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Parametrized homology via zigzag persistence

GUNNAR CARLSSON

VIN DE SILVA

SARA KALIŠNIK

DMITRIY MOROZOV

This paper introduces parametrized homology, a continuous-parameter generalization
of levelset zigzag persistent homology that captures the behavior of the homology of
the fibers of a real-valued function on a topological space. This information is encoded
as a “barcode” of real intervals, each corresponding to a homological feature supported
over that interval; or, equivalently, as a persistence diagram. Points in the persistence
diagram are classified algebraically into four classes; geometrically, the classes
identify the distinct ways in which homological features perish at the boundaries of
their interval of persistence. We study the conditions under which spaces fibered over
the real line have a well-defined parametrized homology; we establish the stability of
these invariants and we show how the four classes of persistence diagram correspond
to the four diagrams that appear in the theory of extended persistence.

55N35, 55N99

1 Introduction

Persistent homology is one of the key topological methods used in data analysis; as
such it deserves substantial credit for the emergence of applied topology as a field. A
common theme in this history has been the introduction of a method, motivated by
applications or computation, that is encumbered by restrictive theoretical assumptions.
The original persistent homology — see Edelsbrunner, Letscher and Zomorodian [23] —
required discretization of the input, an assumption that was lifted as the theory became
better understood; see Chazal, de Silva, Glisse and Oudot [17] and Crawley-Boevey [20].
The celebrated stability result of Cohen-Steiner, Edelsbrunner and Harer [18] had strong
tameness assumptions that were relaxed over a sequence of papers; see Bauer and
Lesnick [6] and Chazal, Cohen-Steiner, de Silva, Glisse, Guibas and Oudot [16; 17].
Viewed in this context, our paper is another rung on the climb to a transparent theory
of persistence, free of unnecessary restrictions.
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The specific goal of this paper is to generalize levelset zigzag persistence — see Carlsson,
de Silva and Morozov [14] — to the continuous case, lifting the restriction that the spaces
under consideration have discrete structure. Our main tools are the theory of rectangular
measures and a graphical notation for quiver representation calculations; both taken
from [17]. On the algebraic side there are some technical requirements, regarding
choice of homology theory, that we work through in detail. On the geometric side,
we study the different phenomena recorded by our invariants. Finally, we generalize
the equivalence [14] between levelset persistence and extended persistence — see
Cohen-Steiner, Edelsbrunner and Harer [19] — to the continuous case, and we discuss
parametrized cohomology.

The general set-up is this. Let X be a topological space and let f W X ! R be a
continuous function. Such a pair XD .X; f / is commonly called a space fibered over
the real line; in this paper, we use the convenient term R–space. We can view an
R–space as a collection of topological spaces

Xa
a D f

�1.a/; a 2R;

called the levelsets of X, where the topology on the total space X bestows upon this
collection of spaces the structure of a “family”. In particular, the interlevelsets

Xb
a D f

�1Œa; b�; a; b 2R; a� b;

provide cobordism-style relationships between the levelsets. The basic question is to
understand the homological invariants of X. In particular, how does the homology
of Xa

a vary with a? Taking the family structure into account, this question demands a
richer answer than simply recording the homology of each Xa

a separately.

What we seek is a reasonable theory for taking an R–space and decomposing its
homological information into discrete features supported over intervals. To shed light
on the meaning of “reasonable”, we highlight some desired properties. Such a theory
would

� retrieve all obvious homological information stored in .X; f /;

� be manifestly symmetric with respect to reversal of the real line R;

� be widely applicable, free from excessively strong finiteness assumptions.

We return to the question of what we mean by “all obvious homological information”.
First, we consider four examples of existing theories, indicating why they do not fully
satisfy these properties.
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Example (standard persistent homology) The classical theory of persistence — see
Edelsbrunner, Letscher and Zomorodian [23] — is defined in terms of the sublevelsets

Xa
D f �1.�1; a�

of the R–space .X; f /. We begin by choosing a finite set of values a0< a1< � � �< an .
This could be the set of critical values in the case of a manifold with a Morse function,
or it could simply be an arbitrary discretization of the real line. We then form the
diagram of topological spaces

Xa0 !Xa1 ! � � � !Xan ;

where the arrows denote the canonical inclusion maps. By applying a homology
functor H with field coefficients, we get a diagram of vector spaces and linear maps

H.Xa0/! H.Xa1/! � � � ! H.Xan/:

The structure of such a diagram is described by its barcode or persistence diagram
(Section 2.1). The resulting collection of barcodes captures some of the information
that we are seeking in the present work.

Standard persistent homology doesn’t satisfy all our desired properties. Although it
is possible to get rid of the finite discretization of the real line [20; 17], the first two
properties are not satisfied. Most obviously, the construction is asymmetric when
reversing the real line. For instance, let X be the cone on a topological space Y

X D .Y � Œ0; 1�/=.Y � f0g/

and let f .Œx; t �/ D t be the cone height function. Then the persistent homology of
.X; f / is indistinguishable from the persistent homology of a 1–point R–space .�; 0/.
On the other hand, the persistent homology of .X;�f / detects the homology of Y

over the interval Œ�1; 0/.

One might imagine that the persistent homology of .X; f / and .X;�f / together
capture all information of interest. The next example shows that there is, in fact, more
information to be gathered.

Example (extended persistent homology) The theory of “extended persistence” in-
troduced by Cohen-Steiner et al [19] has similar goals to ours, but addresses them
under the restriction that X be “tame” in the sense of having finitely many critical
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values and cylindrical behavior, ie “Morse-like” behavior, between those critical values.
Adding superlevelsets

Xa D f
�1Œa;C1/;

Cohen-Steiner et al consider the sequence of spaces and pairs

Xa0 ! � � � !Xan !X ! .X;Xan
/! � � � ! .X;Xa0

/;

where a0 < � � �< an is the set of critical values. The extended persistence of X is the
persistent homology of this sequence,

H.Xa0/! � � � ! H.Xan/! H.X /! H.X;Xan
/! � � � ! H.X;Xa0

/;

obtained by applying a homology functor H with field coefficients. If we fix the
homology theory and the field of coefficients, and vary the homological dimension, then
it turns out [14] that the resulting collection of barcodes captures all the information that
we are seeking in the present work. There are four types of bars identified in [19], each
having a different geometric significance; this is explored in some detail by Bendich,
Edelsbrunner, Morozov and Patel [7], as part of a broader program to understand
homological stability of the fibers of an R–space. Two of the four types can be
matched to the standard persistence of .X; f / and .X;�f /. The other two types
provide new information.

The symmetry of this theory is, however, not at all obvious: there is no immediately man-
ifest relationship between the extended persistence barcodes of .X; f / and .X;�f /.
The existence of such a symmetry was conjectured by Cohen-Steiner et al [19] on the
basis of results obtained for closed manifolds using duality theorems. The matter was
resolved in [14], which establishes a precise symmetry between the two sets of barcodes,
via calculations in zigzag persistent homology. The symmetry requires considering
homology in more than one dimension at once, since the correspondence between the
barcodes involves dimension shifts.

Finally, we note that it is relatively straightforward to use rectangle measures to
generalize extended persistence to the continuous case; the procedure is outlined
in [17]. We will say more about extended persistence in Section 3.9.

Example (interval persistent homology) Dey and Wenger [21] proposed a theory
of “interval persistence”. They consider interlevelsets Xb

a , seeking maximal intervals
Œa; b� such that the sequence

H.Xa
a/! H.Xb��

a /! H.Xb
a/
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supports a summand over the first two vector spaces, but not the third. In other words,
they look for classes in the levelsets that vanish in interlevelsets. Although interval
persistent homology still does not satisfy all our desired properties, it does suggest
additional homological information that we want to recover from an R–space.

Remark Building on this work, Burghelea, Dey and Haller have developed an analo-
gous program to study the persistent homology of spaces fibered over the circle [10; 11].

Extended and interval persistence hint at what we mean by “all obvious homological
information”, and invite us to adopt a categorical perspective. Let Int denote the category
of closed intervals Œa; b� in the real line; the morphisms are the inclusions Œa; b�� Œc; d �.
Then an R–space XD .X; f / can be thought of as a functor XW Int!Top that carries
each interval Œa; b� to the corresponding interlevelset Xb

a ; the morphism associated
to an inclusion Œa; b� � Œc; d � is the inclusion Xb

a � Xd
c . We are interested, then, in

understanding the composite functors

Int X
�! Top H

�! Vect;

where H is a homology functor with coefficients in a field, and Vect is the category of
vectors spaces over that field.

The following can be viewed as a preliminary attempt to understand this functor:

Example (levelset zigzag persistent homology) Carlsson et al [14] proposed the
following protocol for studying an R–space XD .X; f /. Suppose X is Morse-like,
with critical values a1 < a2 < � � �< an . Let s0 < s1 < � � �< sn be a collection of “inter-
critical values”, interleaved between the critical values in the sense that si�1 < ai < si .
Then the zigzag diagram of topological spaces (and inclusion maps)

Xs1
s0

Xs2
s1

� � � Xsn
sn�1

Xs0
s0

Xs1
s1

Xs2
s2

� � � Xsn
sn

gives rise to a zigzag diagram of vector spaces (and linear maps)

H.Xs1
s0
/ H.Xs2

s1
/ � � � H.Xsn

sn�1
/

H.Xs0
s0
/ H.Xs1

s1
/ H.Xs2

s2
/ � � � H.Xsn

sn
/

whose indecomposable summands are recorded as the levelset zigzag barcode of X.
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There are four types of bars, according as the ends of the summand lie in the top row
or the bottom row of the diagram. Each bar is then associated with an open, closed
or half-closed real interval with endpoints in the set of critical values; the Morse-like
assumption ensures that the interval is precisely the interval of persistence of the
corresponding homological feature.

In [14] it is shown that the levelset zigzag barcode carries exactly the same information
as the extended persistence barcodes of .X; f / and of .X;�f /, as well as another
related object called the “up-down persistence” barcode. The advantage of levelset
zigzag over the other, equivalent, theories is that it is manifestly symmetrical with
respect to symmetries of the real line. Moreover, fiberwise homological features are
expressed in the correct dimension in this theory; no dimension shifts take place.

The main weakness of levelset zigzag persistence is that it is stubbornly discrete,
in the sense that it is a forbidding prospect to try to take a continuous limit of the
zigzag diagrams used in the theory. Parametrized homology is our response to this
weakness. We take advantage of the theory of rectangle measures from [17] to define
four continuous-parameter persistence diagrams, corresponding to the four types of
bars in the levelset zigzag barcode. Each diagram represents a set of homological
features and carries information about how they perish at both ends of the interval over
which they are defined. The diagrams are stable with respect to perturbation of the
function f .

One advantage of using rectangle measures is that the proofs, in a certain sense, become
“bounded”. In the levelset zigzag framework, in order to prove anything, one has to
consider zigzag diagrams of arbitrary length. In the parametrized homology framework,
result can be expressed as statements about rectangle measures, and can be proved
using specific diagrams of a fixed size. The proofs are generally very straightforward,
once the appropriate “diagram calculus” has been mastered.

Outline

In Section 2, we review the algebraic machinery needed to define parametrized homol-
ogy: zigzag modules, quiver representation diagrams and rectangle measures.

Section 3 contains the main body of this paper. In Section 3.1, we provisionally define
four rectangle measures that will eventually yield the four persistence diagrams of
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parametrized homology. A certain homological tautness property is required for these
measures to be additive; this is treated in Sections 3.2 and 3.3. Section 3.4 identifies
conditions under which the measures are finite. Under these favorable conditions, the
construction of the four persistence diagrams in Section 3.5 is immediate. In Section 3.6,
we show that parametrized homology exactly emulates levelset zigzag persistence in
the discrete Morse-like case. Section 3.7 is devoted to geometric considerations. Each
of the four diagrams may contain features supported over open, closed and half-open
intervals. We illustrate the sixteen possible behaviors, and show that only four of them
occur in the compact case. Finally, in Section 3.8 we prove the stability theorem, and in
Section 3.9 establish the relationship with continuous-parameter extended persistence.

A brief discussion of parametrized cohomology, in Section 4, concludes the paper.

2 Algebraic tools

In this section, we review the tools from [13; 17] that we use to develop parametrized
homology invariants. Throughout this paper, vector spaces are taken to be over an
arbitrary field k. In certain instances, the field is specified.

2.1 Zigzag modules

A zigzag module V of length n (see [13]) is a sequence of vector spaces and linear
maps between them

V1$ V2$ � � � $ Vn:

Each $ represents either a forward map ! or a backward map  . The particular
choice of directions for a given zigzag module is called its shape. If every map is a
forward map, the zigzag module is called a persistence module [33].

The basic building blocks of zigzag modules are the interval modules. Fix a shape of
length n. The interval module IŒp; q� of that shape is the zigzag module

I1$ I2$ � � � $ In;

where Ii D k for p � i � q , and Ii D 0 otherwise, and where every k! k or k k

is the identity map.
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Example Let Vf1;2;3g D V1! V2! V3 . The six interval modules over V may be
represented pictorially as follows:

IŒ1; 3�D IŒ2; 3�D IŒ3; 3�D

IŒ1; 2�D IŒ2; 2�D

IŒ1; 1�D

Each dark green node represents a copy of the field k and each light pink node represents
a copy of the zero vector space. Identity maps are represented by thickened green lines.

A theorem of Gabriel [27] implies that any finite-dimensional zigzag module can be
decomposed as a direct sum of interval modules. The extension to infinite-dimensional
zigzag modules follows from a theorem of Auslander [3]. The list of summands that
appear in the decomposition is an isomorphism invariant of V by the Krull–Schmidt–
Azumaya theorem [4]. We call this isomorphism invariant the zigzag persistence
of V.

Example Consider a zigzag diagram X of topological spaces and continuous maps
between them

X1$X2$ � � � $Xn:

We get a zigzag module HX by applying a homology functor HD Hj .�Ik/ to this
diagram. Decomposing the diagram, we can write

Hj .X1/$ Hj .X2/$ � � � $ Hj .Xn/ Š
M
i2I

IŒpi ; qi �:

The zigzag persistent homology of X (for the functor H) is then the multiset of intervals
Œpi ; qi � in the interval decomposition.

Definition 2.1 The multiplicity of an interval Œp; q� in a zigzag module V is the
number of copies of IŒp; q� that occur in the interval decomposition of V. This number
is written

hŒp; q� j V i

and takes values in the set f0; 1; 2; : : : ;1g. (For our purposes we do not need to
distinguish different infinite cardinals.) Finally, the persistence diagram of V is the
multiset

Dgm.V / in f.p; q/ j 1� p � q � ng

defined by the multiplicity function .p; q/ 7! hŒp; q� j V i.

Algebraic & Geometric Topology, Volume 19 (2019)



Parametrized homology via zigzag persistence 665

We will often use pictorial notation for these multiplicities. For example, given a
persistence module V D V1! V2! V3 , we may write

hŒ2; 3� j V i or h j V i or simply h i

for the multiplicity of IŒ2; 3� in V.

2.2 Two calculation principles

There are two methods from [13] that we repeatedly use to calculate multiplicities: the
restriction principle and the diamond principle.

Theorem 2.2 (restriction principle) Let V be a zigzag module with two consecutive
maps in the same direction

V1$ V2$ � � � $ Vk�1
g
�! Vk

h
�! VkC1$ � � � $ Vn

and let W be the zigzag module

V1$ V2$ � � � $ Vk�1
hg
�! VkC1$ � � � $ Vn

obtained by combining those maps into a single composite map and deleting the
intermediate vector space Vk . Let Œp; q� be an interval over the index set for W (so
p; q ¤ k ). Then

hŒp; q� jW i D
X
Œ yp;yq�

hŒ yp; yq� j V i;

where the sum is over those intervals Œ yp; yq� over the index set for V that restrict to
Œp; q� over the index set of W .

Proof Take an arbitrary interval decomposition of V. This induces an interval decom-
position of W . Summands of W of type Œp; q� arise precisely from summands of V

of types Œ yp; yq� that restrict to Œp; q� over the index set of W .

Example Consider a zigzag module

V D V1! V2! V3 V4 V5

and its restrictions
V1;2;3;5 D V1! V2! V3 V5;

V1;3;4;5 D V1! V3 V4 V5;
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obtained in the manner described above. Then

h j V1;2;3;5i D h j V i;

h j V1;3;4;5i D h j V iC h j V i:

The extra term occurs when the interval for the restricted module abuts the long edge
on either side (so there is both a clear node and a filled node at that edge). There are
then two possible intervals which restrict to it.

The diamond principle relates the interval multiplicities of zigzag modules that are
related by a different kind of local change. The principle is most sharply expressed in
terms of the reflection functors of Bernstein, Gelfand and Ponomarev [8]. We make
do with a simpler nonfunctorial statement. We say that a diamond-shaped commuting
diagram of vector spaces

CB

D

A
i2i1

j1 j2

is exact if the sequence
A

i1˚i2
���! B˚C

j1�j2
���!D

is exact at B˚C. This means that a pair of vectors ˇ2B , 
 2C satisfies j1.ˇ/Dj2.
 /

if and only if there exists ˛ 2A such that ˇ D i1.˛/ and 
 D i2.˛/.

Theorem 2.3 (diamond principle [13]) Consider a diagram of vector spaces

V1
: : : Vk�2 Vk�1

V C
k

V �
k

VkC1 VkC2
: : : Vn,

where the middle diamond is exact. Let VC and V� , respectively, denote the upper
zigzag module (containing V C

k
) and the lower zigzag module (containing V �

k
) in this

diagram. Then the following multiplicities are equal:

(i) If the interval Œp; q� does not meet fk � 1; k; kC 1g then

hŒp; q� j VCi D hŒp; q� j V�i:
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(ii) If the interval Œp; q� completely contains fk � 1; k; kC 1g then

hŒp; q� j VCi D hŒp; q� j V�i:

(iii) For p � k � 1 we have

hŒp; k� j VCi D hŒp; k � 1� j V�i;

hŒp; k � 1� j VCi D hŒp; k� j V�i:

(iv) For q � kC 1 we have

hŒk; q� j VCi D hŒkC 1; q� j V�i;

hŒkC 1; q� j VCi D hŒk; q� j V�i:

The diagrams

express, respectively, the last three of these rules pictorially.

Remark The theorem gives no information about hŒk; k� j VCi or hŒk; k� j V�i.
These quantities are independent of each other and of all other multiplicities.

We use the diamond principle frequently in the following situation. Consider a diagram
of topological spaces of the following form:

X1
: : : Xk�2 A

A[B

A\B

B XkC2
: : : Xn

Here A and B are subspaces of some common ambient space. Applying a homology
functor H, we obtain an upper zigzag diagram V[ and a lower zigzag diagram V\ .
The exactness of the diamond is precisely the exactness of the central term in the
following excerpt from the Mayer–Vietoris sequence:

� � � ! H.A\B/! H.A/˚H.B/! H.A[B/! � � � :

In situations where the Mayer–Vietoris theorem holds, we can use the diamond principle
to compare the interval summands of V[ and V\ . The reader is reminded that the
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Mayer–Vietoris theorem is not always applicable. We treat this matter carefully in
Section 3.2.

2.3 Persistence diagrams and measures

As we discussed in Section 2.1, a zigzag module with a finite index set decomposes
into interval modules, the list of summands being unique up to reordering. There are
finitely many interval module types, so the structure of the zigzag module is determined
by a finite list of multiplicities.

On the other hand, the objects we are studying are spaces parametrized over the real
line; and so we will want to define continuous-parameter persistence diagrams. The
motivating heuristic is that each topological feature will be supported over some interval
of R. These intervals may be open, closed or half-open, so we follow Chazal et al [17]
in describing their endpoints as real numbers decorated with a C or � superscript. The
superscript � may be used for an unspecified decoration. Here are the four options:

interval decorated pair point with tick

.p; q/ .pC; q�/

.p; q� .pC; qC/

Œp; q/ .p�; q�/

Œp; q� .p�; qC/

Except for the degenerate interval Œp;p�D .p�;pC/, we require p < q . For infinite
intervals, we allow p D �1 and q D C1 and their decorated forms p� D �1C

and q� DC1� .

Given a collection (ie multiset) of such intervals, we can form a persistence diagram
by drawing each .p�; q�/ as a point in the plane with a tick to indicate the decorations.
The tick convention is self-explanatory. The diagram resides in the extended half-plane

HD f.p; q/ j �1� p < q �1g;

which we can draw schematically as a triangle. If we omit the ticks (ie forget the
decorations), what remains is an undecorated persistence diagram.

Our main mechanism for defining and studying continuous-parameter persistence
modules is taken from [17]: a finite measure theory designed for this task. Define

Rect.H/D fŒa; b�� Œc; d ��H j �1� a< b < c < d �C1g:
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a p b
c

d

a b
c

q

d

Figure 1: Rectangles split horizontally and vertically

This consists of finite rectangles, horizontal semi-infinite strips, vertical semi-infinite
strips and infinite quadrants in H . A rectangle measure, or r–measure, on H is a
function

�W Rect.H/! f0; 1; 2; 3; : : : g[ f1g

that is additive with respect to splitting a rectangle horizontally or vertically into two
rectangles. Explicitly, we require

�.Œa; b�� Œc; d �/D �.Œa;p�� Œc; d �/C�.Œp; b�� Œc; d �/ (horizontal split);

�.Œa; b�� Œc; d �/D �.Œa; b�� Œc; q�/C�.Œa; b�� Œq; d �/ (vertical split);

whenever a < p < b < c < q < d (see Figure 1). By iterating these formulas, it
follows that � must be additive with respect to arbitrary tilings of a rectangle by other
rectangles. This implies, in particular, that � is monotone with respect to inclusion of
rectangles.

The “atoms” for this measure theory are decorated points rather than points; when a
rectangle is split in two, points along the split line have to be assigned to one side or
the other and this is done using the tick. We write .p�; q�/ 2R to mean that .p; q/
lies in R with the tick pointing into the interior of R (this is automatic for interior
points).

Theorem 2.4 [17, Theorem 3.12] There is a bijective correspondence between

� finite r–measures � on H , and

� locally finite multisets A of decorated points in H .

Here “finite” means �.R/ <1 for all R and “locally finite” means card.AjR/ <1
for all R. Explicitly, a multiset A corresponds to the measure � defined by the formula

�.R/D card.AjR/;
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a b
c

d

Figure 2: A decorated point .p�; q�/ is contained in R if and only if .p; q/
is contained in R and the tick points into the interior.

(the cardinality of the multiset of decorated points of A that belong to R); and, con-
versely, a measure � corresponds to the multiset A with multiplicity function

mA.p
�; q�/Dminf�.R/ jR 2 Rect.H/ such that .p�; q�/ 2Rg:

In other words, finite r–measures correspond exactly to decorated persistence diagrams.

Remark Since r–measures are monotone, the “min” in the formula for mA can be
calculated as a limit. For example,

mA.p
C; q�/D lim

�!0
�.Œp;pC ��� Œq� �; q�/;

with similar formulas for the other choices of decoration for .p�; q�/ and for points at
infinity. Since the expression inside the “lim” takes values in the natural numbers and
decreases as � decreases, it necessarily stabilizes for sufficiently small � .

The multiset A corresponding to a finite r–measure � is its decorated diagram, written
Dgm.�/. We obtain the undecorated diagram Dgmu.�/ by forgetting the decorations.
This is a multiset in H .

When the r–measure is not finite, the finite support is defined in [17] to be the set of
decorated points in H that are contained in some rectangle of finite measure. Within the
finite support there is a well-defined decorated persistence diagram which characterizes
the r–measure as above, with the proviso that rectangles which extend beyond the finite
support have infinite measure. In particular, the undecorated diagram can be thought of
as a locally finite multiset defined in some open set F �H and deemed to have infinite
multiplicity everywhere else in the extended plane.
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3 Parametrized homology

In this section we define “parametrized homology” invariants for R–spaces. Given an
R–space XD .X; f / and a homology functor H with field coefficients, we define four
persistence diagrams

Dgm
=n

.HX/; Dgm
nn

.HX/; Dgm
==

.HX/; Dgm
n=

.HX/

that detect topological features exhibiting four different behaviors. We will need to
impose conditions on H and X to guarantee that the r–measures used to define these
diagrams are additive and finite.

3.1 Four measures

Let XD .X; f / be a R–space and let H be a homology functor with field coefficients.
Given a rectangle

RD Œa; b�� Œc; d �; �1� a< b < c < d �C1;

we wish to count the homological features of X that are supported over the closed
interval Œb; c� but do not reach either end of the open interval .a; d/. Accordingly,
consider the diagram

Xfa;b;c;dg D

Xb
a

Xc
b Xd

c

Xa
a Xb

b
Xc

c Xd
d

of spaces and inclusion maps, where Xb
a D f

�1Œa; b�. We assume X�1�1 and XC1C1 to
be empty if they occur. Apply H to obtain a diagram

HXfa;b;c;dg D

H.Xb
a/ H.Xc

b
/ H.Xd

c /

H.Xa
a/ H.Xb

b
/ H.Xc

c/ H.Xd
d
/

of vector spaces and linear maps. Decomposing this zigzag module into interval
modules, four of the multiplicities are of interest to us. Define four quantities as
follows:

�
=n

HX.R/D
˝

j HXfa;b;c;dg
˛
; �

nn

HX.R/D
˝

j HXfa;b;c;dg
˛
;

�
==

HX.R/D
˝

j HXfa;b;c;dg
˛
; �

n=

HX.R/D
˝

j HXfa;b;c;dg
˛
:
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=n nn == n=

a b c d a b c d a b c d a b c d

Figure 3: Two components (over Œb; c�) become one (over a and d ). The
four ways this can happen are detected by �

=n
, �
nn

, �
==

and �
n=

, respectively.

Each of these counts topological features of a certain type, supported over Œb; c� but
not outside .a; d/. Under favorable circumstances, these four functions of R turn
out to be finite r–measures and therefore their behavior can be completely described
by a decorated persistence diagram in the extended half-space. We will identify such
circumstances in later parts of this chapter.

The distinction between the four behaviors is seen in Figure 3. Consider 0–dimensional
singular homology H D H0.�Ik/. In each example HXb

b
Š HXc

b
Š HXc

c has rank
two whereas HXa

a and HXd
d

each have rank one. The way in which the second feature
(ie the second connected component) perishes at each end is determined by the ranks
of the maps

HXb
a HXb

b and HXc
c! HXd

c :

If the rank is two, then the feature has simply expired at that end: it is no longer there
at Xa

a or Xd
d

. If the rank is one, that means the feature has been killed by some 1–cell
that has appeared in Xb

a or Xd
c . In terms of zigzag summands, the situation looks like

this:
is killed is killed is killed expires

expires is killed expires expires

Our definitions associate the four symbols =n , nn , == and n= with these four behaviors.
An unspecified behavior may be indicated by the symbol =nn= .

Proposition 3.1 The four behaviors have “coordinate-reversal” symmetry. Specifically,
suppose X D .X; f / and R D Œa; b� � Œc; d �. If we define the coordinate reversals
XD .X;�f / and RD Œ�d;�c�� Œ�b;�a� then the relations

�
=n

HX
.R/D �

=n

HX.R/; �
==

HX
.R/D �

nn

HX.R/;

�
nn

HX
.R/D �

==

HX.R/; �
n=

HX
.R/D �

n=

HX.R/

follow immediately.

Algebraic & Geometric Topology, Volume 19 (2019)



Parametrized homology via zigzag persistence 673

Our next step is to identify when the four functions �
=nn=

HX.R/ are finite r–measures. We
consider additivity first (Sections 3.2 and 3.3), then finiteness (Section 3.4).

3.2 Tautness

In proving additivity and other identities, we will make much use of the diamond
principle. For p < q < r < s , consider the diamonds

Hk.X
s
p/

Hk.X
r
p/ Hk.X

s
q/

Hk.X
r
q/

and

Hk.X
r
p/

Hk.X
q
p/ Hk.X

r
q/

Hk.X
q
q/

The exactness of the left diamond is guaranteed by the Mayer–Vietoris theorem, which
applies because the relative interiors of Xr

p and Xs
q contain the sets f �1Œp; r/ and

f �1.q; s� which cover Xs
p . In contrast, there is no such guarantee for the right diamond:

the relative interiors of Xq
p and Xr

q do not cover Xr
p .

We identify a local condition on the embedding of Xq
q in X, in terms of the homology

theory H, which gives us exactness of all such diamonds. Let U be any neighborhood
of Xq

q (such as Xr
p ). It splits into two parts: a lower neighborhood

AD U \Xq
D U \f �1.�1; q�;

and an upper neighborhood

B D U \Xq D U \f �1Œq;C1/:

Then U DA[B and Xq
q DA\B , and we desire the exactness of

.˘AB/

Hk.U /

Hk.A/ Hk.B/

Hk.X
q
q/

in whichever dimension k we are considering. Here are two criteria.

Criterion A The levelset Xq
q is Hk –taut in U if the map (induced by inclusion)

˛kC1W HkC1.A;X
q
q/! HkC1.U;B/
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is an epimorphism, and the map (induced by inclusion)

˛k W Hk.A;X
q
q/! Hk.U;B/

is a monomorphism.

Criterion B The levelset Xq
q is Hk –taut in U if the map (induced by inclusion)

ˇkC1W HkC1.B;X
q
q/! HkC1.U;A/

is an epimorphism, and the map (induced by inclusion)

ˇk W Hk.B;X
q
q/! Hk.U;A/

is a monomorphism.

The maps ˛�; ˇ� are excision maps, and they would automatically be isomorphisms if
the excision axiom applied to them. For the axiom to apply we would need

closure.B �Xq
q/� interior.B/;

closure.A�Xq
q/� interior.A/

for ˛� and ˇ� , respectively, and this is not true in general.

Proposition 3.2 The two criteria are equivalent.

Proof We show that the statements for ˛kC1 and ˛k together imply the statements
for ˇkC1 and ˇk (the converse being symmetric).

The following commutative diagram is obtained by crisscrossing the long exact se-
quences for the triples .U;A;Xq

q/ and .U;B;Xq
q/:

HkC1.B;X
q
q/ HkC1.U;A/ Hk.A;X

q
q/ Hk.U;B/

HkC1.U;X
q
q/

HkC1.A;X
q
q/ HkC1.U;B/ Hk.B;X

q
q/ Hk.U;A/

Hk.U;X
q
q/

ˇkC1 @ ˛k

˛kC1 @ ˇk

Note that ˛kC1 being an epimorphism implies that the upper @ is zero, and ˛k being a
monomorphism implies that the lower @ is zero. With that in mind, it becomes a routine
diagram chase to show that ˇkC1 is an epimorphism and ˇk is a monomorphism.
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We use the term normal neighborhood to refer to a neighborhood which contains a
closed neighborhood. In a normal topological space (such as a compact Hausdorff
space), all neighborhoods of a closed set are normal. Closed neighborhoods are trivially
normal.

Proposition 3.3 If the levelset Xq
q is Hk –taut in some normal neighborhood, then it

is Hk –taut in any normal neighborhood.

Proof Since any two normal neighborhoods contain a closed neighborhood in common,
it is enough to show that

Xq
q is Hk–taut in U () Xq

q is Hk–taut in W

whenever U � W are neighborhoods and U is closed. Writing U D A [ B and
W DA0[B0 as usual, we also consider V DA[B0.

Criterion A gives the same result for U as for V , by considering

H�.A;Xq
q/! H�.A[B;A/ '�! Hk.A[B0;B0/:

The right-hand map is an isomorphism by the excision axiom, which applies in this
situation because A[B is a closed neighborhood of A in A[B0.

Criterion B gives the same result for V as for W , by considering

H�.B0;Xq
q/! H�.A[B0;A/ '�! Hk.A

0
[B0;A0/:

The right-hand map is an isomorphism by excision, since A[B0 is a closed neighbor-
hood of B0 in A0[B0.

The result follows.

Definition 3.4 Accordingly, we say that the levelset Xq
q is Hk –taut if it is Hk –taut

in some, and therefore every, normal neighborhood.

Definition 3.5 We say that the levelset Xq
q is H–taut if it is Hk –taut in all dimen-

sions k . This means that for every normal neighborhood U, the maps

˛k W Hk.A;X
q
q/! Hk.U;B/

are isomorphisms for all k , or, equivalently,

ˇk W Hk.B;X
q
q/! Hk.U;A/

are isomorphisms for all k .
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Proposition 3.6 If the levelset Xq
q is Hk –taut, then the diagram .˘AB/ is exact for

any normal neighborhood U DA[B .

Proof Using Criterion B, say, this is a straightforward chase on the diagram

HkC1.B;X
q
q/ Hk.X

q
q/ Hk.B/ Hk.B;X

q
q/

HkC1.U;A/ Hk.A/ Hk.U / Hk.U;A/

epi mono

for the map of long exact sequences induced by the inclusion .B;Xq
q/! .U;A/.

This completes our treatment of tautness. Here are some examples.

Proposition 3.7 The R–space X D .X; f / has H–taut levelsets under any of the
following circumstances:

(i) X is locally compact, f is proper and H is Steenrod–Sitnikov homology [26; 30].

(ii) Each Xq
q is a deformation retract of some closed neighborhood in Xq or Xq .

(iii) X is a smooth manifold and f is a proper Morse function.

(iv) X is a locally compact polyhedron and f is a proper piecewise-linear map.

(v) X �Rn �R is a closed definable set in some o–minimal structure [22] and f
is the projection onto the second factor. In particular, this applies when X is
semialgebraic [5].

Proof (i) Steenrod–Sitnikov homology satisfies a strengthened form of the excision
axiom [30] that does not require any restriction on the subspaces under consideration.
Therefore the maps in Definition 3.5 are isomorphisms for any levelset Xq

q .

(ii) Let C1 be a closed neighborhood of Xq
q . We know Xq

q is a deformation retract of a
closed neighborhood C2 in Xq. We may assume without loss of generality that C2�C1 .
Let C D C2[ .C1\Xq/. The homology groups Hk.C2;X

q
q/ and Hk.C;C \Xq/ are

trivial for every k and therefore isomorphic, implying that Xq
q is H–taut.

(iii)–(v) These follow from (ii). In particular, we prove (v) by applying [22, Chapter 8,
Corollary 3.9].

Remark We occasionally need to consider Mayer–Vietoris diamonds in relative
homology. We establish their exactness individually as they occur.
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3.3 Additivity

We are now ready to prove that the four measures �
=nn=

HX are additive.

Theorem 3.8 Let H be a homology functor with field coefficients and let XD .X; f /

be an R–space whose levelsets are H–taut. Then �
=n

HX , �
nn

HX , �
==

HX and �
n=

HX are
additive.

Proof Let RD Œa; b�� Œc; d � and consider a horizontal split

R1 D Œa;p�� Œc; d �; R2 D Œp; b�� Œc; d �;

so a< p < b < c < d . The diagram

Xc
b

Xb
b

Xb
p

Xc
c Xd

d

Xd
c

Xp
p

Xb
a

Xa
a

Xp
a

Xc
p

contains the zigzags Xfa;b;c;dg , Xfa;p;c;dg , Xfp;b;c;dg for all three rectangles. When
we apply H, the two diamonds in the resulting diagram are exact since the levelsets
Xp

p and Xb
b

are H–taut. We calculate

�
n=

HX.R/D
D E

D

D E
C

D E
D

D E
C

D E
D

D E
C

D E
D �

n=

HX.R1/C�
n=

HX.R2/:

In the first line we add two extra nodes to refine the 7–term zigzag to a 9–term zigzag
and use the restriction principle. In the second line we use the diamond principle twice.
In the third line we drop two nodes in each term and use the restriction principle again.

Similar calculations establish the additivity of �
=n

HX , �
nn

HX and �
==

HX under horizontal
splitting. Additivity under vertical splitting follows by coordinate-reversal symmetry.
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3.4 Finiteness

We now consider the finiteness of the four r–measures �
=nn=

HX . As discussed in Section 2.3,
finiteness of an r–measure implies that its decorated persistence diagram is defined
everywhere in H ; in general the diagram is defined in the finite support of the r–measure.

It turns out to be essentially the same issue as the finiteness of the well groups [7; 24].
Well groups measure that part of the homology of a fiber H.Xm

m/ of an R–space that
is stable under �–perturbations of the coordinate. One defines

W.HXIm; �/D
\
g

imageŒH.g�1.q//! HXqC�
q�� �;

where the intersection is taken over all �–perturbations g of the coordinate f , perhaps
in a suitable regularity class. Considering the perturbations g D f ˙ � , it follows that
the well group is contained in1

imageŒHXq��
q��! HXqC�

q�� �\ imageŒHXqC�
qC�! HXqC�

q�� �

and therefore its rank is bounded by

h j Hq��
q��! HqC�

q��  HqC�
qC�i D h j HXfq��;qC�gi:

This takes the same form as the term that we need to bound.

Lemma 3.9 Let XD .X; f / be an R–space and H be a homology functor. For any
rectangle RD Œa; b�� Œc; d � with a< b < c < d , we have

�
=n

HX.R/C�
nn

HX.R/C�
==

HX.R/C�
n=

HX.R/�
˝

j HXfa;b;c;dg
˛

D h j HXfb;cgi:

Proof By the restriction principle,˝ ˛
�
˝ ˛

C
˝ ˛

C
˝ ˛

C
˝ ˛

D .�
=n

HXC�
nn

HXC�
==

HXC�
n=

HX/.R/:

Proposition 3.10 Let X D .X; f /. Then �
n=

HX , �
==

HX , �
=n

HX and �
nn

HX are finite for
any H under any of the following circumstances:

(i) X is a locally compact polyhedron and f a proper continuous map.

1Indeed, the well group is equal to this intersection if the class of perturbations has H–taut fibers.
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(iii) X is a smooth manifold and f is a proper Morse function.

(iv) X is a locally compact polyhedron and f is a proper piecewise-linear map.

(v) X �Rn �R is a closed definable set in some o–minimal structure and f is the
projection onto the second factor.

Proof In cases (iii), (iv) and (v), each slice Xc
b

has the homotopy type of a finite cell
complex, and therefore has finite-dimensional homology.

The proof of (i) is a little more involved. Let R D Œa; b� � Œc; d �. Choose m and
� > 0 such that b C 2� < m < c � 2� , and approximate f with a piecewise-linear
map gW X !R for which kg�f k � � . Then g is also proper, and Y D g�1.m/ is
triangulable as a finite simplicial complex and is H–taut as a fiber of .X;g/.

We can split the neighborhood Xc
b

into lower and upper neighborhoods of Y by defining

U DXc
b \g�1.�1;m�; V DXc

b \g�1Œm;C1/:

Thus Xc
b
D U [V and Y D U \V . Since kg� f k � � , we also have Xb

b
� U and

Xc
c � V .

Consider the diagram of spaces and maps

H.Xc
b
/

H.U / H.V /

H.Y /H.Xb
b
/H.Xa

a/

H.Xb
a/

H.Xc
c/ H.Xd

d
/

H.Xd
c /

By the restriction and diamond principles (since Y is H–taut) we haveD E
D

D E
D
˝ ˛

� H.Y / <1:

The result now follows from Lemma 3.9.

3.5 The four diagrams of parametrized homology

Let XD .X; f / be an R–space and let H be a homology functor with field coefficients.
Quantities �

nn

X , �
n=

X , �
=n

X and �
==

X capture the way topological features of X perish
at endpoints. When they are r–measures, each defines a persistence diagram via
the equivalence theorem. We denote these four decorated persistence diagrams by

Algebraic & Geometric Topology, Volume 19 (2019)



680 Gunnar Carlsson, Vin de Silva, Sara Kališnik and Dmitriy Morozov

Dgm
nn

.X/, Dgm
n=

.X/, Dgm
=n

.X/ and Dgm
==

.X/. These, collectively, constitute the
parametrized homology of X with respect to the homology functor H.

Theorem 3.11 We can define parametrized homology of XD .X; f / when:

(i) X is a locally compact polyhedron, f is proper, and H is Steenrod–Sitnikov
homology.

(iii) X is a smooth manifold and f is a proper Morse function.

(iv) X is a locally compact polyhedron and f is a proper piecewise-linear map.

(v) X �Rn �R is a closed definable set in some o–minimal structure and f is the
projection onto the second factor.

Proof Additivity follows from Proposition 3.7 and finiteness from Proposition 3.10.

3.6 Levelset zigzag persistence

In some situations finite zigzag diagrams carry all the needed information. Let XD

.X; f / be an R–space constructed as follows. There is a finite set of real-valued
indices S D fa1; : : : ; ang (listed in increasing order), called the critical values of X.
Then:

� For 1� i � n, Vi is a locally path-connected compact space.

� For 1� i � n� 1, Ei is a locally path-connected compact space.

� For 1� i � n� 1, li W Ei! Vi and ri W Ei! ViC1 are continuous maps.

Let X be the quotient space obtained from the disjoint union of the spaces Vi�faig and
Ei � Œai ; aiC1� by making the identifications .li.x/; ai/� .x; ai/ and .ri.x/; aiC1/�

.x; aiC1/ for all i and all x 2Ei . Let f W X !R be the projection onto the second
factor. In this paper, we follow Carlsson et al [14] in calling such an XD .X; f / a
Morse-type R–space. (In [31] they are called constructible R–spaces.) Such R–spaces
include XD .X; f /, where X is a compact manifold and f a Morse function, or X

a compact polyhedron and f piecewise linear.

We can track the appearance and disappearance of topological features using levelset
zigzag persistence construction [14]. Given XD .X; f / of Morse type, select a set of
indices si which satisfy

�1< s0 < a1 < � � �< an < sn <1;
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and build a zigzag diagram that serves as a model for X:

Xfs0;:::;sng D

Xs1
s0

Xs2
s1

: : : Xsn�1
sn�2

Xsn
sn�1

Xs0
s0

Xs1
s1

Xs2
s2

Xsn�2
sn�2

Xsn�1
sn�1

Xsn
sn

Apply the homology functor H to obtain

HXfs0;:::;sng D

H.Xs1
s0
/ H.Xs2

s1
/ : : : H.Xsn�1

sn�2
/ H.Xsn

sn�1
/

H.Xs0
s0
/ H.Xs1

s1
/ H.Xs2

s2
/ H.Xsn�2

sn�2
/ H.Xsn�1

sn�1
/ H.Xsn

sn
/

This quiver representation is decomposable by Gabriel’s theorem [27].

We translate between the notation of intervals that appear in the levelset zigzag persis-
tence of X and critical values as follows:

ŒH.Xsi
si�1

/;H.Xsj
sj�1

/� corresponds to Œai ; aj � for 1� i � j � n;

ŒH.Xsi
si�1

/;H.Xsj
sj�1

/� corresponds to Œai ; aj / for 1� i < j � nC 1;

ŒH.Xsi
si
/;H.Xsj

sj�1
/� corresponds to .ai ; aj � for 1� i � j � n;

ŒH.Xsi
si
/;H.Xsj�1

sj�1
/� corresponds to .ai ; aj / for 1� i < j � nC 1:

We interpret a0 as �1 and anC1 as 1.

The collection of these pairs of critical values, taken with multiplicity and labeled by
the interval type is called the levelset zigzag persistence diagram of X and denoted by
DgmZZ.HX/.

The four quantities defined in Section 3.1, �
=n

HX , �
nn

HX , �
==

HX and �
n=

HX , are measures
when X is of Morse type. Additivity follows from Proposition 3.7(ii), while finiteness
follows from the assumption that all interlevelsets and levelsets have finite-dimensional
homology groups.

In fact, parametrized homology and levelset zigzag persistence of a Morse-type R–
space carry the same information, as the following theorem demonstrates:

Theorem 3.12 If X is an R–space of Morse type with critical values

a1 < a2 < � � �< an;

then the levelset zigzag persistence diagram of X, DgmZZ.HX/, contains the same
information as the four diagrams Dgm

nn

.X/, Dgm
n=

.X/, Dgm
=n

.X/ and Dgm
==

.X/.

Algebraic & Geometric Topology, Volume 19 (2019)



682 Gunnar Carlsson, Vin de Silva, Sara Kališnik and Dmitriy Morozov

To be more precise,

.ai ; aj / 2 Dgm
=n

.HX/ if and only if .aCi ; a
�
j / 2 DgmZZ.HX/;

Œai ; aj / 2 Dgm
nn

.HX/ if and only if .a�i ; a
�
j / 2 DgmZZ.HX/;

.ai ; aj � 2 Dgm
==

.HX/ if and only if .aCi ; a
C
j / 2 DgmZZ.HX/;

Œai ; aj � 2 Dgm
n=

.HX/ if and only if .a�i ; a
C
j / 2 DgmZZ.HX/:

Diagrams Dgm
=n

.HX/, Dgm
nn

.HX/, Dgm
==

.HX/ and Dgm
n=

.HX/ contain no deco-
rated points with nonzero multiplicity other than those specified above.

Proof First we prove that if Œai ; aj � with multiplicity m� 1 is contained in the levelset
zigzag persistence diagram of X, then m

Dgmn=.X/
.a�i ; a

C
j /Dm.

We select a set of indices si which satisfy

�1< s0 < a1 < s1 < a2 < � � �< sn�1 < an < sn <1:

By definition Œai ; aj � appears in the levelset zigzag persistence diagram with multiplicity
m if and only if

hŒH.Xsi
si�1

/;H.Xsj
sj�1

/� j HXfs0;:::;sngi Dm:

By the diamond and restriction principles,

hŒH.Xsi
si�1

/;H.Xsj
sj�1

/� j HXfs0;:::;sngi D hŒH.X
si
si�1

/;H.Xsj
sj�1

/� j HXfsi�1;si ;sj�1;sj gi:

Choose � < 1
2

minfai � si�1; sj � aj g. Observe the diagram below:

H.Xai��
si�1

/ H.Xai��
ai

/ H.Xsi
ai
/

H.Xsi
ai��

/H.Xai
si�1

/

H.Xsi
si�1

/

H.Xsi�1
si�1

/ H.Xai��
ai��

/ H.Xai
ai
/ H.Xsi

si
/

H.X
sj�1
ai

/

H.X
sj�1
sj�1

/ H.X
aj
aj
/ H.X

ajC�

ajC�
/ H.X

sj
sj
/

H.X
aj
ai
/

H.X
aj
sj�1

/ H.X
ajC�
aj

/ H.X
sj
ajC�

/

H.X
sj
aj
/

H.X
sj
sj�1

/

H.X
ajC�
sj�1

/

H.X
sj�1
si

/

H.X
aj
si
/

By the restriction and diamond principles, we calculate

hŒH.Xsi
si�1

/;H.Xsj
sj�1

/� j HXfsi�1;si ;sj�1;sj gi D

� �
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D

� �
D

� �
D

� �
D

� �
D �

n=

HX.Œai � �; ai �� Œaj ; aj C ��/:

In the second line we used the fact that X is of Morse type. This implies Xsi�1
si�1

is
homotopy equivalent to Xai��

si�1
, Xai

si�1
to Xsi

si�1
, X

sj
ajC�

to X
sj
sj and X

sj
aj to X

sj
sj�1

for
all sufficiently small � . Therefore,

m
Dgmn=.X/

.a�i ; a
C
j /D lim

�!0
�
n=

HX.Œai � �; ai �� Œaj ; aj C ��/Dm:

We must now show that Dgm
n=

.X/ contains only points of the type .a�i ; a
C
j /, where

ai and aj are critical values of X. For any p 2 R, an � > 0 exists such that XpC�
p

and Xp
p�� strongly deformation retract to Xp

p . This means that H.XpC�
p /Š H.Xp

p /Š

H.Xp
p��/, forcing ˝

j HXfp��;pg
˛
D
˝

j HXfp;pC�g
˛
D 0:

For � small enough,

; ;

all appear with multiplicity 0 for any p and q in the quiver decomposition of the
homology diagram HXfp��;p;q;qC�g . This holds since, by the restriction principle,

0�
˝

j HXfp��;p;q;qC�g/
˛
;
˝

j HXfp��;p;q;qC�g/
˛

�
˝

j HXfp��;pg
˛
D 0

and
0�

˝
j HXfp��;p;q;qC�g/

˛
�
˝

j HXfq;qC�g
˛
D 0:

So Dgm
n=

.X/ contains exactly the points that correspond to intervals of type Œai ; aj �

in DgmZZ.HX/.

We prove the statement for the other measures similarly.
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=n

nn

==

n=

.p; q/ Œp; q/ .p; q� Œp; q�

Figure 4: Different ways of dying at endpoints

3.7 Sixteen behaviors

Let X be an R–space. Depending on the way a feature perishes and whether the
corresponding interval is closed or open at endpoints, there are sixteen different cases
that can occur (see Figure 4). For a Morse-type R–space XD .X; f /, where X is
compact, this number drops down to four (highlighted green in Figure 4) as demonstrated
by Theorem 3.12. Something similar occurs when X is a locally compact polyhedron,
f a proper continuous map and H the Steenrod–Sitnikov homology functor.

The following theorem, inspired by Frosini et al [15], relies heavily on the continuity
property of Čech homology [25]. For a wide variety of coefficient groups (infinitely
divisible; finite exponent) [30] Čech homology coincides with Steenrod–Sitnikov
homology. In particular, this is the case for some of the more common fields we may
be interested in: Fp , Q and R.

Theorem 3.13 Let XD .X; f /. We assume that X is a locally compact polyhedron,
f is a proper continuous map and H is the Steenrod–Sitnikov homology functor with
coefficients in Fp , Q or R. Then:

Dgm
=n

.HX/ contains only points of type D .pC; q�/ D .p; q/;

Dgm
nn

.HX/ contains only points of type D .p�; q�/ D Œp; q/;
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Dgm
==

.HX/ contains only points of type D .pC; qC/D .p; q�;

Dgm
n=

.HX/ contains only points of type D .p�; qC/ D Œp; q�:

In other words, the four possible decorations correspond exactly to the four ways in
which a feature can perish at the ends of its interval.

Let a < b < m < c < d . We fix a piecewise-linear structure on X, and approx-
imate f W X ! R with a piecewise-linear map gW X ! R for which kg � f k �
min

˚
1
2
.c �m/; 1

2
.m� b/

	
. The preimage Y D g�1.m/ is a finite simplicial complex.

Let

Vq D g�1..1;m�/\Xq and U q
D g�1.Œm;1//\Xq for q 2R:

In the proof of Theorem 3.13 we will make use of diagrams of type

HXB
fa;b;c;dg D

H.Xb
a/ H.Vb/ H.U c/

H.Xc
b
/H.Va/

0

0 H.Va;Xa
a/

H.Va;Xb
a/

H.Xb
a;X

a
a/

H.Xa
a/ H.Xb

b
/ H.Y / H.Xc

c/

H.U d /

H.Xd
d
/

H.Xd
c /

H.Xd
c ;X

d
d
/

0

H.U d ;Xd
d
/ 0

H.U d ;Xd
c /

Additionally, we will need the following lemma:

Lemma 3.14 Let X be a compact subspace of a compact space Z , Y a finite simpli-
cial complex contained in X and Xi a countable nested family of compact spaces such
that

T
i Xi DX. Let H be a Čech homology functor with coefficients in a field. In the

diagrams

H.X / ji
�! H.Xi/ and H.Y / qY

�! H.Z;X / qi
�! H.Z;Xi/;

the maps ji , qY and qi are induced by inclusions. The following equalities hold:\
i

Ker ji D 0 and Ker qY D

\
i

Ker qi ı qY :

Proof By continuity of Čech homology [25],

lim
 ��

H.Z;Xi/D H lim
 ��
.Z;Xi/D H.Z;X /:
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The map

idH.Z;X /W lim
 ��

H.Z;Xi/! H.Z;X /

satisfies the compatibility conditions for inverse limits and, by the universal property,
equals lim

 ��
qi . Similarly, lim

 ��
ji D idH.X / .

Since the inverse limit functor preserves kernels,

lim
 ��

Ker ji D Ker lim
 ��

ji D Ker idH.X / D 0

and

lim
 ��

Ker qi ıqY DKer lim
 ��
.qi ıqY /DKer lim

 ��
qi ılim
 ��

qY DKer idH.Z;X /ıqY DKer qY :

The statement follows since the inverse limit of a nested sequence of vector spaces is
precisely their intersection. An identical argument proves the second statement.

Proof of Theorem 3.13 Let .p; q/ 2R2 be such that p < q <1.

First we show that .pC; q�/ appears with multiplicity 0 in Dgm
n=

.X/ and Dgm
nn

.X/.
It suffices to prove that

lim
�!0

�
n=

X.Œp;pC ��� Œc; d �/D 0 and lim
�!0

�
nn

X.Œp;pC ��� Œc; d �/D 0:

Let m and a descending sequence of positive numbers �1 � �2 � � � � � 0 be such that
limi!1 �i D 0 and pC 3�1 <m< c � 3�1 . Then

�
n=

X.Œp;pC ��� Œc; d �/D

* ˇ̌̌̌
HXB
fp;pC�;c;dg

+
and

�
nn

X.Œp;pC ��� Œc; d �/D

* ˇ̌̌̌
HXB
fp;pC�;c;dg

+
:

Using the Mayer–Vietoris and the restriction principles, we bound �
n=

X.Œp;pC���Œc; d �/

and �
nn

X.Œp;pC ��� Œc; d �/:* +
D

* +
�

* +

�

* +
D

* +
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D

* +
:

Similarly, * +
�

* +
:

By the restriction principle,

dim Ker H.Y ! .Vp;X
pC�i
p //D

* +

D

* +
C

* +

D

* +
C dim Ker H.Y ! .Vp;X

p
p //:

By Lemma 3.14,\
i

Ker H.Y ! .Vp;X
pC�i
p //D Ker H.Y ! .Vp;X

p
p //:

Since Ker H.Y ! .Vp;X
pC�i
p // and Ker H.Y ! .Vp;X

p
p // are all finite-dimensional,

dim Ker H.Y ! .Vp;X
p
p //D lim

i!1
dim Ker H.Y ! .Vp;X

pC�i
p //:

This implies that

lim
i!1

* +
D 0:

For all i ,

0� �
n=

X.Œp;pC �i �� Œc; d �/; �
nn

X.Œp;pC �i �� Œc; d �/�

* +
:

As we let i !1, the desired statement follows.

By symmetry, .p�; q�/ appears with multiplicity 0 in Dgm
n=

.X/ and Dgm
==

.X/.

Next we prove that .p�; qC/ appears with multiplicity 0 in Dgm
nn

.X/ and Dgm
=n

.X/,
ie

lim
�!0

�
nn

X.Œa; b�� Œq; qC ��/D 0 and lim
�!0

�
=n

X.Œa; b�� Œq; qC ��/D 0:

Algebraic & Geometric Topology, Volume 19 (2019)



688 Gunnar Carlsson, Vin de Silva, Sara Kališnik and Dmitriy Morozov

Let m and a descending sequence of positive numbers �1 � �2 � � � � � 0 be such that
limi!1 �i D 0 and bC3�1<m< q�3�1 . Since all the diamonds are Mayer–Vietoris,* +

D

* +
�

* +
:

Note that* +
D dimŒKer H.U q

! U qC�i /\ Im H.Y ! U q/�:

Each vector space Ker H.U q ! U qC�i / \ Im H.Y ! U q/ is a finite-dimensional
subspace of Ker H.U q ! U qC�i /, since Y is a finite simplicial complex and has
finite-dimensional homology. By Lemma 3.14 (which applies since Steenrod–Sitnikov
and Čech homology coincide for the prescribed choices of coefficients),\

i

Ker H.U q
! U qC�i /D 0:

Consequently,

lim
i!1

* +
D lim

i!1
dim Ker H.U q

! U qC�i /\ Im H.Y ! U q/D 0:

Since

0� �
nn

X.Œa; b�� Œq; qC �i �/�

* +
;

it follows that limi!1 �
nn

X.Œa; b�� Œq; qC �i �/D 0. Consequently, .p�; qC/ appears
with multiplicity 0 in the diagram determined by �

nn

X .

In a similar way, we can bound �
=n

X.Œa; b�� Œq; qC �i �/ by the same term. From this it
follows that limi!1 �

=n

X.Œa; b�� Œq; qC �i �/D 0 also.

By symmetry, .p�; q�/ appears with multiplicity 0 in Dgm
==

.X/ and Dgm
=n

.X/. The
statement follows.

Remark The statement of Theorem 3.13 can be strengthened to include R–spaces
.X; f /, where:

� X is a Euclidean neighborhood retract and f is a proper continuous map
(see [12]). This works because such an f can be approximated by a continuous g

whose slices and levelsets are retracts of finite simplicial complexes and therefore
have finitely generated homology groups.
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� X is a compact ANR and f is a continuous function (see [11; 10; 9]). Any
f can be approximated by a continuous map g whose slices and levelsets are
compact ANR. Compact ANR’s have finitely generated homology groups [32].

3.8 Stability

Given an R–space XD .X; f / with a well-defined parametrized homology, what is
the effect on the persistence diagrams of a small perturbation of the function? Will
the resulting diagram be “close” to the original? We can measure this in terms of the
bottleneck distance, a standard and widely used metric on persistence diagrams [18].

The bottleneck distance compares undecorated diagrams. Let A and B be locally finite
multisets defined in open sets FA and FB in the extended plane R2 . Consider a partial
bijection � between A and B . The “cost” of a partial bijection is defined by

cost.�/D sup

8<:
d1..p; q/; .r; s// for matched pairs .p; q/� .r; s/;
d1..p; q/;R2�FB/ if .p; q/ 2A is unmatched;
d1..r; s/;R2�FA/ if .r; s/ 2 B is unmatched;

and the bottleneck distance is then

db.A;B/D inffcost.�/ j � is a partial bijection between A and Bg:

One can show using a compactness argument [17, Theorem 5.12] that the infimum is
attained. In the definition we are using the l1–metric in the extended plane,

d1..p; q/; .r; s//Dmaxfjp� r j; jq� sjg

with j.C1/� .C1/j D j.�1/� .�1/j D 0. The distance to a subset is defined in
the usual way. Note that the distance to R2�H is equal to the distance to the diagonal,
that being the more familiar formulation.

We reach our stability theorem for parametrized homology (Theorem 3.17) by using
a stability theorem from [17] for diagrams of r–measures. There is a natural way
to compare two r–measures. For R D Œa; b� � Œc; d � define the ı–thickening Rı D

Œa� ı; b C ı� � Œc � ı; d C ı�. (For infinite rectangles, we use �1� ı D �1 and
C1 C ı D C1.) We say that two r–measures satisfy the box inequalities with
parameter ı if

�.R/� �.Rı/; �.R/� �.Rı/

for all R. Either inequality is deemed to be vacuously satisfied if Rı exceeds the finite
support of the measure on the right-hand side.
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It is natural to hope that two measures � and � which satisfy the box inequalities with
parameter ı will determine diagrams with bottleneck distance bounded by ı . This is
unfortunately not true, and in fact there is no universal bound on the bottleneck distance
between the two diagrams. However, with stronger assumptions, namely the existence
of a 1–parameter family interpolating between � and � , such a statement holds.

Theorem 3.15 (stability for finite measures [17, Theorem 5.29]) Suppose that
.�t j t 2 Œ0; ı�/ is a 1–parameter family of finite r–measures on H . Suppose that,
for all s; t 2 Œ0; ı�, the box inequality

�s.R/� �t .R
js�t j/

holds for all R. Then there exists a ı–matching between Dgmu.�0/ and Dgmu.�ı/.

We now apply this to the situation at hand.

Lemma 3.16 (box lemma) Let X D .X; f / and Y D .X;g/ be R–spaces with
H–taut fibers on the same total space X. Write �

=nn=

D �
=nn=

HX and �
=nn=

D �
=nn=

HY for
=nn= D =n; nn; ==; n= . Then

�
=nn=

.R/� �
=nn=

.Rı/ and �
=nn=

.R/� �
=nn=

.Rı/

for any ı > kf �gk.

Proof We only need to consider rectangles RD Œa; b�� Œc; d � whose ı–thickening is
contained in H . This implies, in addition to a< b < c < d , that bC ı < c � ı .

The proof requires four different kinds of interlevelset. When p � q we have the
familiar

Xq
p D fx 2X j p � f .x/� qg; Yq

p D fx 2X j p � g.x/� qg;

and when pC ı � q we define two new kinds,

Uq
p D fp � f .x/ and g.x/� qg; V q

p D fp � g.x/ and f .x/� qg:

In other words, Uq
p is the space cut out between f �1.p/ on the left and g�1.q/ on

the right. The condition pC ı � q ensures that Uq
p and V q

p separate X in the obvious
way:

XDXp
[Uq

p [Yq with Xp
\Uq

p DXp
p and Uq

p \Yq D Yq
q ;

XD Yp
[V q

p [Xq with Yp
\V q

p D Yp
p and V q

p \Xq DXq
q:
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Consider the Himalayan diagram

V a
a�ı Xb

a UbCı
b

UbCı
a Uc�ı

b

Xc
b

V c
bCı

V c
c�ı

V d
c�ı

Y dCı
c�ı

Xd
c

UdCı
c

UdCı
d

V b
a�ı

Y bCı
a�ı

Y a�ı
a�ı

Xa
a Xb

b
Y bCı

bCı
Y c�ı

c�ı

Y c�ı
bCı

Xc
c Xd

d
Y dCı

dCı

The nine diamonds of this diagram are Mayer–Vietoris. This is automatic for the top
three diamonds. For the lower six diamonds we use the H–tautness of the fibers of X

and Y , and the fact that the space at the top of each diamond is a normal neighborhood
of the fiber, since ı > kf �gk.

Applying H to the diagram, we calculate (for example)

�
n=

.Rı/D

� �

D

� �
C .eight other terms/

D

� �
C .eight other terms/

D

� �
C .eight other terms/

D

� �
C .eight other terms/

D �
n=

.R/C .eight other terms/:

To explain the second line, note that there are nine different summand types which re-
strict to the summand type in the first line: three possible startpoints .V a

a�ı
;V b

a�ı
;YbCı

a�ı
/

times three possible endpoints .YdCı
c�ı

;UdCı
c ;UdCı

d
/. We are interested in only one

of the nine terms.

Since the eight other terms are nonnegative, it follows that �
n=

.R/� �
n=

.Rı/ for all
relevant R. By symmetry, �

n=

.R/� �
n=

.Rı/ also. The calculations for =nn= D =n; nn; ==

are similar.
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Theorem 3.17 (stability of parametrized homology) Let XD.X; f / and YD.X;g/

be R–spaces with the same total space X that satisfy one of the following conditions:

(i) X is a locally compact polyhedron, f and g are proper and H is Steenrod–
Sitnikov homology.

(iv) X is a locally compact polyhedron and f and g are proper piecewise-linear
maps.

(v) X �Rn �R is a closed definable set in some o–minimal structure and f is the
projection onto the second factor.

The associated r–measures for X and Y are written with the letters � and � , respec-
tively. Then

db.Dgm
=nn=

u .HX/;Dgm
=nn=

u .HY //� kf �gk

for each type =nn= D =n; nn; ==; n= .

Proof For any ı > kf �gk we can define the interpolating family

ft D

�
1�

t

ı

�
f C

t

ı
g

for t 2 Œ0; ı�. Note that f0 D f and fı D g . Since f is proper and kf � ftk is
bounded for all t 2 Œ0; ı�, the ft are proper. So each .X; ft / in situations (i) and (iv)
determines an r–measure �

=nn=

t . For any s; t 2 Œ0; ı� we have kfs � ftk < js � t j and
therefore

�
=nn=

s .R/� �
=nn=

t .R
js�t j/

by Lemma 3.16. Theorem 3.15 implies that there exists an ı–matching between

Dgmu.�
=nn=

0 /D Dgmu.�
=nn=

/D Dgm
=nn=

u .HX/

and
Dgmu.�

=nn=

kf�gk/D Dgmu.�
=nn=

/D Dgm
=nn=

u .HY /:

Since this is true for all ı > kf �gk, the result follows.

3.9 Extended persistence

Closely related to ours is the work on extended persistence by Cohen-Steiner, Edelsbrun-
ner and Harer [19]. Among other contributions, they construct four types of diagrams
associated with an R–space. These diagrams can describe the geometry and topology
of a three-dimensional shape, a feature that finds applications in protein docking [2].
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In this section we explain how their four diagrams correspond exactly with the four
parametrized homology measures we have developed in this paper.

Given an R–space X D .X; f / they examine a concatenation of two sequences of
spaces, a filtration of the sublevelsets of f and a filtration of pairs of the space relative
to the superlevelsets of f :

Xa1!Xa2! � � �!Xan!XD .X;∅/! .X;Xan
/! � � �! .X;Xa2

/! .X;Xa1
/:

The indices a1; a2; : : : ; an are taken to be the critical values of f , the underlying
assumption of [19] being that we are in a Morse-type situation.

Within this sequence, four types of intervals are distinguished: those that are supported
on the absolute (ordinary) half of the sequence, those supported on the relative half, and
those supported over both halves, in the latter further distinguishing intervals where
the superscript of the space associated to the left endpoint is lower or higher than the
subscript in the relative part of the right endpoint.

To translate their work into the language of measures, for real numbers a< b < c < d

we consider a sequence of spaces

XEP
a;b;c;d D Xa

!Xb
!Xc

!Xd
! .X;Xd /! .X;Xc/! .X;Xb/! .X;Xa/:

We begin by translating their work into the language of measures. This, incidentally,
removes the restrictive Morse-type hypothesis from the definition of the extended
persistence diagram (see also [17, Section 6.2]). For real numbers a< b < c < d we
consider a sequence of spaces

�Ord
i .Œa; b�� Œc; d �/D h j Hi.X

EP
a;b;c;d /i;

�Rel
i .Œa; b�� Œc; d �/D h j Hi.X

EP
a;b;c;d /i;

�ExtC
i .Œa; b�� Œc; d �/D h j Hi.X

EP
a;b;c;d /i;

�Ext�
i .Œa; b�� Œc; d �/D h j Hi.X

EP
a;b;c;d /i:

In the case of a Morse-type R–space, we can retrieve the extended persistence intervals
by restricting a, b , c and d to the critical values ai of f . However, these four
measures are defined without that assumption.

The main result of this section expresses the relationship between the extended per-
sistence and the parametrized homology of the pair X D .X; f /. Specifically, the
four extended persistence measures are in one-to-one correspondence with the four
parametrized homology measures.
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Theorem 3.18 Let H be a homology functor with field coefficients and X an R–space
with H–taut levelsets. Then

�
nn

i D �
Ord
i ; �

==

i D �
Rel
iC1;

�
n=

i D �
ExtC
i ; �

=n

i D �
Ext�
iC1 :

Here we have abbreviated �
=nn=

Hi X to �
=nn=

i for each type =nn= D nn; n=; ==; =n .

Proof We prove the third equality; the rest are proven similarly.

Xa
a Xb

b Xc
c Xd

d

Xb
a Xc

b Xd
c

Xa

Xb

Xc

(Xd,Xd)

(Xc,Xd)
(Xc,Xc)

(X,Xd)

(X,Xc)

(1)

(2)

(4)

(3)

(5)

Figure 5: Diamonds involved in the proof of �
n=

i D �
ExtC
i

Repeatedly applying the diamond principle to the spaces in Figure 5, we get

�
n=

i .Œa; b�� Œc; d �/D

* +
D

* +

D

* +
D

* +

D

* +
D

* +
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D

* +
D �ExtC

i .Œa; b�� Œc; d �/

for any rectangle Œa; b�� Œc; d �. Thus, the measures are equal.

4 Parametrized cohomology

Let XD .X; f / be a R–space, and let H� be a cohomology functor with coefficients in
a field k. We define four persistence measures, and therefore four persistence diagrams,
just as we did with homology functors.

Remark The formalism applies equally well to extraordinary cohomology functors
(over k).

Here are the main steps. For any rectangle RD Œa; b�� Œc; d �, the zigzag diagram of
spaces

Xfa;b;c;dg D

Xb
a

Xc
b Xd

c

Xa
a Xb

b
Xc

c Xd
d

becomes a zigzag diagram of vector spaces

H�Xfa;b;c;dg D

H�.Xb
a/ H�.Xc

b
/ H�.Xd

c /

H�.Xa
a/ H�.Xb

b
/ H�.Xc

c/ H�.Xd
d
/

with the arrows reversed. Based on this diagram we define four measures

�
=n

H�X.R/D h j H�Xfa;b;c;dgi;

�
nn

H�X.R/D h j H�Xfa;b;c;dgi;

�
==

H�X.R/D h j H�Xfa;b;c;dgi;

�
n=

H�X.R/D h j H�Xfa;b;c;dgi;

formally in the same way as before. The measures are additive if the fibers are H�–taut
(suitably defined), and finite if h jH�Xfb;cgi<1. If both these conditions hold
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then four diagrams

Dgm
=n

.H�X/; Dgm
nn

.H�X/; Dgm
==

.H�X/; Dgm
n=

.H�X/

are defined. These diagrams constitute the parametrized cohomology of X.

To a first approximation, there is no new information in parametrized cohomology.

Theorem 4.1 If H� is the cohomology functor dual to a homology functor H, then
the four diagrams for H�X are equal to the respective four diagrams for HX.

Proof The universal coefficient theorem gives a natural isomorphism of functors
H�.�/ŠHom.H.�/;k/. This implies that there is an isomorphism of zigzag modules

H�Xfa;b;c;dg Š Hom.HXfa;b;c;dg;k/

for every a < b � c < d . So it is sufficient to prove that any zigzag module V has
the same interval-module multiplicities as its dual V � D Hom.V ;k/. More precisely,
Proposition 4.2 will show that the finite multiplicities agree. This is enough, because
the construction of a diagram from its measure does not discriminate between different
infinite cardinalities.

Proposition 4.2 Let V be a zigzag module of length n and let V � D Hom.V ;k/ be
its dual. Then, for all 1� p � q � n, we have

hŒp; q� j V i D hŒp; q� j V �i;

with the understanding that all infinite cardinalities are regarded as equal.

Note that the shape of V � is the shape of V with the arrows reversed, since Hom.�;k/
is contravariant. We write IŒp; q� to denote the interval module supported over Œp; q�
that has the same arrow orientations as V. The corresponding interval module with
opposite arrow orientations can be identified with its dual IŒp; q�� Š Hom.IŒp; q�;k/.

Proof An interval decomposition of V may be interpreted as an isomorphism

V Š
M
p;q

Vp;q˝ IŒp; q�;

where the direct sum ranges over 0� p � q � n, and where the Vp;q are vector spaces.
The interval multiplicities of V are given by the formula hIŒp; q� j V i D dim.Vp;q/.
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We take the dual of both sides to obtain

V � Š
M
p;q

V �p;q˝ IŒp; q��:

This depends on two standard facts: (i) the dual of a finite direct sum of vector spaces
is naturally isomorphic to the direct sum of the duals of the vector spaces; and (ii) the
dual of the tensor product of a vector space and a finite-dimensional vector space is
naturally isomorphic to the tensor product of the duals of the two vector spaces. Thus,

hŒp; q� jV iD hIŒp; q� jV iD dim.Vp;q/
fin
D dim.V �p;q/DhIŒp; q�

�
jV �iD hŒp; q� jV �i;

where x
fin
D y means “x and y are equal or are both infinite”.

In practice, one may choose to describe a given diagram as parametrized homology
or cohomology according to whichever seems more natural in the given context. For
example, here is a parametrized version of the classical Alexander duality theorem:

Theorem 4.3 (parametrized Alexander duality [28; 29]) For n� 2, let X �Rn�R,
let Y D .Rn �R/ nX and let pW Rn�R!R be the projection onto the second factor.
We assume that .X;p/ is proper, so that all levelsets Xa

a and slices Xb
a are compact. If

parametrized Čech cohomology is defined for XD .X;pjX /, then it is also defined for
Y D .Y;pjY /. Additionally, for all j D 0; : : : ; n� 1,

Dgm
=n

.zHn�j�1Y /D Dgm
n=

. LHj X/;

Dgm
nn

.zHn�j�1Y /D Dgm
==

. LHj X/;

Dgm
==

.zHn�j�1Y /D Dgm
nn

. LHj X/;

Dgm
n=

.zHn�j�1Y /D Dgm
=n

. LHj X/:

For the proof, we refer to [28; 29]. Using this version of the Alexander duality theorem,
Henry Adams and Gunnar Carlsson [1] provide a criterion for the existence of an
evasion path in a sensor network.
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