Volume 19, issue 1 (2019)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 25, 1 issue

Volume 24, 9 issues

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
Cohomology rings of compactifications of toric arrangements

Corrado De Concini and Giovanni Gaiffi

Algebraic & Geometric Topology 19 (2019) 503–532
Bibliography
1 K Adiprasito, J Huh, E Katz, Hodge theory for combinatorial geometries, Ann. of Math. 188 (2018) 381 MR3862944
2 F Callegaro, G Gaiffi, P Lochak, Divisorial inertia and central elements in braid groups, J. Algebra 457 (2016) 26 MR3490076
3 C De Concini, G Gaiffi, Projective wonderful models for toric arrangements, Adv. Math. 327 (2018) 390 MR3761997
4 C De Concini, C Procesi, Hyperplane arrangements and holonomy equations, Selecta Math. 1 (1995) 495 MR1366623
5 C De Concini, C Procesi, Wonderful models of subspace arrangements, Selecta Math. 1 (1995) 459 MR1366622
6 G Denham, A I Suciu, Local systems on complements of arrangements of smooth, complex algebraic hypersurfaces, Forum Math. Sigma 6 (2018) MR3810026
7 P Etingof, A Henriques, J Kamnitzer, E M Rains, The cohomology ring of the real locus of the moduli space of stable curves of genus 0 with marked points, Ann. of Math. 171 (2010) 731 MR2630055
8 E M Feichtner, De Concini–Procesi wonderful arrangement models : a discrete geometer’s point of view, from: "Combinatorial and computational geometry" (editors J E Goodman, J Pach, E Welzl), Math. Sci. Res. Inst. Publ. 52, Cambridge Univ. Press (2005) 333 MR2178326
9 E M Feichtner, S Yuzvinsky, Chow rings of toric varieties defined by atomic lattices, Invent. Math. 155 (2004) 515 MR2038195
10 W Fulton, Introduction to toric varieties, 131, Princeton Univ. Press (1993) MR1234037
11 W Fulton, Intersection theory, 2, Springer (1998) MR1644323
12 G Gaiffi, Blowups and cohomology bases for De Concini–Procesi models of subspace arrangements, Selecta Math. 3 (1997) 315 MR1481132
13 G Gaiffi, Permutonestohedra, J. Algebraic Combin. 41 (2015) 125 MR3296249
14 A Henderson, Representations of wreath products on cohomology of De Concini–Procesi compactifications, Int. Math. Res. Not. 2004 (2004) 983 MR2036424
15 S Keel, Intersection theory of moduli space of stable n–pointed curves of genus zero, Trans. Amer. Math. Soc. 330 (1992) 545 MR1034665
16 L Li, Chow motive of Fulton–MacPherson configuration spaces and wonderful compactifications, Michigan Math. J. 58 (2009) 565 MR2595554
17 L Li, Wonderful compactification of an arrangement of subvarieties, Michigan Math. J. 58 (2009) 535 MR2595553
18 L Moci, Wonderful models for toric arrangements, Int. Math. Res. Not. 2012 (2012) 213 MR2874932
19 E M Rains, The homology of real subspace arrangements, J. Topol. 3 (2010) 786 MR2746338
20 S Yuzvinsky, Cohomology bases for the De Concini–Procesi models of hyperplane arrangements and sums over trees, Invent. Math. 127 (1997) 319 MR1427621