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Homotopical intersection theory
III: Multirelative intersection problems
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We extend some results of Hatcher and Quinn (1974) beyond the metastable range.
We give a bordism-theoretic obstruction �.f / to deforming a map f W P !N be-
tween manifolds simultaneously off of a collection of pairwise disjoint submanifolds
Q1; : : : ;Qj � N under the assumption that f can be deformed off of any proper
subcollection in a homotopy coherent way. In a certain range of dimensions, �.f / is
a complete obstruction to finding the desired deformation. We apply this machinery
to embedding problems and to the study of linking phenomena.
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1 Introduction

1.1 Intersection problems

In [16] we considered the problem of deforming a map f W P !N between compact
smooth manifolds off a compact smooth submanifold Q � N. This was called an
intersection problem. We obtained an obstruction �.f / residing in a normal bordism
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group �0.X I �/. The vanishing of the obstruction is necessary for finding such a
deformation. One of the main results of [16] was that in a certain metastable range of
dimensions, �.f / is a complete obstruction to finding a homotopy from f to a map
having disjoint image from Q . The goal of the current paper is to extend these ideas
to the multirelative setting.

Fix a positive integer j and let

Q1; : : : ;Qj �N

be a collection of pairwise disjoint, closed, smooth submanifolds of a compact, con-
nected, smooth manifold N. Given a map P !N, where P is a closed manifold, the
problem we consider is that of finding a deformation of f off of the Qi simultaneously.
We approach this inductively, by assuming that P can be deformed off of any proper
union of the Qi in such a way that the deformations line up in a certain homotopically
coherent fashion. We first explain what this precisely means.

Recall that a .kC1/–ad of spaces consists of a space X together with k distinguished
subspaces X1; : : : Xk �X. The notation for such data is .X IX1; : : : ; Xk/, but it will
often be convenient to simply write X when the subspaces are understood.

Example 1.1 (1) A space Z can be considered as a constant .kC1/–ad, that is,
.ZIZ; : : : ; Z/.

(2) The standard .k�1/–simplex �k�1 together with its codimension one faces is
a .kC1/–ad, ie .�k�1I d0�k�1; : : : ; dk�1�k�1/.

(3) If Z is a space and X is a .kC1/–ad, then the cartesian product Z �X is a
.kC1/–ad in the evident way.

A map of .kC1/–ads X! Y is a continuous map of underlying spaces which restricts
to maps Xi ! Yi for all i . We can topologize this as the subspace of the mapping
space of all maps from X to Y in the compact–open topology.

Consider N together with the subspaces N nQ1; : : : ; N nQj as a .jC1/–ad

.N IN nQ1; : : : ; N nQj /:

Then a multirelative intersection problem is defined to be a map of .jC1/–ads

f W P ��j�1!N:

Set QJ D Q1 t � � � tQj . We will consider N nQJ as a constant .jC1/–ad; it is
then a sub-ad of .N IN nQ1; : : : ; N nQj /. We define a solution to a multirelative
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intersection problem to be a homotopy (of maps of .jC1/–ads) ft from f D f0 to
an ad map f1W P ��j�1!N which factors as

P ��j�1!N nQJ
�
�!N

In particular, the image of f1 is disjoint from QJ .

In more modern language the problem can be reformulated as follows: Let J D
f1; : : : ; j g. For S � J, let

QS D
G
i2S

Qi :

Then a multirelative intersection problem is equivalent to specifying a map

(1) f W P ! holim
S¨J

.N nQS /;

where the target is the homotopy inverse limit of the spaces N nQS as S ranges
through the proper subsets of J. Explicitly, the displayed homotopy limit is given by
the space of maps of .jC1/–ads �j�1!N.

The deliberate ambiguity in our notation is for the sake of convenience: we use f to
denote the map (1) as well as for the map of ads P ��j�1!N, as this is not likely
to cause confusion (note these maps determine each other by an adjunction).

A solution then amounts to a map yf W P ! N nQJ , together with a commuting
homotopy ft W P ! holimS¨J .N nQS / with t 2 Œ0; 1�, for the diagram

(2)

N nQJ

��

P
f

//

yf
99

holim
S¨J

.N nQS /

Given a map of .jC1/–ads f W P ��j�1!N as above, we write

E.P;Q�/

for the iterated homotopy fiber product of P ��j�1 and each of the Qi over N. This
is just the homotopy pullback of the diagram

P ��j�1 �

jY
iD1

Qi !

jY
iD0

N �
 �N;
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where � is the diagonal map and the left map is the product of f W P ��j�1!N

with the inclusions of the Qi .

Define a virtual bundle � over E.P;Q�/ as follows: Let �P be the tangent bundle
of P, �N the tangent bundle of N and �Qi

the tangent bundle of Qi ; each one of
these gives a bundle over E.P;Q�/ using the evident (projection) maps. To avoid
notational clutter, we use the same notation for these pullbacks. Then we set

� WD ��P C

jX
iD1

.�N � �Qi
/:

Suppose p D dimP, qi D dimQi and nD dimN. It will also be convenient to write

�Dmin
i
.n� qi � 2/ and †D

X
i

.n� qi � 2/:

In particular, the virtual rank of � is 2j �pC†. The following assumption will be
made throughout the paper:

Hypothesis 1.2 For 1� i � j , we have n� qi � 2.

We briefly review the definition of bordism with coefficients in a virtual bundle. Let
X be a space equipped with a finite-dimensional inner product bundle � of rank s .
Then one has the Thom space X� , which is the quotient space formed from the unit
disk bundle by collapsing the unit sphere bundle to a point. For the purposes of this
paper, we define �k.X I �/ to be the kth stable homotopy group �st

k
.X� /. By standard

transversality arguments, an element of this abelian group is represented by a compact
smooth submanifold V �RkCd , for some d � 0, together with a map gW V !X such
that the pullback of �˚�d along g is identified with the normal bundle of V (where �d

is the trivial bundle of rank d ; note that the dimension of V is necessarily k�s ). Then
bordism defines an equivalence relation on this collection and the set of equivalence
classes is canonically identified with �k.X I �/. With respect to this identification, note
that the operation of disjoint union of bordism classes corresponds to the addition of
stable homotopy classes. Now suppose that � is a virtual bundle. This means that �˚�j

comes equipped with an isomorphism to a finite-dimensional inner product bundle �
for some integer j � 0. In this instance, we define �k.X I �/ to be �kCj .X I �/. Our
indexing convention for the bordism group differs from that of [16], but is the same as
the one we used in [15].
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Theorem A Assume j � 1. Then there is an obstruction

�.f / 2
M
.j�1/Š

�2j�2.E.P;Q�/I �/

which vanishes if the intersection problem defined by f possesses a solution. Con-
versely, if

p � 1C�C†

then the vanishing of �.f / guarantees the existence of a solution.

Theorem A is proved using a fiberwise version of Poincaré duality together with some
general results about strongly cocartesian cubes.

Remark 1.3 The j D 1 case (“the metastable range”) of Theorem A was already
considered in [16]. That work gave a homotopy-theoretic approach to the main results
of the paper of Hatcher and Quinn [12] (when j D 1, Theorem D below amounts to
the vanishing obstruction case of [12, Theorem 2.2]).

Remark 1.4 The obstruction �.f / is defined in a homotopy-theoretic manner. Given
the identification between bordism theory and the homotopy groups of a Thom spectrum,
it is reasonable to ask what �.f / means geometrically. In the j D 1 case such an
interpretation was provided by the “index theorem” of [16, Theorem 12.1]. The j > 1
case is more subtle and involves iterated intersections of null-bordism data. We hope
to address this in detail in another paper. Meanwhile, to leave the reader with an
impression, we now sketch a geometric description of �.f / when j D 2.

Let j D 2 and let f W P ��1!N be an intersection problem. Let b be the barycenter
of �1 and let Di be the transversal intersection of f jP�bW P � b ! N with Qi .
By assumption, the evident maps Di ! E.P;Qi / are null-bordant. Let gi W Wi !
E.P;Qi / be a null-bordism. Compose this with the projection E.P;Qi /! P to
get maps hi W Wi ! P. Now take the transversal intersection of the product map
h1 � h2W W1 �W2 ! P �P with the diagonal of P. This produces a closed mani-
fold W12 of dimension p� 2�† equipped with a map W12! E.P;Q�/ which is
covered by the requisite bundle data. The associated bordism class coincides with the
obstruction �.f /.

Remark 1.5 (large codimension) If p�1C†, then the bordism group of Theorem A
is trivial. Consequently, f can be homotopy factorized through N nQJ in this case.
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If j D 1, this conclusion also follows from transversality, and for j > 1 it follows from
the higher Blakers–Massey theorem applied to the j –cubical diagram fN nQSgS�J
(see Goodwillie [4, Theorem 2.5]).

1.1.1 Highly connected manifolds When the manifolds P and Qi are sufficiently
highly connected, the obstruction group of Theorem A admits a simpler description.
Suppose that P is a–connected and Qi is bi –connected. Choose basepoints in x 2P
and yi 2 Qi . Then x gives rise to a point x0 2 N using f . The homotopy fiber
product of E.x; y�/ is defined and comes equipped with a map E.x; y�/!E.P;Q�/.
Moreover, the pullback of � to E.x; y�/ is a trivial virtual bundle of rank 2j �pC†.
Hence, the bordism groups associated with this pullback are framed bordism groups
of E.x; y�/ shifted in degree by 2j �pC†.

It is also straightforward to check that the map

E.x; y�/!E.P;Q�/

is min.a; b1; : : : ; bj /–connected. It follows that the associated map of Thom spectra is
k–connected, where k Dmin.a; b1; : : : ; bj /C 2j �pC†. In particular, the induced
homomorphism of bordism groups is an isomorphism in degrees strictly less than k .

Note that E.x; y�/ is the space of j –tuples .�1; : : : ; �j / in which �i W Œ0; 1�!N is a
path from x0 to yi for 1� i � j . The j –fold cartesian product of loop spaces

Q
j �N

based at x0 acts on E.x; y�/ by path composition. After a basepoint for E.x; y�/ is
fixed, we obtain a homotopy equivalence E.x; y�/'

Q
j �N. Consequently, we have

shown:

Addendum B Assume p � 1C†Cmin.a; b1; : : : ; bj /. Then the obstruction group
appearing in Theorem A is isomorphic to the direct sum of framed bordism groupsM

.j�1/Š

�fr
p�2�†

�Y
j

�N

�
:

Example 1.6 Suppose P D Sp and Qi D Sqi are spheres. Then aDp�1 and bi D
qi�1. Consequently, the inequality appearing in Addendum B becomes p�†C��j .

Example 1.7 Suppose p D 2C† and a; bi � 1. Then the obstruction group of
Addendum B is isomorphic to

L
.j�1/ŠZŒ��

˝j , with � D �1.N /.
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1.2 The solution space

The space of lifts solving the multirelative intersection problem (2) is defined by
converting the vertical map appearing in that diagram into a fibration and then taking
the space of sections of this fibration along P. The space of such lifts is called the
solution space and is denoted by L .f /.

For a spectrum E we let �1E be the associated infinite loop space.

Theorem C Assume that in the solution space L .f / is nonempty and is equipped
with a choice of basepoint. Then there is a .1�pC�C†/–connected map

L .f /!
Y
.j�1/Š

�1E.P;Q�/
�C.1�2j /�:

1.3 Families of embeddings

A variant of the multirelative intersection problem involves families of smooth embed-
dings. In this instance one is given a map of .jC1/–ads f W P ��j�1!N which is
also a .j�1/–parameter family of smooth embeddings from P to N. The solution
of the problem in this case is to find a deformation of ad-maps, this time through an
isotopy, to a .j�1/–parameter family of embeddings having image disjoint from QJ .

By combining Theorem A with Theorem E of Goodwillie and Klein [6], we obtain:

Theorem D (multiple disjunction) Assume

p; qi � n� 3 and p � 1Cmin.n�p� 2; �/C†:

Then �.f /D 0 if and only if the multirelative intersection problem of embeddings has
a solution.

1.4 The embedding tower

For a smooth manifold P of dimension p without boundary and a smooth manifold N
of dimension n, possibly with boundary, let E.P;N / denote the space of smooth
embeddings. When P is closed, Weiss [30] exhibits a tower of fibrations

� � � !E2.P;N /!E1.P;N /

and compatible maps E.P;N /! Ek.P;N /. Up to homotopy, the j th layer of the
tower is given by the space of compactly supported global sections of a certain fibration
over the configuration space

�
P
j

�
, the latter given by the space of subsets of P having

cardinality j . The space Ej .P;N / is in some sense the best approximation to E.P;N /
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obtained from spaces of embeddings E.U;N / as U ranges throughout the open subsets
of P that are diffeomorphic to a disjoint union of at most j open balls. In what follows,
we assume that P is compact.

If p � n� 1, then E1.P;N / has the homotopy type of the space of immersions of P
in N. If p � n� 3, then the map

E.P;N /! lim
j!1

Ej .P;N /

is a homotopy equivalence; see Goodwillie and Weiss [8] and Goodwillie and Klein [6].
The above motivates the following question: given a point of some stage of the tower,
say Ej�1.P;N /, what are the obstructions to lifting the given point to the embedding
space? If j D 2, the work of Haefliger [10], Dax [2], Salomonsen [26] and Hatcher and
Quinn [12] provides answers to this question in the metastable range (for the discussion
of this case in the context of the tower, see [30, Section 4]).

It will be convenient to consider the following modification of this problem. Fix a
basepoint of E1.P;N /, ie an immersion. Let Ej .P;N / be the fiber of Ej .P;N /!
E1.P;N /. Then the tower

� � � !E2.P;N /!E1.P;N /D �

converges to E.P;N /D fiber.E.P;N /!E1.P;N //. Furthermore, the layers of this
tower for j > 1 coincide with the layers of the embedding tower.

Recall that J D f1; : : : ; j g. In Section 7 we construct a fiberwise spectrum with
†j –action CJ over the configuration space EJ .P / WDE.J; P /, which depends only
on the data P, N and j . Let � be the tangent bundle of EJ .P / (ie restriction of
the cartesian product of j copies of the tangent bundle of P ). Then we can twist CJ

by �� to obtain a fiberwise spectrum with †j –action ��CJ over EJ .P /. In particular,
one can speak about the equivariant homology of EJ .P / with coefficients in ��CJ .

We will define an invariant

�W �0.Ej�1.P;N //!H
†j

0 .EJ .P /I
��CJ /

which vanishes on the image of �0.Ej .P;N //.

Theorem E Assume j �2 and N is r –connected with r�n�2. Assume additionally

r � p� 1� .j � 1/.n�p� 2/:

If x 2Ej�1.P;N /, then �.x/D 0 implies that x lifts to Ej .P;N /.
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If N is contractible then we can take r D n� 2. In this case the displayed inequality
r � p� 1� .j � 1/.n�p� 2/ is automatically satisfied:

Corollary F Assume j � 2 and that N is contractible. If �.x/ D 0, then x 2

Ej�1.P;N / lifts to Ej .P;N /.

Remark 1.8 By [8], the map E.P;N /! Ej .P;N / is ..jC1/.n�p�2/C3� n/–
connected. Consequently, in both Theorem E and Corollary F, if �.x/ D 0, then
x 2Ej�1.P;N / will lift to E.P;N / if in addition .j C 1/.n�p� 2/C 3�n� 0.

1.5 Link maps

Our main results can also be used to study higher-order linking phenomena. Given
connected closed manifolds P1; : : : ; Pj and a connected manifold N, a (j –component)
link map is a continuous function

f W P1 t � � � tPj !N

such that f .Pi /\f .Pk/D∅ for i ¤ k . The space of link maps will be denoted by
L .P ; N /.1 Fix an embedding J !N, where we recall again that J D f1; 2; : : : ; j g.
We will also identify J with its image in N.

We define the trivial link map to be the link map given by sending the component Pi
to i 2 J, ie the trivial link map factors as the composition P1 t � � � tPj ! J � N ,
where the first map is the canonical surjection from a space onto its set of components.
The trivial link map equips L .P ; N / with a basepoint. A link map is trivializable if it
admits a path to the trivial link map in the space of link maps.

Definition 1.9 The space of (homotopy coherent) Brunnian link maps

B.P ; N /

is the total homotopy fiber of the j –cube of based spaces

S 7!L S .P ; N /;

where L S .P ; N / is the space of maps f W P1 t � � � t Pj ! N such that for every
S � J the restriction

fS WD f jPS
W

G
i2S

Pi !N

is an jS j–component link map.

1The path components of L .P ; N / are called link homotopy classes. The latter is usually studied in
the special case when N DRn and the Pi are spheres; see Milnor [21], Massey [19] and Koschorke [18].
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Since B.P ; N / is the homotopy fiber of the map

L J .P ; N /! holim
S¨J

L J .P ; N /;

a point of B.P ; N / determines a link map f 2L J .P ; N / with the property that any
proper sublink map is trivializable. In particular, f satisfies the classical Brunnian
condition; see Milnor [21] and Debrunner [3].

Restricting now to the case when N D Rn , we will construct in Section 8 a higher
stable linking number map2

(3) �W B.P ;Rn/!
.j�2/ŠY
iD1

F st
� jY
iD1

Pi ; S
.j�1/.n�2/C1

�
;

where for an unbased space X and a spectrum E, F st.X;E/ denotes the function
space of stable maps from X to E, ie the function space F.X;�1E/.

A result of Goodwillie and Munson in the case j D 2 [7, Theorem 1.1] suggests to us
the following:

Conjecture G The map � is .1C†0/–connected, where

†0 D

jX
iD1

.n� 2pi � 2/:

(For variant forms of this statement see Section 8.) We submit the following evidence
for Conjecture G:

Theorem H (realization of higher linking numbers) Assume that Pi embeds in Rn

and n�pi � 2 for 2� i � j . Then the higher stable linking number map � induces a
surjection on homotopy groups in degrees � 1� ypC†, where

yp WD max
2�i�j

pi and †D

jX
iD1

.n�pi � 2/:

In the above, we do not need to assume that the embeddings are pairwise disjoint. Since
1� ypC† � 1C†0, it follows that � induces a surjection on homotopy groups in
degrees � 1C†0. Hence, Theorem H gives evidence for the validity of Conjecture G.

2For link maps of circles in three-dimensional euclidean space, it seems likely that on path components,
our map coincides with Milnor’s �–invariants [21].
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Further evidence is contained in Section 8. Our results on link maps overlap with those
of Munson [22]. Our methods are homotopy-theoretical, whereas Munson relies on
bordism and transversality. It seems likely to us that Theorem H could also be extracted
from Munson’s approach, possibly at the expense of a dimension.

Outline Section 2 is a breezy exposition on the basic definitions as well as the
machinery used throughout the paper. Section 3 is about strongly cocartesian cubes of
spaces, and the main technical results of the paper are stated there. Section 4 recasts
the results of Section 3 in the setting of homotopical intersection theory to give a proof
of Theorems A and C modulo the proof of Theorem 3.12. In Section 5 we prove
Theorem 3.12, which is one of our main technical results. In Section 6 we combine
Theorem A with [6, Theorem E] to obtain a multiple disjunction result for smooth
embeddings. Section 7 contains the proof of Theorem E. In Section 8 we apply our
machinery to the study of spaces of link maps.
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2 Language

2.1 Spaces

Let T be the category of compactly generated spaces. Then T is a Quillen model
category in which the weak equivalences are the weak homotopy equivalences, the
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fibrations are the Serre fibrations and the cofibrations are the retracts of relative cell
complexes [25, Chapter 2, Section 3] (a relative cell complex is a pair of spaces .Y; A/
such that Y is obtained from A by attaching cells). A space X is r –connected if every
map Sk ! X for k � r is homotopic to a constant map; here Sk is the sphere of
dimension k . In particular, the empty space is .�2/–connected and every nonempty
space is (at least) .�1/–connected. A map f W X! Y is r –connected if its homotopy
fiber at any basepoint is .r�1/–connected. An 1–connected map is, by definition, a
weak equivalence.

A commutative square of spaces

(4)

A //

��

C

��

B // D

is r –cocartesian if the map

hocolim.B A! C/!D

is r –connected.

Dually, the square (4) is r –cartesian if the map

A! hocolim.B!D C/

is r –connected.

Definition 2.1 Let

(5) X ! Y !Z

be maps of spaces equipped with a homotopy to a constant z . One says that (5) is a
homotopy fiber sequence in degrees � s if the induced map from X to the homotopy
fiber of Y !Z is s–connected. If this condition holds for all integers s , then (5) is
called a homotopy fiber sequence.

Dually, if the induced map from the homotopy cofiber of X! Y to Z is s–connected,
then one says that (5) is a homotopy cofiber sequence in degrees � s and a homotopy
cofiber sequence if the condition holds for all s .

When the square (4) is 1–cocartesian and C is contractible, A ! B ! D is a
homotopy cofiber sequence once a contraction C � Œ0; 1�! C is specified. The dual
case is analogous.
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2.2 Fiberwise spaces

For an object X 2 T , we let T .X/ denote the category of spaces over X. This is the
category whose objects are pairs .Y; r/ such that r W Y ! X is a map. A morphism
.Y; r/! .Y 0; r 0/ is a map f W Y ! Y 0 such that r 0 ı f D r . We more often than not
suppress the structure map r W Y !X when specifying an object and write Y in place
of .Y; r/.

Similarly, let R.X/ denote the category of retractive spaces over X. This has objects
.Y; r; s/ where r W Y !X and sW X ! Y are maps such that r ı s is the identity map.
A morphism .Y; r; s/! .Y 0; r 0; s0/ is a map f W Y ! Y 0 such that r 0 ı f D r and
f ı s D s0. Again, the structure maps are usually supressed.

Note that the case R.�/ gives the category of based spaces. We sometimes regard
objects of R.X/ as objects of T .X/ by means of the forgetful functor. When X D �
we usually write T� in place of R.�/, ie the category of based spaces.

Both T .X/ and R.X/ have simplicial model category structures where a weak
equivalence (cofibration, fibration) in each case is a morphism whose underlying
map of spaces is a weak homotopy equivalence (cofibration, fibration) of spaces
[25, Chapter II, page 2.8, Proposition 6]. In particular, the set of (fiberwise) homotopy
classes ŒY;Z�T .X/ is defined for objects Y and Z of T .X/. Similarly, one can define
homotopy classes in R.X/. If Y 2 T .X/ is an object, let Y C 2R.X/ be the object
given by Y tX with evident structure maps. If Z 2R.X/ is an object, then we have
ŒY C; Z�R.X/ D ŒY;Z�T .X/ . As usual, when defining homotopy classes ŒY;Z�T .X/ ,
Y is replaced by a cofibrant approximation and Z is replaced by a fibrant approximation.

A morphism Y !Z in either T .X/ or R.X/ is said to be j –connected if and only
if its underlying map in T is j –connected. An object Y is said to be j –connected
if and only if the structure map Y !X is .jC1/–connected. A commutative square
in T .X/ or R.X/ is j –cocartesian (j –cartesian) if it is so when considered in T

(here j may be 1).

We say an object Y of T .X/ or R.X/ has dimension � s if it is built up from the
initial object by attaching cells of dimension at most s . In T .X/ this means that the
underlying space of Y is a cell complex of dimension at most s . In R.X/ it means
that the pair .Y;X/ is a relative cell complex of dimension at most s . In either case
we write dimY � s .

A sequence of maps A ! Y ! C in T .X/ forms a homotopy cofiber sequence
(respectively in degrees � r ) if it comes equipped with a homotopy from A! C to
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a composition of the form A!X ! C (where X is viewed as the terminal object)
such that the induced map from the homotopy cofiber of A! Y (ie the homotopy
colimit of X  A! Y ) to C is a weak equivalence (respectively r –connected). The
dual notion of homotopy fiber sequence (in degrees � r ) is defined analogously.

Lemma 2.2 Suppose that A! Y ! C is a homotopy cofiber sequence of T .X/.
Assume that A is r1–connected and C is r2–connected. Then A! Y ! C is a
homotopy fiber sequence in dimensions � r1C r2 .

Proof The square
A //

��

Y

��

X // C

has a preferred commuting homotopy making it 1–cocartesian. The result follows
from the Blakers–Massey theorem [11, Theorem 4.23; 4, page 309].

Corollary 2.3 Assume in addition that Z 2T .X/ is an object of dimension � r1Cr2 .
Then the sequence of sets

ŒZ;A�T .X/! ŒZ; Y �T .X/! ŒZ; C �T .X/

is exact.

(Explanation: The set ŒZ; C �T .X/ has a preferred basepoint given by Z!X 0! C.
Any element of ŒZ; Y �T .X/ which maps to the basepoint lifts back to ŒZ;A�T .X/ .)

2.3 Fiberwise suspension

The unreduced fiberwise suspension of an object Y 2 T .X/ is the object of R.X/

given by the double mapping cylinder

SXY WD .X � 0/[ .Y � Œ0; 1�/[ .X � 1/;

where the structure map SXY ! X is obvious and the structure map X ! SXY is
given by X � 0. This gives a functor SX W T .X/! R.X/. Similarly, R.X/ has a
reduced fiberwise suspension functor †X W R.X/!R.X/ defined as follows: given an
object Y 2R.X/, we take †XY to be the pushout of the diagram X SXX! SXY .
If Y is cofibrant, then the map SXY !†XY is a weak equivalence. The functor †X
has a right adjoint �X , called the fiberwise loop functor.
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Given objects Y;Z 2R.X/, define

fY;ZgR.X/ WD colim
k
Œ†kXY;†

k
XZ�:

This is the abelian group of fiberwise stable homotopy classes from Y to Z .

2.4 Fiberwise smash product

Given objects Y;Z 2 T .X/, we have the fiber product Y �X Z 2 T .X/, which is
defined as the limit of the diagram Y !X Z . If Y;Z 2R.X/, the fiberwise wedge
(or coproduct) Y _X Z is the object of R.X/ given by the pushout of the inclusions
Y � X � Z . The (internal fiberwise) smash product is the object Y ^X Z given by
the pushout of the diagram X  Y _X Z � Y �X Z . As is usual with most functors
in the model category-theoretic setting, this construction needs to be suitably derived
to have a meaningful homotopy type (in this instance Y and Z should be made fibrant
and cofibrant). To avoid notational clutter, we will be intentionally sloppy: we will
write the underived smash product but the reader should understand that it needs to be
derived to have a sensible homotopy-theoretic meaning.

2.5 Fiberwise Thom spaces

Given an object Y 2 T .X/ and an inner product bundle � over Y , the fiberwise Thom
space is the object of R.X/ given by

TX .�/DD.�/[S.�/X:

By collapsing X to a point we obtain the usual Thom space X� WDD.�/=S.�/, which
in the present notation appears as T�.�/.

Let � be an inner product bundle over another object Z 2T .X/. Let pW Y �X Z! Y

and qW Y �X Z!Z be the projections. Then the Whitney sum p��˚q�� is an inner
product bundle over Y �X Z . The following is just an unraveling of definitions (and is
well known when X is a point):

Lemma 2.4 There is a preferred isomorphism of R.X/,

TX .p
��˚ q��/Š TX .�/^X TX .�/:

2.6 Fiberwise spectra

Using †X also enables one to define spectra built from objects of R.X/. A fiberwise
spectrum E is a collection of objects En 2 R.X/ for n D 0; 1; : : : together with
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morphisms †XEn! EnC1 . Note that E comes equipped with a zero section, namely
the collection of structure maps X ! En for n� 0. A morphism of fiberwise spectra
is the evident thing.

If E is a fiberwise spectrum then the associated fiberwise infinite loop space �1X E is
an object of R.X/. Fiberwise spectra form a model category (see eg [27]; for a more
detailed treatment see [20]).

Here are two examples:

Example 2.5 (trivial fiberwise spectra) Start with an ordinary spectrum E given by
based spaces fEngn�0 and structure maps †En! EnC1 . Form En �X for n � 0.
These fit into a fiberwise spectrum E �X, where the structure map †X .En �X/!
EnC1 �X is given by noticing that †X .En �X/Š .†En/�X.

Example 2.6 (fiberwise suspension spectra) Start with any object Y 2 R.X/ and
form the iterates †nXY . These give a fiberwise spectrum †1X Y , using the identity maps
for the structure maps.

We remark that the zero section of E gives a morphism †1X X
C! E .

Given an object Z 2R.X/ and a fiberwise spectrum E , we define

fZ; E gR.X/ WD colim
n
ŒZ;�1X E �R.X/:

For example, if E D †1X Y is a fiberwise suspension spectrum, then fZ; E gR.X/ D
fZ; Y gR.X/ .

2.7 Homology and cohomology

Let E be a fiberwise spectrum over X (which we take to be fibrant). Then an object
Z 2 T .X/ (which we take to be cofibrant) with structure map pW Z!X gives rise
to a fiberwise spectrum over Z ,

p�E ;

whose kth space is the pullback of Ek!X along p . Let .p�E /[ denote the effect of
making p�E cofibrant. Then for each n� 0 we have a cofibration Z! .p�E /[n and
as n varies the quotient spaces .p�E /[n=Z form a spectrum, denoted by H�.ZI E /.
The homology groups of Z with coefficients in E are the homotopy groups of this
spectrum.
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To define cohomology we take, for each n, the space of sections of En!X along the
map Z! X (this is the same thing as the space of maps Z! En which commute
with the structure map to X ). As n varies, these spaces form a spectrum H �.ZI E /.
The cohomology groups of Z with coefficients in E are defined to be homotopy groups
of this spectrum, ie

H i .ZI E /D fZC; †iXE gR.X/:

2.8 Induction and restriction

Let f W X ! Y be a map of spaces. Then a fiberwise spectrum E over Y gives rise
to a fiberwise spectrum f �E over X by taking base change. This operation defines
a restriction functor from fiberwise spectra over Y to fiberwise spectra over X (the
construction is homotopy-invariant when E is fibrant). Using f to regard X as an
object of T .Y /, we obtain a tautological identification H �.X I E / D H �.X; f �E /,
where on the right side X is viewed as an object of R.X/ using the identity.

Suppose F is a fiberwise spectrum over X. Then we obtain a fiberwise pushforward
spectrum over Y , denoted f�F in which .f�F /k D .Fk/[f Y (the construction is
homotopy-invariant when F is cofibrant). The operation E 7! f�E is also called
induction. Note that H�.X IF /DH�.Y If�F / tautologically. Note also that .f�; f �/
is an adjoint pair.

2.9 Poincaré duality

Let � be a finite-dimensional vector bundle over X. Let S� denote the fiberwise
one-point compactification of � . Then S� is an object of R.X/. More generally, if �
is a virtual bundle, ie �C �j is identified with a finite-dimensional vector bundle � for
some j , then we define S� is this case to be a fiberwise spectrum over X given by
the j –fold desuspension of S� .

Given a fiberwise spectrum E over X, set

�E WD S� ^X E :

When � is a vector bundle, the definition of the right side is given by the fiberwise
smash products in each degree, ie S� ^X Ek . In the virtual bundle case one merely
fiberwise desuspends S� ^X E j times.

Theorem 2.7 (Poincaré duality [14; 15, Theorem 6.2; 20, Theorem 19.6.1]) Suppose
f W P ! X is a map in which P is a closed smooth manifold of dimension d . Let
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��P be the virtual stable normal bundle given by the negation of the tangent bundle
of P. Then, for any fiberwise spectrum E over X, there is a preferred weak equivalence
of spectra

H �.P I E /'H�.P I
��Pf �E /:

Remark 2.8 More generally, if P is an open manifold then there is a weak equivalence

H �cs.P I E /'H�.P I
��Pf �E /;

where the left side denotes cohomology with compact supports. The latter is defined by
taking the spectrum of sections of E which coincide with the zero section near infinity.

3 Strongly cocartesian cubes

3.1 Cubical diagrams

For a finite set J, we let 2J be the poset of consisting of the subsets of J partially
ordered by inclusion. A J –cube in a category C is a contravariant functor

A�W 2
J
! C ; S 7! AS :

(If J has cardinality j , we also say that A� is a j –cube.) Since A� is contravariant,
the initial vertex is AJ and the terminal vertex is A∅ . When J D fig we usually write
AS D Ai .

In what follows we will only consider J –cubes in which the target category C is either
T .X/ or R.X/ for some space X, and, often enough, we shall be interested in the
case when X is a point.

A weak equivalence of T –cubes A� ! B� is a natural transformation such that
AS ! BS is a weak equivalence for each S, ie an objectwise weak equivalence. Two
J –cubes are said to be weakly equivalent if there is a finite zigzag of weak equivalences
connecting them.

Definition 3.1 [4, Definition 1.3] A J –cube A� is r –cartesian if the map

(6) AJ ! holim
S¨J

AS

is r –connected. Similarly, A� is r –cocartesian if the map

(7) hocolim
S¤∅

AS ! A∅

is r –connected. In both cases r may be 1.
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We remark that when A� is a cube in which the maps AS!AT are based for jS j< j ,
the target of (6) inherits a basepoint. In this case, we will say that A� is almost based.

Definition 3.2 The total homotopy cofiber of A� is the homotopy cofiber of the map (7).
If A� is an almost based J –cube, then its total homotopy fiber is the homotopy fiber
of (7) taken at the preferred basepoint.

For fixed subsets U �W � J, one has a .W;U /–face of A� given by restricting A�
to those AS for which U � S � W . This is a .W nU/–cube and every face of A�
arises in this fashion. When jW nU j D k we also call this a k–face of A� .

Definition 3.3 [4, Definition 2.1] A J –cube A� is strongly cocartesian if each
2–face of A� is 1–cocartesian.

In Definition 3.3, it is enough to check the condition on each 2–face meeting the initial
vertex AJ (ie those .W;U /–faces in which jW nU j D 2 and W D J ; see loc. cit.).

Henceforth, we set
J WD f1; 2; : : : ; j g:

Example 3.4 (wedge cubes) Let X1; : : : ; Xj be cofibrant based spaces. For T � J,
let AT be the wedge

W
i2T Xi (by convention A∅ is a point). This defines a strongly

cocartesian j –cube A� whose maps are given by projections onto summands.

More generally, let X1; : : : ; Xj 2R.X/ be cofibrant. Let AT be the fiberwise wedge
of Xi as i varies in T . Then A� is strongly cocartesian.

Example 3.5 (backwards wedge cubes) With X1; : : : ; Xj 2R.X/ as above, let BT
be the fiberwise wedge of those Xi with i 2 J nT . The maps of this cube are inclusions
of summands. Then B� is strongly cocartesian.

Example 3.6 (suspension) Let A� be a strongly cocartesian j –cube of T .X/. Then
the j –cube SXA� given by T 7! SXAT is also strongly cocartesian. Similarly, if
A� is a strongly cocartesian j –cube of R.X/, then the cube of reduced fiberwise
suspensions †XA� is strongly cocartesian.

Lemma 3.7 Let A� be a strongly cocartesian j –cube of connected based spaces in
which A∅ is a point. Then the suspended j –cube †A� is weakly equivalent to a wedge
cube B� in which Bi D†Ai for i 2 J.
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Proof The following sketch was provided to us by Tom Goodwillie. Let BT be the
wedge of †Ai for all i 2 T , but write this as the wedge, over all i 2 J, of either

� †Ai if i 2 T , or

� � if i … T .

Define a map †AT ! BT as follows. First do a pinch to go from †AT to the wedge
of j copies of †AT indexed by i 2 J. Now map that to BT by sending the i th copy
of †AT to †Ai using the original map AT ! Ai if i 2 T , or the constant map to a
point if i … T .

The above recipe defines a map of j –cubes †A�! B� . By the Whitehead theorem,
it suffices to show that the map †AT ! BT is a homology isomorphism for all
T � J. Let CT be the homotopy cofiber of this map. Then T 7! CT is also a strongly
cocartesian j –cube. It is enough to show that CT has trivial reduced homology. If T
is a singleton, this is clear since the maps †Ai !Bi are homotopic to the identity. By
a straightforward induction argument, we can assume that CT has trivial homology
for jT j � j � 1. We are reduced to showing that CJ has trivial homology. But the
homology of CJ coincides with the homology of the total homotopy cofiber of the
cube C� with a degree shift by j . Since C� is strongly cocartesian, the total homotopy
cofiber is contractible. Hence, CJ has trivial homology.

Given a strongly cocartesian j –cube A� , let C.A�/ denote the homotopy colimit

(8) hocolim
�
A∅ AJ ! holim

S¤J
AS
�
:

Then C.A�/ is a retractive space over A∅ . In what follows we rename

X WD A∅:

Then C.A�/ 2R.X/ and one has a homotopy cofiber sequence of T .X/

(9) AJ ! holim
S¤J

AS ! C.A�/:

Notation 3.8 For a sequence of integers r1; : : : ; rj we write

†D
X
i

ri and �Dmin
i
ri :

If 1� i � j and T � J, set
Ti WD T n fig:
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Hypothesis 3.9 X is 0–connected. Furthermore, for 1� i � j , the map

AJ ! AJi

is .riC1/–connected, where ri � 0.

Note that AT ! ATi
is also .riC1/–connected for all T � S, since A� is strongly

cocartesian. We assume Hypothesis 3.9 holds throughout the rest of this section.

Proposition 3.10 Let Z 2 T .X/ be an object of dimension � 1C�C†. Then the
sequence

ŒZ;AJ �T .X/!
�
Z; holim

S¤∅
AS
�
T .X/

! ŒZ; C.A�/�T .X/

is exact.

Remark 3.11 The set ŒZ; C.A�/�T .X/ is pointed. As in Corollary 2.3, exactness
means that an element of ŒZ; holimS¤∅AS �T .X/ pushes forward to the basepoint if
and only if it lifts to an element of ŒZ;AJ �T .X/ .

Proof The object AJ 2 T .X/ is �–connected. The higher Blakers–Massey theorem
for cubical diagrams [4, Theorem 2.5] (or see [5, Theorem 2.3]) says that A� is .1C†/–
cartesian, Consequently, C.A�/2T .X/ is a .1C†/–connected object. The conclusion
now follows from Corollary 2.3.

3.2 Identification of C.A�/

In the remainder of this section we identify C.A�/ up through dimension 1C�C†.

Let

(10) Wj WD
W
.j�1/Š S

2�2j

be the wedge of .j � 1/Š copies of the .2�2j /–sphere spectrum.

Let
Wj DX �Wj

be the trivial fiberwise spectrum on Wj .

Theorem 3.12 With respect to the above assumptions, there is a preferred map

(11) C.A�/!�1
�
Wj ^X

V
X

i2J

SXAi

�
;

which is .2C�C†/–connected.
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The proof of Theorem 3.12 is deferred to Section 5. If we combine Theorem 3.12 with
Proposition 3.10, we obtain:

Corollary 3.13 Let Z 2 T .X/ be an object such that dimZ � 1C�C†. Then
there is an exact sequence

ŒZ;AJ �T .X/!
�
Z; holim

S¤∅
AS
�
T .X/

!

n
ZC;Wj ^X

V
X

i2J

SXAi

o
R.X/

:

Remark 3.14 Corollary 3.13 is a robust generalization of a result of Barratt and
Whitehead [1] and, independently, Toda [29].

3.3 The Euler class

Let f W Z! holimS¤J AS be a map of spaces. Then f is also a morphism of T .X/.
Using Theorem 3.12, we see that the composed map

ZC
f
�! holim

S¤J
AS ! C.A�/

gives rise to a fiberwise stable homotopy class

e.f / 2
n
ZC;Wj ^X

V
X

i2J

SXAi

o
R.X/

;

which we call the Euler class of f . Equivalently, e.f / resides in the cohomology
group

H 0
�
ZIWj ^X

V
X

i2J

SXAi

�
:

Then, from Corollary 3.13, we deduce:

Corollary 3.15 The Euler class e.f / vanishes when f admits a homotopy factoriza-
tion through AJ . Conversely, if dimZ � 1C�C† and e.f /D 0, then f admits a
homotopy factorization through AJ .

3.4 A special case

When X D A0 is a point, the above results can be expanded upon as follows: There is
a homotopy cofiber sequence of spaces

(12) AJ ! holim
S¤∅

AS ! C.A�/

and a .2C�C†/–connected map

(13) C.A�/!�1
�
Wj ^

V
i2J

SAi

�
:
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Furthermore, the space AJ is �–connected. If we choose a basepoint in AJ then
A� becomes a cube of based spaces. Let F.A�/ be its total homotopy fiber. By the
Blakers–Massey theorem applied to (12) and using the map (13), we infer:

Corollary 3.16 There is a .1C�C†/–connected map

F.A�/!�1
�
†j�1Wj ^

V
i2J

Ai

�
'

.j�1/ŠY
i

Q.†1�jA1 ^ � � � ^Aj /:

Remark 3.17 The proof we give of Theorem 3.12 implies that the map of Corollary
3.16 is natural with respect to morphisms of based cubes A�! B� .

4 Proof of Theorems A and C

In this section we give the proof of Theorems A and C modulo the proof of Theorem 3.12.
The proof of the latter result will appear in Section 5.

Returning to the situation of Section 1, we are given pairwise disjoint, connected, closed
submanifolds Q1; : : : ;Qj �N. Let N nQ� denote the j –cubical diagram of R.N /

defined by
S 7!N nQS ; S � J:

Note that N nQ� satisfies Hypothesis 3.9 since n� qi � 2.

Proof of Theorem A Recall that we are given a map

f W P ! holim
S¨J

.N nQS /

and we wish to identify the obstructions to deforming it into N nQJ . By transver-
sality, the map N nQJ ! N nQJ�fig is .n�qi�1/–connected for 1 � i � j . By
Corollary 3.15, we infer:

Proposition 4.1 If P ! holimS¨J N nQS admits a homotopy factorization through
N nQJ , then e.f / D 0. The converse is true provided p � 1 C � C †, where
†D

P
i .n� qi � 2/ and �i Dmini .n� qi � 2/.

Proof This follows from Corollary 3.15 since a closed manifold P of dimension p
admits the structure of a cell complex of dimension p .
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Let �i be the normal bundle of Qi in N. The tubular neighborhood theorem gives a
weak equivalence of R.N /,

SN .N nQ1/'D.�i /[S.�i /N DW TN .�i /;

where the right side is the fiberwise Thom space of �i over N.

Stably, we can identify �i with the virtual bundle �i WD f ��N � �Qi
, given by the

difference of tangent bundles. We write TN .�i / for the associated fiberwise Thom
spectrum. With these notational changes, e.f / can be regarded as residing in the
cohomology group

(14) H 0
�
P IWj ^N

V
N

i2J

TN .�i /
�
:

The remainder of the proof of Theorem A will involve application of Poincaré duality
(Theorem 2.7) to the cohomology group (14).

4.1 The Euler characteristic

By Poincaré duality (Theorem 2.7), e.f / corresponds to a homology class

�.f / 2H0

�
P I��Pf �

�
Wj ^N

V
N

i2J

TN .�i /
��
:

Using the induction isomorphism (Section 2.8), the group where �.f / resides can
alternatively be written as

H0

�
N If�

��Pf �
�
Wj ^N

V
N

i2J

TN .�i /
��
:

By definition, the latter is the stable homotopy group in degree zero of the spectrum�
Wj ^N TN .��P /^N

V
N

i2J

TN .�i /
�ı
N:

Using Lemma 2.4 in virtual form, we deduce that the fiberwise spectrum

Wj ^N TN .��P /^N
V
N

i2J

TN .�i /

can be rewritten up to homotopy as

Wj ^N TN .�/;

where � is the virtual bundle over E.P;Q�/ that was defined in Section 1.

Algebraic & Geometric Topology, Volume 19 (2019)



Homotopical intersection theory, III 1103

Recall that Wj is just the fiberwise wedge of .j � 1/Š copies of the fiberwise spectrum
N �S2�2j . From this we infer

.Wj ^N TN .�//=N '
W
.j�1/Š†

2�2jE.P;Q�/
� :

Since
�0.†

2�2jE.P;Q�/
�/Š�2j�2.E.P;Q�/I �/;

we have deduced that the obstruction �.f / resides in the abelian groupM
.j�1/Š

�2j�2.E.P;Q�/I �/:

By Proposition 4.1, �.f / vanishes whenever f W P ! holimS¨J .N nQS / admits a
homotopy factorization through N nQJ . Conversely, if p� 1C�C†, then �.f /D 0;
we have shown there is such a factorization of f .

Proof of Theorem C Given a multirelative intersection problem f , recall that the
solution space L .f / is the space of homotopy factorizations of f of the form

P !N nQJ ! holim
S¨J

N nQS ;

where we have suppressed the lifting homotopy. Consider the 1–cocartesian square
of spaces

(15)

N nQJ //

��

holimS¨J N nQS

��

N // C.N nQ�/

whose horizontal maps are .1C†/–connected (by the higher Blakers–Massey theorem
applied to the j –cube N nQ� [4, Theorem 2.5]) and whose vertical maps are .1C�/–
connected. By the Blakers–Massey theorem, the square is .1C�C†/–cartesian. Hence,
if F is defined as the homotopy pullback of the diagram given by deleting N nQJ
from the square, then the map N nQJ !F is .1C�C†/–connected.

Suppose that the given multirelative intersection problem comes equipped with a
preferred solution yf W P !N nQJ (where again the lifting homotopy is suppressed).
The solution gives a preferred null-homotopy of the composite

(16) P
f
�! holim

S¨T
N nQS ! C.N nQ�/

as a morphism of T .N /.
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In other words, we have a map

(17) L .f /!N .f /;

where L .f / is the solution space and N .f / is the space of null-homotopies of the
composite (16). With respect to the preferred basepoint of L .f /, this is a map of
based spaces.

Furthermore, N .f / can be interpreted as the moduli space of homotopy factorizations
of f of the form

P !F ! holim
S¨T

N nQS :

Since the map N nQJ ! F is .1C�C†/–connected, we infer by elementary ob-
struction theory that the map L .f /!N .f / is .1�pC�C†/–connected. The rest
of the proof involves identifying N .f /.

On the one hand, rather than considering null-homotopies in T .N /, we can equivalently
add a disjoint copy of N to P to get a null-homotopy in R.N / of the associated
morphism

(18) PC! C.N nQ�/:

Then N .f / can be equivalently defined as the mapping space of null-homotopies
of (18) in R.N /.

On the other hand, the (derived) mapping space

homR.N/.†NP
C; C.N nQ�//

acts on the space N .f / (this is the fiberwise analogue of the classical fact that for a
null-homotopic map of spaces X ! Y , the moduli space of null-homotopies, ie the
space of extensions of the map to the cone on X, is a torsor over the space of maps
†X ! Y ). The orbit of the basepoint of N .f / with respect to this action gives a
preferred weak equivalence

homR.N/.†NP
C; C.N nQ�//'N .f /:

Using the adjunction between †N and �N , we infer that for k WD 1� pC�C†
there is a preferred k–connected (weak) map

(19) L .f /! homR.N/.P
C; �NC.N nQ�//:
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By Theorem 3.12 we also have a .2C�C†/–connected map

C.N nQ�/!�1N .Wj ^N TN .�//:

Applying to the latter the fiberwise loop functor �N , then applying homR.N/.P
C;�/,

and composing with (19) we get a .1�pC�C†/–connected (weak) map

(20) L .f /! homR.N/

�
PC; �1C1N .Wj ^N TN .�//

�
:

By definition, the target of the map (20) is identified with the infinite loop space
associated with the cohomology spectrum

H �.P I†�1N Wj ^N TN .�//:

By the Poincaré duality argument appearing in the proof of Theorem A above, this
spectrum is weakly equivalent toW

.j�1/ŠE.P;Q�/
�C.1�2j /�:

Assembling, we have produced a .1�pC�C†/–connected (weak) map

L .f /!
Y
.j�1/Š

�1.E.P;Q�/
�C.1�2j /�/:

This completes the proof of Theorem C.

4.2 The euclidean case

When N D Rn , we have a corollary to Corollary 3.16. Consider an embedding
QJ �Rn , where now each Qi is a manifold admitting a handle decomposition with
handles having index at most qi , where n� qi � 3.

Consider the j –cubical diagram Rn nQ� . Choose a basepoint in Rn nQJ . Then the
j –cube is based and we consider its total homotopy fiber,

ˆ.Rn nQ�/:

For A�Rn let A� DRn nA denote its complement.

Corollary 4.2 There is a .1C�C†/–connected map

(21) ˆ.Rn nQ�/!
.j�1/ŠY
iD1

�1.†1�jQ�1 ^ � � � ^Q
�
j /;

where �Dmini .n� qi � 2/ and †D
P
i .n� qi � 2/.
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Remark 4.3 The target of the map (21) may also be identified with the infinite loop
space associated with the wedge of .j � 1/Š copies of the spectrum

†1�jnDC.Q1 � � � � �Qj /;

where DC.X/D F.XC; S0/ is the Spanier–Whitehead dual of XC .

5 Proof of Theorem 3.12

The proof of Theorem 3.12 relies on basic results arising in the calculus of the identity
functor which we now summarize. Let

IW T ! T

be the identity functor. By [5] one has a tower of natural transformations

� � � ! P2I! P1I! P0I D �

and compatible natural transformations I ! Pj I. Furthermore, the functor Pj I is
j –excisive in the sense that it transforms strongly cocartesian .jC1/–cubes into
1–cartesian ones. In what follows, we abbreviate notation by setting Pj WD Pj I.

If Y is r –connected, then the map Y ! PjY is .jrC1/–connected. In particular,
when r > 0, the map

Y ! lim
j!1

PjY

is a weak homotopy equivalence.

If Y is a based space, then the j th layer of the tower, that is, the homotopy fiber of
PjY !Pj�1Y , is isomorphic in the homotopy category of functors to the infinite loop
space valued functor

Y 7!�1DjY;

where Dj takes values in spectra.

The functor Dj is classified by a certain spectrum with †j –action, denoted by Lj ,
whose underlying homotopy type is that of a wedge of .j � 1/Š copies of the .1�j /–
sphere spectrum [13; 5, page 706]. Then

(22) DjY ' Lj ^h†j
Y Œj �;

where Y Œj � denotes the j –fold fiberwise smash product Y . This description of Dj
enables one to extend its domain of definition to the category of spectra, ie if A is a
spectrum then DjA is the spectrum Lj ^h†j

AŒj � .
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Remark 5.1 The maps of the tower PjY ! Pj�1Y are principal fibrations in the
sense that there is a homotopy fiber sequence

PjY ! Pj�1Y ! BDjY;

where BDjY is the delooping of DjY given by �1.†DjY / (see [5, page 653]).

We now consider the strongly cocartesian j –cube A� of R.X/. Assume for now
that X is contractible. Without loss in generality we can replace X by the one-point
space. The assignment S 7! PkAS defines a j –cube, denoted by PkA� . A choice of
basepoint in AJ equips A� with the structure of a based j –cube. Then DkA� is a
j –cube of infinite loop spaces. Let

fib.Dk.A�//

denote its total homotopy fiber.

Proposition 5.2 The total homotopy fiber of DkA� is .�C†/–connected if k�jC1.
Furthermore, when k D j there is a .1C�C†/–connected map

fib.Dj .A�//!�1.Lj ^A1 ^ � � � ^Aj /:

Proof Suppose first that A� is a wedge cube on the based spaces X1; : : : ; Xj . Then
Xi is ri –connected. Using (22), the total homotopy fiber of Dk.A�/ may be identified
with the infinite loop space associated with the total homotopy fiber of the j –cube of
spectra

(23) S 7! Lk ^h†k
X
Œk�
S ;

where XS is the wedge of the spaces Xi for i 2 S. Applying the binomial theorem to
expand X Œk�S , direct calculation shows that the total homotopy fiber of (23) decomposes
into a wedge of terms of the form

(24) Lk ^h†s�
.X

Œs1�
1 ^ � � � ^X

Œsj �

j /;

where

�
P
i s1 D k with si � 1 for all i ,

� †s� WD†s1 � � � � �†sj �†k .

If k � j C1 then there is always at least one term si � 2. It follows that the displayed
spectrum is at least .�C†/–connected. Hence, the total homotopy fiber fib.Dk.A�//
is also .�C†/–connected when k � j C 1.
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When kD j , we can ignore those terms in which si �2 since they are highly connected:
the projection away from those terms produces the .1C�C†/–connected map

fib.Dj .A�//!�1.Lj ^A1 ^ � � � ^Aj /:

This completes the proof in the case of wedge cubes.

Turning to the general case, we use the fact that Dk is defined on the category of spectra.
By Lemma 3.7, the j –cube of spectra †1A� is weakly equivalent to a wedge cube on
the spectra †1A1; : : : ; †1Aj . Replacing the spaces Xi of the previous case by the
spectra †1Ai and making the same kind of calculation, the conclusion follows.

Corollary 5.3 Assume that X is contractible and k � j C 1. Then the .jC1/–cube

PkA�! Pk�1A�

is .1C�C†/–cartesian.

Proposition 5.4 Assume that X is contractible. Then the .jC1/–cube

A�! PjA�

is .1C�C†/–cartesian.

Proof If ri � 1 for all i , the result follows easily from induction, Corollary 5.3 and
the convergence of the tower for the identity functor for 1–connected spaces. In the
general case one must proceed differently, using the higher Blakers–Massey theorem.
We are indebted to the referee for communicating the following argument.

We first recall how Y 7! PjY is defined in terms of an auxiliary functor Y 7! TjY as
in [5, Section 1]. The latter is given by taking the homotopy limit of the functor

U 7! Y �U;

where � means topological join and U ranges over the poset of nonempty subsets
of f1; : : : ; j C 1g. There is an evident natural transformation Y ! TjY and PjY is
defined to be the homotopy colimit of the diagram

Y ! TjY ! T 2j Y ! � � � :

For the rest of the proof we set k D f1; 2; : : : ; kg to avoid notational clutter.
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We first determine how cartesian the .jC1/–cube A�! TjA� is. This is the same as
asking the degree to which the .2jC1/–cube

.T; U / 7! AT �U

is cartesian, where T � j and U � j C 1 (note: by our conventions this functor is
contravariant in the first variable and covariant in the second).

For fixed T , the .jC1/–cube U 7! AT � U is strongly cocartesian. Similarly, for
fixed U, the j –cube T 7!AT �U is strongly cocartesian. Any pair .T; U / corresponds
to a subcube whose initial term is AT �U. It follows that this subcube will be 1–
cocartesian whenever jT j � 2 or jU j � 2. Consequently, there are three remaining
types of pairs .T; U / to consider:

(1) jT j D 1 and jU j D 0.

(2) jT j D 0 and jU j D 1.

(3) jT j D jU j D 1.

By inspection, one finds for a type (1) pair that the subcube is .riC1/–cocartesian.
Similarly, for a type (2) pair the subcube is .�C1/–cocartesian and for a type (3) pair
the subcube is .riC2/–cocartesian.

Given a partition of j t j C 1 consisting of sets of these types only, the sum of these
numbers indexed over the sets of the partition is given by

(25) †C j CDC .j C 1�D/.�C 1/;

where D is the number of times a set of type (3) occurs in the partition. To see this,
note that any such partition is determined by a choice of injections aW D ! j and
bW D! j , in which the complement of the image of a defines the type (1) singletons
of the partition and the complement of the image of b defines the singletons of type (2).
Hence, the sum of the numbers for such a partition is given byX

i…a.D/

.ri C 1/C
X

i…b.D/

.�i C 1/C
X

i2a.D/

.ri C 2/;

which clearly coincides with the expression (25).

Observe that (25) achieves a minimum when D is at its maximal value j . It follows
that the minimal value is 1C�C†C 2j . Since we are dealing with a .2jC1/–cube,
we subtract 2j to get 1C�C†, which is how cartesian the cube is by [4, Theorem 2.5].
Hence, the .jC1/–cube A�! TjA� is .1C�C†/–cartesian.
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The next step is to consider TjA�! T 2jC1A� . For each fixed nonempty U � j C 1,
the map of j –cubes

A� �U ! Tj .A� �U/

is of the kind we considered above with the number ri increased by 1 (so † is
increased by j ) and � increased by 1. Hence, the corresponding .jC1/–cube is
.1C.1C�/C.†Cj //–cartesian. Moreover, taking the homotopy limit over U yields
the map of j –cubes TjA� ! T 2j A� . In taking this homotopy limit the degree to
which the latter is cartesian is decreased by j . We infer that TjA� ! T 2j A� is
.2C�C†/–cartesian, which is one better than the estimate we obtained for A�!TjA� .
Repeating this argument, we infer that T kj A�! T kC1j A� is .kC1C�C†/–cartesian
for any k � 0. It follows that A�! PjA� is .1C�C†/–cartesian.

Proof of Theorem 3.12 The proof is a verification in two cases.

Case 1 (X is contractible) There is no loss in generality in assuming that X is a
point. Equip AJ with a basepoint. Then A� is a j –cube of 1–connected based spaces.

Consider the commutative diagram

PjAJ

b1

��

a1
// Pj�1AJ

b2 '

��

a2
// BDjAJ

b3

��

holim
S¨J

PjAS a3

// holim
S¨J

Pj�1AS a4

// holim
S¨J

BDjAS

in which the top and bottom rows form fibration sequences. The map b2 is a homotopy
equivalence since Pj�1 is .j�1/–excisive. The map b3 is equivalent to a principal
fibration in the following sense: it may be identified with the map of infinite loop
spaces arising from the map of spectra

†Dj .A�/! holim
S¨J

†Dj .AS /

associated with the j –cube †Dj .A�/.

Set Wj WD †1�jLj . By Proposition 5.2 there is a .2C�C†/–connected map of
spectra

(26) †fib.Dj .†1A�//!Wj ^SA1 ^ � � � ^SAj ;

where we have implicitly identified †.Lj ^A1 ^ � � � ^Aj /'Wj ^SA1 ^ � � � ^SAj
to avoid displaying the choice of basepoint. The infinite loop space associated with the
source of (26) is identified with the homotopy fiber of the map b3 .
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Consequently,

BDjAJ
b3
�! holim

S¨J
BDjAS !�1.†Wj ^SA1 ^ � � � ^SAj /

is a homotopy fiber sequence in degrees � 2C�C†.

Hence, by Lemma 5.5 below there is a homotopy fiber sequence in degrees � 1C�C†
of the form

(27) PjAJ
b1
�! holim

S¨J
PjAS !�1.Wj ^SA1 ^ � � � ^SAj /:

According to Proposition 5.4, the square

AJ //

��

PjAJ

b1

��

holim
S¨J

AS // holim
S¨J

PjAS

is .1C�C†/–cartesian. Let holimS¨J AS ! �1.Wj ^ SA1 ^ � � � ^ SAj / be the
composition of the bottom map of the square with the second map of (27). Then

(28) AJ ! holim
S¨J

AS !�1.Wj ^SA1 ^ � � � ^SAj /

is also a homotopy fiber sequence in degrees � 1C �C†. By the dual Blakers–
Massey theorem, we conclude that (28) is also a homotopy cofiber sequence in degrees
� 2C�C†.

Consequently, the induced map

C.A�/!�1.Wj ^SA1 ^ � � � ^SAj /

is .2C�C†/–connected.

Case 2 (X is general) Let zX !X be a universal principal bundle for X with topo-
logical structure group G. Then zX is contractible. Let zA� be the strongly cocartesian
j –cube of G–spaces given by the fiber product

zAS WD zX �X AS :

The terminal vertex of this cube is then contractible, and one checks that the argument
in Case 1 preserves equivariance. It follows that there is a .2C�C†/–connected map
of based G–spaces

(29) C. zA�/!�1.Wj ^S zA1 ^ � � � ^S zAj /:
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The result follows by applying the Borel construction � �G zX to (29) to obtain a
.2C�C†/–connected map of R.X/,

C.A�/!�1X .Wj ^X SXA1 ^ � � � ^X SXAj /:

The section ends with an elementary result about fibrations that was used in the proof
of Theorem 3.12. Let

F1 //

��

E1 //

'
��

B1

��

F2 // E2 // B2

be a commutative diagram of connected spaces in which the rows are fibration sequences
and the map E1!E2 is a homotopy equivalence. Here B1! B2 is a map of based
spaces and the fiber over the basepoint of Bi is Fi .

Lemma 5.5 Assume in addition that the map B1 ! B2 sits in a homotopy fiber
sequence B1! B2! B3 in degrees � s . Then the map F1! F2 sits in a homotopy
fiber sequence F1! F2!�B3 in degrees � s� 1.

Proof Equip B3 with the basepoint from B2 . The composition E1!E2!B2!B3

is null-homotopic. Hence, E2!B2!B3 is also null-homotopic. Let E2! PB3 be
adjoint to a null-homotopy, where PB3 is the based path space. Then the diagram

E1 //

��

E2 //

��

PB3

��

B1 // B2 // B3

commutes. The result follows by taking fibers vertically.

6 Multiple disjunction

Let P, Q1; : : : ;Qj and N be as in Section 1. Let

E.P;N /

denote the space of smooth embeddings from P to N. Then S 7! E.P;N nQS /

forms a j –cube of spaces, denoted by E.P;N nQ�/. The natural transformation from
embeddings to functions

(30) E.P;N nQ�/! F.P;N nQ�/

is a map of j –cubes. One of the main results of [6] is:
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Theorem 6.1 [6, Theorem E] Assume p; qi � n� 3. Then the .jC1/–cube (30) is
.n�2p�1C†/–cartesian.

Proof of Theorem D Let

f 2 holim
S¤J

emb.P;N nQS /

be any point. Then f is represented by a map of .jC1/–ads

�j�1!E.P;N /;

where the i th face of �j�1 is constrained to map into the subspace E.P;N nQiC1/
for i D 0; 1; : : : ; j � 1. Note that by forgetting information, we may also regard f
as a map P ! holimS¤J N nQS , and therefore we have an associated multirelative
intersection problem. Consequently, Theorem D follows by combining Theorem 6.1
with Theorem A.

Remark 6.2 Theorem D is a multirelative version of [12, Theorem 2.2].

7 The embedding tower

In [16, Section 13; 15], we described an invariant �.f / which was shown to be
a complete obstruction to regularly homotoping an immersion f W P ! N to an
embedding in the metastable range. The goal of this section is to generalize this result
beyond the metastable range when N is highly connected.

7.1 Construction of the embedding tower

Let P be a smooth manifold of dimension p without boundary and let N be a smooth
manifold of dimension n. We let E.P;N / denote the space of embeddings of P in N,
defined as the geometric realization of the simplicial set whose k–simplices are the
smooth families of embeddings from P to N that are parametrized by the standard
k–simplex.

Assume P is compact. Let Oj WD Oj .P / be the partially ordered set whose elements
are open subsets U � P such that U is diffeomorphic to Rp �T , where T is a set of
cardinality at most j . A morphism U ! V is given by an inclusion of subsets. The
j th stage of the Goodwillie–Weiss embedding tower is defined by

Ej .P;N / WD holim
U2Oj

E.U;N /:
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The inclusion Oj�1 ! Oj induces a map Ej .P;N / ! Ej�1.P;N /. The map
E.P;N /!Ej .P;N / is given by restricting embeddings to elements of Oj .

If p�n�1 then E1.P;N / is homotopy equivalent to I.P;N /, the space of immersions
from P to N (by a reformulation of Smale–Hirsch theory). Hence, a basepoint of
E1.P;N / amounts to selecting an immersion P ! N up to contractible choice. In
what follows, we fix such a basepoint and define

Ej .P;N / WD fiber.Ej .P;N /!E1.P;N //:

It follows that the square

(31)

Ej .P;N / //

��

Ej .P;N /

��

Ej�1.P;N / // Ej�1.P;N /

is homotopy cartesian. Furthermore, the tower fEj .P;N /g is the manifold calculus
tower associated with the functor U 7!E.U;N /, where U varies throughout the open
subsets of P. Call this the reduced embedding tower. Note that E1.P;N / is the
one-point space.

7.2 Configuration spaces

For a set J of cardinality j , set

EJ .N / WDE.J;N /:

If we equip J with a total ordering, then EJ .N / is the configuration space of finite
ordered subsets of N of cardinality j . A choice of embedding J !N equips EJ .N /
with a basepoint. To each T � U � J there is a projection map EU .N /!ET .N /.
These assemble into a j –cube of based spaces E�.N /.

Lemma 7.1 The j –cube E�.N / is ..j�1/.n�2/C1/–cartesian.

Proof The j –cube E�.N / can be written as a map of .j�1/–cubes

ES[1.N /!ES .N /;

where S � J1 WD f2; : : : ; j g. The displayed map is a fibration whose fiber at the
basepoint is the based space N nS. These form a strongly cocartesian .j�1/–cube N� ,
all of whose maps are .n�1/–connected. Then N� is ..j�1/.n�2/C1/–cartesian by
the higher Blakers–Massey theorem.
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7.3 The unstable obstruction

For j � 2 let
�
P
j

�
denote the configuration space of subsets S � P of cardinality j .

Over this space we consider two fibrations. The first fibration

E!
�
P
j

�
has fiber over S 2

�
P
j

�
given by the configuration space ES .N /.

The second fibration
D!

�
P
j

�
has fiber over S given by holimT¨S ET .N /.

Then one has an evident map of fibrations

(32) E!D:

A point x 2Ej�1.P;N / determines a section t D t .x/ of D!
�
P
j

�
. It also determines

a partial section s D s.x/ of E !
�
P
j

�
along an open collar of the boundary of a

compactification of
�
P
j

�
. The sections agree with respect to the map (32).

The following is essentially just a reformulation of Weiss’s description of the layers of
the embedding tower.

Lemma 7.2 Assume j � 2. The homotopy fiber of Ej .P;N /!Ej�2.P;N / taken
at x is homotopy equivalent to the space of sections of E!

�
P
j

�
which are compatible

with t and which coincide with s near infinity. In particular, x lifts to a point of
Ej .P;N / if and only if this section space is nonempty.

Remark 7.3 Another formulation of the lemma is that the square

Ej .P;N / //

��

�.E/

��

Ej�1.P;N / // �1.E/��1.D/ �.D/

is 1–cartesian, where � denotes the space of sections and �1 denotes the space of
germs of sections near infinity.
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Proof of Lemma 7.2 Given x , define a third fibration

F !
�
P
j

�
whose fiber at S is the total homotopy fiber of the cube T 7! ET .N / for T � S.
Denote this fiber by ˆS .N I x/. It is an unbased space. Note that ˆS .N I x/ is well
defined since when T ¨ S, each of the spaces E.T;N / is based using x .

Moreover, x gives a partial section of this fibration at infinity. Weiss shows that
the space of compactly supported sections of this fibration (ie the space of sections
agreeing with the partial section near infinity) coincides with the homotopy fiber of
Ej .P;N /!Ej�1.P;N / at x . The latter space is homotopy equivalent to the space
in the statement of the lemma.

7.4 A cohomological obstruction

If we suspend the fibers of D!
�
P
j

�
, then the obstruction to finding a compactly sup-

ported section lies in a spectrum cohomology group. If certain dimensional restrictions
are present, then nothing is lost in suspending.

When X is an unbased space, we define its suspension spectrum be the homotopy
fiber of the map of spectra †1XC! S0 that is induced by the map from X to the
one-point space. By slight abuse in notation, denote the homotopy fiber by †1X.

Definition 7.4 Let
D!

�
P
j

�
be the fiberwise spectrum whose fiber at S given by †1ˆS .N I x/. This comes
equipped with a section near infinity. Note that D depends on the choice of x .

The total obstruction e.x/ to finding a compactly supported section of D lies in ��1
in the spectrum of compactly supported sections, that is,

e.x/ 2H�1cs

��
P
j

�
ID
�
:

Lemma 7.5 If x 2Ej�1.P;N / lifts to Ej .P;N /, then e.x/ vanishes. The converse
is true provided that 2.j � 1/.n� 2/� jpC 1� 0.

Algebraic & Geometric Topology, Volume 19 (2019)



Homotopical intersection theory, III 1117

Proof The “if” part is clear. For the converse, one observes that the map ˆS .N I x/!
�1†1ˆS .N I x/ is .2.j�1/.n�2/C1/–connected using the Freudenthal suspen-
sion theorem and fact that ˆS .N I x/ is ..j�1/.n�2//–connected by Lemma 7.1. It
follows that the map of compactly supported section spaces is .2.j�1/.n�2/�jpC1/–
connected.

7.5 Highly connected manifolds

When N is highly connected, the obstruction to lifting simplifies considerably.

Definition 7.6 For S �
�
P
j

�
let

CS .N /

denote the mapping cone of the map

ES .N /! holim
T¨S

ET .N /:

Remark 7.7 In contrast with ˆS .N I x/, the space CS .N / doesn’t depend on x and
it has a preferred basepoint.

Lemma 7.8 Assume j � 2 and N is r –connected, where r � n�2. Then the square

ES .N / //

��

holimT¨S ET .N /

��

C // CS .N /

is ..j�1/.n�2/CrC1/–cartesian, where C is the cone on ES .N /.

Proof By definition, the square is 1–cocartesian. Furthermore, the map ES .N /!
holimT¨S ET .N / is ..j�1/.n�2/C1/–connected by Lemma 7.1.

Since N is r –connected and r � n�2, it follows that ES .N / is r –connected. Hence,
the left vertical map is .rC1/–connected. The conclusion now follows from the
Blakers–Massey theorem.

Let

(33) C !
�
P
j

�
be the fiberwise spectrum whose fiber at S is †1CS .N /. This fiberwise spectrum
doesn’t depend on x .
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The section t induces another section of (33); call it t 0. The latter section is homotopic
to the zero section near infinity. Then an obstruction to lifting x 2 Ej�1.P;N / to
Ej .P;N / is given by the associated compactly supported spectrum cohomology class
of t 0 :

e0.x/ 2H 0
cs

��
P
j

�
IC
�
:

Lemma 7.9 Assume j � 2 and N is r –connected with r � n � 2. If x lifts to
an element of Ej .P;N /, then e0.x/ vanishes. Furthermore, the converse holds if
r � p� 1� .j � 1/.n�p� 2/.

Proof The proof uses the commutative square

†ˆS .N I x/ //

��

CS .N /

��

�1†1ˆS .N I x/ // �1†1CS .N /

Since CS .N / and †ˆS .N I x/ are ..j�1/.n�2/C1/–connected (by Lemma 7.1),
the vertical maps are .2.j�1/.n�2/C3/–connected by the Freudenthal suspension
theorem.

By Lemma 7.8, the horizontal maps are ..j�1/.n�2/CrC2/–connected. Hence, the
composite

†ˆS .N I x/! CS .N /!�1†1CS .N /

is ..j�1/.n�2/CrC2/–connected. By elementary obstruction theory the obstructions
e0.x/ and e.x/ contain the same information when jp < .j � 1/.n� 2/C r C 2, that
is, when r � p� 1� .j � 1/.n�p� 2/.

Corollary 7.10 Assume j � 2. If N is contractible, then x lifts to an element of
Ej .P;N / if and only if e0.x/D 0.

Proof In this case we can take r D n�2. Then the inequality of Lemma 7.9 becomes
n�2�p�1�.j�1/.n�p�2/, which is automatically satisfied because p�n�3.

7.5.1 Equivariant reformulation Set J WDf1; : : : ; j g. Then the map EJ .P /!
�
P
j

�
which assigns to an embedding its image is a regular covering space with structure
group †j , where the latter acts on EJ .P / via the automorphisms of J.
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The pullback of C !
�
P
j

�
along EJ .P /!

�
P
j

�
coincides with the fiberwise spectrum

with †j –action

(34) EJ .P /�CJ !EJ .P /;

where CJ WD†
1CJ .N / is a spectrum with †j –action (recall that CJ .N / is the total

homotopy cofiber of the j –cube E�.N /; the action of †j arises from the evident
action of †j on the cube). Note that †j acts diagonally on EJ .P / � CJ . When
considered unequivariantly, (34) is a trivial fiberwise spectrum.

Then the obstruction e0.x/ may be interpreted as an element of the equivariant coho-
mology group

H 0
cs;†j

.EJ .P /ICJ /;

or, alternatively, as an element of the function space of compactly supported †j –
equivariant stable maps from EJ .P / to CJ .

7.5.2 The homological invariant By Poincaré duality, there is an equivalence of
spectra

H 0
cs;†j

.EJ .P /ICJ /ŠH
†j

0 .EJ .P /I
��CJ /;

where ��CJ is the twist of CJ by the inverse of the tangent bundle of EJ .P / (the
latter is just the restriction of the product of j copies of the tangent bundle of P ).

Definition 7.11 Let
�.x/ 2H

†j

0 .EJ .P /I
��CJ /

be the class that corresponds to e0.x/ via the Poincaré duality isomorphism.

Proof of Theorem E The procedure described above defines a function

�W �0.Ej�1.P;N //!H
†j

0 .EJ .P /I
��CJ /

such that �.x/D 0 when x lifts to �0.Ej .P;N // By Lemma 7.9 the converse is true
provided r � p� 1� .j � 1/.n�p� 2/.

8 Spaces of link maps

Given manifolds P1; : : : ; Pj of dimension dimPiDpi and a connected n–manifold N
without boundary, a link map is a continuous map

f W P1 t � � � tPj !N
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such that f .Pi /\f .Pk/D∅ for i ¤ k . We will typically assume that Pi is connected
and boundaryless. Set P WD hP1; : : : ; Pj i and write

L .P ; N /

for the space of link maps in the compact–open topology.

Recall that J D f1; 2; : : : ; j g. For a subset S � J, set

PS WD
G
i2S

Pi and P .S/ WD
Y
i2S

Pi :

Then, to each S � J, we have a space

L S .P ; N /

whose points are the maps

f W PJ !N

such that f .Pi /\ f .Pk/D ∅ for each pair of distinct elements i; k 2 S. Note that
L J .P ; N /DL .P ; N / is the space of link maps and if jS j � 1 then L S .P ; N /D

F.PJ ; N / is the function space of maps with no constraint. The assignment

S 7!L S .P ; N /

is contravariant and defines a j –cube of spaces, which we denote by

L �.P ; N /:

Remark 8.1 There is a related j –cube

L .P�; N /

whose value at S � J is the space of link maps f W PS !N. Then the evident map of
j –cubes

L �.P ; N /!L .P�; N /

is 1–cartesian because for each S we have a homotopy fiber sequence

F.P.JnS/; N /!L S .P ; N /!L .PS ; N /;

and the j –cube S 7! F.P.JnS/; N / is 1–cartesian if j > 1.
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8.1 Homotopy coherent Brunnian links

Henceforth, we fix an embedding
J �N

and identify J with its image. Let cW
F
i Pi ! N be the link map which sends Pi

to i . Call c the trivial link map. Then c equips L �.P ; N / with the structure of a
j –cube of based spaces. If n� 2, then the component of the basepoint is independent
of the choice of embedding J �N.

Remark 8.2 Milnor [21] considers the case of link maps f W
Fj
iD1 Pi ! N in eu-

clidean space N DR3 in which each Pi is a circle S1 . Milnor defines f to be “trivial”
if there is an extension of f to a link map

F
i D

2! R3 . Note that f is trivial in
Milnor’s sense if and only if f is homotopic through link maps to the trivial link
map c .

Definition 8.3 The space of homotopy coherent Brunnian link maps

B.P ; N /

is the total homotopy fiber of the j –cube of based spaces L �.P ; N /.

Remarks 8.4 By Remark 8.1, an equivalent definition up to homotopy of B.P ; N /

is given by taking the total homotopy fiber of the j –cube L .P�; N /.

A point of B.P ; N / is given by data consisting of a link map f W PJ !N together
with a homotopy coherent set of rules which to each S ¨ J associates a path from the
associated point of L S .P ; N / to the basepoint.

By contrast, Milnor [21, Section 5] defines a link map f W
Fj
iD1 S

1!R3 to be almost
trivial if every proper sublink map of f is trivial.3 If j � 4 then this notion of Brunnian
fails to be homotopy coherent. Thus, a homotopy coherent Brunnian link map gives an
almost trivial link map but not conversely.

Note that there is an evident map

B.P ; N /! fiber
�

L J .P ; N /!

jY
iD1

L Ji .P ; N /

�
;

3Subsequent authors call Milnor’s notion of almost trivial link map a Brunnian link map. The earliest
reference employing this language seems to be [3].
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where Ji D J n fig, P D hS1; : : : ; S1i and N DR3 . However, if j � 4, this map is
not a weak equivalence. Milnor’s almost trivial link maps are those link maps whose
components are in the image of the displayed homotopy fiber.

Terminology 8.5 As we only consider homotopy coherent Brunnian link maps in this
paper, we henceforth refer to B.P ; N / simply as the space of Brunnian link maps,
despite the different usage of this term in the literature.

8.2 The invariants

For each S � J, one has a map

(35) L S .P ; N /! F.P .J /; ES .N //;

where the target is the function space of maps P .J /!ES .N /. One defines (35) by
mapping a link map f to the map

.x1; : : : ; xj / 7!
Y
i2S

f .xi /:

Remark 8.6 When S D J, the map (35) is Koschorke’s �–invariant L .P ; N /!

F.P .J /; EJ .N //.

If we let S vary, (35) defines a map of j –cubes of based spaces

(36) L �.P ; N /! F.P .J /; E�.N //:

Remark 8.7 For S � J, let N J .S/ be the space of j –tuples x 2N J such that the
image of x under the projection N J !N S lies in the subspace ES .N /�N S (here
N S WD F.S;N /). In other words, there is a pullback diagram

N J .S/ //

��

N J

��

ES .N / // N S

The collection fN J .S/gS�J forms both a stratification of N J and a j –cube of based
spaces.
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The operation S 7! F.P .J /; N J .S// is a j –cube of based spaces, which we denote
by F.P .J /; N J . � //. Then we have a commutative diagram of j –cubes

(37)

L �.P ; N / //

��

F.P .J /; N J .�//

��

L .P�; N / // F.P .J /; E�.N //

in which the vertical maps form 1–cartesian .jC1/–cubes (even more is true if
N happens to be contractible: in this case the vertical maps are objectwise weak
equivalences of j –cubes). The map (36) is just the composition of the maps in
diagram (37).

The top horizontal map of diagram (37) can be viewed as a kind of coassembly map
which records the passage from global to local linking data. More precisely, set
J WD h1; 2; : : : ; j i, where we think of i 2 J as a manifold of dimension zero. Then,
by definition,

N J .S/DL S .J ; N /;

and the top horizontal map of (37) associates to f W
F
i Pi !N the map which sends

a j –tuple .x1; : : : ; xj / 2 P .J / to the composed map
F
i xi �

F
i Pi !N.

One has a similar description of the bottom horizontal map by reinterpreting the
configuration space ES .N / as the space of link maps L .S ; N /.

Definition 8.8 Let
ˆE�.N /

be the total homotopy fiber of the j –cube E�.N / taken with respect to the given
embedding J !N. (Alternatively, ˆE�.N / can be defined as the total homotopy fiber
of the .j�1/–cube N� appearing in the proof of Lemma 7.1.)

Then the map of j –cubes (36) induces a map of total homotopy fibers

(38) `W B.P ; N /! F.P .J /; ˆE�.N //;

called the higher unstable linking number map.

Remark 8.9 Let OP be the partially ordered set given by U D hU1; : : : ; Uj i, in
which Ui is an open set in Pi , and U � U 0 if and only if Ui � U 0i for all i . Then

U 7!B.U ; N /
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defines a contravariant functor OP !T� . Its multilinearization in the sense of Weiss’s
manifold calculus coincides up to homotopy with the higher unstable linking number
map ` (see [23; 22]).

Conjecture 8.10 The map ` (see (38)) is .1C†0/–connected, where

†0 D
X
i

.n� 2pi � 2/:

Remark 8.11 The j D 2 case of Conjecture 8.10 is known in the affirmative: it is
the main result of [7].

8.2.1 The euclidean case, stabilization Assume N DRn . Then ˆ.E�.Rn// coin-
cides with the total homotopy fiber of the based .j�1/–cube

S 7!Rn nS

for S � J1 (see the proof of Lemma 7.1). By this identification and Corollary 4.2
applied to Qi WD fig �Rn , we infer there is a .j.n�2/C1/–connected map

(39) ˆE�.R
n/!

.j�2/ŠY
iD1

�1S .j�1/.n�2/C1:

Applying the functor F.P .J /;�/ to (39), one obtains a map of function spaces

(40) F.P .J /; ˆE�.R
n//!

.j�2/ŠY
iD1

F st.P .J /; S .j�1/.n�2/C1/

which is .1C†/–connected, where †D
Pj
iD1.n�pi � 2/. The composition of (38)

with (40) defines the higher stable linking number map

(41) �W B.P ;Rn/!
.j�2/ŠY
iD1

F st.P .J /; S .j�1/.n�2/C1/:

A version of (41) also appears in the work of Munson [22]. Note that [22, Corollary 1.2]
gives a connectivity estimate one less than ours (see [22, Remark 3.6]).

Example 8.12 Let nD j D 3 and Pi D S1 for i D 1; 2; 3. Then the higher stable
linking number map � is of the form

B.P ;R3/! F st..S1/�3; S3/:
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Taking path components gives a function �0.B.S1� ;R
3//! Z. This can be described

as the rule which assigns to a three-component Brunnian link in R3 a certain Massey
product in the link complement [24].

Since 1C†� 1C†0, we infer that Conjecture 8.10 with N DRn is equivalent to the
following:

Conjecture 8.13 The higher stable linking number map � (see (41)) is .1C†0/–
connected.

8.3 Evidence for Conjecture 8.13

In this subsection we prove Theorem H, which we submit as evidence for Conjecture
8.13.

As above, P1; : : : ; Pj are closed manifolds, but now we suppose that each Pi embeds
in Rn . In what follows, we don’t require the Pi to be pairwise disjoint and we will
not need to assume that P1 is a submanifold of Rn .

Recall the fixed embedding J �Rn . Choose n–balls B.i/ containing i 2 J n 1 and
assume that the collection fB.i/g is pairwise disjoint. Choose an embedding Pi �B.i/
for i ¤ 1. Using the inclusions B.i/�Rn , we obtain an embedding

P2 t � � � tPj �Rn:

Consider the .j�1/–cube of function spaces

S 7! F.P1;R
n
nPS /; S � J1:

This is a based cube, where the basepoint of F.P1;Rn n PS / is the constant map
having value 1 2Rn nPS . Consequently, the total homotopy fiber of this cube is given
by

(42) F.P1; ˆ.R
n
nP�//;

where now the convention is that Rn nP� is the .j�1/–cube given by Rn nPS in
which S ranges through subsets of J1 .

For S � J1 , consider the commutative diagram

F.P1;Rn nPS / //

aS

��

L St1.P ;Rn/ //

bS

��

F.P .J /; ESt1.Rn//

cS

��

F.P1;Rn/ // L S .P ;Rn/ // F.P .J /; ES .Rn//
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As S varies, each of the vertical maps assembles to a morphism of .j�1/–cubes, ie
each gives a j –cube a� , b� and c� , respectively. The j –cube b� is just L �.P ;Rn/.
Similarly, c� is the j –cube F.P .J /; E�.Rn//. If we consider a� as a map of .j�1/–
cubes, then its target is the constant .j�1/–cube on the contractible space F.P1;Rn/;
in particular, the target of a� is 1–cartesian. Hence, the total homotopy fiber ˆ.a�/
is identified with the total homotopy fiber of the source of a� , and the latter coincides
with F.P1; ˆ.Rn n P�//, ie the source of the map (42). Consequently, taking the
total homotopy fibers of a� , b� and c� and composing with the map (40) results in a
commutative diagram

(43)

F.P1; ˆ.Rn nP�// // B.P ;Rn/
`

//

� ((

F.P .J /; ˆE�.Rn//

��

F st.P .J /; S .j�1/.n�2/C1/

such that the right vertical map is .1C†/–connected (see (40)).

Remark 8.14 In the above, we’ve neglected to mention that the map of cubes a�! b�

isn’t basepoint-preserving. This means that the map doesn’t define a map of total
homotopy fibers in an obvious way.

However, the map is easily seen to be basepoint-preserving up to a preferred path (the
path is defined by the radial deformation retraction of each ball B.i/ onto its center i ).
It is this preferred path that enables us to define the map from the total homotopy fiber
of a� to the total homotopy fiber of b� , which is the leftmost map in (43).

Claim 8.15 The horizontal composite

(44) F.P1; ˆ.R
n
nP�//! F.P .J /; ˆE�.R

n//

of diagram (43) is .1� ypC†/–connected.

The claim, proved below, gives evidence for the validity of Conjecture 8.13: it implies
that ` is a retraction on homotopy in degrees � 1� ypC† (the same is true for � since
the vertical map of (43) is .1C†/–connected). Furthermore, we have 1� ypC†�1C†0,
so � will be a retraction in degrees � 1C†0. Consequently, the proof of Theorem H
has been reduced to verification of the claim.
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Proof of Claim 8.15 For S � J1 , consider the pullback diagram

ES //

��

ESt1.Rn/

��

P .J1/ // ES .Rn/

where the right vertical map is given by projection and the bottom horizontal map is
the projection P .J1/ ! P .S/ followed by the inclusion P .S/ � ES .Rn/. Observe
that the fiber of ES ! P .J1/ at a point .x2; : : : ; xj / is given by Rn n fxigi2S .

The map P .J1/!ES .Rn/ factors through the contractible space B.J1/ WD
Q
i B.i/,

so the fibration ES ! P .J1/ is trivializable. Let �.ES / be the space of sections of
ES ! P .J1/ . Define a map

Rn nPS ! �.ES /

by sending a point z 2Rn nPS to the section given by .x2; : : : ; xj / 7! z . This makes
sense since z also lies in Rn n fxigi2S .

As S varies we obtain a map of J1–cubes

(45) Rn nP�! �.E�/;

and applying the functor F.P1;�/ to the induced map of total homotopy fibers of (45)
yields the map of the claim.

Hence, it suffices to prove that (45) is .1C�2C†2/–cartesian, where

(46) �2 WD min
2�i�j

.n�pi � 2/; †2 WD

jX
iD2

.n�pi � 2/;

since F.P1;�/ reduces connectivity by p1 and

1C�2C†2�p1 D 1� ypC†:

We will explain the proof when 2� j � 3. The remaining cases are analogous to the
case j D 3 and we will leave them for the reader to verify.

When j D 2, it is readily checked that the statement to be proved amounts to the
assertion that the map

Rn nP2! F.P2; S
n�1/

given by

z 7!

�
x 7!

x� z

jx� zj

�
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is .1C2.n�p2�2//–connected. This follows from the commutative diagram

Rn nP2 //

��

F.P2; S
n�1/

��

�1†1.Rn nP2/ // F st.P2; S
n�1/

where the left vertical map is .1C2.n�p2�2//–connected by the Freudenthal sus-
pension theorem, the right vertical map is .1�pC2.n�2//–connected, also by the
Freudenthal suspension theorem, and the lower horizontal map is a homotopy equiva-
lence by Spanier–Whitehead duality.

When j D 3 one proceeds as follows: We think of the square RnnPS for S �f2; 3g as
defining an isotopy functor �W OP2

�OP3
! T� which assigns to an open set U � P2

and an open set V � P3 the total homotopy fiber of the square

U �\V � //

��

V �

��

U � // Rn

where A� denotes the complement of A�Rn . Similarly, one has an isotopy functor
�]W OP2

�OP3
!T� associated with the total homotopy fiber of the square S 7!�.ES /.

In fact, the latter is easy to identify: it is given by

.U; V / 7! F.U �V; Sn�1 [ Sn�1/;

where Sn�1 [ Sn�1 is the total homotopy fiber of the wedge square on Sn�1 . The
natural map

(47) �.U; V /! �].U; V /

is a kind of bilinearization (or coassembly) in the sense that

� its value when U and V are open balls is a homotopy equivalence;

� �].U; V / is linear in each variable in the sense of isotopy calculus.

Furthermore, (47) is initial with respect to these properties. On the other hand,
Corollary 3.16 (see Corollary 4.2 and Remark 3.17) defines a natural transformation

(48) �.U; V /!�1†1.S�1 ^U � ^V �/

whose connectivity can be described as follows: If U is a tubular neighborhood of a
closed manifold of dimension k1 and V is a tubular neighborhood of a closed manifold

Algebraic & Geometric Topology, Volume 19 (2019)



Homotopical intersection theory, III 1129

of dimension k2 , then (48) is
�
1Cmin .n�k1�2; n�k2�2/C

P
.n�ki�2/

�
–connected.

In particular, it is .3n�5/–connected when U and V are balls.

The functor .U; V / 7! �1.S�1 ^ U � ^ V �/ is also bilinear. In fact, by Spanier–
Whitehead duality it is naturally equivalent to the functor  given by

.U; V / 7! F.U �V;�1†1.S2n�3//:

As �! �] is initial in the homotopy category of functors, there is a natural transfor-
mation

(49) �]!  

that yields a factorization � ! �] !  . Clearly, (49) is induced by a map of
spaces Sn�1 [ Sn�1! �1†1.S2n�3/. Furthermore, it is automatic that the map
�].U; V /!  .U; V / is .3n�5/–connected when U and V are balls.

It follows that the map �].P2; P3/!  .P2; P3/ is .3n�5�p2�p3/–connected. As
3n�5�p2�p3 is strictly larger than 1C�2C†2 , it follows that the map �.P2; P3/!
�].P2; P3/ is .1C�2C†2/–connected, as was to be shown.

Example 8.16 Let P D hS1; : : : ; S1i be an ordered j –tuple of circles and let nD 3.
By Theorem H,

�0.�/W �0.B.P ;R
3//!

.j�2/ŠY
iD1

Z

is surjective. We conjecture that �0.�/ coincides with Milnor’s �–invariants [21,
Section 5] on the set of (classical) Brunnian link maps.

8.4 Postscript: the two-component case

When j D 2 there is some additional evidence for Conjecture 8.13 with the numerical
improvements suggested by Theorem H. Let P D hP;Qi, with p WD dimP and
q WD dimQ . In this situation, � is the classical stable linking pairing

(50) L .hP;Qi;Rn/! F st.P �Q;Sn�1/;

which associates to a link map f tgW P tQ!Rn the map

.x; y/ 7!
f .x/�g.y/

jf .x/�g.y/j
:
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On path components the above gives a function of pointed sets

(51) ˛W �0.L .hP;Qi;Rn//! fPC ^QC; S
n�1
g;

where we have identified the set of path components of F st.P �Q;Sn�1/ with the
abelian group of stable homotopy classes of based maps PC ^QC! Sn�1 .

Suppose A and B are pointed sets. We denote the basepoint in each case by �. A
basepoint-preserving map hW A ! B is said to be weakly injective if there are no
nontrivial solutions to the equation h.x/D�. If h is a homomorphism of groups, then
weak injectivity implies injectivity (compare [9, Lemma 1.1]).

Proposition 8.17 Assume that Q �Rn is a submanifold of codimension � 3. Then
the function ˛ is a surjection on path components if 2n�2q�p�3� 0. Furthermore,
if 2n� 2q�p� 3 > 0 then ˛ is weakly injective.

Remarks 8.18 (1) Proposition 8.17 gives a better estimate than [7], but at the
expense of an additional hypothesis on Q .

(2) The number 2n� 2q �p � 3 may be rewritten in the form 1� qC†, where
†D .n�p� 2/C .n� q� 2/. This is the number of Theorem H when j D 2.
Hence, only weak injectivity needs to be verified.

(3) Proposition 8.17 suggests that the connectivity estimate of Conjecture 8.13 might
be improved to 1� ypC† under the additional assumption that P2; : : : ; Pj �Rn

are submanifolds of codimension � 3.

(4) Proposition 8.17 delivers more information in the spherical case P D Sp and
Q D Sq with q � n � 3. Then �0.L .hSp; Sqi;Rn// possesses a group
structure (see [28; 17, page 765]) and the function ˛ becomes a homomor-
phism. Consequently, weak injectivity implies injectivity and we recover [28,
page 190]. We infer that Proposition 8.17 implies that ˛ is an isomorphism
when 2n�2q�p�3 > 0. According to [9, Theorem 1.1], in the spherical case
˛ is actually an isomorphism if 3n� 2q� 2p� 4 > 0 and p; q � 1.

Proof of Proposition 8.17 As pointed out above, we only need to verify the last part
of the statement. Let

x WD f tg 2L .hP;Qi;Rn/

be any point. We can assume without loss in generality that f W P !Rn is a smooth
map. We first show how to find a path in L .hP;Qi;Rn/ from x to x0 D .f; h/ in
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which h is a smooth embedding. It then suffices to prove that if the stable linking
number of x0 is trivial then the map f W P !Rn n h.Q/ is null-homotopic.

Consider the commutative square

E.Q;Rn nf .P // //

��

F.Q;Rn nf .P //

��

E.Q;Rn/ // F.Q;Rn/

in which E.�;�/ denotes the space of embeddings. By Lemma 8.19 below, the
square is .2n�2q�p�3/–cartesian. If particular, if we use the preferred basepoint
of E.Q;Rn/, it follows that, when 2n � 2q � p � 3 � 0, we can find an isotopy
of the submanifold Q � Rn to an embedding hW Q ! Rn n f .P / such that the
underlying map of this embedding is homotopic to the map gW Q!Rn nf .P /. Then
x0 D .f; h/ 2L .hP;Qi;Rn/ is in the same path component as x .

But, as we’ve seen above, the composition

F.P;Rn n h.Q//!L .hP;Qi;Rn/! F st.P �Q;Sn�1/

is .2n�2q�p�3/–connected. In particular, if 2n�2q�p�3> 0 then the triviality of
the stable linking number of x0 implies that the map P !Rnnh.Q/ is null-homotopic.

The following result was used in the proof of Proposition 8.17:

Lemma 8.19 Assume N is a connected smooth n–manifold, and let P and Q be
closed smooth manifolds of dimensions p and q . Assume q � n� 3. Let f W P !N

be a smooth map. Then the square

E.Q;N nf .P // //

��

F.Q;N nf .P //

��

E.Q;N/ // F.Q;N /

is .2n�2q�p�3/–cartesian.

Remark 8.20 When f is an embedding, this amounts to the j D 2 case of [6,
Theorem E].
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Proof sketch The argument was communicated to us by Tom Goodwillie. If we
replace embeddings with immersions, then the analogous diagram is 1–cartesian by
Smale–Hirsch theory (in this instance we only need to assume q � n� 1). Hence, it
suffices to show that the square

E.Q;N nf .P // //

��

I.Q;N nf .P //

��

E.Q;N/ // I.Q;N /

is .2n�2q�p�3/–cartesian, where I.�;�/ denotes the space of immersions.

The proof then proceeds by comparing the homotopy fibers of the horizontal maps
of the square. The map N n f .P /!N is .n�p�1/–connected by transversality. If
q � n� 3, then the Goodwillie–Weiss embedding calculus applied to the embedding
spaces E.Q;N n f .P // and E.Q;N/ gives towers for these homotopy fibers, where
the first nontrivial layer is in degree j � 2. The homotopy-theoretic model for these
layers provided by [30] implies that the map of the j th layers is .2n�2q�p�3/–
connected for all j . The conclusion then follows from the five lemma.
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