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Cohomology rings of compactifications of toric arrangements

CORRADO DE CONCINI

GIOVANNI GAIFFI

We previously (Adv. Math. 327 (2018) 390–409) constructed some projective wonder-
ful models for the complement of a toric arrangement in an n–dimensional algebraic
torus T . In this paper we describe their integer cohomology rings by generators and
relations.
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1 Introduction

Let T be an n–dimensional algebraic torus T over the complex numbers, and let
X�.T / be its character group, which is a lattice of rank n.

A layer in T is the subvariety

K�;� D ft 2 T j �.t/D �.�/ for all � 2 �g;

where � is a split direct summand of X�.T / and �W �!C� is a homomorphism.

A toric arrangement A is given by finite set of layers A D fK1; : : : ;Kmg in T ; if
for every i D 1; : : : ; m the layer Ki has codimension 1, the arrangement A is called
divisorial.

De Concini and Gaiffi in [3] show how to construct projective wonderful models for the
complement M.A/DT �

S
i Ki . A projective wonderful model is a smooth projective

variety containing M.A/ as an open set and such that the complement of M.A/ is a
divisor with normal crossings and smooth irreducible components. We recall that the
problem of finding a wonderful model for M.A/ was first studied by Moci in [18],
where a construction of nonprojective models was described.

In this paper we compute the integer cohomology ring of the projective wonderful
models by giving an explicit description of their generators and relations. This allows
for an extension to the setting of toric arrangements of a rich theory that regards models
of subspace arrangements and was originated in [4; 5]. In these papers De Concini and
Procesi constructed wonderful models for the complement of a subspace arrangement,
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504 Corrado De Concini and Giovanni Gaiffi

providing both a projective and a nonprojective version of their construction. In [5]
they showed — using a description of the cohomology rings of the projective wonderful
models to give an explicit presentation of a Morgan algebra — that the mixed Hodge
numbers and the rational homotopy type of the complement of a complex subspace
arrangement depend only on the intersection lattice (viewed as a ranked poset). The
cohomology rings of the models of subspace arrangements were then studied by
Yuzvinsky [20] and Gaiffi [12], where some integer bases were provided, and also, in
the real case, by Etingof, Henriques, Kamnitzer and Rains [7; 19]. Some combinatorial
objects (nested sets and building sets) turned out to be relevant in the description of
the boundary of the models and of their cohomology rings: their relation with discrete
geometry was pointed out by Feichtner [8] and Gaiffi [13]; the case of complex reflection
groups was dealt with by Henderson [14] from the representation-theoretic point of
view and by Callegaro, Gaiffi and Lochak [2] from the homotopical point of view.

The connections between the geometry of these models and the Chow rings of matroids
were pointed out first by Feichtner and Yuzvinsky [9] and then by Adiprasito, Huh and
Katz in [1], where they also played a crucial role in the study of some log-concavity
problems.

As happens for the case of subspace arrangements, in addition to the interest in their
own geometry, the projective wonderful models of a toric arrangement A may also
shine new light on the geometric properties of the complement M.A/. For instance, in
the divisorial case, using the properties of a projective wonderful model, Denham and
Suciu in [6] showed that M.A/ is both a duality space and an abelian duality space.

Let us now describe in more detail the content of the paper.

In Section 2 we briefly recall the construction of wonderful models of varieties equipped
with an arrangement of subvarieties; this is a generalization, studied by Li [17], of
De Concini and Procesi’s construction for subspace arrangements. Its relevance in
our setting is explained by the following remark: In [3], as a first step, the torus T
is embedded in a smooth projective toric variety X. This toric variety, as we recall
in Section 5, is chosen in such a way that the set made by the connected components
of the intersections of the closures of the layers of A turns out to be an arrangement
of subvarieties L0 and one can apply Li’s construction in order to get a projective
wonderful model.

More precisely, there are many possible projective wonderful models associated to L0,
depending on the choice of a building set for L0.
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We devote Section 3 to a review of the main properties of building sets and nested
sets of arrangements of subvarieties. These combinatorial objects were introduced
by De Concini and Procesi [4] and their properties in the case of arrangements of
subvarieties were investigated by Li [17]. If G is a building set for L0, we will denote
by Y.X;G/ the wonderful model constructed starting from G .

In Section 4, given any arrangement of subvarieties in a variety X, we focus on its
well-connected building sets: these are building sets that satisfy an additional property
that will be crucial for our cohomological computations.

In Section 6 we recall a key lemma, due to Keel, that allows to compute the cohomology
ring of the blowup of a variety M along a center Z provided that the restriction map
H�.M/! H�.Z/ is surjective. In this result the Chern polynomial of the normal
bundle of Z in M plays a crucial role. Then we go back to the case of toric arrangements
and, given a smooth projective toric variety X associated to the toric arrangement A,
we describe the properties of some polynomials in H�.X;Z/ that are related to the
Chern polynomials of the closures of the layers of A in X.

In Section 7 we prove our main result (Theorem 7.1): we provide a presentation of
the cohomology ring H�.Y.X;G/;Z/ by generators and relations, as a quotient of a
polynomial ring over H�.X;Z/, whose presentation is well known. A concrete choice
for the generators that appear in our theorem is provided in Section 8. We recall that a
description of the cohomology of a wonderful model of subvarieties as a module was
already found by Li [16].

Finally, in Section 9 we provide a presentation of the cohomology rings of all the strata
in the boundary of Y.X;G/.

2 Wonderful models of stratified varieties

In this section we are going to recall the definitions of arrangements of subvarieties,
building sets and nested sets given in Li’s paper [17]. We will give these definitions in
two steps, first for simple arrangements of subvarieties, then in a more general situation.
We are going to work over the complex numbers, hence all the algebraic varieties we
are going to consider are complex algebraic varieties.

Definition 2.1 Let X be a nonsingular variety. A simple arrangement of subvarieties
of X is a finite set ƒDfƒig of nonsingular closed connected subvarieties ƒi , properly
contained in X, which satisfy the following conditions:

Algebraic & Geometric Topology, Volume 19 (2019)



506 Corrado De Concini and Giovanni Gaiffi

(i) ƒi and ƒj intersect cleanly, ie their intersection is nonsingular and, for every
y 2ƒi \ƒj , their tangent spaces in y satisfy

Tƒi ;y \Tƒj ;y D Tƒi\ƒj ;y :

(ii) ƒi \ƒj either belongs to ƒ or is empty.

Definition 2.2 Let ƒ be a simple arrangement of subvarieties of X. A subset G �ƒ
is called a building set for ƒ if, for every ƒi 2 ƒ � G , the minimal elements in
fG 2 G jG �ƒig intersect transversally and their intersection is ƒi . These minimal
elements are called the G–factors of ƒi .

Definition 2.3 Let G be a building set for a simple arrangement ƒ. A nonempty
subset T � G is called G–nested if, for any subset fA1; : : : ; Akg � T (with k > 1) of
pairwise noncomparable elements, A1; : : : ; Ak are the G–factors of an element in ƒ.

We remark that in Section 5.4 of [17] the following more general definitions are provided,
to include the case when the intersection of two strata is a disjoint union of strata.

Definition 2.4 An arrangement of subvarieties of a nonsingular variety X is a finite
set ƒ D fƒig of nonsingular closed connected subvarieties ƒi , properly contained
in X, that satisfy the following conditions:

(i) ƒi and ƒj intersect cleanly.

(ii) ƒi \ƒj is either equal to the disjoint union of some of the ƒk or it is empty.

Given an open set U �X, and a family ƒ of subvarieties of X, by the restriction ƒjU
of ƒ to U we shall mean the family of nonempty intersections of elements of ƒ with U.

Definition 2.5 Let ƒ be an arrangement of subvarieties of X. A subset G � ƒ is
called a building set for ƒ if there is an open cover fUig of X such that

(a) the restriction of the arrangement ƒ to Ui is simple for every i ;

(b) GjUi is a building set for ƒjUi .

We have first introduced the notion of arrangement of subvarieties and then defined
a building set for the arrangement. However, it is often convenient to go in the
opposite direction and first introduce the notion of building set then use it to define the
corresponding arrangement.
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Definition 2.6 A finite set G of connected subvarieties of X is called a building set
if the set of the connected components of all the possible intersections of collections
of subvarieties from G is an arrangement of subvarieties ƒ (the arrangement induced
by G ) and G is a building set for ƒ.

Let us now introduce the notion of G–nested set in the more general context of (not
necessarily simple) arrangements of subvarieties.

Definition 2.7 Let G be a building set for an arrangement ƒ. A subset T � G is
called G–nested if there is an open cover fUig of X such that, for every i , GjUi is
simple and T jUi is GjUi –nested.

Remark 2.8 According to the definition above, if some varieties G1; G2; : : : ; Gk 2 G
have empty intersection, then they cannot belong to the same G–nested set.

Once we have an arrangement ƒ of a nonsingular variety X and a building set G for ƒ,
we can construct a wonderful model Y.X;G/ by considering (by analogy with [5]) the
closure of the image of the locally closed embedding�

X �
[
ƒi2ƒ

ƒi

�
!

Y
G2G

BlGX;

where BlG X is the blowup of X along G.

In [17, Proposition 2.8], one shows:

Proposition 2.9 Let G be a building set in the variety X. Let F 2 G be a minimal
element in G under inclusion. Then the set G0 consisting of the proper transforms of
the elements in G is a building set in BlFX.

Proof In fact Li shows this for a building set of a simple arrangement. But, since the
definition of building set is local, one can easily adapt his proof (see also Section 5.4
of [17]).

Using this in [17, Theorem 1.3] and the discussion following it, one shows:

Theorem 2.10 Let G be a building set of subvarieties in a nonsingular variety X. Let
us arrange the elements G1; G2; : : : ; Gm of G in such a way that for every 1�h�m the
set Gh D fG1; G2; : : : ; Ghg is building. Then, if we set X0 DX and Xh D Y.X;Gh/
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for 1� h�m, we have
Xh D Bl zGhXh�1;

where zGh denotes the dominant transform1 of Gh in Xh�1 .

Remark 2.11 (1) Any total ordering of the elements of a building set

G D fG1; : : : ; Gmg

which refines the ordering by inclusion, that is, i < j if Gi �Gj , satisfies the
condition of Theorem 2.10.

(2) In particular, using the above ordering we deduce that Y.X;G/ is obtained
from X by a sequence of blowups each with center a minimal element in a
suitable building set. For every element G 2 G we denote by DG its dominant
transform, which is a divisor of Y.X;G/.

To finish this section let us mention a further result of Li describing the boundary of
Y.X;G/ in terms of G–nested sets:

Theorem 2.12 [17, Theorem 1.2] The complement in Y.X;G/ to X �
S
ƒi2ƒ

ƒi

is the union of the divisors DG , where G ranges among the elements of G . An
intersection of these divisors is nonempty if and only if fT1; : : : ; Tkg is G–nested. If
the intersection is nonempty, it is transversal.

3 Some further properties of building sets

In this section we collect a few facts of a technical nature which will be used later. Let
ƒ be an arrangement of subvarieties in a connected nonsingular variety X. Let G be
a building set for ƒ and let F be a minimal element in G . Let us denote by zX the
blowup BlFX and, for every subvariety D, let us call zD the transform of D.

Let us first recall the following lemma from [17] (originally stated for ƒ simple
arrangement, but valid also for the general case due to its local nature):

Lemma 3.1 (see [17, Lemma 2.9]) Let G be a building set for ƒ and let F be a
minimal element in G . Let us consider the blowup zX D BlFX, and let A, B , A1 , A2 ,
B1 and B2 be nonsingular subvarieties of X.

1In the blowup of a variety M along a center F the dominant transform of a subvariety Z coincides
with the strict transform if Z š F (and therefore it is isomorphic to the blowup of Z along Z \F ) and
with ��1.Z/ if Z � F , where � W BlF M !M is the projection.
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(1) Suppose that A1 š A2 and A2 š A1 , and suppose that A1 \A2 D F and the
intersection is clean. Then zA1\ zA2 D∅.

(2) Suppose that A1 and A2 intersect cleanly and that F ¨A1\A2 . Then zA1\ zA2D
BA1\A2 .

(3) Suppose that B1 and B2 intersect cleanly and that F is transversal to B1 , B2
and B1\B2 . Then zB1\ zB2 D BB1\B2 .

(4) Suppose that A is transversal to B , F is transversal to B and F � A. Then
zA\ zB D AA\B.

The following simple lemma will be useful later:

Lemma 3.2 Let G be a building set for ƒ and let U be an open set as in Definition 2.5.
Let us consider two subsets fH1; : : : ;Hkg and fG1; : : : ; Gsg of G . If

H 0
D U \

\
iD1;:::;k

Hi ¤∅;

H 0
D U \

\
iD1;:::;k

Hi �G
0
D U \

\
jD1;:::;s

Gj ;

then the connected component of
T
iD1;:::;kHi that contains H 0 is contained in the

connected component of
T
jD1;:::;s Gj that contains G0 .

Proof First we notice that H 0 and G0 are connected by Definition 2.5. The statement
follows since H 0 is a dense open set of the connected component of

T
iD1;:::;kHi

that contains it.

Proposition 3.3 Let G be a building set for ƒ. Let us fix an open set U as in
Definition 2.5 (for brevity, in what follows every object will be restricted to U but we
are going to omit the symbol of restriction; for instance, we will denote by G the set
G\U for every G 2G ). Let G1; G2 2G be not comparable. Then either G1\G2D∅
or G1\G2 2 G or G1\G2 is transversal.

Proof Let us suppose G1\G2 ¤∅. We know by the definition of building set that

(1) G1\G2 DH1\H2\ � � � \Hk;

where the Hj are the minimal elements in G that contain G1\G2 and the intersection
among the Hj is transversal. We can suppose, up to reordering, that H1 �G1 .

If we also have H1 � G2 then H1 � G1 \G2 , while from the equality (1) we have
G1\G2 �H1 . This means that G1\G2 DH1 and therefore it belongs to G .
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If, on the other hand, H1 is not contained in G2 , we can suppose, up to reordering,
that H2 � G2 . Then H1 \H2 � G1 \ G2 , while from the equality (1) we have
G1\G2�H1\H2 . This means that G1\G2DH1\H2 , so that, in particular, kD 2.

Since the intersection H1\H2 is transversal, then also G1\G2 is transversal. Indeed,
once one fixes a point y 2H1\H2 , the set of linear equations that describe the tangent
space THi ;y includes the set of equations that describe TGi ;y . Since the intersections
are clean and all the involved varieties are smooth, this implies in particular that
G1 DH1 and G2 DH2 .

Corollary 3.4 (see [17, Lemma 2.6]) Let G be a building set. Let F be a element
in G .

(1) If F is minimal, for any G 2 G , either G contains F , or F \G D∅, or F \G
is transversal.

(2) Let K be an element of the arrangement induced by G such that none of its G–
factors contains F . Assume that H DK\F also has F as one of its G–factors.
Then the intersection of K and F is transversal.

Proof First we notice that, by Lemma 3.2, for every open set U as in Definition 2.5,
F \U is empty or it is minimal also for the restriction of G to U. Therefore, it is
sufficient to prove our statement locally (and from now on we will think of every object
as intersected with U ).

So .1/ is an immediate consequence of Proposition 3.3 since if F šG and F \G¤∅,
then F \G … G by minimality of F .

As for .2/, since G is building, we can write

H D B1\ � � � \Bj \F;

where B1; : : : ; Bj ; F (with j � 1) are the G–factors of H and their intersection is
transversal.

Let G be a G–factor of K . Since G contains H but does not contain F, it must
contain one of the Bi . It follows that S D B1\ � � � \Bj �K . We deduce that, since

H DK \F D S \F;

K and F intersect cleanly, and S and F intersect transversally, also K and F intersect
transversally.
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4 Well-connected building sets

In the computation of the cohomology of compact wonderful models we will need
some building sets that have an extra property.

Definition 4.1 A building set G is called well connected if, for any subset fG1; : : : ;Gkg
in G , the intersection G1\G2\� � �\Gk is either empty or connected or it is the union
of connected components each belonging to G .

Remark 4.2 In particular, if G is well connected and F 2 G is minimal, we have that
for every G 2 G the intersection G \F is either empty or connected.

Notice that, for example, if ƒ is an arrangement of subvarieties then ƒ itself is a —
rather obvious — example of a well-connected building set.

As another example, if ƒ is simple then clearly every building set for ƒ is well
connected.

The following two propositions are going to be crucial in our inductive procedure.
Let X be a smooth variety and G D fG1; : : : ; Gmg a well-connected building set of
subvarieties of X whose elements are ordered in a way that refines inclusion.

Proposition 4.3 For every k D 1; : : : ; m, the set Gk D fG1; : : : ; Gkg is a well-
connected building set.

Proof Let us prove that Gk is building.

First we check what happens “locally”. We fix an open set U as in Definition 2.5 and
in what follows we will consider the restriction of every object to U.

Since G is building, we know that every intersection Gj1 \� � �\Gjs of elements of Gk
is equal to the transversal intersection of the minimal elements B1; : : : ; Bh of G that
contain Gj1 \� � �\Gjs . Up to reordering we can assume that the set fB1; : : : ; Brg for
some r � s consists of those among the Bi which are contained in at least one among
the Gjt . Notice that, necessarily,

r\
iD1

Bj D

h\
iD1

Bj DGj1 \ � � � \Gjs :

Since the intersection of B1; : : : ; Bh is transversal, we clearly have that r D h and so
we deduce that, for each j � h, there is an a � k with Bj DGa .
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Going back from the local to the global setting, we observe that with the argument
above we have proven that Bj \U D Ga \U. Since intersecting with U preserves
inclusion relations by Lemma 3.2, we immediately deduce that Bi 2 Gk for each
i D 1; : : : ; h.

Similar reasoning also shows that Gk is well connected.

Let us consider the variety Z WD Gm . Let us take the family H D fH1; : : : ;Hug of
nonempty subvarieties in Z which are obtained as connected components of intersec-
tions Gi \Z with i < m.

Let us remark that, since G is well connected, if Gi \Z is not connected (and of
course nonempty) its connected components belong to G , so that each of them equals
some Gj ¨Z . We deduce that we do not need to add the connected components of
the disconnected intersections Gi \Z . In particular, u�m� 1.

We order H in such a way that if, for each 1� i � u, we set si �m� 1 equal to the
minimum index such that Hi DGsi \Z , we have si < sj as soon as i < j .

Proposition 4.4 The family of subvarieties HD fH1; : : : ;Hug in Z is building and
well connected.

Proof Let us prove that H is building. By definition of building set, it suffices to
prove this locally, ie in U \Z for any of the open sets U that appears in the definition
of the building set G . So we fix such a U and assume that X D U.

As before, we write, for each i D 1; : : : ; u, Hi DGsi \Z with Gsi 2 Gm�1 .

Let H DHi1 \ � � � \Hi` be a nonempty intersection of elements of H . Since H is
also an intersection of elements of G , we can write

H DHi1 \ � � � \Hi` DGsi1 \ � � � \Gsi`
\Z DGj1 \ � � � \Gjk ;

where Gj1 ; : : : ; Gjk are the minimal elements of G that contain H and their intersection
is transversal in X.

Consider the set I D fsi1 ; : : : ; si` ; mg and J D fj1; : : : ; jkg. In I � J we take the
subset S consisting of those pairs .a; b/ such that Ga �Gb . By eventually reordering
the indices, we can assume that the projection of S on the second factor equals
fj1; : : : ; jk0g for some k0 � k . On the other hand, by minimality, the projection of S
on the first factor is surjective and we can further assume that Z �Gjk0 .

Algebraic & Geometric Topology, Volume 19 (2019)



Cohomology rings of compactifications of toric arrangements 513

We claim that k D k0. Indeed, if k0 were less than k ,

H DHi1 \ � � � \Hi` DGj1 \ � � � \Gjk0

and the intersection Gj1 \ � � � \Gjk would not be transversal.

Let ˇs , for every 1 � s � k , be such that Hˇs 2 H is the connected component of
Gjs \Z that contains H.

Then we have
Hˇ1 \ � � � \Hˇk DH:

We set d D k� 1 if Z DGjk , and d D k otherwise. In both cases we then easily see
that H is the transversal intersection Hˇ1 \ � � � \Hˇd .

Finally let us observe that Hˇ1 ;Hˇ2 ; : : : ;Hˇd are the minimal elements in H con-
taining H. This is obvious if d D 1. If d > 1, assume by contradiction that there is
an element H 0 2H and an index s 2 f1; : : : ; dg such that H �H 0 ¨Hˇs . The last
inclusion implies that

H 0 DG0\Z ¨Gjs \Z

for some G0 2 G . From this, in particular, it follows that Z is not contained in G0

and that Gjs ª G0. Now, since the elements Gj1 ; : : : ; Gjk are the minimal elements
of G that contain H, Gj� �G

0 for some 1� � � k . Since Z is not contained in G0,
j� ¤m.

Then we have Hˇ� �Gj�\Z�G
0\ZDH 0. But H 0¨Hˇs , so we deduce Hˇ� ¨Hˇs ,

which is a contradiction, since we know that their intersection is transversal.

This completes the proof that H is building.

Let us now prove that H is well connected (this proof is not local). First we observe
that by definition the elements of H are connected. Then let H DHi1 \� � �\Hit be a
nonempty intersection of elements of H . Since H is also an intersection of elements
of G , by the well-connectedness of G , if H is not connected then it is the disjoint
union of connected components that belong to G . Let Gs be such a component; it is
contained in Z , so s < m and Gs DGs \Z belongs to H . This proves that all these
connected components belong to H .

Remark 4.5 In the proof of the proposition above we have shown that if H D
Hi1 \ � � � \Hi` then H is equal to the transversal intersection of Hˇ1 ; : : : ;Hˇd . In
particular, we have shown that, for every  D 1; : : : ; d , Hˇ is a connected component
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of Gj\Z and Gj is included in some of the Gsi1 ; : : : ; Gsi` . With the chosen ordering
of H D fH1; : : : ;Hug, this implies that each one of the ǰ is � maxfi1; : : : ; ilg.
Therefore, we have proven that for each 1 � i � u, the arrangement of subvarieties
Hi D fH1; : : : ;Hig in Z is building and well connected.

Let us recall that in Theorem 2.10 we introduced the notation Xh D Y.X;Gh/. This,
applied to the variety Z and to the arrangement H D fH1; : : : ;Hug, produces the
notation Zi D Y.X;Hi / that we are going to use in the next proposition and in the
sequel.

Proposition 4.6 Let 1 � s � m� 1 and let 1 � i � u be such that si � s < siC1 .
Then the proper transform of Z in Xs equals Zi .

Proof We first treat the case in which si < s < siC1 . In this case there are two
possibilities:

(1) Gs \Z D∅.

(2) Gs \Z ¤∅ and each of its connected components lies in G .

In the first case there is nothing to prove. In the second case, by assumption, when we
reach Xs�1 we have already blown up each of the connected components of Gs \Z .
Since we know that the intersection Gs \Z is clean, by Lemma 3.1(1) the transforms
of Z and Gs in Xh�1 have empty intersection and clearly also in this case there is
nothing to prove.

If s D si , again we have two cases:

(1) Gsi �Z .

(2) The intersection Gsi \Z is transversal and does not lie in G .

Let us denote by zHi and zGsi the proper transforms of Hi and Gsi in Xsi�1 .

By Remark 2.11(2), Xsi is obtained from Xsi�1 by blowing up zGsi , which is a
minimal element in a suitable building set.

Thus our statement in case (1) follows, using induction, from the fact that Zi D
Bl zGsi

Zi�1 D Bl zHi Zi�1 .

In case (2), since Hi DGsi \Z , by induction and Lemma 3.1 we deduce that zHi D
zGsi \Zi�1 . So, by Corollary 3.4(1) and the minimality of zGsi in a suitable building
set, the intersection zHi D zGsi \Zi�1 is transversal and the proper transform of Z
in Xsi equals Bl zHi Zi�1 DZi , as desired.
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5 Recollections on the construction of projective wonderful
models of a toric arrangement

We are now going to consider a special situation. We consider an n–dimensional
algebraic torus T over the complex numbers and we denote by X�.T / its character
group.

Let us take V D homZ.X
�.T /;R/ D X�.T / ˝Z R, where X�.T / is the lattice

homZ.X
�.T /;Z/ of one-parameter subgroups in T .

Then, setting VCD homZ.X
�.T /;C/DX�.T /˝Z C , we have a natural identification

of T with VC=X�.T / and we may consider a � 2X�.T / as a linear function on VC .
From now on the corresponding character e2�i� will usually be denoted by x� .

Now, let A be the toric arrangement A D fK�1;�1 ; : : : ;K�r ;�r g in T as defined in
the introduction, where the �i are split direct summands of X�.T / and the �i are
homomorphisms �i W �i !C� .

Note that K�;� is a coset with respect to the torus HD
T
�2� ker.x�/. Now we consider

the subspace V� D fv 2 V j h�; vi D 0 for all � 2 �g. Notice that since X�.H/ D
X�.T /=� , V� is naturally isomorphic to homZ.X

�.H/;R/DX�.H/˝Z R.

In [3, Proposition 6.1] it was shown how to construct a projective smooth T –embedding
X DX� whose fan � in V has the following property: for every �i there is an integral
basis of �i , �1; : : : ; �s , such that, for every cone C of � with generators r1; : : : ; rh ,
up to replacing �i with ��i for some i , the pairings h�i ; rj i are all � 0 or all � 0.
The basis �1; : : : ; �s is called an equal-sign basis for �i .

Moreover, we remark that � can be chosen in such a way that, for every layer K�;�
obtained as a connected component of the intersection of some of the layers in A, the
lattice � has an equal-sign basis. Given such a �, we will say that the T –embedding
X DX� is a good toric variety for A.

Let us consider a one-dimensional face in �. This face contains a unique primitive
ray r 2X�.T /. We denote by R the collection of these rays, and for every r 2R we
call Dr the corresponding irreducible component of the complement X �T .

In the toric variety X we consider the closure K�;� of a layer. This closure turns out
to be a toric variety, whose explicit description is provided by the following result
from [3]:
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Theorem 5.1 [3, Proposition 3.1 and Theorem 3.1] For every layer K�;� , let H be
the corresponding subtorus and let V� D fv 2 V j h�; vi D 0 for all � 2 �g. Then:

(1) For every cone C 2�, its relative interior is either entirely contained in V� or
disjoint from V� .

(2) The collection of cones C 2� which are contained in V� is a smooth fan �H .

(3) K�;� is a smooth H –variety whose fan is �H .

(4) Let O be a T –orbit in X D X� and let CO 2 � be the corresponding cone.
Then:

(a) If CO is not contained in V� , then O\K�;� D∅.

(b) If CO � V� , then O \ K�;� is the H –orbit in K�;� corresponding to
CO 2�H .

Let us denote by Q0 (resp. Q ) the set whose elements are the subvarieties K�i ;�i
of X (resp. the subvarieties K�i ;�i and the irreducible components Dr for r 2R of
the complement X � T ). We then denote by L0 (resp. L) the poset made by all the
connected components of all the intersections of some of the elements of Q0 (resp. Q ).
In [3, Theorem 7.1] we have shown that the family L is an arrangement of subvarieties
in X. As a consequence, also L0, being contained in L and closed under intersection,
is an arrangement of subvarieties.

We notice that the complement in X of the union of the elements in L is equal to M.A/,
and it is strictly contained in the complement of the union of the elements in L0.

In the rest of this paper we will focus on the wonderful model Y.X;G/ obtained by
choosing a (well-connected) building set G for L0. Let us now explain our choice.

As a consequence of Theorem 5.1 we deduce that the elements of L are exactly the
nonempty intersections K�;� \O¤∅. This means that they are indexed by a family
of triples .�; �; CO/ with � 2 hom.�;C�/ and CO � V� . The triples .f0g; 0; CO/

index the closures of T –orbits in X.

The intersection
K�� \O

is transversal. Furthermore, since X is smooth, if the cone CO D C.ri1 ; : : : rih/,
where the rij are the rays of CO , we have that O is the transversal intersection of the
divisors Drij . We deduce:
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Proposition 5.2 Let G be a building set for the arrangement of subvarieties L0 in X.
Then GC D G [fDrgr2R is a building set for L.

Proof We have seen that an element of S 2 L is the transversal intersection

S D K�;� \
\
r2J

Dr ;

with J a — possibly empty — subset of R

We know that, in a suitable open set U, K�;� is the transversal intersection of the
minimal elements in G containing it. Since GC D G [fDrgr2R , the same holds for S
with respect to GC .

On the other hand, we observe that the connected components of any intersection of
elements of GC belong to L, by the definition of L.

This clearly means that L is the arrangement induced by GC and that GC is a building
set for L.

As a consequence of the proposition above, we can construct Y.X;GC/, which is a
projective wonderful model for the complement

M.A/DX �
[
G2GC

G DX �
[
A2L

A:

Now we observe that the varieties Y.X;G/ and Y.X;GC/ are isomorphic.

To prove this, for instance one could order GC in the following way: one puts first the
elements of G ordered in a way that refines inclusion, then the elements Dr in any
order. As we know from Theorem 2.10, Y.X;GC/ can be obtained as the result of a
series of blowups starting from X. After the first jGj steps we get Y.X;G/, then the
centers of the last jRj blowups are divisors, so Y.X;GC/ is isomorphic to Y.X;G/.

To finish our review of projective models and toric varieties, we need to describe
explicitly the restriction map in cohomology

j �W H�.X;Z/!H�.K�;� ;Z/;

induced by the inclusion, for a layer K�;� .

Let us first recall the following well-known presentation of the cohomology ring of
a smooth projective toric variety by generators and relations. Let † be a smooth
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complete fan and let X† its associated toric variety. Take a one-dimensional face in †.
This face contains a unique primitive ray r 2 homZ.X

�.T /;Z/. As in Section 5, we
denote by R the collection of these rays. We have:

Proposition 5.3 (see for example [10, Section 5.2]) We have

H�.X†;Z/D ZŒcr �r2R=L†;

where L† is the ideal generated by

(a) cr1cr2 � � � crk if the rays r1; : : : ; rk do not belong to a cone of †;

(b)
P
r2Rhˇ; ricr for any ˇ 2X�.T /.

Furthermore the residue class of cr in H 2.X†;Z/ is the cohomology class of the
divisor Dr associated to the ray r for each r 2R. (By abuse of notation, we are going
to denote by cr its residue class in H 2.X†;Z/.)

Let us consider as before a toric arrangement A in a torus T , and a good toric variety
X DX� for A. We can apply the proposition above to both X and the closure of a
layer K�;� . Let us remark that by Theorem 5.1.4, if r … V� then the divisor Dr does
not intersect K�;� , while if r 2 V� then the divisor Dr intersects K�;� in the divisor
corresponding to r . We deduce:

Proposition 5.4 The restriction map

j �W H�.X;Z/!H�.K�;� ;Z/:

is surjective and its kernel I is generated by the classes cr with r 2R such that r …V� .

6 A result of Keel and Chern polynomials of closures of
layers

Let us, as before, consider a toric arrangement A in the torus T . As we recalled in
Section 5, we can and will choose X DX� to be a good toric variety associated to A
and take the arrangement L0 of subvarieties in X.

Let us fix a well-connected building set G D fG1; : : : ; Gmg for L0, ordered in such a
way that if Gi ¨Gj then i < j .

Our goal is to describe the cohomology ring H�.Y.X;G/;Z/ by generators and rela-
tions. For this we are going to use the following result, due to Keel.
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Let Y be a smooth variety, and suppose that Z is a regularly embedded subvariety of
codimension d (we denote by i W Z! Y the inclusion). Let BlZ.Y / be the blowup
of Y along Z , so we have a map � W BlZ.Y /! Y , and let E DEZ be the exceptional
divisor.

Theorem 6.1 [15, Appendix, Theorem 1] Suppose that the map i�W H�.Y / !

H�.Z/ is surjective with kernel J; then H�.BlZ Y / is isomorphic to

H�.Y /Œt �

.P.t/; t �J /
;

where P.t/ 2 H�.Y /Œt � is any polynomial whose constant term is ŒZ� and whose
restriction to H�.Z/ is the Chern polynomial of the normal bundle N DNZY , that is
to say,

i�.P.t//D td C td�1c1.N /C � � �C cd .N /:

This isomorphism is induced by ��W H�.Y /!H�.BlZ Y / and by sending �t to ŒE�.

In order to use Theorem 6.1, we need to introduce certain polynomials with coefficients
in H�.X;Z/.

For every G WD K�;� 2 L0, we set ƒG WD � . Setting B D H�.X;Z/, we choose a
polynomial PG.t/D PXG .t/ 2 BŒt� that satisfies the following two properties:

(1) PG.0/ is the class dual to the class of G in homology.

(2) The restriction map to H�.G;Z/Œt � sends PG.t/ to the Chern polynomial
of NGX.

We will say that such a polynomial is a good lifting of the Chern polynomial of NGX.
Let I be the kernel of the restriction map

j �W H�.X;Z/!H�.G;Z/:

Lemma 6.2 The ideal .tI; PG.�t //� BŒt� does not depend on the choice of PG.t/.

Proof Let QG.t/ be another polynomial satisfying (1) and (2). From (1) we know
that PG.t/�QG.t/ has constant term equal to 0. Moreover, from (2) we deduce that
every coefficient of PG.t/�QG.t/ belongs to I, so PG.t/�QG.t/ 2 .tI /.
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Let us now consider two elements G;M 2L0, with G�M. Let us choose a polynomial
PMG .t/ 2H

�.M;Z/Œt � that is a good lifting of the Chern polynomial of NGM (ie it
satisfies the properties (1) and (2) in H�.M;Z/) and let us denote by PMG .t/ a lifting
of PMG .t/ to H�.X;Z/Œt �. The existence of such a polynomial follows immediately
from Proposition 5.4.

Let us now consider a well-connected building set G D fG1; : : : ; Gmg for the arrange-
ment of subvarieties L0 in X (see Section 5), ordered in a way that refines inclusion.

Now, for every pair .i; A/ with i 2 f1; : : : ; mg, and A� f1; : : : ; mg such that if j 2A
then Gi ¨ Gj , we can define the following polynomial in H�.X;Z/Œt1; : : : ; tm� D
BŒt1; : : : ; tm�.

Let us consider the set Bi D fh j Gh � Gig, and let us denote by M the unique
connected component of

T
j2AGj that contains Gi (if A D ∅, we put M D X ).

Then, after choosing all the polynomials PMGi as explained before, we put

F.i; A/D PMGi

� X
h2Bi

�th

�Y
j2A

tj :

We also include as special cases the pairs .0; A/ where A is such that
T
j2AGj D∅,

and we define the polynomials

F.0;A/D
Y
j2A

tj :

Proposition 6.3 Let Im be the ideal in BŒt1; : : : ; tm� generated by

(1) the products ticr for every ray r 2 � that does not belong to VƒGi (ie hr; � i
does not vanish on ƒGi );

(2) the polynomials F.i; A/ defined above.

Then Im does not depend on the choice of the polynomials PMGi .

Proof We will prove the statement by induction on m. We notice that if mD 1, the
statement is true by Lemma 6.2 (the ideal I1 coincides with the ideal I in the lemma).

So, let m � 2 and let us consider the ideal Im�1 � BŒt1; : : : ; tm�1�, which, by the
inductive hypothesis, does not depend on the choice of the polynomials PMGi (where
i < m). We will denote by I 0m�1 its extension to BŒt1; : : : ; tm�.

The polynomials F.i; A/ belong to I 0m�1 unless m 2 A or i Dm. In the latter case,
AD∅ and the same proof as in Lemma 6.2 implies that the ideal does not depend on
the choice of the polynomial PGm .
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In the first case (m 2 A), if we consider two liftings PMGi and QMGi we notice that the
restriction of their difference PMGi �Q

M
Gi

to H�.M/Œt � has constant term equal to 0,
while the restriction to H�.Gi /Œt � is 0.

Let z be equal to PMGi .0/�Q
M
Gi
.0/. By construction, z belongs to the ideal generated

by the cr such that r does not belong to VƒM , that is to say, hr; � i does not vanish
on ƒM . Now we observe that the lattice � D

P
j2AƒGj has finite index in ƒM .

If hr; � i vanished on ƒGj for every j 2 A then it would vanish on � and therefore
on ƒM .

It follows that if r does not belong to VƒM then there exists j 2 A such that r does
not belong to VƒGj . This implies that

Q
j2A tj z belongs to the ideal generated by

the monomials in (1). To conclude it is sufficient to notice that the coefficients of
ˆ WDPMGi

�P
h2Bi
�th

�
�QMGi

�P
h2Bi
�th

�
�z belong to the ideal generated by the cr

such that r …VƒGi , and therefore, for the same reason as above, ˆ belongs to I 0m�1 .

7 Presentation of the cohomology ring

Let us consider a toric arrangement A in the torus T . As recalled in Section 5, let
X DX� be a good toric variety associated to the chosen toric arrangement, and let us
consider the arrangement L0 of subvarieties in X.

Fix now a well-connected building set G D fG1; : : : ; Gmg for L0, ordered in such a
way that if Gi ¨Gj then i < j .

Our goal is to describe the cohomology ring H�.Y.X;G/;Z/ by generators and re-
lations. For any pair .G;M/ 2 L0 � L0 with G � M, we fix a polynomial PMG 2
H�.X;Z/Œt �D BŒt� as explained in the previous section. We also fix the polynomials
PXG 2 BŒt�. This means in particular that we have fixed a choice for the polynomials
F.i; A/ 2 BŒt1; : : : ; tm�. Then we can state our main theorem:

Theorem 7.1 The cohomology ring H�.Y.X;G/;Z/ is isomorphic to the polynomial
ring BŒt1; : : : ; tm� modulo the ideal Jm generated by the following elements:

(1) The products ticr , with i 2 f1; : : : ; mg, for every ray r 2R that does not belong
to VƒGi .

(2) The polynomials F.i; A/, for every pair .i; A/ with i 2 f1; : : : ; mg and A �
f1; : : : ; mg such that if j 2 A then Gi ¨Gj , and for the pairs .0; A/ where A
is such that

T
j2AGj D∅.
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The isomorphism is given by sending, for every i D 1; : : : ; m, ti to the pullback under
the projection �i W Y.X;G/!Xi D Bl zGi Xi�1 of the class of the exceptional divisor
in Xi .

Proof As a preliminary remark, let us observe that the ideal generated by the relations
in the statement of the theorem, according to Proposition 6.3, does not depend on the
choice of the polynomials F.i; A/. In this proof we will use the following notation: if
a polynomial g is another choice for F.i; A/ we will write g � F.i; A/.

The proof of the theorem is by induction on the cardinality m of G . The case when
mD 0 is obvious.

Let us now suppose that the statement of the theorem is true for any projective model
constructed starting from a toric arrangement A0 in a torus T 0, and then choosing a
good toric variety for A0 and a well-connected building set with cardinality �m� 1.

In particular, it is true for the variety Y.X;Gm�1/. Let us use the notation of Section 4
and, in particular, set Y.X;Gm�1/DXm�1 and ZDGm . Now, in order to get Y.X;G/
we have to blow up Xm�1 along the proper transform of Z , which by Proposition 4.6
is equal to Zu .

Since G is a building set for L0, we know that Z is the closure of a layer K�;� � T ,
which is a coset with respect to the subtorus H D

T
�2� ker.x�/ of T . Up to translation,

we identify K�;� � T with H.

Under this identification we get the arrangement AH in H, given by the connected
components of the intersections A\K�;� for every A 2 A. Notice that X�.H/ D
X�.T /=� .

We know that Z is the H –variety associated to the fan �H , consisting of those cones
in � which lie in VƒZ . From this it is immediate to check that Z is a good toric
variety for AH . If we denote by L0H its corresponding arrangement of subvarieties, we
also have, by Proposition 4.4, that H is a well-connected building set for L0H . Thus,
since u�m� 1, we can also assume that our result holds for H�.Zu;Z/.

To be more precise, we can assume that the cohomology ring H�.Xm�1;Z/ is iso-
morphic to the polynomial ring BŒt1; : : : ; tm�1� modulo the ideal Jm�1 generated
by:

(1) The products ticr , with i 2 f1; : : : ; m� 1g, for every ray r 2R that does not
belong to VƒGi .
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(2) The polynomials F.i; A/, for every pair .i; A/ with i 2 f1; : : : ; m � 1g and
A� f1; : : : ; m� 1g such that if j 2 A then Gi ¨ Gj , and for the pairs .0; A/
where A is such that

T
j2AGj D∅.

The isomorphism is given by sending, for every i D 1; : : : ; m� 1, ti to the pullback
under the projection �i W Xm�1 ! Xi D Bl zGiXi�1 of the class of the exceptional
divisor in Xi .

As far as Zu is concerned, we need to fix some notation.

Following what we have done for X and G , for every pair .i; A/ with i 2 f1; : : : ; ug
and A � f1; : : : ; ug such that if j 2 A then Hi ¨ Hj , we define the polynomial
FZ.i; A/ in H�.Z;Z/Œz1; : : : ; zu�, as follows.

We consider the set Ci D fh jHh �Hig, and we denote by M the unique connected
component of

T
j2AHj that contains Hi (if AD∅, we put M DZ ). Then we restrict

the polynomials PMHi to H�.Z;Z/Œt � and we denote these restrictions by PMHi ;Z . We
put

FZ.i; A/D P
M
Hi ;Z

� X
h2Ci

�zh

�Y
j2A

zj :

As before, we include the pairs .0; A/ with
T
j2AHj D∅, and we set

FZ.0; A/D
Y
j2A

zj :

Then, setting B 0 DH�.Z;Z/, we can assume that the cohomology ring H�.Zu;Z/
is isomorphic to the polynomial ring B 0Œz1; : : : ; zu� modulo the ideal S generated by:

(1) The products zicr , with i 2 f1; : : : ; ug, for every ray r 2� that does not belong
to VƒHi .

(2) The polynomials FZ.i; A/, for every pair .i; A/ with i 2 f1; : : : ; ug and A�
f1; : : : ; ug such that if j 2 A then Hi ¨Hj , and for the pairs .0; A/ where A
is such that

T
j2AHj D∅.

The isomorphism is given by sending, for every i D 1; : : : ; u, zi to the pullback under
the projection �i W Zu!Zi DBl zHi Zi�1 of the class of the exceptional divisor in Zi .

Let us now consider the homomorphisms

j �W H�.Xm�1;Z/!H�.Zu;Z/ and ��W H�.X;Z/!H�.Z;Z/

induced by the respective inclusions. We now remark that, by the discussion in the
proof of Proposition 4.6, we get that, denoting by Œt�� (resp. Œzi �) the image of t�
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(resp. zi ) in H�.Xm�1;Z/ (resp. H�.Zu;Z/),

j �.Œt��/D

�
0 if �¤ si ;
Œzi � if �D si :

From this we deduce that j � is surjective and, if we define

f W BŒt1; : : : ; tm�1�! B 0Œz1; : : : ; zu�

by

f .a/D ��.a/ if a 2 B; f .t�/D

�
0 if �¤ si ;
zi if �D si ;

we get a commutative diagram

BŒt1; : : : ; tm�1� B 0Œz1; : : : ; zu�

H�.Xm�1;Z/ H�.Zu;Z/

f

p q

j�

where p and q are the quotient maps. At this point we can apply Theorem 6.1.

We deduce that H�.Y.X;G/;Z/ is isomorphic to BŒt1; : : : ; tm�=L with the ideal
LD .Jm�1; tm ker.q ıf /; PZu.�tm//.

In order to proceed, we need an explicit description of the generators for the ideal
ker.qıf /. From the definition of f and our description of the relations for H�.Zu;Z/,
we deduce that ker q ıf is generated by:

(1) The elements cr for every ray r 2� which does not belong to VƒZ .

(2) The elements tj , with 1� j �m� 1, j … fs1; : : : ; sug.

(3) The products tsi cr , with i 2 f1; : : : ; ug, for every ray r 2� that does not belong
to VƒHi .

(4) For every .si ; A/ with i 2 f1; : : : ; ug and A� fs1; : : : ; sug such that if sj 2 A
then Hi ¨Hj , the elements

LF .si ; A/ WD P
M
Hi

� X
h2Bsi

�th

� Y
sj2A

tsj ;

where M is the connected component of
T
sj2A

Hj that contains Hi if A¤∅,
and Gm otherwise.

Indeed, f . LF .si ; A// D FZ.i; xA/, where xA D fj j sj 2 Ag, and therefore it
belongs to ker q .
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(5) The polynomials F.0;A/ for the pairs .0; A/ where A� fs1; : : : ; sug is such
that

T
sj2A

Hj D∅.

Notice that the elements in (1) and (2) generate kerf .

We want to show that L is equal to the ideal Jm generated by the elements described
in the statement of the theorem. Let us first show that Jm � L.

The generators of Jm that do not contain tm belong to Jm�1 and therefore to L.

A generator of the form tmcr for a ray r 2R that does not belong to VƒZ clearly lies
in tm ker.q ıf /.

Take a generator of the form F.j; A/ with m 2A and j > 0. Set A0 DAn fmg. Then

F.j; A/D tm

�
PMGj

� X
h2Bj

�th

� Y
�2A0

t�

�
:

If there is a � 2 A0 such that � is not one of the si , then

PMGj

� X
h2Bj

�th

� Y
�2A0

t� 2 kerf;

and we are done.

Otherwise, set xAD fi j si 2 A0g. Notice that since Gj �Z , necessarily Gj DGsi for
some 1� i � u, and Bj D fh j hD sk; Hk �Hig. We deduce that

f

�
PMGj

� X
h2Bj

�th

� Y
�2A0

t�

�
D FZ.i; xA/

and therefore it belongs to ker q . Finally, consider F.0;A/D
Q
�2A t� , with m 2 A.

If there is a � 2 A0 D A n fmg such that � is not one of the si , then
Q
�2A t� 2 kerf .

Otherwise, set xAD fi j si 2 A0g. We deduce that

f .F.0; A//D FZ.0; xA/ 2 ker q;

since \
i2 xA

Hi D
\
�2A0

.G� \Z/D
\
�2A

G� D∅:

Finally, in order to show that also F.m;∅/ 2 L, we need the following well-known
result:

Lemma 7.2 Let W1 �W3 and W2 �W3 be regular embeddings with normal bundles
NW1W3 and NW2W3 . Set �W3 D BlW1W3 and let �W2 denote the dominant transform
of W2 .
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Then the canonical embedding �W2 � �W3 is regular and, denoting by � the projection
from �W2 to W2 ,

(1) If W1 �W2 ,
N �W2 �W3 Š ��NW2W3˝O.�E/:

where E is the exceptional divisor on �W2 .

(2) If the intersection of W1 and W2 is transversal,

N �W2 �W3 Š ��NW2W3:
Proof For (1), see [11, B.6.10]. The second part is easy.

By repeated use of this lemma, we easily get that

F.m;∅/D PZ
�
�

X
h2Bm

th

�
D PZu.�tm/ 2 L;

so that indeed L� Jm . To finish, we need to see that L� Jm .

We first observe that Jm�1�Jm . Furthermore, we have already seen that PZu.�tm/D
F.m;∅/ 2 Jm . It follows that we need to concentrate on the generators of ker.q ıf /
multiplied by tm . Following the list given above, we consider:

(1) The elements tmcr for every ray r 2 � which does not belong to VƒZ . These
are also generators of Jm and there is nothing to prove.

(2) The products tmtj , with 1 � j � m � 1, where j is not one of the si . We
notice that Gj \Gm is either empty, and therefore tmtj D F.0; fj;mg/ 2 Jm , or each
connected component of Gj \Gm belongs to G . Let Gh be one of these components.
Then the generator F.h; fj;mg/ of Jm is equal to tmtj since F.h; fj;mg/D tmtjP

Gh
Gh

and PGhGh D 1. This finishes the proof that tm kerf � L.

(3) The products tmtsi cr , with i 2 f1; : : : ; ug, for every ray r 2 � that does not
belong to VƒHi . There are two possibilities. If Hi D Gsi then VƒHi D VƒGsi and
tsi cr is a generator of Jm�1 .

If Hi is the transversal intersection of Z and Gsi then VƒHi D VƒGsi \VƒZ . There-
fore, if r does not belong to VƒHi either it does not belong to VƒZ , and then tmcr is a
generator of Jm that has already been considered in (1), or it does not belong to VƒGsi
and tsi cr is a generator of Jm�1 .
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(4) The elements tm LF .si ; A/ for every pair .si ; A/ with i 2 f1; : : : ; ug and A �
fs1; : : : ; sug such that if sj 2 A then Hi ¨Hj .

If Gsi � Gm , that is, Gsi D Hi , then, since M is the connected component of
Gm\

�T
sj2A

Gsj
�

containing Hi , it is clear that

tm LF .si ; A/D F.si ; A[fmg/ 2 Jm:

Otherwise, Hi does not belong to G and it is the transversal intersection of Gsi and Gm
(see Proposition 3.3), which are its G–factors. If AD ∅, we observe that PXGsi

is a
valid choice for PZHi , so LF .si ;∅/� F.si ;∅/.

Therefore, LF .si ;∅/ 2 Jm�1 and tm LF .si ;∅/ 2 Jm .

Assume now A¤∅. We claim that, denoting by M 0 the connected component of the in-
tersection

T
sj2A

Gsj containing Gsi , M is the transversal intersection of M 0 and Gm .

Take any t such that Hi � Ht . Then if Gst D Ht � Gm , since Gm is a G–factor
of Hi , this would imply Gst DGm , a contradiction.

We deduce that Gsj ªGm for all sj 2 A, and, furthermore, M … G , since otherwise
Gm DM �Gsj .

A G–factor of M 0 is contained in at least one of the Gsj for sj 2 A. In particular,
none of these G–factors contains Gm . Furthermore, since Gm is a G–factor of Hi ,
it is also a G–factor of M.

It follows that we can apply Corollary 3.4.2 and we conclude that M is the transversal
intersection of M 0 and Gm , as desired. Thus, reasoning as above, we observe that
PM

0

Gsi
is a valid choice for PMHi , so LF .si ; A/� F.si ; A/. Therefore, LF .si ; A/ 2 Jm�1

and tm LF .si ; A/ 2 Jm .

(5) The products
tmF.0;A/D tm

� Y
si2A

tsi

�
for A� fs1; : : : ; sug such that

T
si2A

Hi D∅. In this case,

Gm\

�\
i2A

Gsi

�
D

\
i2A

Hi D∅;

so that tm
Q
i2A tsi D F.0;A[fmg/ 2 Jm .

Putting everything together, we have shown that L � Jm , so that L D Jm and our
claim is proved.
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8 A way to choose the polynomials PM
G

Let us use the same notation (A, �, X DX�; : : : ) as in the preceding sections. We
want to show an explicit choice of the polynomials PMG 2H

�.X;Z/Œt �D BŒt�, and
therefore of the polynomials F.i; A/ that appear in Theorem 7.1.

Let us consider two elements G;M 2 L0 with G � M. We can choose a basis
BƒG D fˇ1; : : : ; ˇsg of ƒG such that the first k elements (k < s ) are a basis of ƒM .

We recall that the irreducible divisors in the boundary of X are in correspondence with
the rays of the fan �.

In particular, let us consider a maximal cone � in � whose one-dimensional faces are
generated by the rays r1; : : : ; rn (a basis of the lattice homZ.X

�.T /;Z/), and let us
denote as usual their corresponding divisors by Dr1 ; : : : ;Drn .

The subvariety G D KƒG ;� of X has the following local defining equations in the
chart associated to � : 8̂̂̂<̂

ˆ̂:
z
hˇ1;r1i
1 � � � z

hˇ1;rni
n D �.ˇ1/;

z
hˇ2;r1i
1 � � � z

hˇ2;rni
n D �.ˇ2/;

:::
z
hˇs ;r1i
1 � � � z

hˇs ;rni
n D �.ˇs/:

Therefore, the subvariety G is described as the intersection of s divisors. The divisor
D. ǰ / corresponding to ǰ has a local function with poles of order �min.0; h ǰ ; ri i/
along the divisor Dri for every i D 1; : : : ; n. This implies that in Pic.X/ we have the
relation

(2) ŒD. ǰ /�C
X
r

min.0; h ǰ ; ri/ŒDr �D 0;

where r varies in the set R of all the rays of �.

Therefore, the polynomial in H�.X;Z/Œt �D BŒt�,

PXG D

sY
jD1

�
t �

X
r2R

min.0; h ǰ ; ri/cr

�
;

where cr is the class of the divisor Dr , is a good lifting of the Chern polynomial
of NGX.
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In the same way, the polynomial in BŒt�,

PXM D

kY
jD1

�
t �

X
r2R

min.0; h ǰ ; ri/cr

�
;

is a good lifting of the Chern polynomial of NMX. This implies that the polynomial

PXG

PXM
D

sY
jDkC1

�
t �

X
r2R

min.0; h ǰ ; ri/cr

�
restricted to H�.M;Z/Œt � is a good lifting of the Chern polynomial of NG.M/, ie it
is a choice for the polynomial PMG as requested in Section 6.

9 The cohomology of the strata

Let us consider, with the same notation as before (A, �, R, X D X� , L, L0 ), a
well-connected building set G D fG1; : : : ; Gmg for L0. As we know from Section 5,
the models Y.X;G/ and Y.X;GC/ are isomorphic. As in Proposition 5.2, we set
GC D G [fDrgr2R , and for any G 2 GC we denote by DG its corresponding divisor
in Y D Y.X;GC/.

In this section we are going to generalize our main result and explain how to compute
the cohomology ring for any variety YS D

T
G2S DG for any subset S 2 GC . Notice

that if S is not (GC–)nested, YS D∅, so we are going to assume that S is nested.

We set TS D S \ G and DS D S \ fDrgr2R , so that S is the disjoint union of TS
and DS . Note that, according to Theorem 5.1, TS determines a subfan �H of �.
Furthermore, since S is nested, the rays RS D fr jDr 2DSg span a cone in the fan �.

Fix a pair .i; A/ with i 2 f1; : : : ; mg and A � f1; : : : ; mg such that if j 2 A then
Gi ¨Gj . Set Si Dfh jGh 2S and Gh©Gig and consider the set Bi Dfh jGh�Gig.
Denote by M DMS the unique connected component of

T
j2A[Si Gj that contains Gi

(if A[ Si D ∅, we put M D X ). Then, after choosing all the polynomials PMGi as
explained in the previous sections, we set

FS.i; A/D P
M
Gi

� X
h2Bi

�th

�Y
j2A

tj :

We also set FS.0; A/D F.0;A/. We have:
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Theorem 9.1 For any nested set S � GC , the cohomology ring H�.YS ;Z/ is isomor-
phic to the polynomial ring BŒt1; : : : ; tm� modulo the ideal Jm.S/ generated by the
following elements:

(1) The classes cr 2B for any ray r such that frg[RS does not span a cone in the
fan �H .

(2) The products ticr , with i 2 f1; : : : ; mg, for every ray r 2R that does not belong
to VƒGi .

(3) The polynomials FS.i; A/, for every pair .i; A/ with i 2 f1; : : : ; mg and A �
f1; : : : ; mg such that if j 2 A then Gi ¨Gj , and for the pairs .0; A/ where A
is such that � \

j2A

Gj

�
\

� \
H2S

H

�
D∅:

The image in H�.YS ;Z/ of the classes cr and tj is just the restriction of the corre-
sponding classes in H�.Y.X;GC/;Z/.

Proof As in the proof of Theorem 7.1, we proceed by induction on m. The case mD 0
follows from the well-known computation of the cohomology of stable subvarieties
in a complete smooth toric variety [10]. So we take GCm�1 D GC nGm , which, by
Proposition 5.2, is a building set. Furthermore, we remark that the nested sets in GCm�1
coincide with the nested sets in GC not containing Gm .

We set, for any G 2 GCm�1 , D0G equal to the divisor corresponding to G in Y 0 D
Y.Gm�1; X/ and, for S nested in GCm�1 , Y 0S D

T
G2S D

0
G .

Let us take a nested set S for GC and, as usual, put Gm DZ .

Assume Gm … S . If S [ fGmg is not nested, then Y 0S \ zZ D ∅, so that Y 0S D YS .
In particular, tm is in the kernel of the restriction map H�.Y.G; X// ! H�.YS/.
Now tm D F.0; fmg/ is one of our relations and all the other relations different
from FS.m;∅/ either are divisible by tm or they already appear among the relations
for H�.Y 0S/. As for FS.m;∅/, this coincides with F.m;∅/, therefore it is already
equal to 0 in H�.Y.X;G//, so there is nothing to prove.

If S [fGmg is nested then the intersection N D Y 0S \ zZ is transversal, so that YS is
the blowup of Y 0S along N. Now N is just the transversal intersection of the divisors
D0Gi
\ zZ in zZ ; then, again, we can use our inductive hypothesis exactly as in the proof

of Theorem 7.1.
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Finally, if Gm 2 S , setting S 0 D S n fGmg, we deduce that YS is the blowup of Y 0S0
along the (necessarily transversal) intersection Y 0S0\ zZ . Thus, again, everything follows
from our inductive assumption and the nature of the relations.

Remark 9.2 The arguments used in the proof above and in the proof of Theorem 7.1
can be applied almost verbatim to the case of projective wonderful models of a subspace
arrangement in P .Cn/. Everything in this case is simpler: all the building sets are well
connected, the polynomials PMG .t/ are powers of t and the initial projective variety
is P .Cn/. One finally gets, with a shorter proof, the same presentation by generators
and relations of Theorem 5.2 in [5].
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