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Torsion homology and cellular approximation

RAMÓN FLORES

FERNANDO MURO

We describe the role of the Schur multiplier in the structure of the p–torsion of
discrete groups. More concretely, we show how the knowledge of H2G allows us to
approximate many groups by colimits of copies of p–groups. Our examples include
interesting families of noncommutative infinite groups, including Burnside groups,
certain solvable groups and branch groups. We also provide a counterexample for a
conjecture of Emmanuel Farjoun.

20F99, 55P60

1 Introduction

Since its introduction by Issai Schur in 1904 in the study of projective representations,
the Schur multiplier H2.G;Z/ has become one of the main invariants in the context
of group theory. Its importance is apparent from the fact that its elements classify all
the central extensions of the group, but also from its relation with other operations in
the group (tensor product, exterior square, derived subgroup) or its role as the Baer
invariant of the group with respect to the variety of abelian groups. This last property,
in particular, gives rise to the well-known Hopf formula, which computes the multiplier
using as input a presentation of the group, and hence has allowed its use in an effective
way in the field of computational group theory. A brief and concise account to the
general concept can be found in Robinson [38], while a thorough treatment is the
monograph by Karpilovsky [33].

In the last years, the close relationship between the Schur multiplier and the theory of
colocalizations of groups, and more precisely with the cellular covers of a group, has
been remarked. Notions of cellularity were developed in the 1990s by Farjoun [21]
and Chachólski [13] in the category of pointed topological spaces, with a twofold
goal: to define a hierarchy in the spaces by means of cellular classes, as Bousfield
attempted with his periodicity functors [7] and Ravenel with thick categories in the
stable category [37], and to isolate in a rigorous way the structure of a space that
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depends on a fixed one, generalizing the idea of CW–complex by J H C Whitehead.
These ideas have been shown to be very fruitful, and have recently been applied in
different categories, as for example triangulated categories, R–modules or derived
categories (see for example Dwyer, Greenlees and Iyengar [20]).

After developing the cellular theory for spaces, it was natural that the next context to
apply these tools should be group theory: first, because some of the main classical
invariants of homotopy theory are indeed groups (homology groups, homotopy groups,
etc); second, because there are important and well-known functors that pass from
spaces to groups, in particular the fundamental group functor (in this sense, the relation
between this functor and localization has already been studied; see Casacuberta [11]);
and third, because the cellular theory is based on the notion of (homotopy) direct limit,
which is in fact a generalization to the homotopy context of the direct limit of groups.

Given a group G, there are strong ties between the cellular covers of G and its Schur
multiplier. Recall that a cellular cover of a group G is a pair .H; cw/ where H is a
group and cwW H!G is a map such that the induced map Hom.H;H /!Hom.H;G/
is a bijection. Given a pair of groups A and H, there exists a distinguished cellular
cover .cellA H; cwA/, which is roughly speaking the most accurate approximation
of H that can be constructed as direct limit (maybe iterated) of copies of A (see
the next section for more information). Since pioneering work of Rodríguez and
Scherer [39] and subsequent research by several authors, it has been established that
the cellular cover cellA G of a group G always lies in the middle of a central extension
K ! cellA G ! SAG, where SAG is the subgroup of G generated by images of
homomorphisms from A. The kernel K is usually the most difficult part to compute,
and it is strongly related with the structure of the Schur multiplier of G or a distinguished
subgroup of it. In the next section we review the previous work in which the structure
of K has been investigated, particularly when G is abelian.

Fix a prime p . In this paper we are interested in Z=p–cellular approximation, which
has given a new way to understand the p–primary structure of the group G. In this
sense, we have been able to identify a wide range of groups for which the kernel K is
a concrete quotient of the Schur multiplier of SZ=pG, which we denote from now on
by SpG, the subgroup of G generated by the elements of order p (see Section 2). For
example, this will happen for groups for which SpG is finitely presented, groups for
which the Schur multiplier of SpG is finitely generated, groups such that H2SpG is
free abelian or groups for which H2SpG is torsion. The more general result we obtain
is Theorem 3.12 (see the definitions in Section 3):
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Theorem 3.12 Every p–generated finitely L–presented group belongs to Cp .

This study is undertaken in Section 3, and is primarily based on ideas of Chachólski
that are described at the beginning of the section.

As we are describing a certain approach to the torsion in discrete groups, it is very
interesting for us to understand the Z=p–cellularization of torsion groups, a task which
is carried out in Section 4. According to the previous paragraph, we are able to identify
the kernel of the cellular cover when H2SpG is a torsion group, so we should know
when this happens for a torsion group. In fact, as SpG is torsion if G is, this leads us
to a more general question: if G is a torsion group, when are their ordinary homology
groups also? Work of Olshanskii and others guarantees that the general answer is no,
but the counterexamples are quite exotic, and then it is interesting to identify “big”
classes of groups for which the answer to the question is positive. We get the following
result for a nonempty set of primes P :

Theorem 4.3 Let G be an elementary amenable P –torsion group. Then its homology
groups are P –torsion.

Moreover, we discuss some bigger classes for which this fact may hold, and compute
the Z=p–cellular approximation of some nonelementary amenable torsion groups,
such as the first Grigorchuk group and the Gupta–Sidki group. Continuing this study,
in Section 5 we deal with the Burnside group B.2;p/ (for p > 1010 ), which is a
torsion nonamenable group whose Schur multiplier is free abelian. We compute its
Z=p–cellularization (obtaining in this way a new counterexample to a conjecture of
Farjoun) and we describe some exotic features of its classifying space.
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2 Background

In this section we will describe previous work relating the Schur multiplier and cellular
covers.

As stated in the introduction, the first ideas that aimed to classify objects in a category
by means of a cellular hierarchy go back to Farjoun and Chachólski. Inspired by early
work of J H C Whitehead, and working in the category of pointed spaces, they defined
for every pair of spaces A and X the A–cellular approximation of X as the “closest”
space to X that can be built out of copies of A by means of iterated (pointed) homotopy
colimits. The notion of closeness here is given by the pointed mapping space (see
Chapter 2 in [21] for a precise definition). Chachólski also defines the related notion of
closed (or cellular) class of spaces.

Building on these ideas, Rodríguez and Scherer define in [39] the cellular class C.A/ of
a group A as the smallest class of groups that contains A and is closed under colimits;
its elements are called A–cellular groups. Then, they prove the existence of a functor
cellAW Groups! C.A/ that is right adjoint to the inclusion C.A/!Groups. The proof
consists, for every group G, in building effectively cellA G as an infinite telescope of
groups that are themselves free products of copies of A. This functor is augmented
and idempotent, and for every A, cellA G will be called the A–cellularization or A–
cellular approximation of G. The group cellA G can also be defined in the following
way:

Definition 2.1 Given groups A and G, the A–cellularization of G is the unique
A–cellular group cellA G such that there exists a homomorphism �W cellA G ! G

in such a way that any homomorphism H !G from a A–cellular group H factors
through � in a unique way.

Recall that given an abelian group G, a Moore space is a space M.G; n/ such that
HnM.G; n/DG and Hj M.G; n/D 0 if j ¤ n. When A is a group such that there
exists a Moore space M.A; 1/ of dimension two (as for example a finite cyclic group),
Rodríguez and Scherer also identify the A–cellularization of G by means of a central
extension,

K! cellA G! SAG:

Here SAG is the A–socle of G, ie the normal subgroup of G generated by images
of homomorphisms from A, while K is a group such that Hom.Aab;K/D 0. This
kernel K will be the key object that imbricates the cellular approximation with the

Algebraic & Geometric Topology, Volume 19 (2019)



Torsion homology and cellular approximation 461

homology of the base group. Moreover, the relation between cellularization of groups
and cellularization of spaces with regard to Moore spaces is further investigated by the
authors in [40].

The first attempt to understand the role of the homology in the cellular constructions
was undertaken in [24], for the case AD Z=p , p prime. As there is a 2–dimensional
model for M.Z=p; 1/, the description of cellA G as an extension works, and from
the homotopical construction of the extension it was deduced that, for A finite, the
kernel K could be identified with the quotient of the Schur multiplier by its p–torsion
group; in the present note we extend this result to infinite groups. Moreover, it was
proved in that paper that in some cases in which G is finite and perfect, cellZ=p G can
be identified with the universal central extension of G.

In [22], Farjoun, Göbel and Segev introduce a new point of view. For these authors, a
homomorphism A!G is a cellular cover if it induces by composition an isomorphism
Hom.A;A/' Hom.A;G/. It is not hard to see that A!G is a cellular cover if and
only if A is the A–cellular approximation of G. In particular, if one wishes to classify
all the cellular covers of a given group G, it should be necessary to understand which
groups can appear as kernels of the homomorphisms A!G. In the mentioned paper it
is proved for every cellular cover A!G that if G is nilpotent then K is torsion-free,
if G is abelian then K is reduced, and if G is finite then K is so and K � ŒA;A�. It
was also proved there that the universal central extension of any perfect group (whose
kernel is the Schur multiplier) is always a cellular cover, generalizing the quoted result
for finite groups.

After this paper, there has been a lot of interest in classifying cellular covers of abelian
groups, as well as in describing the kernels of the covers. In the paper [23], the problem
is solved for abelian divisible groups; Fuchs and Göbel [28], relying in part on work of
Buckner and Dugas [10], address the reduced case and give an accurate description
of which groups can appear as kernels; Farjoun, Göbel, Segev and Shelah [23] have
presented groups for which the cardinality of all the possible kernels of cellular covers
is unbounded; Fuchs has investigated covers of totally ordered abelian groups [27]; and
there is also work of Rodríguez and Strüngmann on the cotorsion-free case [41; 42].
However, the descriptions of the kernels given in these papers are usually not very
explicit, and the authors do not investigate the possible relations of the kernels with the
homology of the groups involved.

The relation of the cellular approximation with the second homology group is described
in a more general way in [14]. It is proved there that for finite groups A and G with A
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finitely generated and such that H2A D SGH2A, the kernel of the cellularization
cellA G ! G is always the quotient of the Schur multiplier of G by its A–socle,
generalizing in this way the aforementioned result of [24], which only dealt with the
case AD Z=p . This statement is true, in particular, when A is finitely generated and
nilpotent. It is also remarkable that this is proved using only group-theoretic tools, with
no need of homotopical background. Some of the authors of the previous paper took a
big step forward in [5], where it is proved (using the finiteness of the Schur multiplier
for finite groups) that the number of cellular covers of finite group is always finite. If
the group is moreover simple, then the nontrivial cellular covers of it are in bijective
correspondence with the subgroups of the Schur multiplier that are invariant under the
action of the automorphisms of the group.

To our knowledge, not a lot has been published concerning the cellular approximations of
infinite nonnilpotent groups, so this note can be considered as a step in that direction. We
are only aware of Göbel’s work [29] and Petapirak’s thesis [36] (see Section 5), although
the work of these authors addresses a different problem, namely the understanding of
the group varieties that are closed under cellular covers and localization.

3 Cellular covers

We will start this section by fixing some notation and reviewing some previous results
that we will need afterwards.

3.1 Chachólski theory and notation

The rigorous foundation of the theory of cellular approximations in the homotopy
context was carried out by Chachólski in [13]. The following result was proved in
that paper, and it is possibly the most powerful available gadget to compute cellA .
Recall that given a space X, its A–nullification PA is its localization with respect
to the constant map A! �, and the spaces X for which PAX is contractible are
called A–acyclic; see [21] for details. Analogous definitions are used in the category
of groups: given groups A and G, the A–nullification PA is the localization of G

with respect to the constant homomorphism A! f1g, and G is A–acyclic if and only
if PAG D f1g.

Theorem 3.1 [13, Theorem 20.5] Let A and X be pointed spaces. Consider the
evaluation map f W

W
ŒA;X ��

A!X, where the wedge is extended to all the homotopy

Algebraic & Geometric Topology, Volume 19 (2019)



Torsion homology and cellular approximation 463

classes of pointed maps A! X. Let C be the homotopy cofiber of the map f , and
†A the suspension of A. Then there exists a homotopy fibration

cellA X !X ! P†AC:

In particular, given a group G, this result is crucial in proving that for certain choices
of A, the group cellularization with respect to a group A can be described by means
of an extension K! cellA G ! SAG, as explained in the previous section. As we
are going to use this material frequently through the paper, the map

W
ŒA;X ��

A!X

will be called the Chachólski cofibration, its homotopy cofiber will be the Chachólski
cofiber and the fiber sequence cellA X ! X ! P†AX will be referred to as the
Chachólski fibration.

Moreover, given a discrete group G, we denote by SpG its p–socle, ie its subgroup
SZ=pG generated by order p elements. Every group for which the inclusion SpG �G

is an equality will be called p–generated. The previous description of cellZ=p G as an
extension immediately implies the following:

Crucial fact For every discrete group G, the inclusion SpG �G induces an isomor-
phism cellZ=p SpG' cellZ=p G. In particular, the computation of cellZ=p G is always
reduced to the computation of cellZ=p SpG, and it will be only necessary to compute
Z=p–cellular approximations of p–generated groups.

Let p be a fixed prime and G a discrete p–generated group. We are interested in Z=p–
cellularization, and its construction is derived [39] from cellularization with respect to
Moore spaces, so we will denote by M a two-dimensional model for the Moore space
M.Z=p; 1/, as for example the homotopy cofiber of the degree p self-map of the circle.
This space will play the role of A in the Chachólski fibration, while X will be BG, the
classifying space of the group G. Once the group G is fixed, Chachólski cofibration
and fibration will be considered with respect to these choices of A and X. Usually the
Chachólski cofiber will be denoted by C if the group is understood. Moreover, in the
remainder of the paper, the homology will be always considered with coefficients in Z.
Finally, given an abelian group L, we will denote by TL its torsion subgroup, and by
TpL its p–torsion subgroup.

We would like to remark that, mutatis mutandis, the majority of our results will also be
valid if we exchange Z=p by Z=pj with j > 1. Moreover, given a set P of primes,
they will remain correct changing Z=p by the free product of copies of the cyclic
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groups Z=q for q 2P, and M.Z=p; 1/ by the corresponding Moore space with respect
to the direct sum of the primes in P. However, for the sake of readability we will
concentrate on the case of just one prime.

3.2 The kernel of the cellular approximation

In our search for a characterization of a sharper description of cellZ=p G, our initial
goal was to generalize Theorem 4.4 in [24] for infinite discrete groups. That statement
gives a way to compute the Z=p–cellular approximation of a (p–generated) finite
group out of a certain quotient of its Schur multiplier, but only for groups subject to
quite strong restrictions. In this section we show how to relax these restrictions, and
prove that the result is true far beyond the realm of finite groups. We start by giving a
useful definition that will help to deal with the class of groups for which our methods
will work.

Definition 3.2 We define the class Cp as the class of p–generated groups for which
the kernel of the map cellZ=p G!G is isomorphic to H2G=TpH2G.

Our goal will be to identify groups whose p–socle lies in the class Cp , as for these
groups the kernel of the Z=p–cellularization is then perfectly described. Our key result
will be the following, because it gives a criterion to decide when a p–generated group
belongs to Cp .

Proposition 3.3 In the previous notation, let G be p–generated, and assume that there
is an isomorphism H2G=TpH2G 'H2C=T2H2C. Then G belongs to Cp .

Proof Consider the Chachólski cofibration for the classifying space BG, and let C be
its homotopy cofiber. It is clear by Whitehead’s theorem that C is simply connected,
so the Hurewicz homomorphism �2C !H2C is an isomorphism. In particular, by
Lemma 6.9 in [19], P†M C is also simply connected, and the definition of nullification
as a limit of a sequence of pushouts implies that �2P†M C D �2C=Tp�2C, since M

is a Moore space. But, as �2C DH2C again by the Hurewicz theorem, the hypothesis
implies that �2P†M C ' H2G=TpH2G, and now the result follows from the long
exact homotopy sequence of Chachólski fibration.

Although the nature of the previous result is quite technical, it opens the door to
identifying the kernel of cellZ=p G for big families of groups. We will start our
description of them with an easy lemma.
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Lemma 3.4 Let p be a prime and P its complementary sets of primes. Consider
an extension A i

�! B ! V of abelian groups, with V an Fp –vector space. Let
TP A and TP B the corresponding subgroups whose elements are P –torsion. Then a
homomorphism A! B is an isomorphism if and only if the induced homomorphism
A=TP A! B=TP B is an isomorphism.

Proof The “only if” part is clear. For the “if” part, observe that the structure of
the previous extension implies that TP A is isomorphic to TP B , and moreover every
isomorphism between A and B restricts to an isomorphism between TP A and TP B .
Hence, the five lemma applied to the diagram

TP A //

��

A //

��

A=TP A

��

TpB // B // B=TP B

concludes the argument.

The previous result proves that the torsion outside p in the Schur multiplier is not
relevant when deciding the possible equality between H2G=H2TpG and H2C=H2TpC.
Hence, we can formulate the following statement:

Proposition 3.5 Let G be a p–generated group such that the torsion-free groups
H2G=TH2G and H2C=TH2C are isomorphic. Then G 2 Cp .

Proof Consider again the Chachólski cofibration for BG. As H2M D 0, the Mayer–
Vietoris sequence gives an exact sequence of abelian groups

0!H2G!H2C ! V !H1G! 0;

where V is an Fp –vector space.

As G is p–generated, H1G is also an Fp –vector space, and H2C can be described
as an extension H2G!H2C !W , where the dimension of the Fp –vector space W

is less than or equal to that of V (in particular, they will be the same if and only if G

is perfect). By Proposition 3.3, the statement holds if H2G=TpH2G is isomorphic to
H2C=TpH2C, and, by Lemma 3.4, if H2G=TH2G is isomorphic to H2C=TH2C.
So we are done.

From now on, we will concentrate on finding p–generated groups for which the
hypothesis of the previous result hold. The first relevant and important case appears
when the Schur multiplier is torsion.
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Proposition 3.6 Let G be a p–generated group whose Schur multiplier is torsion.
Then G belongs to Cp .

Proof Let G be p–generated, and recall from the proof of Proposition 3.3 the exten-
sion H2G!H2C !W , which is derived from the Mayer–Vietoris exact sequence
of Chachólski cofibration. As H2G is torsion, H2C is also. Hence, the respective
quotients by the torsion are trivial, and then isomorphic, so we can apply Proposition 3.3
again and we are done.

Remark 3.7 The isomorphism between the quotients by the p–torsion is in this
case induced by the map BG ! C. This is in fact stronger than the hypothesis of
Proposition 3.3, in which it is not needed that the isomorphism is induced in that way.

The condition about the Schur multiplier in the previous proposition does not immedi-
ately imply that the previous proposition is true for torsion groups. In fact, to understand
for which torsion groups it is true that their homology is torsion is an interesting issue
that will be the main topic of the next section.

Next we will deal with p–generated groups such that H2G is not torsion, and we will
need to check when H2G=TH2G is isomorphic to H2C=TH2C. These quotients are
torsion-free, so we are led to the following interesting group-theoretic question:

Question Let A
f
�! B

g
�! V be an extension of abelian groups, where V is an

Fp –vector space for a certain prime p , and A and B are p–torsion-free. When are A

and B isomorphic?

The general answer to this question is related to the notion of minimal abelian group,
ie abelian groups which are isomorphic to every finite-index subgroup (see [34]).
Theorem 3.23 of [34] describes an abelian group of infinite rank for which the state-
ment does not hold: the Baer–Specker group

Q
@0

Z, which for every prime p has
a subgroup of index p which is not isomorphic to it. Dugas communicated to the
authors a counterexample with finite rank: Let A and B subgroups of Q such that
1=p does not belong to A or to B and such that Hom.A;B/ D Hom.B;A/ D 0.
Consider the subgroup of Q˚Q given by G D .A.1; 0/˚ B.0; 1//C 1=p.1; 1/.
Then G=.A.1; 0/˚B.0; 1//DZ=p , but G and A.1; 0/˚B.0; 1/ are not isomorphic.
Completely decomposable minimal groups are analyzed in [43].

Hence, it will probably not be possible to always describe the kernel of the cellularization
as a quotient of the Schur multiplier; in this sense, it is interesting to recall that every
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abelian group can be realized as the Schur multiplier of a p–generated perfect group
[4, Theorem 1.1]. However, the desired description of the kernel will be available in
most typical cases, and this will be the subject of the rest of the section. Let us deal
first with the free abelian case.

Lemma 3.8 Let A! B ! C an extension of abelian groups, with B free and C

torsion. Then A and B are isomorphic.

Proof As A is a subgroup of a free abelian group, it is itself free abelian. Moreover,
the rank of abelian groups is additive in exact sequences. Then, as the rank of a torsion
group is zero, rk AD rk B . But two free abelian groups are isomorphic if and only if
they have the same rank, so we are done.

Now we have the following:

Proposition 3.9 Let G be a p–generated group such that H2G D F ˚ T , with F

free abelian and T torsion; then G 2 Cp .

Proof According to Lemma 3.4, H2G=TpH2G is isomorphic to H2C=TpH2C if
and only if H2G=TH2G is isomorphic to H2C=TH2C, and these two groups are
free abelian in this case. Again by the Mayer–Vietoris exact sequence of Chachólski
cofibration, we have an extension F ! H2C=TH2C ! V , with V an Fp –vector
space. Hence, by Proposition 3.3, we only need to prove that F and H2C=TH2C are
isomorphic. For brevity, we write LDH2C=TH2C here.

Let us check first that L is free abelian. Observe that for every element x of L,
px belongs to F. Hence, pL� F, and it is free abelian, because it is a subgroup of a
free abelian group. But the multiplication by p is an isomorphism over the image for
torsion-free abelian groups, so L' pL and hence it is free abelian. Now, by additivity
of the rank, rk F D rk L, and we are done.

Corollary 3.10 If G is p–generated and H2G is finitely generated, then G 2 Cp .

Observe that if G is finitely presented, H2G is finitely generated, and we are under
the hypothesis of the previous corollary. In fact, we are able to identify the kernel of
the cellular approximation for a far more general class of groups that was introduced
by Bartholdi [3]:

Definition 3.11 Let S be an alphabet, FS the free group in S and ˆ a set of
endomorphisms of FS . An L–presentation is an expression hS jQ jˆ jRi, where
Q and R are sets of reduced words in FS . When S, Q, ˆ and R are finite sets,
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the L–presentation is said to be finite. A group G is L–presented if there exists an
L–presentation hS jQ jˆ jRi such that

G D FS

.�
Q[

[
�2ˆ�

�.R/

�#

:

Here # denotes normal closure and ˆ� is the monoid generated by ˆ.

As stated in Proposition 2.6 of [3], the class of finitely L–presented groups strictly
contains the family of finitely presented groups, as well as, for example, free Burnside
groups, free solvable groups of finite rank and some instances of branch groups. The
following result proves that for these groups it is possible to explicitly compute the
kernel of cellZ=p G! SpG :

Theorem 3.12 Every p–generated finitely L–presented group belongs to Cp .

Proof In Theorem 2.16 of [3], it is proved that the Schur multiplier of a finitely
L–presented group can always be decomposed as the direct sum of a torsion group and
a free abelian group. The statement is now a direct consequence of Proposition 3.9.

This result will be used in the following sections to explicitly compute Z=p–cellular
approximations of infinite torsion groups.

Remark 3.13 When computing the Z=p–cellular approximation of a group, the usual
strategy is to compute first the p–socle, and then compute the Z=p–cellularization of
the socle, which is the same as that of the original group. The process must be carried out
in this order, as we are not aware of general relations between H2G and H2SpG that
are relevant in our context. This seems to be a good topic to perform ulterior research.

4 Homology of torsion groups

In this section we will identify some big classes of torsion groups whose homology is
torsion, which are then appropriate candidates for computing cellZ=p using the exact
sequence of Proposition 3.3. We found it surprising that there seems not to be a general
treatment of this problem in the literature.

From now on, let P be a nonempty set of primes. For us, a P –torsion group is a
group G such that for every x 2G, there exists p 2 P such that x is p–torsion.

Proposition 4.1 Let G be a locally finite P –torsion group. Then its homology groups
are P –torsion.
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Proof First, we know that every finite P –torsion group has P –torsion homology.
Then, we use that every group is a filtered colimit of its finitely generated subgroups,
and we find that G is a filtered colimit of its finite subgroups. Now, as the homology
commutes with filtered colimits and the colimit of a filtered system of P –torsion groups
is P –torsion, the homology of G is P –torsion.

This result opens the door to prove the same for a very interesting class of groups,
which was defined by Day [18].

Definition 4.2 The class of elementary amenable groups is the smallest class of groups
that contains abelian and finite groups and is closed under isomorphisms, subgroups,
quotients, extensions and directed unions.

Chou proved in Section 2 of [17] that the conditions of Day’s definition concerning
subgroups and quotients are redundant. More precisely, and following his notation,
let EG0 be the class whose elements are abelian groups and finite groups. If ˛ is a
successor ordinal, the groups in EG˛ are obtained by performing one extension of two
elements of EG˛�1 , or a directed union over elements of EG˛�1 . Moreover, if ˛ is a
limit ordinal, then EG˛ D

S
ˇ<˛ EGˇ . In this way, the class of elementary amenable

groups is defined as the union EGD
S

EG˛ for all ordinals ˛ . Note in particular that
every solvable group is elementary amenable.

Now we can state our main result of this section:

Theorem 4.3 Let G be an elementary amenable P –torsion group. Then its homology
groups are P –torsion.

Proof It is enough to check that every torsion elementary amenable group is locally
finite, and this is true by Theorem 2.3 in [17]. So we are done.

This result allows us to describe the Z=p–cellular structure of the elementary amenable
torsion groups:

Corollary 4.4 If G is a p–generated elementary amenable p–torsion group for some
prime p , then G 2 Cp . In particular, every p–torsion and p–generated elementary
amenable group is Z=p–cellular.

Proof As G is torsion, its homology groups are also by the previous proposition.
Then, by Proposition 3.6, G belongs to Cp . Moreover, if G is p–torsion, H2G is
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also, and then the kernel of the augmentation cellZ=p G!G, which is isomorphic to
H2G=TpH2G, is trivial. Thus, G is Z=p–cellular.

Remark 4.5 The proof of Theorem 4.3 we provide, based on local finiteness, is short
and concise. It is also possible to prove the previous proposition by combining Chou’s
description of the elementary amenable groups with a clever use of the nullification
with regard to PM , or else by appealing to Serre class theory.

Recall that given a class of groups F , the acyclic class C.F/ generated by F is the
smallest class that contains F and is closed under colimits and extensions. Let EA
be the class of elementary amenable P –torsion groups, LF the class of locally finite
P –torsion groups, and PG the class whose elements are the cyclic groups Cp for
p 2 P.

Proposition 4.6 There are bijections C.PG/' C.EA/' C.LF/. In particular, every
pushout of P –torsion elementary amenable and/or locally finite groups has P –torsion
homology.

Proof As PG � EA � LF, we have C.PG/ � C.LF/. We have to check the other
inequality. Let MP be a wedge

W
p2P M.Z=p; 1/ of two-dimensional Moore spaces.

If G is a P –torsion finite group, its MP –nullification is trivial. Hence, G belongs
to PG. Now, every locally finite P –torsion group is a colimit of finite P –torsion
groups. As the acyclic classes are closed under colimits, we have C.LF/� C.PG/ and
we are done.

On the other hand, we have proved that the homology of every group in EA is P –torsion.
Using the same argument as in Theorem 6.2 in [39], it is clear that the classifying
space of every P –torsion group in EA is MP –acyclic, and this implies that the group
belongs to C.P/, and in particular has P –torsion homology.

Remark 4.7 In particular, the pushout operation produces examples of groups whose
homology is P –torsion but that are not P –torsion themselves, as for example the
free product Cp � Cp for p 2 P. So, the closeness of these classes under arbitrary
pushouts gives an easy way to produce groups with P –torsion homology which are
not P –torsion themselves.

Let us now concentrate on the case in which P has only one prime p . So far, all
the classifying spaces of the p–torsion groups we have dealt with in this section are
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M –acyclic. This implies that the homology of these groups is p–torsion, and in
particular the groups are Z=p–cellular. Now we will review some examples of p–
torsion groups whose classifying spaces are not M –acyclic, and hence not M –cellular.
These examples are not amenable, so the next question seems really interesting:

Question Is the classifying space of every amenable p–torsion group M –acyclic?

The answer to this question can be quite difficult, because so far no constructive scheme
is available to obtain the class of amenable groups out of the class of elementary
amenable groups. It is also remarkable that, unlike what happens in the elementary
amenable case, there exist finitely generated p–torsion amenable groups that are
infinite. Among these ones, the most famous examples are probably the first Grigorchuk
group [30] and the Gupta–Sidki 3–group [32]. Our methods allow us to compute their
relevant cellular approximations:

Proposition 4.8 The first Grigorchuk group G is Z=2–cellular, and the 3–torsion
Gupta–Sidki group � is Z=3–cellular.

Proof First, recall that G is 2–generated and � is 3–generated, so we must check that
the kernels of the corresponding augmentations cellZ=2 G! G and cellZ=3 � ! �

are trivial. According to Section 4 in [3], the Schur multipliers of these groups are
Fp –vector spaces on a countable number of generators, with p D 2 for G and p D 3

for � (the original computation for G can be found in [31]). Then, by Proposition 3.9,
G2C2 and � 2C3 . Hence, as H2G and H2� are respectively 2–torsion and 3–torsion,
the aforementioned kernels are trivial, and the groups are cellular.

Observe that the result implies that these groups can be constructed out of the corre-
sponding Z=p by means of iterated telescopes and pushouts. However, as they are not
elementary amenable, they cannot be constructed out of these finite cyclic groups by
extensions and directed unions. This proves in particular that the pushout operation
marks a difference between amenable and elementary amenable groups.

On the other hand, we do not know any example of an amenable nonelementary
amenable p–torsion group such that its Schur multiplier is not p–torsion. The examples
of this class for which the Schur multiplier is known are residually nilpotent, and the
Schur multiplier is p–torsion (although not in general finitely generated). It would
be interesting to know if every residually nilpotent infinite p–group has a p–torsion
Schur multiplier.
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5 Torsion in the homotopy

In [16], Farjoun proposes an interesting list of conjectures that concern localizations
and cellular approximation. In this section we exhibit counterexamples of Conjecture 8
of the list, which asks if given a space whose homotopy groups are p–torsion, the
same condition holds for their localizations or cellularizations. We notice that a coun-
terexample for the second part based on a Tarski monster and a different cellularization
can be extracted from recent work of Göbel [29] and Petapirak [36] about varieties of
groups.

It must be remarked that it is not complicated to find examples of idempotent functors
and classes of spaces for which Farjoun’s statement holds. This is clear for the n–
connected cover functor or the Postnikov towers, for instance. If we look for more
sophisticated and mod-p meaningful examples, we have that if X is any simply
connected space whose homotopy groups are finitely generated p–groups, the same
holds for the homological localization HZ=p.X / [6], and also for the nullification
with respect to any Moore space M.Z=p; n/ for every n � 1 [8]. In the augmented
case, the statement holds again for any X and the functor cellM.Z=p;n/ [13], and for
cellBZ=p and X DK.P; n/, with n� 1 and P a nilpotent p–torsion group [15].

A counterexample for the coaugmented case can be deduced from Bousfield’s work.

Proposition 5.1 If X is the classifying space of the Prüfer group Z=p1 , the HZ=p–
homological localization of X has the homotopy type of K.Z^p ; 2/.

Proof It is known that the HZ=p–localization coincides with Bousfield–Kan p–
completion over p–good spaces, so in this case it is enough to compute X^p . The
space X is p–good, because it is the classifying space of an abelian group. Then, we
can use the exact sequence of [9, VI.5.1]. As Hom.Z=p1;Z=p1/D Z^p , the result
follows.

Now let B.2;p/ be the free Burnside group in two generators, with p > 1010 . This
is a group of exponent p , and in fact it is the free group in the variety of groups of
exponent p . It is proved in [2] (see also [35]) that the Schur multiplier of this group is
a free abelian group in a countable number of generators. This is the key result for our
following counterexample. Recall that M is a two-dimensional Moore space for Z=p .

Proposition 5.2 Let G be B.2;p/, with p > 1010 . Then the fundamental group of
cellM BG is not p–torsion.
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Proof As G has exponent p , it is of course equal to its p–socle. As G is finitely
L–generated [3, Proposition 2.14], G 2 Cp , and hence its Z=p–cellularization is
defined by an extension

F ! cellZ=p G!G;

where F DH2G is free abelian and countable, and in particular not p–torsion. We
conclude by recalling from Theorem 2.7 in [39] that �1 cellM BG D cellZ=p G.

Note that this fundamental group is in particular p–generated. Moreover, the previous
result is used in [26] when searching for a counterexample of an idempotency conjecture.

The examples of exotic p–groups that appeared around the Burnside problem have
some additional features from the point of view of homotopy theory. In particular,
they supply interesting information about how limited the localization or completion
functors are when these are used to identify p–torsion in classifying spaces. For
example, B.2;p/ is p–torsion but its classifying space is not M –cellular:

Proposition 5.3 The classifying space of B.2;p/ is not M –acyclic (and in particular
not M –cellular) if p > 1010 .

Proof As we have already seen, the Schur multiplier of B.2;p/ is torsion-free. But,
according to Theorem 6.1 in [39], the homology of an M –acyclic space should be
p–torsion. Hence, PM K.B.2;p/; 1/ is nontrivial.

There is an immediate corollary concerning the position of the classifying space of this
Burnside group in the BZ=p–cellular and acyclic hierarchies, which have attracted
some interest in recent years (see for example [19], [12] or [25]).

Proposition 5.4 For p>1010 , the classifying space of B.2;p/ is not BZ=p–acyclic,
and hence not BZ=p–cellular.

Proof It is enough to recall that BZ=p is M –cellular and M –acyclic.

It is an interesting and probably very difficult problem to find the concrete values of
these functors over the classifying space of B.2;p/. The same can be said about the
Bousfield–Kan completion (see [9]) of this space, but at least we can say the following:

Proposition 5.5 Let p > 1010 be a prime number. Then, for any other prime q ¤ p ,
the Bousfield–Kan q–completion of the classifying space of B.2;p/ is a simply
connected noncontractible space.
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Proof As B.2;p/ is p–torsion, it is q–perfect, and hence K.B.2;p/; 1/^q is simply
connected by [9, VII.3.2]. Moreover, as the Schur multiplier is infinite cyclic, the
Fq –homology of the classifying space is nontrivial. As it is also q–good (because it
is q–perfect), the Fq –homology is preserved by q–completion, so K.B.2;p/; 1/^q is
not contractible.

Hence, this Burnside group gives an example of a p–group such that the q–completion
of its classifying space is nontrivial.

Remark 5.6 We have been informed by Atabekyan that a proof will appear in [1]
of the fact that the Schur multiplier of B.2;p/ is free abelian for p > 665. As this
reference is not published yet, we use in the text the classical bound p > 1010 of
Ashmanov and Olshanskii.
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