5 (DX and QX) Let X be a simply connected finite cell complex, or
equivalently (up to homotopy) the geometric realization of a reduced finite simplicial
set. In [6, Section 3], we consider the Kan loop group model GX for Q2X and describe
an explicit (¥3°GX, DX)-bimodule SP (whose underlying spectrum is equivalent
to S) that we show satisfies the double centralizer condition. (This example is originally
due to Dwyer—Greenlees—Iyengar [9, Section 4.22], at least after extension of scalars
to a field.)

To construct the zigzag, we use the following construction of Keller [12, Section 4.5].

Construction 5.6 Let ¥ and & be small spectral categories and .% a (%, %)—
bimodule. Let %atsz be the small spectral category with objects O(%) U O(2),
mapping spectra
%(a,b) fora,be O(%),

* fora € O(%¢) and b € O(2),
F(a,b) forae O(Z)andb e O(%),
Y(a,b) fora,be O(2)

with units coming from the units of 4" and %, and composition coming from the

Gatz(a,b) =

composition in ¢ and 2 and the bimodule structure of 7.

The construction comes with canonical strictly fully faithful spectral functors ¢’ — éat #
and 2 — %at#, which by Proposition 3.4 induce maps of D,—algebras

CC(2) « CC(%aty) — CC(¥).

The following theorem ties in the double centralizer condition. We prove it in Section 7.

Theorem 5.7 Assume ¢ and & are pointwise relatively cofibrant and pointwise
fibrant small spectral categories and let % be a pointwise semicofibrant-fibrant (¢, 7)—
bimodule. Then:
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(i) If ¥ satisfies the single centralizer condition for &, then the map CC(%atz) —
CC(%) is a weak equivalence.

(i) If F satisfies the single centralizer condition for €, then the map CC(%atg) —
CC(2) is a weak equivalence.

If we take for granted that a functor THC exists as in Theorem B, then the previ-
ous theorem combined with the examples above gives just what we need to prove
Theorems A, D, and E.

Proof of Theorem A As per the statement of Theorem B, for any associative ring
spectrum A, THC(A) may be constructed as CC(A’) for an associative ring spec-
trum A’ whose underlying spectrum is fibrant and for which the inclusion of the
unit S — A is a cofibration of spectra (eg applying cofibrant and fibrant replacement
functors in the category of associative ring spectra). Indeed, in all previous literature
discussing THC(DX) and THC(X3°2X), this was always done tacitly. Using such
a model DX’ for DX and R for EioQX (or GX as in Example 5.5), we have a
cofibrant bimodule SP satisfying the double centralizer condition, as in the example.
The required chain of weak equivalences of E; ring spectra is then given by the zigzag

CC(DX') < CC(%atsp) — CC(R)

of weak equivalences of D,—algebras. O

Proof of Theorems D and E By Examples 5.2 and 5.3, Theorem D is a special
case of Theorem E. The proof of Theorem E is identical to the special case given
by Theorem A: apply both parts of Theorem 5.7 to appropriate pointwise relatively
cofibrant-fibrant replacements as in Proposition 4.6. a

6 The construction of THC (proof of Theorems B and C)

The purpose of this section is to construct topological Hochschild cohomology as a
homotopical functor. We begin by constructing THC as a functor on the homotopy
category level from a subcategory of the homotopy category of small spectral categories
to the homotopy category of E» ring spectra. Using work of Lindsey [16], we then
show that essentially the same argument actually constructs THC as a functor from
a subcategory of the (oo, 1)—category %at™ of small stable idempotent-complete
(00, 1)—categories to the (oo, 1)—category of E; ring spectra. Throughout, we work
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with quasicategories as a model for (oo, 1)—categories and rely on the foundational
setup of Joyal and Lurie [17; 18].

Definition 6.1 For a small spectral category %, let
THC(%) = CC(£C"9),
where €C¢Ib% is the functorial pointwise relatively cofibrant-fibrant replacement of
Proposition 4.6.
Given a DK-embedding ¢: 2 — ¥, by functoriality we get a DK—embedding
b: PCLL _, pCell.Q

and the bimodule .%. 3 representing this functor (see Definition 1.9 and Theorem 2.3)
satisfies the single centralizer condition for < (see Example 5.2). Writing ‘Kat&; as
an abbreviation for (ﬁatt,ozg, Theorem 5.7 then gives us a zigzag of maps of Dp—algebras

(6.2) CC(¢CM92) & CC(%atz) — CC(2),
which we interpret as a map in the homotopy category of E; ring spectra,
THC(%) — THC(2).

This gives the next step in the construction of THC as a functor, the definition on maps.

Definition 6.3 For a DK—embedding ¢: 4 — ¥, define THC(¢) to be the map
THC(%) — THC(Z) in the homotopy category of E,-ring spectra arising from the
zigzag of (6.2).

To check that this definition respects composition and unit maps, we use the following
construction.

Definition 6.4 Let ¢1: 69 — 61,...,Pn: Gn—1 — %, be a composable sequence of
spectral functors. Define @atg, ... 4, to be the small spectral category with objects the
disjoint union of the objects of %; for all i and with mapping spectra

(b (a).b) ifi <]
Gatgy...p,(a.b) = | 7 s (@D-0) =T
* ifi >
for a € O(%¢;) and b € O(%;), where ¢; ; =id if i = j and ¢; j = ¢pj_10---0¢;
for i < j. Composition is induced by composition in %y, ..., %, and the functors ¢;,
and units come from the units in €y, ..., %n.
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We note that for a single morphism, Gatg is Gatz, for the bimodule .%4 associated to ¢,
which is consistent with the notation we used in (6.2). We deduce from Theorem 5.7
the following corollary.

Corollary 6.5 With notation as in Definition 6.4, assume each ¢; is pointwise rel-
atively cofibrant-fibrant and that ¢, is a DK—embedding. Then the inclusion of %
in Gaty, ,....¢, induces a weak equivalence CC(%aty,,....4,) — CC(%0).

.....

Proof Let v: 6y — %aty,
in Gatg,,....¢,. We then have a canonical isomorphism of small spectral categories
from %aty, to Gaty,,... 4, Since ¢ is a DK—embedding, so is v, and Theorem 5.7
implies that the induced map CC(%aty ) — CC(%p) is a weak equivalence. a

#, be the composite of ¢; with the inclusion of ¢}

.....

We can now prove Theorems B and C.

Proof of Theorems B and C The proofs of the two theorems are essentially the same;
for the proof of Theorem B, simply restrict to the subcategory of small spectral categories
consisting of the associative ring spectra. (Note that even in the case of Theorem B,
the argument still requires use of CC of small spectral categories, namely, the small
spectral categories Gatz, .)

We have defined THC on objects and morphisms in Definitions 6.1 and 6.3; we need to
show that THC preserves composition and units. Given ¢1: $p — 61 and ¢»: 61 — 63,
let 51 and q~52 denote the induced functors on ‘Kiceu’g. We then have the strictly
commuting diagram of strictly fully faithful morphisms

%ZCCU . Q
Gatg, g, — Galg 5, Gatg,

1

Cell,Q - Cell, 2
% Gatg, A

from which we get the commutative diagram of D,—algebras

52051) i CC(CKatal ’52) — CC((Kataz) N
Nl \
CC(6y ~ CC(%aty, ) CC(EL")

CC(%at

~
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The arrows marked with “~” are weak equivalences by Theorem 5.7, Corollary 6.5,
and the 2-out-of-3 property. Since THC(¢1), THC(¢2), and THC(¢p2 0¢p1) are defined
by the outer zigzags in the diagram above, we see that

THC(¢2 © ¢1) = THC(¢1) o THC(¢2).

Although THC(id%) is not defined to be the identity map, part (ii) of Theorem 5.7 shows
that THC(id%) is an isomorphism (in the homotopy category), which together with
the fact just shown that THC(id¢) = THC(id¢) o THC(id% ), proves that THC(id¢)
is the identity map for any small spectral category . a

Finally, we prove Theorem F by explaining how to refine THC into an functor of
oo—categories. For the source, for simplicity, we take the nerve of the category
of small spectral categories and DK—embeddings, .#%at®®; the functor will take
DK-equivalences (and indeed Morita equivalences) to equivalences in the target, and
so one can from there factor through an co—categorical Bousfield localization. For
the target category, we will use the homotopy coherent nerve of a pointwise fibrant
replacement of the Dwyer—Kan hammock localization of the category of D,—algebras,
N"L.7[D,]. We do not get a point-set map of quasicategories, however, because
although our construction above takes morphisms of small spectral categories to zigzags
of Dj—algebras, which are honest morphisms in the hammock localization, it does
not preserve composition strictly. If we think in terms of zigzags in the original
category of Dj—algebras, the construction CC(%aty,,....4,) gives n—simplex zigzags
associated to a sequence of composable morphisms. Zachery Lindsey studied this kind
of co—functoriality in his 2018 Indiana University thesis [16]; in the notation there, we
construct a map

N(F6atP%) — Zig(N™L.7[D,], N L.7[D,5]7)

as follows:

(0) A O-simplex of N(.7%at®®) is a small spectral category %, and it maps to
CC(chell,Q) )

(1) A l-simplex of N(.7%at’®) is a DK—embedding ¢: %o — %), and it maps to
the zigzag (6.2).

(2) An n-simplex of N(.7%at°X) consists, in general, of n composable DK—
embeddings ¢;: 6;—1 — ¢;, and it maps to the n—simplex zigzag for Gaty, ... ¢,
generalizing the 2—simplex zigzag pictured in the proof of Theorem C.
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Although both the source and target simplicial sets are quasicategories, this is not a map
of quasicategories because it only preserves face maps and not degeneracy maps. The
work of Steimle [29] (see Theorems 1.2 and 1.4) allows us to correct this to construct
a functor from N(.Z%at®®) to Zig(N"L.7[D,], N*L.7[D,]%).

Lindsey [16] shows that the inclusion of a quasicategory 2 in the quasicategory
Zig(2, 27) is a categorical equivalence. This then proves the following theorem.

Theorem 6.6 The preceding construction constructs a zigzag of maps of quasicate-
gories from N.%at°% to N"L.7[D,], providing a functor THC from the category
of small spectral categories and DK—embeddings to the category of E» ring spectra
that sends Morita equivalences to weak equivalences.

Since THC sends Morita equivalences to weak equivalences, it factors through the
Bousfield localization of N.7%at°X at the Morita equivalences; using the equivalence
of [5, Theorem 4.23] between the localization of N.#%at at the Morita equivalences
and %at™ then proves Theorem F.

7 Proof of Theorem 5.7

This section is devoted to the proof of Theorem 5.7. The basic idea is to compare
CC(%at#) to a construction of the form Hom%’ 5(Z.F), where Z is a certain sim-
plicial object resolving .%#. We start with the following simplicial construction.

Construction 7.1 Let ¥ and Z be small spectral categories and let ¢ be a (¢, Z)-
bimodule. The simplicial (%, Z)-bimodule %,(¢;¥; 2) is defined by
Dn(€:9:7) =V,=o

.....

41 6®- - QFERYIRIR QY
—_——— N

J factors n—+1—j factors

(a total of n + 2 summands each with n 4 2 factors), where the face map d; multiplies
the i and (i41)" factors using the multiplication of € or 2 or action on ¢ and
the degeneracy map s; is induced by the map Sp(s) — € in the (i+1)™ factor on
the j™ summand for i < j and induced by the map So(g) = Z inthe (i+1)* factor
on the j™ summand for i > j. We write %,(%) when € and 2 are clear, and we
write Z (%) for the geometric realization.
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For example, %0(¥) =9 ® 9 V¢ ® % and the degeneracy map s¢ is
GRI=9YQRSon®Y —>9YQ9QY
on the 0" summand and
CRYI=CRSo)RY >CRCRY
on the 1% summand.
We have an augmentation map of (%, Z)-bimodules €: %,(¥) — ¢ induced by
multiplying all the ¢ and & factors through.

Proposition 7.2 The augmentation €¢: %,(9) — ¢ is a homotopy equivalence of
simplicial bi-indexed spectra.

Proof In the category of bi-indexed spectra, the simplicial object %,(%¢) has an “extra
degeneracy” in the sense of [25, Section 4.5]: Define s_1: Zy(¥) - %n+19 to be
the map

In(G) = So¢) @ Hn(Y9) > € Q %n(9) C Fnt1(9).

These maps satisfy
S_18; = Sj+15—1, S—1di =dj+15-1, S05—1 =5-15—1, and dos—; =id.
The map s: 4 — %y(¥) given by
G=So)®Y > C®Y CHo(Y)

splits the map € and (with s_1) exhibits € as the split coequalizer of dy, d1: #1(¥4) —
Fo(9). Meyer’s theorem [25, Lemma 4.5.1] now gives the result. a

The Reedy model structures on simplicial and cosimplicial spectra are convenient
for identifying when maps of simplicial spectra realize to cofibrations and maps of
cosimplicial spectra Tot to fibrations. The following proposition follows the usual
outline of similar results, which are proved from the pushout-product property of the
smash product of spectra and the construction of the latching object of a simplicial
spectrum as a sequence of pushouts.

Proposition 7.3 If ¥ and & are pointwise relatively cofibrant small spectral cat-
egories and ¢ is a cofibrant (¢, Z)-bimodule then the geometric realization of
H+(9) is a cofibrant (¢, 9)-bimodule and for every fibrant (¢, ¥)-bimodule .7,
the cosimplicial spectrum Hom%, 7 (P%e(9), F) is Reedy fibrant.
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The same kind of observation applied to the two-sided bar construction B(%;%; %) in
the construction of CC proves the following proposition.

Proposition 7.4 If € is a pointwise relatively cofibrant small spectral category and
M is a fibrant (¢, €)—bimodule, then the cosimplicial spectrum CC*(%, .#) is Reedy
fibrant.

The previous proposition together with the formula for CC(%’; .#) in (3.2) proves
invariance under weak equivalences of fibrant .# for ¢ satisfying the hypothesis.
Although this is all we need for the proof of Theorem 5.7, we state a more general
invariance theorem for convenience of future reference.

Theorem 7.5 Let € be a pointwise relatively cofibrant small spectral category and
let ./ be a fibrant (¢, %) —bimodule.

(1) CC(%;.#) represents the derived functor RHom%,%)(‘g, ). In particular,
CC(¥’; —) preserves weak equivalences between fibrant (¢, ¢’ ) —bimodules.

(ii) Assume that €’ is a pointwise relatively cofibrant small spectral category.
If ¢: €' — ¢ is a DK—equivalence, then the induced map CC(¢; . #) —
CC(%";¢p* M) is a weak equivalence.

Proof The hypothesis on % implies that the inclusion of the degree-zero part of the
bar construction

CRC — B(C.C;C)

is a Reedy cofibration of (%, %)-bimodules, and it follows that B(%;%;%) is a
semicofibrant (%, ¥’)—bimodule. Part (i) is then [15, Corollary 6.3]. Part (ii) follows
immediately from part (i). a

Proposition 7.4 does not apply directly to %at# under the hypotheses of Theorem 5.7
unless we further require .% be pointwise cofibrant (which is not the case in the main
example of interest, .# = Z4 for a DK-embedding ¢: Z — ¢’). Nevertheless, the
same argument applies to prove the following proposition.

Proposition 7.6 If ¢, &, and .% satisfy the hypotheses of Theorem 5.7, then the
cosimplicial spectrum CC*(%ats) is Reedy fibrant.
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Construction 7.7 Let ¥ and 2 be small spectral categories and .% a (¥, %)—
bimodule. We construct a map of cosimplicial spectra

y*: CC*(%aty) — Hom, (% (F), F)
as follows. In cosimplicial degree zero, we have

CC%atz)= [ 2d.d)x [] %o,
de0(2) ce0(%)
while

Hom?, ,(%0(F)..7)
=Hom? (7 ®IVE®F,F)

~ b L b
=Homg , = (7. Homg (F, %)) x Homy g . (€, Hom7,(#, %))

= [] Homi(Z, 2)(d.d)x [[ Homl(F. F))(c.0).

de0(2) ce0(%)

and we define y° to be the product of the centralizer maps. For n > 0, for any
Jj=1,...,n,givenco,...,cj—1 € O(¥¢) and d;,....d, € O(2), let

((g,ﬁ,@)n,j((}o,...,Cj_l,dj,...,dn)
=‘€(01,c0)/\---/\%(cj_l,cj_z)Aﬁ(dj,cj_l)/\.@(dj_,.l,dj)/\---/\.@(dn,dn_l),
where we understand the righthand side of this formula as
F(dr,co) ND(da,dr) N+ ND(dn, dn—1)
when j =1 and
G(c1,¢0) A ANC(cn—1,cn—2) A F (dn, cn—-1)
when j = n. Then, in this notation,

CC" (%atz)

= J] F@@i.do)r-AD(dn.dn-1). D(dn.do))
do,..., dneO(@)

X ]‘[ I1 F((6,F, D)n,j(cos- . cj—1.d},...,dn), F(dn,co))
J=1cq,...,.c;—1€0(%)
dj,...dne0(2)
x J] F@er.co))nAE(cn.cn1).C (cn.co)).
€0s...,cn€0(%)

Algebraic & Geometric Topology, Volume 19 (2019)



E, structures and derived Koszul duality in string topology 275

while

Hom?, ,(%n(F). )

= J] F@di.do) A AD(dn.dn-1).(Homi(F. F))(dn.do))
do,...,d,€0(2)

<] I1 F((€,Z, DYn,j(cos--r¢j—1,dj,....dn), F(dn,co))

J=1cp,....c;—1€0(%)
dj,....dn€0(2)

x [l F(Gcr.co)n - AC(cn. cn-1). (Homl(F,.F))(cn. o).
€0y, Cn€0(F)

and we define y” to be the map induced by the centralizer maps & — Hom% (#,7)
and 4 — Hom?,(.%, %) on the outer factors and the identity on the inner factors. The
maps y° clearly commute with the codegeneracy maps and all but the zeroth and last
coface maps. A tedious but straightforward check of the definitions verifies that the y°
also commute with the zeroth and last coface maps. Let y denote the map on Tot
induced by y*°.

Proof of Theorem 5.7 Fix €, 2, and .% as in the statement. Let #' — % be a
cofibrant replacement in the category of (%, Z)—bimodules, and consider the composite
map

y': CC(%atz) &> Hom, ,(%(F). F) — Hom® (R (F"), F).

We note that ¢’ can be described in terms of the Tot of a cosimplicial map with formula
analogous to y. The inclusions of the summands

F'®7®--®% and €® --®¢®F
in Z,(%") assemble to a map of simplicial (¢, Z)-bimodules
BAF'; D, D)V Bo(€:€; F) > Ru(C: F'; D),

where B denotes the two-sided bar construction for ®. The hypotheses on 4, Z,
and .7’ are sufficient for this map to be a Reedy cofibration, and so it induces a fibration

Hom%,@(%(g/)» 9) — Hom%’@(B(ﬁ’; D: @) V. B(%; % 2/)’ 9)
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since .7 is fibrant. We then have a canonical isomorphism

Hom’, ,(B(Z': 2: )V B(€:€: F'), )
= Hom’, ,(B(F':: 2)..F) x Hom’, ,,(B(¢: € 7). F)
= Hom’, (7' ®9 B(7: 2: ). F) x Homl, ,(B(€:€:%) ®@¢ F'. )
= Hom?, ,,(B(Z: : 7). Hom%(F', 7)) x Hom%, ,,(B(€:€: %), Homly(F', F))
= CC(Z; HomY.(F', 7)) x CC(€; Hom,(F', F)).

Opening up the construction of y, we see that diagram

CC(%atz) CC(2) x CC(%)

d l

Hom?, ,(#(F"), F) — CC(Z:Homy (F', F)) x CC(%; Homl,(F', F))

commutes, where the right vertical map is induced by the double centralizer maps on
the bimodule variables of CC. We have observed that the bottom horizontal map is
a fibration and in particular the Tot of a Reedy fibration of cosimplicial spectra; the
top horizontal map is also a fibration and the Tot of a Reedy fibration of cosimplicial
spectra. The map on horizontal fibers is the Tot of the cosimplicial map that in each
degree is the weak equivalence

]‘[ 1 F((€,F, D)n,j(cos....Ci=1,d},....dn), F(dn, o))
j=1 cg,.. HCj— 1€0(%)
d;j,...dn€0(2)

-1 I1 F((€,F', Dn,j(cos- . cji=1.d},....dn), F(dn,co)).
J=1cq,....c;—1€0(%)
d;,...dn€0(2)

Tot takes this degreewise weak equivalence of Reedy fibrant objects to a weak equiva-
lence of spectra. It follows that the square above is homotopy cartesian. Both maps

Hom® (%2(F"), F) — Homl, ,(B(F'; 7: 9). F) = CC(Z; Hom% (F', F)),
Hom® (#(F'), F) — Hom, ,(B(¢:€: F'), F) = CC(€; Homy(F', 7))

are weak equivalences since the maps B(.%'; 2, 9) — #(¥) and B(¢;%; F') —
X (F) are weak equivalences of cofibrant (%', 2)-bimodules. Since .%’ is cofibrant
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as both a left ¥—object and right Z—object (Theorem 4.12(i) and the right object
version), Hom%(ﬁ ',.#) and Hom[,(#', %) are pointwise fibrant. It follows that
when 9 — Hom% (F',.7) is a weak equivalence, so is the map CC(%atz) — CC(%);
likewise, when ¢’ — Hom’, (%', %) is a weak equivalence, so is the map CC(%at z) —
CC(2). By Theorem 4.12(iii) (and its analogue for Hom7,), both Hom%(ﬁ " F)
and Hom?,(.#', ) represent the derived functors in the statement of the centralizer

conditions. The theorem now follows. O
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