:. Algebraic € Geometric Topology 19 (2019) 491-502
msp

On the homotopy types of Sp(n) gauge groups

DAISUKE KISHIMOTO
AKIRA KONO

Let Gi,, be the gauge group of the principal Sp(n)-bundle over S 4 corresponding
to k € Z = w3(Sp(n)). We refine the result of Sutherland on the homotopy types
of Gi , and relate it to the order of a certain Samelson product in Sp(n). Then we
classify the p—local homotopy types of Gy , for (p — )2 4+1>2n.

54C35, 55P15

1 Introduction

Let G be a topological group and P — X be a principal G—bundle over a base space X.
The gauge group of P, denoted by G(P), is the topological group of automorphisms
of P, where an automorphism of P is a G —equivariant self-map of P covering the
identity map of X. For fixed G and X, one has a collection of gauge groups G(P)
as P ranges over all principal G -bundles over X, and we will be concerned with the
classification of homotopy types in it.

Let G be a compact connected simple Lie group. Then there is a one-to-one correspon-
dence between (isomorphism classes of) principal G—bundles over S* and 73(G) = Z.
We denote by G (G) the gauge group of the bundle corresponding to k € Z = w3(G).
Consider the classification of the homotopy type in the collection of gauge groups
{Gk (G)}r ez - The first classification was done by the second author [18] for G =SU(2),
and since then, considerable effort has been made for the classification when G is
of low rank; see Cutler [4], Hamanaka and Kono [8], Hamanaka, Kaji and Kono [7],
Hasui, Kishimoto, Kono and Sato [9], Kamiyama, Kishimoto, Kono and Tsukuda [11],
Kishimoto, Theriault and Tsutaya [16], Kono [18] and Theriault [23; 25; 26]. Properties
of gauge groups related to the classification of the homotopy types have also been
intensively studied; see Crabb and Sutherland [3] and Kishimoto and Kono [12],
Kishimoto, Kono and Theriault [13], Kishimoto and Tsutaya [17], Kishimoto, Kono
and Tsutaya [14; 15] and Theriault [24].
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In this paper, we study the classification of the homotopy types of G (Sp(n)). Let
Gk.n = Gk (Sp(n)). We will first consider Sutherland’s homotopy invariant for Gy ,, [21]:
if Gy, and G; , are homotopy equivalent, then (k,n(2n + 1)) = (I,n(2n + 1)) for
n even and (k,4n(2n+ 1)) = (/,4n(2n + 1)) for n odd. It seems that this invariant
has indeterrminacy by a factor of 4 according to the parity of n, and we will refine
Sutherland’s result by removing this indeterminacy.

Theorem 1.1 If Gy, and G;, are homotopy equivalent, then (k,4n(2n + 1)) =
(,4n(2n+1)).

As for an explicit classification of Gy ,, there are only two results for n = 1,2: G ;
and G;; are homotopy equivalent if and only if (k, 12) = (/,12) [18], and G > and G; »
are p-locally homotopy equivalent for any prime p if and only if (k, 40) = (/, 40) [23].
The key fact that was used to prove these classifications is that G (G) is homotopy
equivalent to the homotopy fiber of the map G — QSG which is the adjoint of the
Samelson product S3AG — G of k € Z = m3(G) and the identity map of G. Actually,
the integers 12 and 40 in the above classification are the orders of this Samelson product
for G = Sp(1), Sp(2), respectively. We will next show that the integer 4n(2n + 1) in
Theorem 1.1 is equal to the order of a certain Samelson product in Sp(n).

We set notation to state the result. Let €: S3 — Sp(n) be the bottom cell inclusion,
so that it generates 73(Sp(n)) = Z. Let O, be the quasiprojective space of rank n
defined by James [10]. Then one has the inclusion t¢,: O, — Sp(n) such that the
induced map in homology

(1 A(H4(Qn) = Hx(Sp(n)

is an isomorphism. We denote by («, B) the Samelson product of maps « and B.
Theorem 1.2 The order of the Samelson product (€, t,) in Sp(n) is 4n(2n +1).

It is obvious that the order of the Samelson products (e, Isp(,)) is no less than the
order of (e, ¢,). Although we do not know these orders are equal, it is proved in [15]
that if we localize at a large prime p, these orders are equal. Let |g| denote the order

of an element g of a group. For an integer a = p"q with (p,q) =1,let vy(a) = p".

Corollary 1.3 If (p—1)> 41> 2n, then v, (|{€, Ispim))|) = vp(4n(2n + 1)).
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Remark The assumption in [15, Theorem 1.4], which is needed to prove Corollary 1.3,
is (p—1(p—2)+ 1= 2n. But this assumption is actually too much and one can
reduce it to (p —1)% 4 1 > 2n as in Corollary 1.3. This refinement will be explained
in Section 2.

In [15] the classification of the p—local homotopy types of G , for a large prime p is
done in terms of the order of (e, t,), by which one gets:

Corollary 1.4 For (p—1)?>+1>2n, Gk,n and Gj , are p-locally homotopy equiva-
lent if and only if v, ((k, 4n(2n + 1))) = vp((l, 4n(2n + 1))).

Remark Theriault [24] classified the p—local homotopy types of Gi(SU(n)) for
(p —1)?2 +1 > n by using Toda’s map 2>CP"~! — CP" for Bott periodicity. It
may be possible to prove Corollaries 1.3 and 1.4 by modifying his method although
Theorems 1.1 and 1.2 cannot. On the other hand, one can reprove Theriault’s result by
our method.

As in Friedlander [5], there is a p—local homotopy equivalence BSpin(2n + 1) 2~ ()
BSp(n) for any odd prime p, and we will see that this induces a p—local homo-
topy equivalence Gg (Spin(2n + 1)) ~(,) Gk, for any odd prime p. On the other
hand, it is shown in [12] that a p—local homotopy equivalence Spin(2n + 2) ~(p)
Spin(2n + 1) x S?"*1 for any odd prime p in Borel and Serre [2] induces a p—local
homotopy equivalence between G (Spin(2n +2)) and the product of G (Spin(2n+1))
and a certain space for any odd prime p. Combining these results with Corollary 1.4,
we get:

Corollary 1.5 For (p —1)> 4+ 1 >2n > 6 and € = 1,2, G (Spin(2n + €)) and
Gi(Spin(2n + €)) are p—locally homotopy equivalent if and only if

vp((k,4n(2n +1))) = vp((1,4n(2n + 1))).

Acknowledgement The authors were partly supported by JSPS KAKENHI (No.
17K05248 and No. 15K04883).

2 Odd primary homotopy types of gauge groups

Let map(X, Y; f) be the path component of the mapping space map(X, Y) containing
amap f: X — Y. Let G be a compact connected simple Lie group. In [6; 1] it is
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shown that there is a homotopy equivalence
2) BG(G) ~ map(S*, BG; ke),

where € corresponds to 1 € Z = w4(BG). So, evaluating at the basepoint of S*, one
gets a homotopy fibration sequence

3) G (G) = G 25 Q3G — BG(G) — BG.

In particular, G (G) is homotopy equivalent to the homotopy fiber of d; . Lang [19]
identified 0z with a certain Samelson product in G. Let €: S — G be the adjoint of €.

Lemma 2.1 The adjoint S* A G — G of ) is homotopic to the Samelson product
(ke, 1g).

By linearity of Samelson products, we have (ke, 1g) = k{e, 1g). We denote the k"
power map of QSG by the same symbol k. Then we get:

Corollary 2.2 0 >~ kody.

Thus one sees that the order of the Samelson product (e, 1) is connected to the
classification of the homotopy types of G (G). It is shown in [15] that, localized at a
large prime, the calculation of the Samelson product (e, 1) reduces drastically and
the homotopy types of G (G) are classified in terms of the order of (e, 1g). We recall
these results. Given a prime p, a space A is called a homology generating space of an
H-space X if the following conditions hold:

(1) H«(X:Z/p)=A(x1,...,Xm).
(2) There is a map t: A — X(,) which induces the inclusion of a generating set in
mod p homology.

An H-space X is called retractible if it has a homology generating space 4 and the
map X ¥ A — X X(p) has a left homotopy inverse. It is proved in [22] that if (G, p)
is in Table 1, then G, is retractible, where we omit the cases G = Spin(2n) and
(G, p) =(G2,3).

If G has a homology generating space A at a prime p, then the p—primary component
of the order of (e, ) is obviously no less than that of (€, 1g). In [15], if G is retractile
in addition, then these two coincide. The assumption in [15] for this result is stronger
than retractibility but one can easily follow its proof to see that only retractibility is
used. So we record this result here with a weaker assumption.

Proposition 2.3 If (G, p) is in Table 1, then v, (|{€, 1G)|) = vp(|{€. 1)]).
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SU(n) (p—1D*+12n
Sp(n),Spin2n+1) (p—1*+1>2n
G,.F4, Eg p>5
E7,Eg p=7

Table 1: Retractible Lie groups

Using this proposition, the following is proved in [15], where the assumption on the
prime p can be weakened as well.

Theorem 2.4 Suppose that (G, p) is in Table 1. Then G;(G) and G;(G) are p—
locally homotopy equivalent if and only if v, ((k, |(€,1)])) = vp((, |{€.1)])).

Proof of Corollary 1.3 Since (1) is an isomorphism, @, is a homology generating
space of Sp(n) at any prime, and as in [22], Sp(n) is retractible with respect to O, at
the prime p. Then Corollary 1.3 follows from Theorem 1.2 and Proposition 2.3. O

Proof of Corollary 1.4 This follows from Corollary 1.3 and Theorem 2.4. a

Proof of Corollary 1.5 We first consider the p—local homotopy type of the gauge
group G (Spin(2n + 1)) for any odd prime p. By [5], BSp(n) ~(,) BSpin(2n + 1).
Then it follows from (2) that G (Spin(2n + 1)) ~(,) Gk, Thus the result follows
from Corollary 1.4.

We next consider the p—local homotopy type of G (Spin(2n + 2)). Note that we are
now assuming p > 5. Then it follows from [12] that there is a p—local homotopy
equivalence

Gr (Spin(2n + 2)) 2( ) G (Spin(2n + 1)) x S2"T1 x Q4 g2 +!,
So the above case of G (Spin(2n + 1)) implies that
G (Spin(2n 4 2)) >~(p) G;(Spin(2n + 2))

whenever v, ((k,4n(2n + 1))) = vp(k,4n(2n + 1)). By 1211, man+1(Grn)(p) =
Z[vp((k,4n(2n +1))). The order of 4p41 (S x Q4§21 ) is finite, say M,
implying that the order of

T4n+1 (gk(Spin(2l’l + 2)))(1,) = ant+1(Gk,n X Sl Q4S2n+1)(p)

is Mvp((k, 4n(2n+ 1))). Thus we get that v, ((k, 4n(2n+ 1))) = vp((l, 4n(2n+ 1)))
whenever Gy (Spin(2n + 2)) ~(,) G;(Spin(2n + 2)), completing the proof. a
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3 Unstable K Sp-theory

If a space Z is low-dimensional, then the homotopy set [Z, U(n)] is isomorphic
to E_I(Z). So we call [Z,U(n)] unstable K-theory. In [8], for dim Z < 2n, a
method for computing [Z, U(n)] is given by comparing it with K~1(Z). We call the
homotopy set [Z, Sp(n)] unstable KSp-theory as well, and Nagao [20] considered the
analogous method for computing unstable KSp—theory. We will use Nagao’s method
to calculate Samelson products in Sp(n), so we recall it here.

The cohomology of BSp(n) and Sp(n) are given by
H*(BSp(n)) = Zlg1.....qnl.  H*(Sp(n)) = A(x3......xan-1),

where ¢; is the i™ symplectic Pontrjagin class and x4;_; = o(g;) for the cohomol-
ogy suspension . Let X, = Sp(co)/Sp(n). By an easy inspection, one sees that
H*(Xy) = A(X4n+3, X4n+7, . ..) for m*(X4i—1) = x4i—1, where 7: Sp(c0) — X,
is the projection. Then we get that Q X}, is (4n+1)—connected and H*"t2(QX,) =
Z{agn42}, where 0 (X4,43) = d4ny2 and R{zy, z3, ...} means the free R—module
with a basis {zq,z,...}. In particular, the map a4,42: QX, — K(Z,4n + 2)
is a loop map and is a (4n+3)—equivalence. So if dimZ < 4n + 2, the map
(@4ni2)x: [Z,.92X,] — H*"T2(Z) is an isomorphism of groups. Moreover, it is
shown in [20] that the composite

KSp~2(2) = [Z. 2Sp(c0)] @2 (7, @ X, @25 prant2 7y

is given by (=1)"*1(2n 4 1)! chgpy2(u™'c/()) for £ € I?SJp_Z(Z), where chy de-
notes the 2k —dimensional part of the Chern character, u is a generator of K (SH =7
and ¢’: KSp — K is the complexification. Now we apply [Z, —] to the homotopy
fibration sequence QSp(o0) — QX — Sp(n) — Sp(co) and get an exact sequence
of groups

KSp™2(2) - [2.9X) > [Z.5p(m)] - KSp~(2).

Then, by the above identification of [Z, Q X},], Nagao [20] obtained:

Theorem 3.1 If Z is a CW-complex of dimension < 4n + 2, then there is an exact
sequence of groups

KSp~2(2) 2> H*"F2(Z) — [Z,Sp(n)] — KSp~'(2)
such that, for & € IE\S/p_Z(Z),
() = (—1)"2n + 1) chyp o (™' /().
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This is also useful for computing the Samelson products in Sp(n), as follows. Let
y: Sp(n) ASp(n) — Sp(n) be the reduced commutator map. Since Sp(co) is homotopy
commutative, the composite Sp(n) A Sp(n) -~ Sp(n) — Sp(o0) is null-homotopic.
Then, since there is a homotopy fibration 2.X;,, — Sp(n) — Sp(c0), y lifts to a map
y: Sp(n) ASp(n) — QX,. In [20], a specific lift is constructed as:

Proposition 3.2 There is a lift : Sp(n) A Sp(n) — QX,, of y satisfying

~%
Y (@an+2) = Z X4i—1 @ Xg4j—1.
i+j=n+1

Thus, by Theorem 3.1, one gets:

Corollary 3.3 Let A and B be CW-complexes such that dim A + dim B < 4n + 2.
The order of the Samelson product of maps «: A — Sp(n) and B: B — Sp(n) is equal
to the order of

Z a*(X4i-1) @ B*(x4j-1)

i+j=n+1

in the cokernel of the map ®: Ia/p)_z(A A B) — H*""2(4 A B) of Theorem 3.1

The following data of K* (0y) and IZ\S/p*(Qn) will be used to apply the above results
to our case. Let t,: O, — Sp(n) be the inclusion and 6;: ¥Q, — BSp(co) be the
composite of the adjoint X0, — BSp(2) of ¢, and the inclusion BSp(2) — BSp(c0).
Let 6, be the composite of the pinch map onto the top cell Q> — S¥ and a generator
of mg(BSp(00)) = Z. Put y4j—1 = t;(xaj—1). Then H*(Qn) = Z{y3, ..., Yan—1}
and

“) ch(c’(61)) = Zy3 —£Zy7.  ch(c(6,)) = 23y.

Let p1 = qu?c’'(0))) € If(\SJp(Z]5 0,), where g: K — KSp is the quaternionization.
Let p, € KSp(Z° Q,) be the composite of the pinch map to the top cell £3Q, — S12
and a generator of 71,(BSp(c0)) = Z. Then we have

ch(c'(p1)) =25 y3 +32°y7.  ch(c'(p2)) = =7 y7.

7401,60,) ifi=1,
Lemma 3.4 KSp(ZiQ,) = 3 Z{p1. p2} ifi =75,
0 if i =0 mod 4.
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Proof A homotopy cofibration S* — £0Q, — S? induces a commutative diagram
with exact rows

0 —— KSp(S8) —— KSp(£Q,) — KSp(S*) —— 0

e e e

0— > K(S¥) — > K(Z0,) —— K(SY) ——0

Then we get the first equality by (4) and I,(\S/p (S*™M) 2 7. The remaining equalities
are seen by the same argument. a

The complexification ¢’: BSp(co) — BU(00) restricts to a map £Q, — R2CP2"~1,
which we denote by the same symbol ¢’. Let n € K (CP?"~1) be the Hopf bundle
minus the trivial line bundle, and put & = (¢/)*(un’) € K= On). Then we have

ch(c'(&)) = Zxgi—1 mod (Bxg4j—1 | j >10).

Thus, by the skeletal argument analogous to the proof of Lemma 3.4, one gets:
Lemma 3.5 K(Z0p) = Z{&1. ... En).

Proposition 3.6 If(\S/p(ESQ,,) =Z{¢y, ..., L.}, where & = q(u?&;) and
ch(c'(6) = €27 yaicy mod (52 y4j1 | j >1i)

fori > 1 with¢; =1 fori even and ¢; = 2 fori odd.

Proof The case n = 2 is proved in Lemma 3.4. Consider the commutative diagram

with exact rows induced from the homotopy cofibration sequence £°Q,_; — 230, —
§4n+4.

0 —— KSp(S*4"+t4) —— KSp(£50,) —— KSp(Z3Qp—1) —— 0

[ |

0—— K(S4t) —  K(250,) —— K(Z°0,—1) —— 0

Induct on n. Then we get that 1/(\S/p(25 QOp) is a free abelian group and the upper
exact sequence splits. Thus we obtain the desired ¢y, ..., {,, completing the proof. O
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4 Proofs of the main theorems

To prove Theorem 1.1, we need several lemmas. Let 5k3 Sp(n) — Q*X,, be the adjoint
of the map ¥ o (€ A Igpn)): S3 ASp(n) — QX,, where 7 is as in Proposition 3.2.
Then 0y, is a lift of dx, so by (3) and Theorem 3.1, we get the following commutative
diagram with exact columns and rows, where §; = (d45+2 © 5k)*:

KSp=2 (s 02)
[}
— 8
KSp~ (248 0,)—L s HA"2(24=5 0y)

)
KSp! (54778 0) -2 [541-5 0, Sp(n)]—[S*~5 Q5. BGi u]— KSp(S*"~$ 01)
KSp~'(Z4"50,)
Lemma 4.1 [Z47"78 05, BG ] = Coker(dg)«.

Proof By Lemma 3.4, one has If<\S/p(E4”_8 0,) =0, so the lemma follows from (5).
O

Lemma 4.2 [Z4"50,, Sp(n)] = Z/(3(2n + 1)!) for n even.

Proof Since Iz\S/p_l(E“”_SQZ) = 0 by Lemma 3.4, we get [Z4"3Q,, Sp(n)] =
Coker @ by (5). Since # is even, ﬁp_2(24”_5 0,) =~ I’(\SJp(Z5 0>). Then it follows
from Theorem 3.1 and Lemma 3.4 that Im & = Z{%(Zn + 1)!22”_5y7}. Thus, for
HA4"T2(241=3 0,) = Z{%4" =3 ,}, the proof is done. O

Lemma 4.3 Im(dz)s« = Z/((2n + 1)!/(3(k, 4n(2n + 1)))) for n even.

Proof Since IZ\SJp_1 (24"=30,) = 0 by Lemma 3.4, we have Im(d ) = Im §; /Im ®
by (5). We calculate Im §; , where Im @ has already been calculated in the proof of
Lemma 4.2. Let & =480, — Sp(co) be the adjoint of & € KSp(Z4"~70,).
By definition, we have & () = kX3@*(x4,—1), so we calculate @*(x4,—;). Let
ch(c/(@)) = aX* 7 y; + b2*"=7y; for a,b € Q. By the Newton formula, chy, =
—(1/(2n — 1))cay, + decomposables, implying that (—1)"a*(g,) = (¢’ ca)*(c2,) =
—b(2n —1)!=4"=7y, . Then, by taking the adjoint, we get

Q* (Xan—1) = (=) b2n—1)124" 8y,
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Since n is even, we have I?Sdp(E‘”’_7 0,) =~ I?Sdp(ZQz). Thus, by Lemma 3.4, we
obtain Im 8 = Z{+k(2n—1)! =43 y;}. Therefore, the proof is completed. |

Lemma 4.4 If n is even and n > 2, then [S*" "8 Q,, BGy ,] = Z/(k,4n(2n + 1)).
Proof Combine Lemmas 4.1, 4.2 and 4.3. O

Proof of Theorem 1.1 By the result of Sutherland [21] mentioned above, it is suf-
ficient to prove the theorem for n even. When n = 2, the result of Theriault [23]
mentioned above implies the theorem. Assume that n > 2 and Gy , >~ G; ,. Then, since
[24"80,, BGn.a] = [Z*"° 03, Gm.n] for any m, we have [Z4"~8Q,, BGy »] =
[Z4=80,, BGj »], so the theorem follows from Lemma 4.4. a

Proof of Theorem 1.2 As dim %3 Q,, = 4n+2, we apply Corollary 3.3 to the Samel-
son product (e, ty) in Sp(n). Then, for 3 ;11 €*(x4;—1) @1 (xqj—1) = Y3 Van—i,
it is sufficient to show that the image of ®: KSp~2(230,) — H*"t2(23Q,) is
generated by 4n(2n+1)X3 y4,—;. For ¢, € I?SJp(E5 Q) of Proposition 3.6, we have

(' ¢/(61)) = ehanga (14 DWED)) = 3,75 Z .

s0 4n(2n+1)23y4,_1 € Im ®, where t: K — K is the complex conjugation. On the
other hand, by Lemmas 3.5 and 3.6, ¢/( KSp(Z° Q,)) is included in

ZC (G1), uEs, .. uPEn} C K(Z° 00).

By definition, we have

2n—-1)! 1 3
Chapto(u NE) = E : X7 yan—1-
leeery! —1!--. —1!
e 2n—1 rleecerg! Qry—D-Qrg —1)!

ri=1,..,rx=>1
For k > 2, the coefficients of (2n+ 1)! chyy, 42 (1&y) are divisible by 4n(2n+1). Then
Im @ is included in the submodule generated by 4n(2n + 1)X3 y4,_; . Thus we obtain

that Im ® is generated by 4n(2n 4+ 1)X3y4,_1, as desired. Therefore, the proof is
completed. a
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