Volume 19, issue 1 (2019)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 25, 1 issue

Volume 24, 9 issues

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
Dimensional reduction and the equivariant Chern character

Augusto Stoffel

Algebraic & Geometric Topology 19 (2019) 109–150
Bibliography
1 M F Atiyah, G B Segal, Equivariant K–theory and completion, J. Differential Geometry 3 (1969) 1 MR0259946
2 P Baum, A Connes, Chern character for discrete groups, from: "A fête of topology" (editors Y Matsumoto, T Mizutani, S Morita), Academic (1988) 163 MR928402
3 K Behrend, Cohomology of stacks, from: "Intersection theory and moduli" (editors E Arbarello, G Ellingsrud, L Goettsche), ICTP Lect. Notes XIX, Abdus Salam Int. Cent. Theoret. Phys. (2004) 249 MR2172499
4 K Behrend, P Xu, Differentiable stacks and gerbes, J. Symplectic Geom. 9 (2011) 285 MR2817778
5 D Berwick-Evans, Twisted equivariant elliptic cohomology with complex coefficients from gauged sigma models, preprint (2014) arXiv:1410.5500
6 D Berwick-Evans, Twisted equivariant differential K–theory from gauged supersymmetric mechanics, preprint (2015) arXiv:1510.07893
7 D Berwick-Evans, F Han, The equivariant Chern character as super holonomy on loop stacks, preprint (2016) arXiv:1610.02362
8 P Deligne, J W Morgan, Notes on supersymmetry (following Joseph Bernstein), from: "Quantum fields and strings: a course for mathematicians" (editors P Deligne, P Etingof, D S Freed, L C Jeffrey, D Kazhdan, J W Morgan, D R Morrison, E Witten), Amer. Math. Soc. (1999) 41 MR1701597
9 F Dumitrescu, Superconnections and parallel transport, Pacific J. Math. 236 (2008) 307 MR2407109
10 F Dumitrescu, A geometric view of the Chern character, preprint (2012) arXiv:1202.2719
11 T M Fiore, Pseudo limits, biadjoints, and pseudo algebras: categorical foundations of conformal field theory, 860, Amer. Math. Soc. (2006) MR2229946
12 D S Freed, Five lectures on supersymmetry, Amer. Math. Soc. (1999) MR1707282
13 G Ginot, B Noohi, Group actions on stacks and applications to equivariant string topology for stacks, preprint (2012) arXiv:1206.5603
14 F Han, Supersymmetric QFT, super loop spaces and Bismut–Chern character, preprint (2007) arXiv:0711.3862
15 H Hohnhold, M Kreck, S Stolz, P Teichner, Differential forms and 0–dimensional supersymmetric field theories, Quantum Topol. 2 (2011) 1 MR2763085
16 E Lupercio, B Uribe, Inertia orbifolds, configuration spaces and the ghost loop space, Q. J. Math. 55 (2004) 185 MR2068317
17 M Romagny, Group actions on stacks and applications, Michigan Math. J. 53 (2005) 209 MR2125542
18 J Słomińska, On the equivariant Chern homomorphism, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 24 (1976) 909 MR0461489
19 T Stavracou, Theory of connections on graded principal bundles, Rev. Math. Phys. 10 (1998) 47 MR1606851
20 A Stoffel, Supersymmetric field theories and orbifold cohomology, PhD thesis, University of Notre Dame (2016) MR3553617
21 A Stoffel, Supersymmetric field theories from twisted vector bundles, preprint (2018) arXiv:1801.03016
22 S Stolz, Equivariant de Rham cohomology and gauged field theories, lecture notes (2013)
23 S Stolz, P Teichner, What is an elliptic object?, from: "Topology, geometry and quantum field theory" (editor U Tillmann), London Math. Soc. Lecture Note Ser. 308, Cambridge Univ. Press (2004) 247 MR2079378
24 S Stolz, P Teichner, Supersymmetric field theories and generalized cohomology, from: "Mathematical foundations of quantum field theory and perturbative string theory" (editors H Sati, U Schreiber), Proc. Sympos. Pure Math. 83, Amer. Math. Soc. (2011) 279 MR2742432