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C �–algebraic drawings of dendroidal sets

SNIGDHAYAN MAHANTA

In recent years the theory of dendroidal sets has emerged as an important framework
for higher algebra. We introduce the concept of a C �–algebraic drawing of a
dendroidal set. It depicts a dendroidal set as an object in the category of presheaves
on C �–algebras. We show that the construction is functorial and, in fact, it is the
left adjoint of a Quillen adjunction between combinatorial model categories. We
use this construction to produce a bridge between the two prominent paradigms of
noncommutative geometry via adjunctions of presentable 1–categories, which is
the primary motivation behind this article. As a consequence we obtain a single
mechanism to construct bivariant homology theories in both paradigms. We propose
a (conjectural) roadmap to harmonize algebraic and analytic (or topological) bivariant
K–theory. Finally, a method to analyze graph algebras in terms of trees is sketched.
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0 Introduction

Dendroidal sets provide a convenient model for 1–operads (see Heuts, Hinich and
Moerdijk [21] for a comparison with Lurie’s model [31] for 1–operads without
constants). The category of dendroidal sets dSet was introduced by Moerdijk and
Weiss [44; 45] so that (inter alia) it can serve as a receptacle for the nerve functor on
the category of operads Operad. The following commutative diagram is explanatory:

Cat //

N
��

Operad

Nd
��

sSet // dSet
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1172 Snigdhayan Mahanta

where the vertical arrow N (resp. Nd ) denotes the nerve (resp. dendroidal nerve) functor.
Cisinski and Moerdijk [10] constructed a cofibrantly generated model structure on dSet
such that the fibrant objects are precisely the 1–operads [31]. Over the last decade
the theory of dendroidal sets has reached an advanced stage, subsuming several aspects
of the theory of operads and that of simplicial sets; see Cisinski and Moerdijk [11; 12].

For a small category C let P.C/ denote the category of Set–valued presheaves on C.
Let SC�un denote the category of nonzero separable unital C �–algebras equipped with
unit-preserving �–homomorphisms. The Gelfand–Naı̆mark duality implies that SC�un

op

can be regarded as the category of nonempty compact second countable noncommutative
spaces with continuous maps. Let � denote the small category of trees, so that
dSet WD P.�/ is the category of dendroidal sets. In this article we prove the following
results:

(1) We construct a noncommutative dendrices functor DW �! SC�un
op .

(2) We construct an operadic model structure on P.SC�un
op
/, an instance of Cisinksi’s

model structure on presheaves.

(3) We observe that the canonical adjoint pair induced by the noncommutative
dendrices functor via left Kan extension

drW dSet� P.SC�un
op
/ Wdd

is a Quillen pair between combinatorial model categories.

We call the image of a dendroidal set under the left adjoint functor drW dSet!P.SC�un
op/

the C �–algebraic drawing of the dendroidal set.

These results constitute the first steps towards a bigger objective, which we briefly
explain below. There are two prevalent perspectives on noncommutative geometry:
analytic and algebraic. The analytic approach was pioneered by Connes [13] — see
also Connes and Marcolli [14] — whereas the algebraic approach builds upon work of
Drinfeld, Keller, Kontsevich, Lurie, Manin, Mahanta, Tabuada, Toën and several others
[39; 25; 27; 31; 50; 34]. Table 1 compares the two approaches as of now.

The space X above in each case must satisfy some reasonable hypotheses. The 1–
category Perf1.X / is stable and in some contexts stability is included in the definition.
This article is primarily motivated by the author’s desire to reconcile the two viewpoints.
In view of the disparate nature of the basic ingredients of the two paradigms, a bridge
between the basic objects of the two worlds in the form (a zigzag of) 1–categorical
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Analytic Algebraic

objects C �–algebras 1–categories
morphisms �–homomorphisms 1–functors

how to subsume traditional spaces X 7! C.X / X 7! Perf1.X /

Table 1: Comparison between the analytic and algebraic approaches

adjunctions subject to a reasonable requirement (explained below) seems to be a sensible
target. While constructing the bridge we have resorted to 1–categories, which reflects
the state of the art.

Let NS denote the compactly generated 1–category of (unpointed) noncommutative
spaces, whose construction is presented in Section 3.1. The following diagram of
adjunctions between presentable 1–categories summarizes our list of results and puts
them in the broader context (see also Remark 3.6):

(1)

N.P.SC�un
op
/ı/

Rddqq
!!

N.dSetı/

Ldr 22

NS

aa

Here N.Mı/ denotes the underlying 1–category of a model category M. The 1–
categorical adjunction LdrW N.dSetı/ � N.P.SC�un

op
/ı/ WRdd is induced by the

Quillen adjunction drW dSet�P.SC�un
op
/ Wdd between combinatorial model categories

mentioned earlier (see also Remark 3.4). However, the dashed pair between NS and
N.P.SC�un

op
/ı/ is merely a zigzag of adjunctions that is constructed at the level of

1–categories. This construction actually passes through a mixed model structure,
denoted by P.SC�un

op
/mix , on P.SC�un

op
/ which is a left Bousfield localization of the

operadic model structure (see Definition 3.12). Diagram (1) is our proposed bridge
between the two paradigms of noncommutative geometry.

0.1 Bivariant homology theories

Given any stable presentable 1–category C, a colimit-preserving functor

BCW N.P.SC�un
op
/ı/! C

can be viewed as a C–valued bivariant homology theory on N.P.SC�un
op
/ı/. For a

presentable 1–category D, let Sp.D/ denote its stabilization. The functor BC factors
as N.P.SC�un

op
/ı/! Sp

�
N.P.SC�un

op
/ı/
�
! C.
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There must be a unified framework for bivariant homology theories in the two paradigms
of noncommutative geometry. In order to realize this objective one must construct a
functor BC that passes the following two acid tests:

(i) the composite functor N.dSetı/! N.P.SC�un
op
/ı/

BC
�! C should lead to the

(nonconnective version of) algebraic K–theory of1–operads as in Nikolaus [46],
and

(ii) the composite functor NS!N.P.SC�un
op
/ı/

BC
�!C should recover the opposite of

the bivariant K–theory of (pointed) noncommutative spaces as in Mahanta [36]
after stabilization.

Let us provide a pictorial description of our vision:

(2)

N.dSetı/

F1 ((

algebraic K–theory

))N.P.SC�un
op
/ı/

BC
// C

NS

F2
66

KK1op–theory

55

Here the functors F1 and F2 are furnished by those of diagram (1), so that F1 D Ldr.
For any X 2N.dSetı/ we require C.BC ıF1.1/;BC ıF1.X // to be the (nonconnective
version of) algebraic K–theory of X, where 1 is a unit object. Moreover, for any pair
A;B 2 NS we require the equivalence of spectra

C
�
Sp.BC/ıSp.F2/.†

1
C .A//; Sp.BC/ıSp.F2/.†

1
C .B//

�
'KK1op.kCop.A/; kCop.B//;

where kCop is the composite functor NS! NS�
kop
�! KK1op [36]. Varying BC , one

can construct new bivariant homology theories using the above mechanism in both
paradigms. For more generalities on bivariant homology theories of noncommutative
spaces in the setting of 1–categories and model categories, the reader may refer to
Mahanta [38] or Barnea, Joachim and Mahanta [2]. One possible application of this
vision is outlined in Remark 4.9.

Remark A knowledgeable reader might contend that spectral triples constitute the
notion of a space in noncommutative geometry à la Connes. Let us clarify that by
a space we really mean a topological space. A spectral triple .A;H;D/ should
be regarded as a noncommutative manifold, whose underlying topological space is
determined by the C �–algebra A. Therefore, our proposed bridge (1) exists in the
realm of noncommutative topology.
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Remark There is also a Quillen adjunction i!W sSet� dSet Wi� that connects the
theory of 1–categories with that of 1–operads. In this case the relevant model
structure on sSet is the Joyal model structure, whose fibrant objects are 1–categories.
Via the Yoneda embedding SC�un

op
,! P.SC�un

op
/ the category SC�un

op acquires a new
class of weak equivalences from the operadic model structure on P.SC�un

op
/ as in

Theorem A.11. We call these weak equivalences on SC�un
op the weak operadic equiva-

lences. The associated homotopy theory is different from (the opposite of) the standard
homotopy theory of C �–algebras endowed with the C �–homotopy equivalences. The
exact difference between the two homotopy theories is not clear to the author (see
Remark 3.5).

Remark The technology developed in this article works for all dendroidal sets. But
from the viewpoint of topology it is preferable to restrict one’s attention to open
dendroidal sets, which model 1–operads without constants (see Remark 3.6).

Notation and conventions Unless otherwise stated, a graph means a finite directed
graph and a presheaf is considered to be Set–valued. For the sake of definiteness
we adopt the quasicategorical model for 1–categories. An operad always means a
coloured operad. We are mostly going to deal with the category of nonzero unital
separable C �–algebras SC�un with unit-preserving �–homomorphisms (except for in
Section 3.1). Including the zero C �–algebra from the viewpoint of trees and operads
does not seem appropriate.
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1 Dendroidal sets

We are going to assume familiarity with the theory of (coloured) operads and simplicial
sets. For the uninitiated we recommend the following good sources of knowledge:
[41; 8; 40; 29; 19; 6], a list that is obviously nonexhaustive. Since the article is written
for topologists as well as operator algebraists, we review the theory of dendroidal sets
from [51; 44; 45; 10], which is a simultaneous generalization of both operads and
simplicial sets. The exposition is quite brief and necessarily not entirely self-contained.

Trees have played an important role in the theory of operads ever since its inception. We
provide an informal and very concise introduction to trees. We follow the nomenclature
and presentation in [44; 43]. A tree is a finite directed graph whose underlying
undirected graph is connected and acyclic. The vertices will be marked by � as shown
below:

(3)

l1 l2
�

e1

u

l3

�

e4

y

�

e2

v �

e3

w

�

r

x

An edge that is connected to two vertices is called an inner edge; the rest are called
outer edges. Amongst the outer edges, ie those that are attached to only one vertex,
there is a distinguished one called the root; the other outer edges are called leaves.
A nonplanar rooted tree is a nonempty tree with both inner and outer edges with the
choice of one distinguished outer edge as the root. Henceforth, unless otherwise stated,
by a tree we shall mean a nonplanar rooted tree. Such a tree will be drawn with the
root at the bottom and all arrows directed from top to bottom (with arrowheads deleted)
as shown above. For instance, in the above tree there are three leaves l1 , l2 and l3 ,
four inner edges e1 , e2 , e3 and e4 , and the root is r . Note that the number of inner
edges as well as leaves in a tree could be zero. The simplest possible tree is

which is called the unit tree.
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The category of simplicial sets, denoted by sSet, is the category of Set–valued
presheaves on the category of simplices �, ie Fun.�op; Set/. The notion of a
morphism between trees is described in Section 1.1, and this allows us to define
a category � of trees. Then, in analogy with simplicial sets, we define dendroidal
sets to be dSet D Fun.�op; Set/, the category of Set–valued presheaves on �. It
will be clear from the definition of the objects and the morphisms of � that it can be
viewed as a full subcategory of the category of symmetric coloured operads. There is a
fully faithful functor i W � ,!�, leading to an adjunction i!W sSet� dSet Wi�. The
functor i! is fully faithful and hence the category of dendroidal sets is a generalization
of that of simplicial sets. Since dSet D Fun.�op; Set/, it suffices to describe the
category �. The objects of � are nonplanar rooted trees as described above. Note
that in a planar rooted tree the incoming edges at each vertex have a prescribed linear
ordering, which does not exist in a nonplanar rooted tree. Hence, each such planar
(resp. nonplanar) rooted tree generates a nonsymmetric (resp. symmetric) coloured
operad �ŒT �. The set of morphisms �.S;T / between two nonplanar rooted trees S

and T is by definition the set of coloured operad maps between �ŒS � to �ŒT �. Thus, by
construction, � is the full subcategory of the category of symmetric coloured operads
spanned by the objects of the form �ŒT �. The colours of the operad �ŒT � correspond
to the edges of T and a morphism between such operads is completely determined by
its effect on colours. Each vertex v of a tree T with outgoing edge e and a labelling of
the incoming edges e1; : : : ; en defines an operation v 2�ŒT �.e1; : : : ; enI e/. Consider
the nonplanar rooted tree T :

(4)

l1 l2

�

e1

v �

e2

w

�

r

x

The operad �ŒT � that it generates has five colours, l1 , l2 , e1 , e2 and r . The generating
operations are v 2 �ŒT �.I e1/, w 2 �ŒT �.l1; l2I e2/ and x 2 �ŒT �.e1; e2I r/. There
are also operations that arise from the action of the symmetric group in the nonplanar
case. For instance, if � 2 †2 , then w ı � 2 �ŒT �.l2; l1I e2/ is another operation.
There are also the unit operations 1l1

, 1l2
, 1e1

, 1e2
and 1r and compositions like

x ı2 w 2 �ŒT �.e1; l1; l2I r/. We refrain from documenting a complete list of all
operations and the relations they satisfy, which the reader can herself/himself reproduce
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from the above diagram. Instead, we turn towards a more concrete (and pictorial)
description of the morphisms in � that will be needed later.

1.1 Face and degeneracy maps

We illustrate the face and degeneracy maps in � by examples that are taken directly
from [44], where one can find a more elaborate discussion. These maps provide an
explicit description of all morphisms in the category �, as we shall see at the end of
this subsection.

(1) If e is an inner edge in T , then one obtains an inner face map @eW T=e ! T ,
where T=e is constructed by contracting the edge e as shown below:

a

b c

w �

d

u
�

f

@e
�!

a b
v �

e

c

w �

d
�

f

r

(2) If a vertex v in T has exactly one inner edge attached to it, one obtains the outer
face map @vW T=v ! T , where T=v is constructed by deleting v and all the outer
edges attached to it as shown below:

b
c

w�

d
r �

a

@v
�!

e f
v �

b

c

w �

d
�

a

r

It is also possible to remove the root and the vertex that it is attached to by this process,
as shown below:

e

f c

w �

d

u
�

a

@w
�!

e

f c

w �

d

u
�

a

w
�

r
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(3) If a vertex v 2 T has exactly one incoming edge, there is a tree T nv , obtained
from T by deleting the vertex v and merging the two edges e1 and e2 on either side
of v into one new edge e . This defines the degeneracy map �vW T ! T nv as shown
below:

�

e1

�

e2

v �

�

�v
�!

�

e �

�

The following lemma explains the importance of these maps:

Lemma 1.1 [44, Lemma 3.1] Any arrow f W S ! T in � decomposes as

S
f
//

�
��

T

S 0
'
// T 0

ı

OO

where � W S!S 0 is a composition of degeneracy maps, 'W S 0!T 0 is an isomorphism
and ıW T 0! T is a composition of face maps.

Remark 1.2 We have quoted the statement of Lemma 1.1 from the original source.
If one carefully inspects its proof (see Lemma 2.3.2 of [43]) one notices immediately
that the factorization f D ı ı ' ı � is unique. Hence, the degeneracy maps and the
face maps of � actually constitute a factorization system.

1.2 Face and degeneracy identities

These face and degeneracy maps satisfy numerous identities. We illustrate them in
terms of various commuting diagrams in � (with the existence of certain nonobvious
arrows as assertions). The interested reader is referred to [44; 43] for further details and
also the discussion of a couple of special cases that we have left out (see Remark 1.3).
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(I) If e and f are distinct inner edges, then .T=e/=f D .T=f /=e and the following
diagram commutes:

.T=e/=f
@f
//

@e

��

T=e

@e

��

T=f
@f

// T

(II) Assume T has at least three vertices and let @v and @w be distinct outer face
maps. Then .T=v/=w D .T=w/=v and the following diagram commutes:

.T=v/=w
@w
//

@v

��

T=v

@v

��

T=w
@w

// T

(III) If e is an inner edge that is not adjacent to a vertex v , then .T=e/=v D .T=v/=e
and the following diagram commutes:

.T=v/=e
@e
//

@v

��

T=v

@v

��

T=e
@e

// T

(IV) Let e be an inner edge that is adjacent to a vertex v and let w be the other
adjacent vertex. In T=e the two vertices combine to contribute a vertex z (expressing
the composition of v and w in some order). Then the outer face @z W .T=e/=z! T=e

exists if and only if the outer face @wW .T=v/=w ! T=v exists, and in this case
.T=e/=z D .T=v/=w . Summarizing the setup, the following diagram commutes:

.T=v/=w

@w

��

.T=e/=z
@z
// T=e

@e

��

T=v
@v

// T

(V) If �v and �w are two degeneracies of T , then .T nv/nw D .T nw/nv and the
following diagram commutes:

T
�v

//

�w

��

T nv

�w

��

T nw
�v
// .T nv/nw

Algebraic & Geometric Topology, Volume 19 (2019)
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(VI) Let �vW T ! T nv be a degeneracy and @W T 0! T be any face map such that
T 0 still contains v and its two adjacent edges as a subtree. Then the following diagram
commutes:

T
�v
// T nv

T 0

@

OO

�v
// T 0nv

@

OO

(VII) Let �vW T ! T nv be a degeneracy map and @W T 0! T be a face map induced
by one of the adjacent edges to v or the removal of v (if that is possible). Then
T 0 D T nv and the following diagram commutes:

T nv

@ !!

idT nv
// T nv

T

�v

==

Remark 1.3 We have left out the following special cases of dendroidal identities:

� Outer face identities when T has fewer than three vertices.

� Predictable identities expressing the compatibility of the face and degeneracy
maps with isomorphisms (see for instance Section 2.3.1 of [43]).

1.3 The model structure on dSet

The formalism of model categories was introduced by Quillen [48] as an abstract
framework for homotopy theory. For a modern treatment the reader may refer to [24; 23].
We review the model structure on dSet constructed by Cisinski and Moerdijk [10] that
generalizes the Joyal model structure on sSet.

The construction of the model structure on dSet exploits the Cisinski model structure
on any category of presheaves [9] (see the appendix) and also a transfer principle.
Typically one begins with certain desired features on the model structure based on
intended applications. Keeping in mind the Joyal model structure on sSet, it is natural
to expect that in the would-be model structure on dSet (certain) monomorphisms
should be cofibrations, some class of objects (generalizing 1–categories) should be
fibrant, and certain morphisms (generalizing categorical equivalences) should be weak
equivalences.

A monomorphism of dendroidal sets X ! Y is normal if for any T 2�, the action
of Aut.T / on Y .T / nX.T / is free. If e is an inner edge of a tree T , then one obtains
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an inner horn inclusion ƒe ŒT �!�ŒT �, where ƒe ŒT � is obtained as the union of the
images of all the elementary face maps apart from @eW T=e! T . A map of dendroidal
sets is called an inner anodyne extension if it belongs to the smallest class of maps which
is stable under pushouts, transfinite compositions and retracts, and which contains the
inner horn inclusions. There is an adjunction �dW dSet� Operad WNd , where �d is
called the operadic realization functor. The model structure on dSet can be described
as (see Theorem 2.4 of [10]):

� the cofibrations are the normal monomorphisms;

� the fibrant objects are the 1–operads;

� the fibrations between fibrant objects are the inner Kan fibrations (see [45; 10,
Section 2.1]), whose image under �d is an operadic fibration, ie a fibration in
the canonical model structure on operads;

� the class of weak equivalences is the smallest class W of maps in dSet satisfying

(a) the 2-out-of-3 property;

(b) that inner anodyne extensions are in W;

(c) that trivial fibrations between 1–operads are in W.

We omit further details but explain an additional property of this model category that
is relevant for our purposes. Let � be regular cardinal. A category A is said to be �–
accessible if there is a small category C such that AŠ Ind�.C/. A locally �–presentable
category is a �–accessible category that, in addition, possesses all small colimits. A
category is locally presentable if it is locally �–presentable for some regular cardinal � .
If C is a small category, the category of presheaves on C (eg dSetD Fun.�op; Set/)
is locally !–presentable (see for instance [1]). Recall that a model category is said to
be combinatorial if it is cofibrantly generated and its underlying category is locally
presentable. It is also shown in Proposition 2.6 of [10] that the model category dSet is
combinatorial. The set of generating cofibrations I consists of the boundary inclusions
of trees, ie I D f@�ŒT �!�ŒT � j T 2�g.

2 C �–algebras associated with trees: noncommutative
dendrices

The description of a tree presented in the previous section differs slightly from the
one that one might encounter in graph theory. For instance, in the graph algebra
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literature a directed graph G D .E0;E1; r; s/ consists of two (countable) sets E0

and E1 and functions r; sW E1!E0 . The elements of E0 are called the vertices and
those of E1 are called the edges of G. For an edge e , the vertex s.e/ is its source
and the vertex r.e/ is its range. Thus, in a directed graph one does not have edges
attached only to one vertex like the leaves or the root that we considered in the previous
section. In a graph a path of length n is a sequence �D e1e2 � � � en of edges such that
s.ei/D r.eiC1/ for all i 6 i 6 n� 1. For such a path �D e1e2 � � � en we denote by
edge.�/D fe1; e2; : : : ; eng the set of all edges traversed by it.

The C �–algebra associated with a tree that we are going to describe shortly is to
some extent inspired by the construction of noncommutative simplicial complexes
in [16]. However, we design the C �–algebra from the edges of the tree, since from the
categorical (or operadic) viewpoint the edges are more fundamental than the vertices.

Definition 2.1 Given a set G of generators and a set R of relations, the universal
C �–algebra, denoted by C �.G;R/, is a C �–algebra equipped with a set map �W G!
C �.G;R/ that satisfies the following universal property: for every C �–algebra A and
set map �AW G!A such that the relations R are fulfilled inside A, there is a unique
�–homomorphism � W C �.G;R/!A satisfying � ı �D �A .

This is a subtle concept; for instance, if G D fxg and R D ∅, then the universal
C �–algebra C �.G;R/ does not exist. In other words, free (or relation-free) objects
do not exist in the category of C �–algebras. It follows from two simple facts:

(1) Every element in a C �–algebra has a finite norm k � k, ie a real number.

(2) Every �–homomorphism is norm-decreasing, ie �WA!B implies k�.a/k6kak.

If C �.G D fxg;R D ∅/ were to exist, then the generator x would have a finite
norm kxk. Now choose any C �–algebra A and an element a 2 A with kak > kxk,
which can evidently be done. Then it is manifestly clear that one cannot find the
desired �–homomorphism �W C �.G D fxg;RD∅/!A with �.x/D a that satisfies
requirement (2) above. If the relations R put a nonstrict bound on the norm of each
generator, then typically one obtains an interesting nontrivial universal C �–algebra
(although it can be trivial in certain cases).

Definition 2.2 Given any tree T D .E0;E1/ (viewed as a graph as described above)
we define its associated C �–algebra as the universal unital C �–algebra generated by
fqe j e 2E1g satisfying
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(1) qe > 0 for all e 2E1 ,

(2)
P

e2E1 qe D 1, and

(3) qe1
qe2
� � � qen

D 0 unless there is a path � with fe1; e2; : : : ; eng � edge.�/
(inclusion of sets disregarding order).

Remark 2.3 Let us briefly clarify the motivation behind the relations.

� The relations (1) and (2) clearly put a bound on the norm of each generator and
hence the existence of the universal C �–algebra is clear.

� Relation (3) encodes the compositional nature of trees. It retains those terms that
lie in a path (and hence bound a simplex). However, it also retains reorderings and
repetitions of edges within the path because we want the canonical abelianization
map to be surjective (see Remark 2.5 and Example 2.7).

Example 2.4 Note that repetitions are allowed amongst the ei in relation (3) above.
For instance, if T is

�

l1

y �

l2

z

�

e1

v �

e2

w

�

r

x

�

then ql2
qe1

qe2
D ql1

ql2
D qe2

qe1
ql2
D 0, whereas qr qe1

ql1
¤ 0 and qe1

ql2
qe1
¤ 0.

Given any nonplanar rooted tree T we construct its associated C �–algebra D.T / as
follows:

(a) insert a vertex at each of the top tips of the leaves (if any) and the bottom tip of
the root;

(b) construct the universal C �–algebra of the modified tree as explained above.

For instance, given the tree

(5)

l1 l2
�

e1

v �

e2

w

�

r

x
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then according to procedure (a) we modify the tree as

(6)

�

l1

y �

l2

z

�

e1

v �

e2

w

�

r

x

�

and then construct its universal C �–algebra.

Remark 2.5 In the above construction we can add the relation that the generators com-
mute, ie qeqf D qf qe for all e; f 2E1 to obtain a commutative C �–algebra Dab.T /.

Definition 2.6 The C �–algebra D.T / associated with a nonplanar rooted tree T is
called a noncommutative dendrex. Note that if X 2 dSet and T 2�, then X.T / is
viewed as the set of T –shaped dendrices in X.

Example 2.7 An object Œn� 2� can be viewed as a linear tree Ln as

 �1 � � �  �n 

(drawn horizontally instead of vertically with arrowheads inserted to indicated the
direction). This association Œn� 7! Ln defines a fully faithful functor � ,! � that
produces the adjunction sSet� dSet. After modification Ln produces the tree

�0 �1 � � �  �nC1;

whose associated C �–algebra is the universal unital C �–algebra generated by nC 1

positive generators fq1; : : : ; qnC1g such that
Pn

iD1 qi D 1. Its associated commutative
C �–algebra (see Remark 2.5) is isomorphic to C.�n/, where �n is the standard n–
simplex (see Proposition 2.1 of [16]). Our choice for the noncommutative dendrex
construction was guided by this consideration. Observe that D.L0/ D C , since Œ0�
corresponds to the unit tree
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whose modified tree is simply
�

�

with only one edge. This phenomenon reflects the fact that the edges of a tree correspond
to the colours of its associated operad.

2.1 Functoriality

The aim of this subsection is to establish the (contravariant) functoriality of the above
construction T 7!D.T / with respect to morphisms of �. To this end we begin by
defining the �–homomorphisms that the faces and degeneracies induce. If �vW T !
T nv is a degeneracy map (see Lemma 1.1) like

�

e1

�

e2

v �

�

�v
�!

�

e �

�

then define ��v W D.T nv/!D.T / as

qf 7!

�
qf if f ¤ e,
qe1
C qe2

otherwise.

Remark 2.8 The notation employed in the definition of ��v is potentially ambiguous.
In the domain qf is a generator of D.T nv/ and in the codomain it is a generator
of D.T /. One should ideally differentiate them by writing q

T nv

f
and qT

f
(or something

similar) to indicate the dependence on the tree. For notational simplicity we avoid
doing this.

Lemma 2.9 The map ��v W D.T nv/!D.T / is a �–homomorphism.

Proof We need to verify that the set f��v .qf / j f an edge in T nvg satisfies the
relations (1), (2) and (3) in D.T / that define the universal C �–algebra D.T nv/.
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For (1) note that qe1
and qe2

are both positive in D.T /, whence so is qe1
C qe2

.
Clearly each qf is also positive in D.T /. Let E1.T / be the set of edges in T . We
verify (2) by computingX

f 2E1.T nv/

��v .qf /D
X
f¤e

qf C .qe1
C qe2

/D
X

f 2E1.T /

qf D 1:

For (3) one can check by inspection that if f1 and f2 are two edges in T nv that do
not lie in a path, then they cannot lie in a path in T .

Note that every face map can be viewed as an injective map on edges (or colours
of the associated operad). Thus, if @eW T=e! T is an inner face map then define a
�–homomorphism @�e W D.T /!D.T=e/ as

qf 7!

�
qf if f ¤ e,
0 otherwise.

Similarly, if @vW T=v! T is an outer face map then define @�v W D.T /!D.T=v/ as

qf 7!

�
qf if f has not been removed,
0 otherwise.

Lemma 2.10 The maps

@�e W D.T /!D.T=e/ and @�v W D.T /!D.T=v/

are �–homomorphisms.

Proof One needs to again verify that the set f@�e .qf / j f an edge in T g satisfies
the relations (1), (2) and (3) in D.T=e/ that define the universal C �–algebra D.T /.
Relations (1) and (2) are clearly satisfied; for relation (3) one needs to observe that if
two edges e and f in T do not lie in a path, then this property continues to hold in
T=e or T=v . A similar argument is applicable to @�v .

Remark 2.11 If � W S ! T is an isomorphism in � then ��W D.T /! D.S/ acts
on the generators as qe 7! q��1.e/ . One can readily verify that �� is a unital �–
homomorphism.

Let SC�un denote the category of separable unital C �–algebras with unit-preserving
�–homomorphisms. Extending the Gelfand–Naı̆mark duality, SC�un

op is regarded as
the category of compact Hausdorff noncommutative spaces with continuous maps.
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Proposition 2.12 The association of a noncommutative dendrex with a tree T 7!

D.T / defines a functor DW �! SC�un
op .

Proof In view of Lemma 1.1 it suffices to show that the �–homomorphisms @�e , @�v ,
��v and �� satisfy the face and degeneracy identities (see Section 1.2). Note that
thanks to the universal property of universal C �–algebras we simply need to verify
that various combinations of these �–homomorphisms governed by the identities agree
on generators.

It is easy to verify that identities (I), (II), (III) and (V) are satisfied. The point is to
observe that the order in which a certain number of generators are sent to 0 or sums of
two other generators does not affect the final outcome.

For (IV) let us suppose that the tree around e looks like

n leaves

l1 ln

� v

e

�w

� x

Now @�z@
�
e will first send qe to 0 and then ql1

; : : : ; qln
to 0. On the other hand, @�w@

�
v

will first send ql1
; : : : ; qln

to 0 and then qe to 0. The end result is evidently the same.

For (VI) we begin with the commutative diagram

T
�v
// T nv

T 0

@

OO

�v
// T 0nv

@

OO

Let us suppose that the face map @ removes edges f1; : : : ; fn . Since T 0 still contains v
and its two adjacent edges (say e1 and e2 ), one can merge them to a new edge e . Thus,
@� is defined by qfi

7! 0 for i D 1; : : : ; n and ��v by qe 7! qe1
Cqe2

. Hence, it is clear
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that @���v D �
�
v @
� . The verifications of (VII) and the special cases (see Remark 1.3)

are similar and omitted.

Let us observe that D.T / is unital for every T 2� and the �–homomorphisms @�e , @�v ,
��v and �� are all unit-preserving, whence the essential image of the functor D is
indeed SC�un

op .

Note that for a map � W S!T in � the induced map is ��W D.T /!D.S/. It remains
to check that the association � 7! �� respects composition of morphisms. It is clear
that this association preserves composition of face maps as well as composition of
degeneracy maps. To complete the proof we now simply invoke Remark 1.2.

3 Draw–dendraw adjunction and the bridge

For a small category C let P.C/ denote the category of Set–valued presheaves on C,
ie Fun.Cop; Set/. Thus, setting C D � we find P.�/ D dSet. Since P.SC�un

op
/ is

cocomplete, using the covariant functoriality of the category of presheaves (via left
Kan extension) one obtains the dashed functor below:

(7)

�
D

//

��

SC�un
op

��

dSet // P.SC�un
op
/

where the vertical functors are the canonical Yoneda embeddings and the top hori-
zontal functor DW � ! SC�un

op is the one constructed in the previous section (see
Proposition 2.12). Let dr denote the dashed functor in the above diagram (7). There is
an adjunction

drW dSet� P.SC�un
op
/ Wdd;

where the right adjoint dd is defined as Œdd.Y /�.T /DY .D.T // for any Y 2P.SC�un
op
/.

Definition 3.1 For any X 2 dSet the object dr.X / is its C �–algebraic drawing. We
call the functor dr (resp. dd) the draw (resp. dendraw) functor.

Remark 3.2 In sheaf-theoretic notation, dr D D! and dd D D� . The dendraw
functor dd also admits a right adjoint D�W dSet! P.SC�un

op
/, whence it preserves

colimits.
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Recall from Section 1.3 that the category dSet admits a combinatorial model structure.

Theorem 3.3 There is a combinatorial model structure on P.SC�un
op
/ such that the

draw–dendraw adjunction

drW dSet� P.SC�un
op
/ Wdd

becomes a Quillen adjunction.

Proof The model structure on P.SC�un
op
/ that we are referring to is constructed in

Theorem A.11 (see the appendix). The left adjoint dr sends generating cofibrations
in dSet to cofibrations in P.SC�un

op
/ (see Proposition A.6 below) and generating trivial

cofibrations to trivial cofibrations in P.SC�un
op
/ (see Remark A.13 below). Now, using

Lemma 2.1.20 of [24], one concludes that the draw–dendraw adjunction is actually a
Quillen adjunction.

Remark 3.4 Associated with any (combinatorial) model category M there is an
underlying (presentable) 1–category N.Mı/ (see Definition 1.3.1 of [22]). Moreover,
a Quillen adjunction between (combinatorial) model categories (like drW dSet �
P.SC�un

op
/ Wdd) induces an 1–categorical adjunction between the underlying (pre-

sentable) 1–categories (like LdrW N.dSetı/ � N.P.SC�un
op
/ı/ WRdd) — see [22,

Proposition 1.5.1; 42, Theorem 2.1]. Although we are mainly interested in the 1–
categorical adjunction pair .Ldr;Rdd/, it is often convenient to have at our disposal
an explicit Quillen adjunction modelling it.

Remark 3.5 Viewing SC�un
op inside the category of presheaves P.SC�un

op
/ via the

Yoneda functor, we obtain a new homotopy theory for (the opposite category of)
separable unital C �–algebras, whose weak equivalences are called weak operadic
equivalences. This new class of weak operadic equivalences is potentially interest-
ing in its own right. The weak operadic equivalences on SC�un

op are different from
those inherited from the model structure on Ind.SC�un

op
/ (see [2]) via the embedding

SC�un
op
,! Ind.SC�un

op
/. These two classes of weak equivalences on SC�un

op give rise to
different homotopy theories. The class of weak operadic equivalences is not contained
in the class of standard homotopy equivalences on SC�un

op (see Remark A.12); it is not
clear to the author whether the other containment holds. Those readers who prefer to
stick to the category of C �–algebras (and not venture into the category of presheaves)
may try to classify the objects in it up to weak operadic equivalences.

Algebraic & Geometric Topology, Volume 19 (2019)



C �–algebraic drawings of dendroidal sets 1191

Remark 3.6 A vertex that has no incoming edges is called a stump, eg in the 0–corolla

�

the top vertex is a stump. A tree devoid of stumps is called an open tree. Let �o

denote the full subcategory of � spanned by the open trees. The canonical inclusion
�o ,! � induces an adjunction dSeto WD P.�o/ � P.�/ D dSet such that the
left adjoint dSeto ,! dSet is fully faithful. The objects of dSeto are called open
dendroidal sets. The category dSeto inherits a combinatorial model structure via the
adjunction dSeto� dSet, making it a Quillen pair (see Section 2.3 of [21]). The fully
faithful functor sSet! dSet factors through dSeto . The fibrant objects of dSeto

are 1–operads without constants. It was noticed by Moerdijk that our construction
of the noncommutative dendrices functor does not distinguish between a leaf and an
edge whose top vertex is a stump; in particular, the C �–algebra associated with the
unit tree and the 0–corolla are both C . Thus, our draw–dendraw adjunction should be
restricted to open dendroidal sets via the composite adjunction

dSeto� dSet� P.SC�un
op
/:

So far we have constructed the solid adjunctions in the following diagram of 1–
categories:

N.dSetıo/

""

N.P.SC�un
op
/ı/

Rddqq
!!

N.dSetı/

Ldr 22
bb

NS

aa

Now we define the 1–category of noncommutative spaces NS. Then we complete
the connection between 1–operads and noncommutative spaces via a sequence of
1–categorical adjunctions. The dashed pair above actually represents a zigzag of
adjunctions.

3.1 The rest of the bridge between NS and N.P.SC�
un

op/ı/

Earlier we constructed the compactly generated 1–category of pointed noncommu-
tative spaces generalizing the category of pointed compact noncommutative spaces
(see Definition 2.13 of [37]). Let SC�op denote the opposite topological category of
separable C �–algebras with all (not necessarily unit-preserving) �–homomorphisms.
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We view it as a topological category by endowing the morphism sets with the point-
norm topology. Let SC�1

op denote the topological nerve of SC�op . It is shown in
Proposition 2.7 of [37] that SC�1

op admits finite colimits.

Definition 3.7 We set NS� D Ind!.SC�1
op
/ and call it the compactly generated 1–

category of pointed noncommutative spaces.

Similarly, there exists a compactly generated 1–category NS of noncommutative
(unpointed) spaces whose construction is outlined below.

Definition 3.8 Let C denote the opposite of the topological category of separable
unital C �–algebras with unit-preserving �–homomorphisms. We again view it as a
topological category by endowing the morphism sets with the point-norm topology.

Here we have included the zero C �–algebra in the topological category C. The zero
C �–algebra should be viewed as the (unital) C �–algebra of continuous functions on
the empty space. Therefore, for every separable unital C �–algebra A there is a unique
unital �–homomorphism A! 0, ie the opposite category C has an initial object. But
the zero �–homomorphism 0!A is not unital unless AD 0.

Definition 3.9 Let NSfin denote the topological nerve of the topological category C.
Here it is vitally important to consider the point-norm topology on the morphism spaces
while constructing the topological nerve.

One can show as in Proposition 2.7 of [37] that NSfin admits finite colimits. For the rest
of this section we set IndD Ind! , which denotes the 1–categorical ind–completion.

Definition 3.10 We set NS WD Ind.NSfin/ and call it the compactly generated 1–
category of (unpointed) noncommutative spaces.

Remark 3.11 This 1–categorical construction of noncommutative spaces NS is
simple and practical. It incorporates homotopy theory and analysis in a systematic
manner; the analytical aspects are contained within the world of C �–algebras. More
complicated topological algebras like pro-C �–algebras can be viewed within this setup
via the homotopy theory of diagrams of C �–algebras. The mechanism is explained in
our earlier work [37; 36].
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There is a canonical fully faithful embedding of (topological) categories SC�un
op
,! C.

This functor induces an adjunction of the corresponding categories of presheaves
P.SC�un

op
/� P.C/. A map f W C !D in C is a C �–homotopy equivalence if there

is another map gW D ! C and homotopies fg ' idD and gf ' idC . The set of
C �–homotopy equivalences gives rise to a set of maps in P.C/ that, finally, gives rise
to another set of maps in P.SC�un

op
/ via the adjunction P.SC�un

op
/� P.C/.

Definition 3.12 (mixed model structure on P.SC�un
op
/) The left Bousfield localization

of the combinatorial model category P.SC�un
op
/ equipped with the operadic model

structure (see Theorem A.11) along the set of maps induced by the C �–homotopy
equivalences is the mixed model structure on P.SC�un

op
/. We denote the mixed model

category by P.SC�un
op
/mix , which again turns out to be combinatorial.

The Bousfield localization P.SC�un
op
/! P.SC�un

op
/mix of combinatorial model cate-

gories induces an adjunction of underlying presentable1–categories N.P.SC�un
op
/ı/�

N.P.SC�un
op
/ımix/ that exhibits N.P.SC�un

op
/ımix/ as a localization of N.P.SC�un

op
/ı/. Let

� denote the composition of the functors

C
j
,�! P.C/! P.SC�un

op
/
.�/f
��! P.SC�un

op
/fmix;

where j is the Yoneda embedding, P.SC�un
op
/fmix is the full subcategory of (bi)fibrant

objects of P.SC�un
op
/mix and .�/f denotes a fibrant replacement functor in the mixed

model category P.SC�un
op
/mix . Let us view P.SC�un

op
/fmix as a relative category in the

sense of [4] via the weak equivalences inherited from the model category P.SC�un
op
/mix .

We can also view C as a relative category with the C �–homotopy equivalences as the
weak equivalences.

Lemma 3.13 The functor � W C! P.SC�un
op
/fmix is a morphism of relative categories.

Proof We need to verify that � preserves weak equivalences. Our construction of the
mixed model category P.SC�un

op
/mix ensures this property (see Definition 3.12).

For any relative category A we denote the underlying 1–category by A1 (see
Section 1.2 of [42]). The morphism of relative categories � W C!P.SC�un

op
/fmix induces

a morphism of underlying 1–categories � W C1 ! .P.SC�un
op
/fmix/1 . For any 1–

category A there is an 1–category of 1–presheaves P1.A/ (see [30]). Note the
subtle difference in notation — for an ordinary category A we denote by P.A/ the
category of Set–valued presheaves on A, whereas for an 1–category A we denote
by P1.A/ the 1–category of 1–presheaves on A.
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Proposition 3.14 The morphism of 1–categories � W C1 ! .P.SC�un
op
/fmix/1 in-

duces a colimit-preserving functor z� W P1.C1/! N.P.SC�un
op
/ımix/.

Proof The canonical inclusion P.SC�un
op
/fmix ,! P.SC�un

op
/mix induces an equivalence

of underlying 1–categories [18] (see also Lemma 2.8 of [42]). Thanks to the universal
property of the category of presheaves P1.�/ in the setting of 1–categories (see
Theorem 5.1.5.6 of [30]), it suffices to show that .P.SC�un

op
/fmix/1 ' N.P.SC�un

op
/ımix/

admits small colimits. Since the model category P.SC�un
op
/mix is combinatorial, its

underlying 1–category is presentable (see Corollary 1.5.2 of [22]), ie it is cocomplete.

The following result is proven in Proposition 3.18 of [2] using the formalism of weak
(co)fibration categories [3].

Lemma 3.15 There is an equivalence of 1–categories Ind.C1/' NS.

Remark 3.16 Actually Proposition 3.18 of [2] proves a pointed version of the above
lemma. The desired result can be shown using similar methods and hence its proof is
omitted.

Theorem 3.17 There is a diagram of adjunctions of presentable 1–categories

N.P.SC�un
op
/ımix/ 33

rr

P1.C1/

z�
ss

  

N.P.SC�un
op
/ı/

22

Ind.C1/' NS

``

Proof The presentability of each 1–category in the above diagram is clear. Ob-
serve that z� W P1.C1/! N.P.SC�un

op
/ımix/ is a colimit-preserving functor between

presentable 1–categories (see Proposition 3.14). Hence, using the adjoint functor
theorem (see Corollary 5.5.2.9 of [30]) we deduce that it admits a right adjoint. The
existence of the adjunction pair P1.C1/� Ind.C1/' NS is standard (see for instance
Theorem 5.5.1.1 of [30]). The adjunction N.P.SC�un

op
/ı/ � N.P.SC�un

op
/ımix/ has

already been explained above.

Remark 3.18 For the benefit of the reader we explain briefly the meaning and signifi-
cance of this result. It is the author’s perception that several results in the two paradigms
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of noncommutative geometry use very similar techniques, albeit in different contexts.
For example, the constructions of the bivariant K–theory category and the category of
noncommutative motives are philosophically almost identical (only applied to different
notions of spaces). That led to the vision of abstracting away the commonalities and
providing a framework whereby results can be transferred back and forth, creating
synergies (see Section 0.1). In what follows we substantiate this assertion with a few
potential directions for development.

4 Prospects: commutative spaces and graph algebras

It is known how to view commutative spaces (or motives) inside their noncommutative
counterparts in the algebrogeometric setting [27; 50; 7]. We briefly explain how the1–
category of spaces (not necessarily compact) sits inside that of noncommutative spaces
via a colocalization in the setting of Connes. We also highlight how noncommutative
dendrices naturally interpolate between the two canonical notions of building blocks.

4.1 Commutative spaces via colocalization

Let S (resp. S� ) denote the 1–category of spaces (resp. pointed spaces). It is shown
in Theorem 1.9(1) of [36] that there is a fully faithful !–continuous functor S� ,! NS� .
In the same vein one can show that there is a fully faithful !–continuous functor
S ,! NS.

Proposition 4.1 The fully faithful !–continuous functor S� ,! NS� (as well as
S ,! NS) admits a right adjoint , ie it is colimit-preserving.

Proof Due to the Gelfand–Naı̆mark correspondence there is a fully faithful functor
f W Sfin

� ,! SC�1
op that induces the fully faithful !–continuous functor Ind!.f /W S� ,!

NS� of Theorem 1.9(1) of [36]. The functor f preserves finite colimits, whence it is
right exact. Therefore, by Proposition 5.3.5.13 of [31], the functor Ind!.f / admits a
right adjoint. The proof of the corresponding assertion for S ,! NS is similar.

Definition 4.2 We denote the right adjoint of S� ,! NS� (resp. S ,! NS) in the above
Proposition 4.1 by US�W NS� ! S� (resp. USW NS! S) and call it the underlying
pointed space (resp. underlying space) functor. Since US� and US admit fully faithful
left adjoints they are colocalizations, ie they constitute the commutative (pointed) space
approximation of a noncommutative (pointed) space.
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Now we are going to demonstrate how noncommutative dendrices interconnect sim-
plices and matrices. Let Tn denote the linear graph

�0
e1
 � �1

e2
 � � � �

en
 � �n;

whose graph algebra C �.Tn/ is isomorphic to MnC1.C/ (the construction of the
graph algebra is explained below in Section 4.2). Let Dab.Tn/ denote the commutative
unital C �–algebra generated by requiring the generators fqe1

; : : : ; qen
g of D.Tn/

to commute (see Remark 2.5). There is a canonical surjective �–homomorphism
�nW D.Tn/!Dab.Tn/ that is identity on the generators. It follows from Proposition 2.1
of [16] that Dab.Tn/ is isomorphic to the commutative C �–algebra C.�n/. There
is also a canonical �–homomorphism snW D.Tn/! C �.Tn�1/ ŠMn.C/, sending
qei
7! eii . Note that

Pn
iD1 eii is the identity matrix that is the unit in the graph algebra

C �.Tn�1/ŠMn.C/. Thus, we have a zigzag of arrows

(8)

D.Tn/

�n

uu

sn

**

Dab.Tn/Š C.�n/ C �.Tn�1/ŠMn.C/

The set of �–homomorphisms fsn jn2Ng defines a set of maps M in the1–category
noncommutative spaces NS via the functor j W NSfin ! NS. Thus, we are going to
invert the maps in M to construct the simplex–matrix-identified version of NS. It is
quite natural to consider matrix algebras as noncommutative simplices.

Definition 4.3 The accessible localization LM W NS!M�1NSDWNSSM , which admits
a fully faithful right adjoint, is defined to be the 1–category of simplex–matrix-
identified noncommutative spaces.

Remark 4.4 Since NS is a presentable 1–category, so is NSSM .

Remark 4.5 The composite functor NSSM ,! NS US
�! S defines the underlying space

functor on NSSM . The subcategory of simplex–matrix-identified noncommutative
spaces NSSM is a tractable part of the entire 1–category of noncommutative spaces NS
and it would be nice to explore it further.

Remark 4.6 Let CWfin denote the category of finite CW complexes. The geomet-
ric realization functor j � jW sSet ! Ind.CWfin/ preserves (tensor) products and de-
tects weak equivalences, whose counterpart in the world of dendroidal sets has been
treated in [20; 5]. It is plausible (and desirable) that one could modify the functor
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drW dSet ! P.SC�un
op
/ to produce yet another C �–algebraic or noncommutative

geometric realization of dendroidal sets that fits into the commutative diagram

sSet
j � j

//

��

Ind.CWfin/

��

dSet ?
// Ind.SC�un

op
/� P.SC�un

op
/

We leave it as an open problem.

4.2 Graph algebras

There is a vast literature on graph algebras (or graph C �–algebras) with several
interesting results relating structural aspects of the graph algebra (like simplicity) to
purely graph-theoretic properties. We encourage the interested reader to consult for
instance [49].

Let E be a finite directed graph and let H be a fixed separable Hilbert space. A
Cuntz–Krieger E–family fS;Pg on H (abbreviated as CK E–family) consists of a set
P DfPv jv2E0g of mutually orthogonal projections on H and a set SDfSe j e2E1g

of partial isometries on H such that

(CK1) S�e Se D Ps.e/ for all e 2E1 ; and

(CK2) Pv D
P
fe2E1Wr.e/Dvg SeS�e provided fe 2E1 W r.e/D vg ¤∅.

The graph algebra of E, denoted by C �.E/, is by definition the universal C �–algebra
generated by fS;Pg subject to relations (CK1) and (CK2). It is known that C �.E/ is
unital if and only if the set of vertices E0 is finite (see Proposition 1.4 of [28]).

Remark 4.7 Some authors prefer to write the relations (CK1) and (CK2) differently,
viz the roles of r and s are interchanged. We have adopted the convention from [49].
The advantage of this viewpoint is that juxtaposition of edges in a path corresponds to
composition of partial isometries on the Hilbert space H .

Example 4.8 The graph algebra corresponding to the graph � is the Cuntz
algebra O2.

The left Quillen functor drW dSet! P.SC�un
op
/ is obtained by the left Kan extension

of � D
�! SC�un

op
! P.SC�un

op
/ along �! dSet. Explicitly it is given by the formula

Œdr.X /�.A/D colim
f WD.T /!A

X.T /;
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where the colimit is taken over the comma category .D #A/. The Quillen adjunction
descends to an adjunction of homotopy categories

LdrW Ho.dSet/� Ho.P.SC�un
op
// WRdd;

after taking the total derived functors of dr and dd (Ldr and Rdd, respectively).

The composite LdrıRdd defines a comonad on Ho.P.SC�un
op
//. Viewing any separable

unital C �–algebra A inside Ho.P.SC�un
op
// via the Yoneda functor, we may consider

the map given by the counit of the adjunction LdrıRdd.A/! Id.A/. It is presumably
not an isomorphism; nevertheless, one should consider its comonadic resolution. If A

is a graph algebra, this resolution can be viewed as a resolution of the underlying graph
by trees. It would be nice to classify C �–algebras up to this dendroidal invariant.

Remark 4.9 In the world of C �–algebras a celebrated result of Kirchberg asserts
that topological K–theory acts as a complete invariant on the subcategory of so-called
stable Kirchberg algebras that satisfy UCT [26]. It was shown in [35; 15] that for such
C �–algebras (in fact for a larger subcategory of C �–algebras) algebraic K–theory is
naturally isomorphic to topological K–theory (see Theorem 2.4 and Remark 1 of [35]).
If the vision outlined in the introduction can be realized, viz if one can show that
algebraic K–theory and KK–theory can be recovered from diagram (2), then the above-
mentioned construction would provide a higher invariant that has the potential to act
as a complete invariant on a bigger subcategory than that of stable Kirchberg algebras
satisfying UCT. Observe that topological K–theory is also the primary classification
tool for graph algebras. It would be actually more prudent to analyze this construction
for a graph algebra at the level of underlying 1–categories (and not at the level of
homotopy categories), possibly after passing to the stabilization.

Appendix The model structure on P.SC�
un

op/

For any small category C there is a Cisinski model structure on P.C/ [9], whose
construction is described below. A functorial cylinder object is an endofunctor

I ˝ .�/W P.C/! P.C/

such that for every X 2 P.C/ there are natural morphisms @0
X

, @1
X

and �X that satisfy:
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(1) The following diagram commutes:

X

@0
X ##

idX

$$
I ˝X

�X
// X

X

@1
X

;;

idX

99

(2) The canonical morphism XqX! I˝X induced by @0
X

and @1
X

is a monomor-
phism.

The choice of a functorial cylinder object JD .I˝ .�/; @0
.�/
; @1
.�/
; �.�// constitutes an

elementary homotopical datum if J satisfies the following two additional conditions:

(i) the functor I ˝ .�/ commutes with small colimits, and

(ii) for every monomorphism j W K!L in P.C/ for e D 0; 1, the diagram

K
j

//

@e
K
��

L

@e
L
��

I ˝K
I˝j

// I ˝L

is a pullback square.

Using the functorial cylinder object J, one can define an elementary J–homotopy
between two maps in P.C/, viz two maps f;gW X ! Y are elementary J–homotopic
if there is a map �W I ˝X ! Y making the following diagram commute:

X
f

""

@0
X
��

I ˝X
�
// Y

X

@1
X

OO

g

<<

Let HoJP.C/ denote the category whose objects are those of P.C/ and whose mor-
phisms are the elementary J–homotopy classes of morphisms of P.C/.

Definition A.1 There is a canonical functor P.C/! HoJP.C/ and the morphisms
that descend to isomorphisms under this functor are called J–homotopy equivalences.
This notion obviously depends on the choice of J.
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The model structure on P.C/ depends on another choice, viz a class An of anodyne
extensions. For a class M of maps of P.C/ we denote by llp.M / (resp. rlp.M /) the
class of maps that satisfy the left (resp. right) lifting property with respect to M. For
any cartesian square

X //

��

Y

��

Z // W

in P.C/ with Y !W and Z!W monomorphisms, the canonical map YqX Z!W

is also a monomorphism. For brevity this monomorphism is suggestively written as
Y [Z!W .

Definition A.2 Let J be an elementary homotopy datum on P.C/. Then a class of
anodyne extensions An relative to J is a class of morphisms in P.C/ such that

(a) AnD llp.rlp.M // for a small set of maps M,

(b) for any monomorphism K!L and eD0; 1, the induced map I˝K[feg˝L!

I ˝L belongs to An, and

(c) if K ! L belongs to An, then so does I ˝K [ @I ˝ L ! I ˝ L, where
@I ˝LDLqL.

Remark A.3 It is shown in Proposition 1.3.13 of [9] that for any small set S of
monomorphisms of P.C/ there is a smallest class of anodyne extensions relative to J

that is generated by S. This class of morphisms is denoted by AnJ.S/.

Theorem A.4 [9, Théorème 1.3.22] Let J be an elementary homotopy datum
on P.C/ and AnJ.S/ be a class of anodyne extensions relative to J that is generated
by a small set S of monomorphisms. Then there is a combinatorial model structure
on P.C/ satisfying

(1) the cofibrations are the monomorphisms,

(2) X 2 P.C/ is fibrant if the map X ! ?, where ? is the terminal object, satisfies
the right lifting property with respect to all anodyne extensions AnJ.S/, and

(3) a map f W X ! Y is a weak equivalence if for all fibrant objects Z the induced
map f �W HoJP.C/.Y;Z/! HoJP.C/.X;Z/ is bijective.
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Remark A.5 The Cisinksi model structure on P.C/ admits a functorial fibrant re-
placement. A set of generating cofibrations can be chosen to be those monomorphisms
whose codomains are quotients of representable presheaves (see Proposition 1.2.27
of [9]). Every object of P.C/ is cofibrant and its homotopy category is equivalent to
the full subcategory of HoJP.C/ spanned by the fibrant objects (see 1.3.23 of [9]).
Moreover, a morphism between two fibrant objects is a weak equivalence if and only if
it is a J–homotopy equivalence.

Proposition A.6 The functor drW dSet! P.SC�un
op
/ preserves cofibrations.

Proof The set of generating cofibrations in dSet is f@�ŒT �!�ŒT � j T 2�g. Each
face map @W T 0! T of trees induces a monomorphism of representable presheaves,
whose image is specified by the datum of this monomorphism of representable pre-
sheaves (see Chapter IV of [32]). For any tree T the boundary inclusion @�ŒT �!�ŒT �

is obtained as a union of the images of such face maps. We know that dr sends the
representable presheaf of T to that of D.T /. Each face map @W T 0! T in � induces
a surjective �–homomorphism @�W D.T / ! D.T 0/ in SC�un (see Section 2.1). It
induces a monomorphism in SC�un

op and the Yoneda embedding preserves monomor-
phisms, whence dr.@/W SC�un

op
.�;D.T 0//! SC�un

op
.�;D.T // is a monomorphism

in P.SC�un
op
/. It follows from the universal property of the noncommutative dendrices

construction that dr sends the generating cofibrations of dSet to monomorphisms
of P.SC�un

op
/. Note that the cofibrations of P.SC�un

op
/ are precisely the monomorphisms,

whence Lemma 2.1.20 of [24] shows that dr preserves cofibrations.

Remark A.7 It is clear that the above proposition does not depend on the choice of J.

For the choice of the elementary homotopy datum we have a few possibilities at our
disposal.

Example A.8 [9, Example 1.3.9] Let C be any small category. For an object C 2 C

let us denote the representable presheaf of C in P.C/ by hC . Let L denote the presheaf
that associates with every C 2 C the set L.C /D fsubobjects of hC g. For every map
uW C!D in C the map L.D/!L.C / is induced by pullback along u. The presheaf L
turns out to be a subobject classifier, ie P.C/.X;L/' fsubobjects of the presheaf X g.
If ? is the final object of P.C/, then it has exactly two subobjects ? ,! ? and
∅ ,! ?, where ∅ denotes the initial object of P.C/. These define two morphisms
�0; �1W ?! L. The tuple .L; �0; �1/ gives rise to an elementary homotopy datum by
setting I˝X DL�X, @e

X
D �e � idX for eD 0; 1 and �X D pr2W L�X !X. This
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elementary homotopy datum is called the Lawvere cylinder, and exists in any category
of presheaves like P.SC�un

op
/.

Example A.9 For any nonzero separable unital C �–algebra A there is a sequence
of two �–homomorphisms A �

�! AŒ0; 1� WD C.Œ0; 1�;A/ evt
�! A for any t 2 Œ0; 1�

(natural in A), whose composition is the identity �–homomorphism on A. Here �.a/
is the constant a–valued function on Œ0; 1� for every a 2A and evt is the evaluation
at t 2 Œ0; 1�. For AD C , after reversing the arrows and passing to the representable
presheaves in P.SC�un

op
/ we get the square

(9)

∅ //

��

hC

@1Dev�
1

��

hC
@0Dev�

0 // hC.Œ0;1�/

where ∅ is the initial object (empty presheaf) of P.SC�un
op
/. Note that P.SC�un

op
/ are

Set–valued covariant functors on SC�un and we do not notationally distinguish between
objects in a category and in its opposite. For every A2 SC�un

op we find that the diagram

∅ //

��

hC.A/

ev�
1

��

hC.A/
ev�

0
// hC.Œ0;1�/.A/

is a pullback square in Set. Indeed, hC.A/D SC�un
op
.A;C/D f1Ag, where 1A is the

unique unital �–homomorphism C!A and .1Aıev�t /.f /D f .t/1A for t D 0; 1 and
for every f 2CŒ0; 1�D C.Œ0; 1�;C/. In this argument it is crucial that A is a nonzero
separable unital C �–algebra. Since limits are computed objectwise in P.SC�un

op
/ we

conclude that diagram (9) is a pullback square. It follows from Example 1.3.8 of [9]
that

JD .I �X; @0
� idX ; @

1
� idX ; prX W I �X !X /

defines an elementary homotopy datum.

Example A.10 (continuous cylinder) Consider again the sequence of �–homomor-
phisms A �

�! AŒ0; 1�
evt
�! A (natural in A), whose composition is the identity �–

homomorphism on A. Given any representable object hA we set I ˝ hA D hAŒ0;1�

and extend the cylinder construction to all objects of P.SC�un
op
/ by commuting with

colimits, ie if X Š colimi hAi
, then we set I ˝X Š colimi hAi Œ0;1� .

We choose the elementary homotopy datum of Example A.8 since it is the most canonical
choice for the Cisinski model structure on any presheaf category. Subsequently we are
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going to localize our model structure based on our requirements. Let X be a set of
generating trivial cofibrations of dSet and set S D dr.X /. By Proposition A.6, S is
a set of monomorphisms of P.SC�un

op
/ that generates a class of anodyne extensions

AnJ.S/ relative to J (see Remark A.3). As a consequence of Theorem A.4 we obtain:

Theorem A.11 (operadic model structure) With the choice of the elementary homo-
topy datum J of Example A.8 and the class of anodyne extensions AnJ.S/ relative to J

described above, P.SC�un
op
/ acquires the structure of a combinatorial model category.

Remark A.12 The Lawvere cylinder is different from the continuous cylinder of
Example A.10. Hence, the evaluation map AŒ0; 1�

evt
�! A is not a weak equivalence

in the operadic model structure; it roughly mirrors the Joyal model structure on the
category of simplicial sets, in which �1!�0 is not a weak equivalence.

Remark A.13 It is shown in Lemma 1.3.31 of [9] that every anodyne extension is
a weak equivalence. Since dr.X /D S � AnJ.S/, where X is the set of generating
trivial cofibrations of dSet, we observe that, by construction, the functor dr sends
generating trivial cofibrations of dSet to trivial cofibrations of P.SC�un

op
/.

Remark A.14 The construction of the Cisinski model structure can be profitably used
in other contexts. For instance, one can start with a small category A of topological
algebras (Banach, Fréchet or locally convex) with some mild hypotheses. Then one
can simply start with the minimal model structure on P.Aop/ by choosing the Lawvere
cylinder (see Example A.8) for the elementary homotopy datum J and AnJ.∅/ for the
class of anodyne extensions. Now one can localize this combinatorial model category by
inverting a small set of morphisms like differentiable homotopy equivalences between
the representable objects in P.Aop/. This would produce an unstable model category
to start with that can be (1–categorically) stabilized and localized further according to
one’s requirements; for instance, one can aim for a stable1–category whose morphism
groups model the Cuntz kk–groups for locally convex algebras [17]. Østvær developed
his homotopy theory of C �–algebras adopting a similar strategy in the setting of cubical
set-valued presheaves on the category of separable C �–algebras [47] but we do not
expect a Quillen equivalence between his unstable model category for cubical C �–
spaces and P.SC�un

op
/ equipped with the operadic model structure as in Theorem A.11.

This is because the evaluation map AŒ0; 1�
evt
�!A of the continuous cylinder construction

(see Example A.10) is not a weak equivalence in the operadic model structure. One
final observation — all the ingredients needed to develop a Waldhausen K–theory of
noncommutative spaces are now at our disposal.
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