Volume 19, issue 1 (2019)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 22
Issue 5, 2007–2532
Issue 4, 1497–2006
Issue 3, 991–1495
Issue 2, 473–990
Issue 1, 1–472

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Editorial Interests
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
Author Index
To Appear
 
Other MSP Journals
Dimensional reduction and the equivariant Chern character

Augusto Stoffel

Algebraic & Geometric Topology 19 (2019) 109–150
Bibliography
1 M F Atiyah, G B Segal, Equivariant K–theory and completion, J. Differential Geometry 3 (1969) 1 MR0259946
2 P Baum, A Connes, Chern character for discrete groups, from: "A fête of topology" (editors Y Matsumoto, T Mizutani, S Morita), Academic (1988) 163 MR928402
3 K Behrend, Cohomology of stacks, from: "Intersection theory and moduli" (editors E Arbarello, G Ellingsrud, L Goettsche), ICTP Lect. Notes XIX, Abdus Salam Int. Cent. Theoret. Phys. (2004) 249 MR2172499
4 K Behrend, P Xu, Differentiable stacks and gerbes, J. Symplectic Geom. 9 (2011) 285 MR2817778
5 D Berwick-Evans, Twisted equivariant elliptic cohomology with complex coefficients from gauged sigma models, preprint (2014) arXiv:1410.5500
6 D Berwick-Evans, Twisted equivariant differential K–theory from gauged supersymmetric mechanics, preprint (2015) arXiv:1510.07893
7 D Berwick-Evans, F Han, The equivariant Chern character as super holonomy on loop stacks, preprint (2016) arXiv:1610.02362
8 P Deligne, J W Morgan, Notes on supersymmetry (following Joseph Bernstein), from: "Quantum fields and strings: a course for mathematicians" (editors P Deligne, P Etingof, D S Freed, L C Jeffrey, D Kazhdan, J W Morgan, D R Morrison, E Witten), Amer. Math. Soc. (1999) 41 MR1701597
9 F Dumitrescu, Superconnections and parallel transport, Pacific J. Math. 236 (2008) 307 MR2407109
10 F Dumitrescu, A geometric view of the Chern character, preprint (2012) arXiv:1202.2719
11 T M Fiore, Pseudo limits, biadjoints, and pseudo algebras: categorical foundations of conformal field theory, 860, Amer. Math. Soc. (2006) MR2229946
12 D S Freed, Five lectures on supersymmetry, Amer. Math. Soc. (1999) MR1707282
13 G Ginot, B Noohi, Group actions on stacks and applications to equivariant string topology for stacks, preprint (2012) arXiv:1206.5603
14 F Han, Supersymmetric QFT, super loop spaces and Bismut–Chern character, preprint (2007) arXiv:0711.3862
15 H Hohnhold, M Kreck, S Stolz, P Teichner, Differential forms and 0–dimensional supersymmetric field theories, Quantum Topol. 2 (2011) 1 MR2763085
16 E Lupercio, B Uribe, Inertia orbifolds, configuration spaces and the ghost loop space, Q. J. Math. 55 (2004) 185 MR2068317
17 M Romagny, Group actions on stacks and applications, Michigan Math. J. 53 (2005) 209 MR2125542
18 J Słomińska, On the equivariant Chern homomorphism, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 24 (1976) 909 MR0461489
19 T Stavracou, Theory of connections on graded principal bundles, Rev. Math. Phys. 10 (1998) 47 MR1606851
20 A Stoffel, Supersymmetric field theories and orbifold cohomology, PhD thesis, University of Notre Dame (2016) MR3553617
21 A Stoffel, Supersymmetric field theories from twisted vector bundles, preprint (2018) arXiv:1801.03016
22 S Stolz, Equivariant de Rham cohomology and gauged field theories, lecture notes (2013)
23 S Stolz, P Teichner, What is an elliptic object?, from: "Topology, geometry and quantum field theory" (editor U Tillmann), London Math. Soc. Lecture Note Ser. 308, Cambridge Univ. Press (2004) 247 MR2079378
24 S Stolz, P Teichner, Supersymmetric field theories and generalized cohomology, from: "Mathematical foundations of quantum field theory and perturbative string theory" (editors H Sati, U Schreiber), Proc. Sympos. Pure Math. 83, Amer. Math. Soc. (2011) 279 MR2742432