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On uniqueness of end sums and 1–handles at infinity

JACK S CALCUT

ROBERT E GOMPF

For oriented manifolds of dimension at least 4 that are simply connected at infinity,
it is known that end summing is a uniquely defined operation. Calcut and Haggerty
showed that more complicated fundamental group behavior at infinity can lead to
nonuniqueness. We examine how and when uniqueness fails. Examples are given,
in the categories TOP, PL and DIFF, of nonuniqueness that cannot be detected in a
weaker category (including the homotopy category). In contrast, uniqueness is proved
for Mittag-Leffler ends, and generalized to allow slides and cancellation of (possibly
infinite) collections of 0– and 1–handles at infinity. Various applications are pre-
sented, including an analysis of how the monoid of smooth manifolds homeomorphic
to R4 acts on the smoothings of any noncompact 4–manifold.

57N99, 57Q99, 57R99

1 Introduction

Since the early days of topology, it has been useful to combine spaces by simple gluing
operations. The connected sum operation for closed manifolds has roots in nineteenth
century surface theory, and its cousin, the boundary sum of compact manifolds with
boundary, is also classical. These two operations are well understood. In the oriented
setting, for example, the connected sum of two connected manifolds is unique, as is
the boundary sum of two manifolds with connected boundary. The boundary sum
has an analogue for open manifolds, the end sum, which has been used in various
dimensions since the 1980s, but is less well known and understood. The first author
and Haggerty showed in 2014 [7] that, in contrast with boundary sums, end sums of
one-ended oriented manifolds need not be uniquely determined, even up to proper
homotopy. The present paper explores uniqueness and its failure in more detail. To
illustrate the subtlety of the issue, we present examples in various categories (homotopy,
TOP, PL and DIFF) where uniqueness fails, but the failure cannot be detected in weaker
categories. In counterpoint, we find general hypotheses under which the operation is
unique in all categories and apply this result to exotic smoothings of open 4–manifolds.
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Our results naturally belong in the broader context of attaching handles at infinity.
We obtain general uniqueness results for attaching collections of 0– and 1–handles
at infinity, generalizing handle sliding and cancellation. We conclude that end sums,
and, more generally, collections of handles at infinity with index at most one, can be
controlled in broad circumstances, although deep questions remain.

End sums are the natural analogue of boundary sums. To construct the latter, we choose
codimension-zero embeddings of a disk into the boundaries of the two summands,
then use these to attach a 1–handle. For an end sum of open manifolds, we attach a
1–handle at infinity, guided by a properly embedded ray in each summand. Informally,
we can think of the 1–handle at infinity as a piece of tape joining the two manifolds;
see Definition 2.1 for details. Boundary summing two compact manifolds then has
the effect of end summing their interiors. While this notion of end summing seems
obvious, the authors have been unable to find explicit appearances of it before the
second author’s 1983 paper [18] and sequel [19] on exotic smoothings of R4 . However,
the germ of the idea may be perceived in Mazur’s 1959 paper [33] and Stallings’
1965 paper [38]. End summing was used in [19] to construct infinitely many exotic
smoothings of R4 . The appendix of that paper showed that the operation is well
defined in that context, so is independent of choice of rays and their order (even for
infinite sums). Since then, the second author and others have continued to use end
summing with an exotic R4 for constructing many exotic smoothings on various open
4–manifolds, eg Taylor [39, Theorem 6.4] in 1997 and Gompf [23, Section 7] in 2017.
The operation has also been subsequently used in other dimensions, for example by
Ancel (unpublished) in the 1980s to study high-dimensional Davis manifolds, and by
Tinsley and Wright [40] in 1997 and Myers [35] in 1999 to study 3–manifolds. In 2012,
the first author, with King and Siebenmann, gave a somewhat general treatment [8]
of end sum (called CSI, for connected sum at infinity, therein) in all dimensions
and categories (TOP, PL and DIFF). One corollary gave a classification of multiple
hyperplanes in Rn for all n¤ 3, which was used by Belegradek [2] in 2014 to study
certain interesting open aspherical manifolds. Most recently, Sparks [37] in 2018 used
infinite end sums to construct uncountably many contractible topological 4–manifolds
obtained by gluing two copies of R4 along a subset homeomorphic to R4 .

While [19] showed that end sums are uniquely determined for oriented manifolds
homeomorphic to R4 , uniqueness fails in general for multiple reasons. The most
obvious layer of difficulty already occurs for the simpler operation of boundary summing.
In that case, when a summand has disconnected boundary, we must specify which
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boundary component to use. For example, nondiffeomorphic boundary components
can lead to boundary sums with nondiffeomorphic boundaries. We must also be careful
to specify orientations — a pair of disk bundles over S2 with nonzero Euler numbers
can be boundary summed in two different ways, distinguished by their signatures
(0 or ˙2). In general, we should specify an orientation on each orientable boundary
component receiving a 1–handle. Similarly, for end sums and 1–handles at infinity,
we must specify which ends of the summands we are using and an orientation on each
such end (if orientable).

Unlike boundary sums, however, end sums have a more subtle layer of nonuniqueness.
One difficulty is specific to dimension 3: the rays in use can be knotted. Myers [35]
showed that uncountably many homeomorphism types of contractible manifolds can
be obtained by end summing two copies of R3 along knotted rays. For this reason,
the present paper focuses on dimensions above 3. However, another difficulty persists
in high dimensions: rays determining a given end need not be properly homotopic.
The first author and Haggerty [7] constructed examples of pairs of one-ended oriented
n–manifolds (for all n� 3) that can be summed in different ways, yielding manifolds
that are not even properly homotopy-equivalent. We explore this phenomenon more
deeply in Section 3. After sketching the key example of [7] in Example 3.2, we exhibit
more subtle examples of nonuniqueness of end summing (and related constructions)
on fixed oriented ends. Examples 3.3 include topological 5–manifolds with properly
homotopy-equivalent but nonhomeomorphic end sums on the same pair of ends, and PL

n–manifolds (for various n� 9) whose end sums are properly homotopy-equivalent
but not PL homeomorphic. Unlike other examples in this section, those in Examples 3.3
have extra ends or boundary components; the one-ended case seems more elusive.
Examples 3.4 provide end sums of smooth manifolds (for most n � 8) that are PL

homeomorphic but not diffeomorphic. The analogous construction in dimension 4 gives
smooth manifolds whose end sums are naturally identified in the topological category,
but whose smoothings are not stably isotopic. Distinguishing their diffeomorphism
types seems difficult.

These failures of uniqueness arise from complicated fundamental group behavior at the
relevant ends, contrasting with uniqueness associated with the simply connected end
of R4 . Section 4 examines more generally when ends are simple enough to guarantee
uniqueness of end sums and 1–handle attaching. In dimensions 4 and up, it suffices for
the end to satisfy the Mittag-Leffler condition (also called semistability), whose defini-
tion we recall in Section 4. Ends that are simply connected or topologically collared are
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Mittag-Leffler; in fact, the condition can only fail when the end requires infinitely many
.n�1/–handles in any topological handle decomposition (Proposition 4.3). For example,
Stein manifolds of complex dimension at least 2 have (unique) Mittag-Leffler ends. (See
Corollaries 4.4 and 4.10, and Theorem 5.4 for an application to 4–manifold smoothing
theory.) The Mittag-Leffler condition is necessary and sufficient to guarantee that any
two rays approaching the end are properly homotopic. This fact traces back at least to
Geoghegan in the 1980s, and appears to have been folklore since the preceding decade.
(See also Edwards and Hastings [13], Mihalik [34, Theorem 2.1] and Geoghegan [17].)
The first author and King worked out an algebraic classification of proper rays up to
proper homotopy on an arbitrary end in 2002. This material was later excised from the
2012 published version of [8] due to length considerations and since a similar proof had
appeared in Geoghegan’s text [17] in the meantime. The present paper gives a much
simplified version of the proof, dealing only with the Mittag-Leffler case, in order to
highlight the topology underlying the algebraic argument (Lemma 4.11). This lemma
leads to a general statement (Theorem 4.6) about attaching countable collections of
1–handles to an open manifold. The following theorem is a special case:

Theorem 1.1 Let X be a (possibly disconnected ) n–manifold , with n � 4. Then
the result of attaching a (possibly infinite) collection of 1–handles at infinity to some
oriented Mittag-Leffler ends of X depends only on the pairs of ends to which each
1–handle is attached , and whether their orientations agree.

Note that uniqueness of end sums along Mittag-Leffler ends (preserving orientations)
is a special case. Theorem 4.6 also deals with ends that are nonorientable or not
Mittag-Leffler.

Theorem 4.6 has consequences for open 4–manifold smoothing theory, which we
explore in Section 5. The theorem easily implies the result from [19] that the oriented
diffeomorphism types of 4–manifolds homeomorphic to R4 form a monoid R under
end sum, allowing infinite sums that are independent of order and grouping. This
monoid acts on the set S.X / of smoothings (up to isotopy) of any given oriented 4–
manifold X with a Mittag-Leffler end, and more generally a product of copies of R acts
on S.X / through any countable collection of Mittag-Leffler ends (see Corollary 5.1).
One can also deal with arbitrary ends by keeping track of a family of proper homotopy
classes of rays. Similarly, one can act on S.X / by summing with exotic smoothings of
S3 �R along properly embedded lines (Corollary 5.5), or modify smoothings along
properly embedded star-shaped graphs. While summing with a fixed exotic R4 is
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unique for an oriented (or nonorientable) Mittag-Leffler end, Section 3 suggests that
there should be examples of nonuniqueness when the end of X is not Mittag-Leffler.
However, such examples seem elusive, prompting the following natural question:

Question 1.2 Let X be a smooth , one-ended , oriented 4–manifold. Can summing
X with a fixed exotic R4 , preserving orientation , yield different diffeomorphism types
depending on the choice of ray in X ?

We show (Proposition 5.3) that such examples would be quite difficult to detect.

Having studied the uniqueness problem for adding 1–handles at infinity, we progress
in Section 6 to uniqueness of adding collections of 0– and 1–handles at infinity
(Theorem 6.1). It turns out that, when adding countably many handles of index 0

and 1, the noncompact case is simpler than for compact handle addition. As an
application of Theorem 6.1, we present (Theorem 6.2) a very natural and partly novel
proof of the hyperplane unknotting theorem of Cantrell [9] and Stallings [38]: each
proper embedding of Rn�1 in Rn for n� 4 is unknotted (in each category DIFF, PL

and TOP). An immediate corollary is the TOP Schoenflies theorem: the closures of the
two complementary regions of a (locally flat) embedding of Sn�1 in Sn for n � 4

are topological disks. Mazur’s infinite swindle still lies at the heart of our proof of the
hyperplane unknotting theorem. The novelty in our proof consists of the supporting
framework of 0– and 1–handle additions, slides and cancellations at infinity.

Throughout the text, we take manifolds to be Hausdorff with countable basis, so with
only countably many components. We allow boundary, and note that the theory is
vacuous unless there is a noncompact component. Open manifolds are those with no
boundary and no compact components. We work in a category CAT that can be DIFF,
PL or TOP. For example, DIFF homeomorphisms are the same as diffeomorphisms.
Embeddings (particularly with codimension zero) are not assumed to be proper. (Proper
means the preimage of every compact set is compact.) In PL and TOP, embeddings
are assumed to be locally flat (as is automatically true in DIFF). It follows that in each
category, codimension-one two-sided embeddings in Int X are bicollared (Brown [6]
in TOP; see Connelly [11] for a simpler proof in both TOP and PL). Furthermore,
a CAT proper embedding 
 W Y ,! X n of a CAT 1–manifold Y with b1.Y / D 0

and 
�1.@X /D∅ extends to a CAT proper embedding x�W Y �Dn�1 ,! X n whose
boundary (after rounding corners in DIFF) is bicollared. (This is easy in DIFF and PL,
and follows in TOP by a classical argument: cover suitably by charts exhibiting Y as
locally flat, then stretch one chart consecutively through the others.) If we radially
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identify Rn�1 with Int Dn�1 , then x� determines an embedding �W Y �Rn�1 ,! X.
We call � and x� tubular neighborhood maps, and their images open (resp. closed)
tubular neighborhoods of Y . Thus, an open tubular neighborhood extends to a closed
tubular neighborhood by definition.

2 1–handles at infinity

We begin with our procedure for attaching 1–handles at infinity.

Definition 2.1 A multiray in a CAT n–manifold X is a CAT proper embedding

 W S � Œ0;1/ ,!X, with 
�1.@X /D∅, for some discrete (so necessarily countable)
set S, called the index set of 
 . If the domain has a single component, 
 will be called
a ray. Given two multirays 
�; 
CW S � Œ0;1/ ,! X with disjoint images, choose
tubular neighborhood maps �˙W S � Œ0;1/�Rn�1 ,!X with disjoint images, and let
Z be the CAT manifold obtained by gluing S � Œ0; 1��Rn�1 to X using identifications
�˙ ı .idS �'

˙ � �˙/, where '�W
�
0; 1

2

�
! Œ0;1/ and 'CW

�
1
2
; 1
�
! Œ0;1/ and

�˙W Rn�1!Rn�1 are diffeomorphisms, with �˙ chosen so that '˙ � �˙ preserves
orientation. Then Z is obtained by attaching 1–handles at infinity to X along 
�

and 
C (see Figure 1).

X Z

h

Figure 1: Data for attaching h , a 1–handle at infinity, to the n–manifold X

(left) and resulting n–manifold Z (right)

The case of handle attaching where S is a single point and X has two components
that are connected by the 1–handle at infinity is called the end sum or connected
sum at infinity in the literature. In general, we will see that Z depends in a subtle
way on the choice of images of 
˙ (Section 3), but not on the parametrizations of
their rays. It depends on the orientations locally induced by �˙ , but is otherwise
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independent of the choices of maps �˙ , '˙ and �˙ . (Independence follows from the
stronger Theorem 4.6 when n� 4, and by a similar method in lower dimensions.) By
reparametrizing the maps '˙ , we can change their domains to smaller neighborhoods
of the endpoints of Œ0; 1� without changing Z , making it more obvious that attaching
compact 1–handles to the boundary of a compact manifold has the effect of attaching
handles at infinity to the interior. Yet another description of handle attaching at infinity
is to remove the interiors of the closed tubular neighborhoods from X and glue together
the resulting Rn�1 boundary components. Some articles (eg [8; 37]) use this perspective
for defining end sums. It can be useful to start, more generally, with any countable
collection of disjoint rays, allowing clustering (for example to preserve an infinite
group action as in Gompf [25]). However, this gains no actual generality, since we can
transform such a collection to a multiray by suitably truncating the domains of the rays
to achieve properness of the combined embedding.

Remark The second author exploited higher-index handles at infinity in [24], but
additional subtleties arise in that context. For example, a Casson handle CH can be
attached to an unknot in the boundary of a 4–ball B so that the interior of the resulting
smooth 4–manifold is not diffeomorphic to the interior of any compact manifold.
However, Int CH is diffeomorphic to R4 , so we can interchange the roles of Int CH
and Int B , exhibiting the manifold as R4 with a 2–handle attached at infinity. The
latter is attached along a properly embedded S1 � Œ0;1/ in R4 that is topologically
unknotted but smoothly knotted, and cannot be smoothly compactified to an annulus
in the closed 4–ball. This proper annulus seems analogous to a knotted ray in a
3–manifold, but is more subtle since it is unknotted in TOP.

Variations on the above 1–handle construction were recently applied to 4–dimensional
smoothing theory by the second author [23]. Let X be a topological 4–manifold
with a fixed smooth structure, and let R be an exotic R4 (a smooth, oriented mani-
fold homeomorphic but not diffeomorphic to R4 ). Choose a smooth ray in X, and
homeomorphically identify a smooth, closed tubular neighborhood N of it with the
complement of a tubular neighborhood of a ray in R. Transporting the smooth structure
from R to N , where it fits together with the original one on X �Int N , we obtain a new
smooth structure on X diffeomorphic to an end sum of X and R. The advantage of this
description is that it fixes the underlying topological manifold, allowing us to assert, for
example, that the two smooth structures are stably isotopic. Another variation from [23]
is to sum a smooth structure with an exotic R�S3 along a smooth, properly embedded
line in each manifold, with one line topologically isotopic to R � fpg � R � S3 .
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(We order the factors this way instead of the more commonly used S3 �R so that
the obvious identification with R4 � f0g preserves orientation.) One can similarly
change a smooth structure on a high-dimensional PL manifold by summing along a
line with R�† for some exotic sphere †. We exhibit these operations in Section 5
as well-defined monoid actions on the set of isotopy classes of smoothings of a fixed
topological manifold. One can also consider CAT sums along lines in general. We
discuss nonuniqueness of this latter operation in Section 3 as a prelude to discussing
subtle end sums.

There are several obvious sources of nonuniqueness for attaching 1–handles at infin-
ity. For attaching 1–handles in the compact setting, the result can depend both on
orientations and on choices of boundary components. We will consider orientations in
Section 4, but now recall the noncompact analogue of the set of boundary components,
the space of ends of a manifold. (See eg Hughes and Ranicki [29].) This only depends
on the underlying TOP structure of a CAT manifold X (and generalizes to other spaces).
A neighborhood of infinity in X is the complement of a compact set, and a neighborhood
system of infinity is a nested sequence fUi j i 2 ZCg of neighborhoods of infinity with
empty intersection and with the closure of UiC1 contained in Ui for all i 2 ZC .

Definition 2.2 For a fixed neighborhood system fUig of infinity, the space of ends
of X is given by E D E.X /D lim

 ��
�0.Ui/.

That is, an end � 2 E.X / is given by a sequence V1 � V2 � V3 � � � � , where each Vi

is a component of Ui . For two different neighborhood systems of infinity for X, the
resulting spaces E.X / can be canonically identified: the set is preserved when we
pass to a subsequence, but any two neighborhood systems of infinity have interleaved
subsequences. A neighborhood of the end � is an open subset of X containing one
of the subsets Vi . This notion allows us to topologize the set X [ E.X / so that X is
homeomorphically embedded as a dense open subset and E.X / is totally disconnected.
(The new basis elements are the components of each Ui , augmented by the ends of
which they are neighborhoods.) The resulting space is Hausdorff with a countable
basis. If X has only finitely many components, this space is compact and called the
Freudenthal [16] or end compactification of X. In this case, E.X / is homeomorphic to
a closed subset of a Cantor set.

Ends can also be described using rays, most naturally if we allow the rays to be singular.
We call a continuous, proper map 
 W S � Œ0;1/!X (with S discrete and countable)
a singular multiray, or a singular ray if S is a single point. Every singular ray 
 in
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a manifold X determines an end �
 2 E.X /. This is because 
 is proper, so every
neighborhood U of infinity in X contains 
 .Œk;1// for sufficiently large k , and
this image lies in a single component of U. In fact, an alternative definition of E.X /
is as the set of equivalence classes of singular rays, where two such are considered
equivalent if their restrictions to ZC are properly homotopic. A singular multiray

 W S � Œ0;1/ ,!X then determines a function �
 W S! E.X / that is preserved under
proper homotopy of 
 . Attaching 1–handles at infinity depends on these functions
for 
� and 
C , just as attaching compact 1–handles depends on choices of boundary
components, with examples of the former easily obtained from the latter by removing
boundary. We will find more subtle dependence on the defining multirays in the next
section, but a weak condition preventing these subtleties in Section 4.

3 Nonuniqueness

We now investigate examples of nonuniqueness in the simplest setting. In each case, we
begin with an open manifold X with finitely many ends, and attach a single 1–handle
at infinity, at a specified pair of ends. We assume the 1–handle respects a preassigned
orientation on X. For attaching 1–handles in the compact setting, this would be enough
information to uniquely specify the result, but we demonstrate that uniqueness can
still fail for a 1–handle at infinity. The first author and Haggerty showed in [7] that
even the proper homotopy type need not be uniquely determined; Example 3.2 below
sketches the simplest construction from that paper. Our subsequent examples are more
subtle, having the same proper homotopy (or even CAT0 homeomorphism) type but
distinguished by their CAT homeomorphism types.

All of our examples necessarily have complicated fundamental group behavior at
infinity, since Section 4 proves uniqueness when the fundamental group is suitably
controlled. We obtain the required complexity by the following construction, which
generalizes examples of [7]:

Definition 3.1 For an oriented CAT manifold X, let 
�; 
CW S � Œ0;1/ ,! X be
multirays with disjoint images. Ladder surgery on X along 
� and 
C is orientation-
preserving surgery on the infinite family of 0–spheres given by f
�.s; n/; 
C.s; n/g
for each s 2 S and n 2 ZC . That is, we find disjoint CAT balls centered at the
points 
˙.s; n/, remove the interiors of the balls and glue each resulting pair of
boundary spheres together by a reflection (so that the orientation of X extends).
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It is not hard to verify that the resulting oriented CAT homeomorphism type only
depends on the end functions �
˙ of the multirays; see Corollary 4.13 for details and
a generalization to unoriented manifolds. If X has two components X1 and X2 , each
with k ends, any bijection from E.X1/ to E.X2/ determines a connected manifold
with k ends obtained by ladder surgery with S D E.X1/. Such a manifold will be
called a ladder sum of X1 and X2 . For closed, connected, oriented .n�1/–manifolds
M and N, we let L.M;N / denote the ladder sum of the two-ended n–manifolds
R�M and R�N for the bijection preserving the ends of R. (This is a slight departure
from [7], which used the one-ended manifold Œ0;1/ in place of R.) Note that any
ladder surgery transforms its multirays 
˙ into infinite unions of circles, and surgery
on all these circles (with any framings) results in the manifold obtained from X by
adding 1–handles at infinity along 
˙ . (This is easily seen by interpreting the surgeries
as attaching 1– and 2–handles to I �X.)

The examples in [7] are naturally presented in terms of ladder sums and attaching
1–handles at infinity. They represent the simplest type of example, where a single
1–handle may be attached at infinity in essentially distinct ways, namely an orientation-
preserving end sum of one-ended manifolds.

Example 3.2 Homotopy-inequivalent end sums (one-ended) [7] For a fixed prime
p > 1, let E denote the R2 –bundle over S2 with Euler number �p (so E has a
neighborhood of infinity diffeomorphic to R�L.p; 1/). Let Y be the ladder sum of E

and R4 . We will attach a single 1–handle at infinity to the disjoint union X D Y tE

in two ways to produce distinct, one-ended, boundaryless manifolds Z0 and Z1 . Let

0 and 
1 be rays in Y , with 
0 lying in the E summand and 
1 lying in the R4

summand. Let 
 be any ray in E, and let Zi be obtained from X by attaching a
1–handle at infinity along 
i and 
 . The manifolds Z0 and Z1 are not properly
homotopy-equivalent (in fact, their ends are not properly homotopy-equivalent) since
they have nonisomorphic cohomology algebras at infinity [7]. The basic idea is that
both manifolds Zi have obvious splittings as ladder sums. For Z0 , one summand
is R4 , so all cup products from H 1.Z0IZ=p/˝H 2.Z0IZ=p/ are supported in the
other summand in a 1–dimensional subspace of H 3.Z0IZ=p/. However, Z1 has cup
products on both sides, spanning a 2–dimensional subspace.

Our remaining examples are pairs with the same homotopy type, distinguished by more
subtle means.
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Examples 3.3 (a) Homotopy-equivalent but nonhomeomorphic sums It should
not be surprising that the sum of two manifolds along a properly embedded line in
each depends on more than just the ends and orientations involved. However, as a
warm-up for end sums, we give an explicit example in TOP where moving one line
changes the resulting homeomorphism type but not its proper homotopy type. Let P

and Q, respectively, denote CP2 and Freedman’s fake CP2 (eg [14]). Then there
is a homotopy-equivalence between P and Q, restricting to a pairwise homotopy-
equivalence between the complements of a ball interior in each. But P and Q cannot be
homeomorphic since Q is unsmoothable. The ladder sum L.P;Q/ is an unsmoothable
topological 5–manifold with two ends. The lines R�fpg�R�P and R�fqg�R�Q

can be chosen to lie in L.P;Q/, with each spanning the two ends of L.P;Q/, but
they are dual to two different elements of H 4.L.P;Q/IZ=2/ (see [7]), with R� fqg

dual to the Kirby–Siebenmann smoothing obstruction of L.P;Q/. Clearly, there is
a proper homotopy-equivalence of L.P;Q/ interchanging the two lines. Thus, the
two resulting ways to sum L.P;Q/ along a line with R�Q (where the orientation
on Q is reversed for later convenience) give properly homotopy-equivalent manifolds,
namely L.Q # P;Q/ and L.P;Q # Q/ D L.P;P # P /. (The last equality follows
from Freedman’s classification of simply connected topological 4–manifolds [14].)
These two manifolds cannot be homeomorphic, since the latter is a smooth manifold
whereas the former is unsmoothable, with Kirby–Siebenmann obstruction dual to a pair
of lines running along opposite sides of the ladder. (A discussion of the cohomology
of such manifolds can be found in [7], but, more simply, there are subsets .a; b/�Q

on which the Kirby–Siebenmann obstruction must evaluate nontrivially.)

(b) Homotopy-equivalent but nonhomeomorphic end sums We adapt the previ-
ous example to end sums. Instead of summing along a line, we end sum L.P;Q/

with R�Q along their positive ends in two different ways (using rays obtained from
the positive ends of the previous lines). We obtain a pair of properly homotopy-
equivalent, unsmoothable, three-ended manifolds. In one case, the modified end
has a neighborhood that is smoothable, and in the other case, all three ends fail to
have smoothable neighborhoods since the Kirby–Siebenmann obstruction cannot be
avoided. Thus, we have a pair of nonhomeomorphic, but properly homotopy-equivalent,
manifolds, both obtained by an orientation-preserving end sum on the same pair of
ends.

There are several other variations of the construction. We can replace the R factor by
Œ0;1/ so that the ladder sum is one-ended, to get an example of nonuniqueness of
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summing one-ended topological manifolds with compact boundary. Unfortunately, we
cannot cap off the boundaries to obtain one-ended open manifolds, since the Kirby–
Siebenmann obstruction is a cobordism invariant of topological 4–manifolds. However,
we can modify the original ladder sum so that we do ladder surgery on the positive
end, but end sum on the negative end (which then has a neighborhood homeomorphic
to R� .P # Q/). Now we have a connected, two-ended open manifold whose ends
can be joined by an orientation-preserving 1–handle at infinity in two different ways,
yielding properly homotopy-equivalent but nonhomeomorphic one-ended manifolds,
only one of which has a smoothable neighborhood of infinity.

(c) Homotopy-equivalent but not PL homeomorphic end sums In higher dimen-
sions, the Kirby–Siebenmann obstruction of a neighborhood V of an end cannot be
killed by adding 1–handles at infinity (since H 4.V IZ=2/ is not disturbed), but we
can do the analogous construction using higher smoothing obstructions. This time, we
obtain PL n–manifolds (for various n�9) that are properly homotopy-equivalent but not
PL homeomorphic. Let P and Q be homotopy-equivalent PL .n�1/–manifolds with
P and Q�fq0g smooth but Q unsmoothable. (For an explicit 24–dimensional pair,
see Anderson [1, Proposition 5.1].) The previous discussion applies almost verbatim
with PL in place of TOP, with the smoothing obstruction in H n�1.X I‚n�2/ for PL

manifolds X in place of the Kirby–Siebenmann obstruction. The one change is that
smoothability of Q # Q follows since it is the double of the smooth manifold obtained
from Q by removing the interior of a PL ball centered at q0 . (This time the orientation
reversal is necessary since the smoothing obstruction need not have order 2.)

Examples 3.4 (a) PL homeomorphic but nondiffeomorphic end sums (one-
ended) A similar construction shows that end summing along a fixed pair of ends
can produce PL homeomorphic but nondiffeomorphic manifolds. Let † be an exotic
.n�1/–sphere with n> 5. Then † is PL homeomorphic to Sn�1 , so the ladder sum
L.†;Sn�1/ is a two-ended smooth manifold with a PL self-homeomorphism that is not
isotopic to a diffeomorphism. Since †#†DSn�1 , summing L.†;Sn�1/ along a line
with R�† gives the two manifolds L.Sn�1;Sn�1/ and L.†;†/. The first of these
bounds an infinite handlebody made with 0– and 1–handles, as does its universal cover.
Since a contractible 1–handlebody is a ball with some boundary points removed, it
follows that the universal cover of L.Sn�1;Sn�1/ embeds in Sn . However, L.†;†/

contains copies of † arbitrarily close to its ends. Since any homotopy .n�1/–sphere
with n> 5 that embeds in Sn cuts out a ball, so is a standard sphere, it follows that
no neighborhood of either end of L.†;†/ has a cover embedding in Sn . Thus, the
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two manifolds have nondiffeomorphic ends, although they are PL homeomorphic. As
before, we can modify this example to get a pair of end sums of two-ended manifolds,
or a pair obtained from a two-ended connected manifold by joining its ends with a
1–handle in two different ways. This time, however, we can also interpret the example
as end summing two one-ended open manifolds, by first obtaining one-ended manifolds
with compact boundary, then capping off the boundary. (Note that † bounds a compact
manifold. Unlike codimension-0 smoothing existence obstructions, the uniqueness
obstructions are not cobordism invariants.) The resulting pair of one-ended DIFF

manifolds are now easily seen to be PL homeomorphic (by Corollary 4.9, for example)
but nondiffeomorphic.

(b) Nonisotopic DIFF D PL structures on a fixed TOP 4–manifold (one-ended)
The previous construction has an analogue in dimension 4, where the categories
DIFF and PL coincide. Replace R �† by W , Freedman’s exotic R � S3 . This is
distinguished from the standard R�S3 by the classical PL uniqueness obstruction in
H 3.R�S3IZ=2/ Š Z=2, dual to R� fpg. The ladder sum L of W with R�S3

can be summed along a line with W in two obvious ways. These can be interpreted as
smoothings on the underlying topological manifold L.S3;S3/, and can be transformed
to an example of end summing one-ended DIFF manifolds as before: To transform W

into a one-ended DIFF manifold, cut it in half along a Poincaré homology sphere †, then
cap it with an E8 –plumbing. The result E is a smoothing of a punctured Freedman
E8 –manifold. (Alternatively, we can take E homeomorphic to a punctured fake CP2 .)
We ladder sum with R4 . The two results of end summing with another copy of E

are identified in TOP with a ladder sum of two copies of E (see Corollary 4.9). The
smoothings are nonisotopic (even stably, ie after Cartesian product with Rk ), since the
uniqueness obstruction by which they differ near infinity is dual to a pair of lines on
opposite sides of the ladder. However, the authors have not been able to distinguish
their diffeomorphism types. The problem with the previous argument is that the sum of
two copies of W along a line is not diffeomorphic to R�S3 (although the classical
invariant vanishes). While W contains a copy of † separating its ends, so cannot
embed in S4 , the sum of two copies of W contains †#†, which also does not embed
in S4 . The effect of summing with reversed orientation or switched ends, or replacing
† by a different homology sphere, is less clear. This leads to the following question,
which is discussed further in Section 5 (Question 5.6):

Question 3.5 Are there two exotic smoothings on R�S3 whose sum along a line is
the standard R�S3 ?
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If such smoothings exist, one of which has the additional property that every neighbor-
hood of one end has a slice .a; b/�S3 (as seen in TOP) that cannot smoothly embed
in S4 , then the method of Example 3.4(a) gives two one-ended open 4–manifolds that
can be end summed in two homeomorphic but not diffeomorphic (or PL homeomorphic)
ways.

4 Uniqueness for Mittag-Leffler ends

Having examined the failure of uniqueness in the last section, we now look for hypothe-
ses that guarantee that 1–handle attaching at infinity is unique. There are several separate
issues to deal with. In the compact setting, attaching a 1–handle to given boundary
components can yield two different results if both boundary components are orientable,
so uniqueness requires specified orientations in that case. The same issue arises for
1–handles at infinity. Beyond that, we must consider the dependence on the involved
multirays. Since rays in R3 can be knotted, uncountably many homeomorphism types
of contractible manifolds arise as end sums of two copies of R3 (Myers [35]; see also
Calcut and Haggerty [7]). Thus, we assume more than 3 dimensions and conclude, not
surprisingly, that the multirays affect the result only through their proper homotopy
classes, and that the choices of (suitably oriented) tubular neighborhood maps cause
no additional difficulties. We have already seen that different rays determining the
same end can yield different results for end summing with another fixed manifold and
ray, but we give a weak group-theoretic condition on an end that entirely eliminates
dependence on the choice of rays limiting to it.

We begin with terminology for orientations. We will call an end � of an n–manifold X

orientable if it has an orientable neighborhood in X. An orientation on one connected,
orientable neighborhood of � determines an orientation on every other such neighbor-
hood, through the component of their intersection that is a neighborhood of � . Such a
compatible choice of orientations will be called an orientation of � , so every orientable
end has two orientations. We let EO � E.X / denote the open subset of orientable
ends of X. (This need not be closed, as seen by deleting a sequence of points of X

converging to a nonorientable end.) If 
 is a singular multiray in a DIFF manifold X,
the tangent bundle of X pulls back to a trivial bundle 
 �TX over S � Œ0;1/. A
fiber orientation on this bundle will be called a local orientation of X along 
 , and if
such an orientation is specified, 
 will be called locally orienting. We apply the same
terminology in PL and TOP, using the appropriate analogue of the tangent bundle, or,
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equivalently but more simply, using local homology groups Hn.X;X �f
 .s; t/g/ŠZ.
If 
 is a (nonsingular) CAT multiray, a CAT tubular neighborhood map � induces a
local orientation of X along 
 ; if this agrees with a preassigned local orientation
along 
 , then � will be called orientation preserving. A homotopy between two
singular multirays determines a correspondence between their local orientations (eg by
pulling back the tangent bundle to the domain of the homotopy). If a singular ray 

determines an orientable end �
 2 EO , then a local orientation along 
 induces an
orientation on the end, since 
 .Œk;1// lies in a connected, orientable neighborhood
of �
 when k is sufficiently large.

We now turn to the group theory of ends. See Geoghegan [17] for a more detailed
treatment. An inverse sequence of groups is a sequence G1  G2  G3  � � � of
groups and homomorphisms. We suppress the homomorphisms from the notation, since
they will be induced by obvious inclusions in our applications. A subsequence of an
inverse sequence is another inverse sequence obtained by passing to a subsequence
of the groups and using the obvious composites of homomorphisms. Passing to a
subsequence and its inverse procedure, along with isomorphisms commuting with the
maps, generate the standard notion of equivalence of inverse sequences.

Definition 4.1 An inverse sequence G1 G2 G3 � � � of groups is called Mittag-
Leffler (or semistable) if for each i 2ZC there is a j � i such that all Gk with k � j

have the same image in Gi .

Clearly, a subsequence is Mittag-Leffler if and only if the original sequence is, so the
notion is preserved by equivalences. After passing to a subsequence, we may assume
j D i C 1 in the definition.

For a manifold X with a singular ray 
 and a neighborhood system fUig of infinity,
we reparametrize 
 so that 
 .Œi;1// lies in Ui for each i 2 ZC .

Definition 4.2 The fundamental progroup of X based at 
 is the inverse sequence of
groups �1.Ui ; 
 .i//, where the homomorphism �1.UiC1; 
 .i C 1//! �1.Ui ; 
 .i//

is the inclusion-induced map to �1.Ui ; 
 .iC1// followed by the isomorphism moving
the basepoint to 
 .i/ along the path 
 jŒi;iC1� .

This only depends on the TOP structure of X. Passing to a subsequence of fUig replaces
the fundamental progroup by a subsequence of it. Since any two neighborhood systems
of infinity have interleaved subsequences, the fundamental progroup is independent, up
to equivalence, of the choice of neighborhood system. It is routine to check that it is
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similarly preserved by any proper homotopy of 
 , so it only depends on X and the
proper homotopy class of 
 . Furthermore, the inverse sequence is unchanged if we
replace each Ui by its connected component containing 
 .Œi;1//, so it is equivalent
to use a neighborhood system of the end �
 . Beware, however, that even if there is
only one end, the choice of proper homotopy class of 
 can affect the fundamental
progroup, and even whether its inverse limit vanishes. (See [17, Example 16.2.4]. The
homomorphisms in the example are injective, but changing 
 conjugates the resulting
nested subgroups, changing their intersection.)

We call the pair .X; 
 / Mittag-Leffler if its fundamental progroup is Mittag-Leffler.
We will see in Lemma 4.11(a) below that this condition implies 
 is determined up
to proper homotopy by its induced end �
 , so the fundamental progroup of �
 is
independent of 
 in this case, and it makes sense to call �
 a Mittag-Leffler end. Note
that this condition rules out ends made by ladder surgery, and hence the examples of
Section 3. We will denote the set of Mittag-Leffler ends of X by EML � E.X /, and its
complement by Ebad .

Many important types of ends are Mittag-Leffler. Simply connected ends are (essentially
by definition) the special case for which the given images all vanish. Topologically
collared ends, with a neighborhood homeomorphic to R �M for some compact
.n�1/–manifold M, are stable, the special case for which the fundamental progroup
is equivalent to an inverse sequence with all maps isomorphisms. Other important
ends are neither simply connected nor collared, but still Mittag-Leffler if the maps
are nontrivial surjections (Example 4.5). Any end admits a neighborhood system for
which the maps are not even surjective, obtained from an arbitrary system by adding
1–handles to each Ui inside Ui�1 ; such ends may still be Mittag-Leffler. In the smooth
category, we can analyze ends using a Morse function ' that is exhausting (ie proper
and bounded below). For such a function, the preimages '�1.i;1/ for i 2 ZC form
a neighborhood system of infinity.

Proposition 4.3 Let X be a DIFF open n–manifold. If an end � of X is not Mittag-
Leffler, then for every exhausting Morse function ' on X and every t 2 R, there
are infinitely many critical points of index n � 1 in the component of '�1.t;1/

containing � . In particular, if X admits an exhausting Morse function with only finitely
many index-.n�1/ critical points, then all of its ends are Mittag-Leffler.

Proof After perturbing ' and composing it with an orientation-preserving diffeomor-
phism of R, we can assume each '�1Œi; i C 1� is an elementary cobordism. Since � is
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not Mittag-Leffler, its corresponding fundamental progroup must have infinitely many
homomorphisms that are not surjective. Thus, there are infinitely many values of i for
which '�1Œi;1/ is made from '�1Œi C 1;1/ by attaching a 1–handle with at least
one foot in the component of the latter containing � . This handle corresponds to an
index-1 critical point of �' , or an index-.n�1/ critical point of ' .

The Mittag-Leffler condition on an end of a CAT manifold is determined by its underlying
TOP structure (in fact, by its proper homotopy type), so we are free to change the smooth
structure on a manifold before looking for a suitable Morse function. This is especially
useful in dimension 4. For example, an exhausting Morse function on an exotic R4 with
nonzero Taylor invariant must have infinitely many index-3 critical points [39], but after
passing to the standard structure, there is such a function with a unique critical point.
(Furthermore, an exotic R4 is topologically collared and simply connected at infinity.)
Proposition 4.3 is most generally stated in TOP, using topological Morse functions.
(These are well behaved [31] and can be constructed from handle decompositions,
which exist on all open TOP manifolds; see eg [14].)

Since every Stein manifold of complex dimension m (real dimension 2m) has an
exhausting Morse function with indices at most m, we conclude:

Corollary 4.4 For every Stein manifold of complex dimension at least 2, the unique
end of each component is Mittag-Leffler.

Example 4.5 For infinite-type Stein surfaces (mD 2), the ends must be Mittag-Leffler,
but they are typically neither simply connected nor stable (and hence not topologically
collared). This is more generally typical for open 4–manifolds whose exhausting
Morse functions require infinitely many critical points, but none of index above 2.
As a simple example, let X be an infinite end sum of R2 –bundles over S2 . (Its
diffeomorphism type is independent of the choice of rays, by Theorems 4.6 and 6.1, but
it is convenient to think of the bundles as indexed by ZC and summed consecutively.)
If each Euler number is less than �1, then X will be Stein. We get a neighborhood
system of infinity with each Ui obtained from a collar of the end of the first i –fold
sum by attaching the remaining (simply connected) summands. Then each group Gi is
a free product of i cyclic groups, and each homomorphism is surjective, projecting out
one factor. The inverse limit is not finitely generated, so the end is not stable. (Every
neighborhood system of the end has a subsequence that can be interleaved by some of
our neighborhoods Ui .)
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We can now state our main theorem on uniqueness of attaching 1–handles. Its primary
conclusion is that when we attach 1–handles at infinity, any locally orienting defining
ray that determines a Mittag-Leffler end will affect the outcome only through the end
and local orientation it determines. If the end is also nonorientable, then even the local
orientation has no influence (as for a compact 1–handle attached to a nonorientable
boundary component). To state this in full generality, we also allow rays determining
ends that are not Mittag-Leffler, which are required to remain in a fixed proper homotopy
class. That is, we allow an arbitrary multiray 
 , but require its restriction to the subset
��1

 .Ebad/ of the index set S (corresponding to rays determining ends that are not

Mittag-Leffler) to lie in a fixed proper homotopy class. For each 1–handle with at least
one defining ray determining a nonorientable Mittag-Leffler end, no further constraint is
necessary, but otherwise we keep track of orientations. We do this through orientations
of the end if they exist. In the remaining case, the end is not Mittag-Leffler, and we
compare the local orientations of the rays through a proper homotopy. More precisely,
we have:

Theorem 4.6 For a CAT n–manifold X with n � 4, discrete S and i D 0; 1, let

�i ; 


C
i W S � Œ0;1/ ,!X be locally orienting CAT multirays whose images (for each

fixed i ) are disjoint , and whose end functions �

˙

i

W S ! E.X / are independent of i .
Suppose that

(a) after 
�
0

and 
�
1

are restricted to the index subset ��1

�

0
.Ebad/, there is a proper

homotopy between them;

(b) for each s 2 ��1

�

0
.Ebad [ EO/ \ �

�1


C

0
.Ebad [ EO/, the local orientations of the

corresponding rays in 
�
0

and 
�
1

induce the same orientation of the end if there
is one , and otherwise correspond under the proper homotopy of (a);

(c) the two analogous conditions apply to 
Ci .

Let Zi be the result of attaching 1–handles to X along 
˙i (for any choice of
orientation-preserving tubular neighborhood maps �˙i ). Then there is a CAT homeomor-
phism from Z0 to Z1 sending the submanifold X onto itself by a CAT homeomorphism
CAT ambiently isotopic in X to the identity map.

It follows that 1–handle attaching is not affected by reparametrization of the rays (a
proper homotopy), or changing the auxiliary diffeomorphisms '˙ and �˙ occurring
in Definition 2.1 (which only results in changing the parametrization and tubular
neighborhood maps, respectively).
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Corollary 4.7 For an oriented CAT n–manifold X with n � 4, every countable
multiset of (unordered ) pairs of Mittag-Leffler ends canonically determines a CAT

manifold obtained from X by attaching 1–handles at infinity to those pairs of ends,
respecting the orientation.

Since the end of Rn is Mittag-Leffler, we immediately obtain cancellation of 0=1–
handle pairs at infinity:

Corollary 4.8 For n � 4, every end sum of a CAT n–manifold X with Rn (or
countably many copies of Rn ) is CAT homeomorphic to X.

See Section 6 for further discussion of 0–handles at infinity. This corollary shows that
end summing with an exotic R4 doesn’t change the homeomorphism type of a smooth
4–manifold (although it typically changes its diffeomorphism type); see Section 5. It
also shows:

Corollary 4.9 Suppose X0 and X1 are connected, oriented CAT n–manifolds with
n � 4, and that X0 has an end � that is CAT collared by Sn�1 . Then all manifolds
obtained as the oriented end sum of X0 with X1 at the end � are CAT homeomorphic.

Proof Write X0 as a connected sum X # Rn . Then any such end sum is X # X1 .

The following corollary shows that 1–handles at infinity respect Stein structures. This
will be applied to 4–manifold smoothing theory in Theorem 5.4.

Corollary 4.10 Every manifold Z obtained from a Stein manifold X by attaching
1–handles at infinity, respecting the complex orientation, admits a Stein structure. The
resulting almost-complex structure on Z can be assumed to restrict to the given one
on X, up to homotopy.

Proof Since every open, oriented surface has a Stein structure and a contractible space
of almost-complex structures, we assume X has real dimension 2m � 4. Since X

is Stein, it has an exhausting Morse function with indices at most m. It can then be
described as the interior of a smooth (self-indexed) handlebody whose handles have
index at most m. This is well known when there are only finitely many critical points.
A proof of the infinite case is given in the appendix of [21], which also shows that
when mD 2 one can preserve the extra framing condition that arises for 2–handles,
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encoding the given almost-complex structure. By Corollaries 4.4 and 4.7, we can
realize the 1–handles at infinity by attaching compact handles to the handlebody before
passing to the interior (after adding infinitely many canceling 0=1 pairs if necessary to
accommodate infinitely many new 1–handles, avoiding compactness issues). Now we
can convert the handlebody interior back into a Stein manifold by Eliashberg’s theorem;
see [10]. The almost-complex structures then correspond by construction.

The proof of Theorem 4.6 follows from two lemmas. The first guarantees that (a) Mittag-
Leffler ends are well defined and (b) singular multirays with a given Mittag-Leffler end
function are unique up to proper homotopy.

Lemma 4.11 (a) If .X; 
 / is a Mittag-Leffler pair, then every singular ray de-
termining the same end as 
 is properly homotopic to 
 . In particular, the
Mittag-Leffler condition for ends is independent of choice of singular ray , so the
subset EML � E is well defined.

(b) Let 
0; 
1W S�Œ0;1/ ,!X be locally orienting singular multirays with the same
end function. Suppose that this function �
0

D �
1
has image in EML , and that

for each s with �
0
.s/ 2 EO , the corresponding locally orienting singular rays of


0 and 
1 induce the same orientation (depending on s ) of the end �
0
.s/. Then

there is a proper homotopy from 
0 to 
1 , respecting the given local orientations.

The first sentence and its converse are essentially Proposition 16.1.2 of Geoghegan [17],
which is presented as an immediate consequence of two earlier statements: Proposi-
tion 16.1.1 asserts that the set of proper homotopy classes of singular rays approaching
an arbitrary end corresponds bijectively to the derived limit lim

 ��

1 �1.Ui ; 
 .i// of a
neighborhood system Ui of infinity; Theorem 11.3.2 asserts that an inverse sequence
of countable groups Gi is Mittag-Leffler if and only if lim

 ��

1 Gi has only one element.
We follow those proofs but considerably simplify the argument, eliminating use of
derived limits, by focusing on the Mittag-Leffler case. This reveals the underlying
geometric intuition: If an end � is topologically collared by a neighborhood identified
with R�M, and 
 D .
R; 
M /W Œ0;1/!R�M is a singular ray, we can assume after
a standard proper homotopy of the first component that 
RW Œ0;1/!R is inclusion.
Then the proper homotopy 
s.t/ D

�
t; 
M ..1� s/t/

�
D

1
1�s


 ..1� s/t/ (where the
last multiplication acts only on the first factor) stretches the image of 
 , pushing any
winding in M out toward infinity, so that when s! 1 the ray becomes a standard
radial ray. If, instead, � only has a neighborhood system with �1 –surjective inclusions,
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we can compare two singular rays using an initial proper homotopy after which they
agree on ZC � Œ0;1/, and so only differ by a proper sequence of loops. Then �1 –
surjectivity again allows us to push the differences out to infinity: inductively collapse
loops by transferring their homotopy classes to more distant neighborhoods of infinity,
so that the resulting homotopy sends one ray to the other. In the general Mittag-Leffler
case, we still have enough surjectivity to push each loop to infinity after pulling it
back a single level in the neighborhood system (with properness preserved because we
only pull back one level). The following proof efficiently encodes this procedure with
algebra:

Proof First we prove (a), showing that an arbitrary singular ray 
 0 determining the
same Mittag-Leffler end as 
 is properly homotopic to it. We also keep track of
preassigned local orientations along the two singular rays. If �
 is orientable, we
assume these local orientations induce the same orientation on �
 (as in (b)). Let
fUig be a neighborhood system of infinity, arranged (by passing to a subsequence if
necessary) so that each j is i C 1 in the definition of the Mittag-Leffler condition, and
that the component of U1 containing �
 is orientable if �
 is. Then reparametrize

 so that each 
 .Œi;1// lies in Ui . Reparametrize 
 0 similarly, then arrange it to
agree with 
 on ZC by inductively moving 
 0 near each i 2 ZC separately, with
compact support inside Ui . The limiting homotopy is then well defined and proper. If
�
 is nonorientable, then so is the relevant component of each Ui , so we can assume
(changing the homotopy via orientation-reversing loops as necessary) that the local
orientations along the two singular rays agree at each i . (This is automatic when
�
 is orientable.) The two singular rays now differ by a sequence of orientation-
preserving loops, representing classes xi 2 �1.Ui ; 
 .i// for each i � 1. Inductively
choose orientation-preserving classes yi 2 �1.Ui ; 
 .i// for all i � 2 starting from
an arbitrary y2 , and for i � 1 choosing yiC2 2 �1.UiC2; 
 .i C 2// to have the
same image in �1.Ui ; 
 .i// as x�1

iC1
yiC1 2 �1.UiC1; 
 .i C 1//. (This is where the

Mittag-Leffler condition is necessary.) For each i � 1, let zi D xiyiC1 2 �1.Ui ; 
 .i//

(where we suppress the inclusion map). In that same group, we then have ziz
�1
iC1
D

xiyiC1y�1
iC2

x�1
iC1
Dxi . After another proper homotopy, we can assume the two singular

rays and their induced local orientations on X agree along 1
2
ZC and give the sequence

z1; z
�1
2
; z2; z

�1
3
; : : : in U1;U1;U2;U2; : : : . Now a proper homotopy fixing ZCC 1

2

cancels all loops between these points and eliminates z1 (moving 
 0.0/), so that the
two singular rays coincide. This completes the proof of (a), and also (since EML is now
well defined) the case of (b) with S a single point.
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For the general case of (b), we wish to apply the previous case to each pair of singular
rays separately. The only issue is properness of the resulting homotopy of singular
multirays. Let fWj g be a neighborhood system of infinity with W1 D X. For each
s 2 S, find the largest j such that Wj contains both rays indexed by s , and apply
the previous case inside that Wj . Since the singular multirays are proper, each Wj

contains all but finitely many pairs of singular rays, guaranteeing that the combined
homotopy is proper.

Remark To see the correspondence of this proof with the geometric description, first
consider the case with all inclusion maps �1 –surjective. Then the argument simplifies:
We can just define z1 D 1, and inductively choose ziC1 to be any pullback of x�1

i zi .
Then zi is a pullback of .x1 � � �xi�1/

�1 to Ui , exhibiting the loops being transferred
toward infinity.

To upgrade a proper homotopy of multirays to an ambient isotopy, we need the following
lemma:

Lemma 4.12 Suppose that X is a CAT n–manifold with n � 4 and Y is a CAT

1–manifold with b1.Y /D 0. Let �W I �Y ,! Int X be a topological proper homotopy,
between CAT embeddings 
i for i D 0; 1 that extend to CAT tubular neighborhood
maps �i W Y �Rn�1 ,!X whose local orientations correspond under � . Then there is
a CAT ambient isotopy ˆW I �X ! X, supported in a preassigned neighborhood of
Im� , such that ˆ0 D idX and ˆ1 ı �0 agrees with �1 on a neighborhood of Y � f0g

in Y �Rn�1 .

This lemma is well known when CATD DIFF or PL, but a careful proof seems justified
by the subtlety of noncompactness: the corresponding statement in R3 is false even
with � a proper (nonambient) isotopy of Y D R. (Such an isotopy � can slide a
knot out to infinity, changing the fundamental group of the complement, and this can
even be done while fixing the integer points of R.) The case CAT D TOP is also
known to specialists. We did not find a theorem in the literature from which it follows
immediately. Instead, we derive it from much stronger results of Dancis [12] with
antecedents dating back to pioneering work of Homma [28].

Proof First we solve the case CATD DIFF . By transversality, we may assume (after
an ambient isotopy that we absorb into ˆ) that 
0 and 
1 have disjoint images. Then
we properly homotope � rel @I �Y to be smooth and generic, so it is an embedding if
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n� 5 and an immersion with isolated double points if nD 4. After decomposing Y as
a cell complex with 0–skeleton Y0 , we can assume � restricts to a smooth embedding
on some neighborhood of I �Y0 . Then there is a tubular neighborhood J of Y0 in Y

such that �jI�J extends to an ambient isotopy. (Apply the isotopy extension theorem
separately in disjoint compact neighborhoods of the components of �.I �Y0/.) After
using this ambient isotopy to define ˆ for parameter t � 1

2
, it suffices to assume �

fixes J, and view � as a countable collection of path homotopies of the 1–cells of Y .
We need the resulting immersed 2–disks to be disjoint. This is automatic when n� 5,
but is the step that fails for knotted lines in R3 . For n D 4, we push the disks off
of each other by finger moves. This operation preserves properness of � since each
compact subset of X initially intersects only finitely many disks, which have only
finitely many intersections with other disks (and we do not allow finger moves over
other fingers). Now we can extend to an ambient isotopy, working in disjoint compact
neighborhoods of the disks. We arrange �0 to correspond with �1 by uniqueness of
tubular neighborhoods and contractibility of the components of Y .

We reduce the PL and TOP cases to DIFF. As before, we can assume the images of

0 and 
1 are disjoint. (We did not find a clean TOP statement of this. However, we
can easily arrange 
0.Y0/ to be disjoint from 
1.Y /, then apply [12, General Position
Lemma 3]. While this lemma assumes the moved manifold is compact and without
boundary, we can apply it to the remaining 1–cells of 
0.Y / by arbitrarily extending
them to circles.) A tubular neighborhood N of 
0.Y /t
1.Y / now inherits a smoothing
† from the maps �i . If nD 4, † extends over the entire manifold X except for one
point in each compact component [14]. Homotoping � off of these points, we reduce
to the case CATD DIFF . If n� 5, we again homotope � rel @I �Y to an embedding.
(Again we found no clean TOP statement, but it follows by smoothing � on ��1.N /,
homotoping so that ��1.N / is a collar of @I � Y , and applying [12, Corollary 6.1]
in X �N.) Since .I; @I/ � Y has no cohomology above dimension 1, there is no
obstruction to extending † over a neighborhood of the image of � , again reducing to
CATD DIFF .

Proof of Theorem 4.6 For each iD0; 1, the two multirays 
�i and 
Ci can be thought
of as a single multiray 
i with index set S� D S � f�1; 1g. For each index .s; �/ 2
��1

0
.EO/�S� , we arrange for the corresponding locally orienting rays in 
0 and 
1 to

induce the same orientation of the end: If this is not already true, then hypothesis (b) of
the theorem implies that the opposite end �
0

.s;��/ is Mittag-Leffler but nonorientable.
In this case, reverse the local orientations along both rays in 
1 parametrized by s . This
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corrects the orientations without changing Z1 , since the change extends as a reflection
of the 1–handle fsg � Œ0; 1��Rn�1 . Now split 
i into two multirays 
ML

i and 
 bad
i ,

according to whether the rays determine Mittag-Leffler ends. By hypothesis (a), we
have a proper homotopy from 
 bad

0
to 
 bad

1
, which respects the local orientations by

hypothesis (b) after further possible flips as above when the opposite end is Mittag-
Leffler but nonorientable. Lemma 4.11(b) then gives a proper homotopy from 
ML

0

to 
ML
1

respecting local orientations. Reassembling the multirays, we obtain a proper
homotopy from 
0 to 
1 that respects local orientations. Now we apply Lemma 4.12
with Y D S� � Œ0;1/, and �i the given tubular neighborhood map for 
i (after the
above flips). We obtain a CAT ambient isotopy ˆ of idX such that ˆ1 ı �0 agrees
with �1 on a neighborhood N of S��Œ0;1/�f0g in S��Œ0;1/�Rn�1 . Note that the
quotient space Zi does not change if we cut back the 1–handles S�Œ0; 1��Rn�1 to any
neighborhood N 0 of S �

˚
1
2

	
�Rn�1 and use the restricted gluing map. Recall that the

gluing map factors through an Rn�1 –bundle map idS �'
˙��˙ to S��Œ0;1/�Rn�1 .

We can assume that the resulting image of N 0 lies in some disk bundle (with radii
increasing along the rays) inside S� � Œ0;1/ � Rn�1 . A smooth ambient isotopy
supported inside a larger disk bundle moves this image into N . Conjugating with �i

gives a CAT ambient isotopy ‰.i/ on X. Then ˆ0 D‰�1
.1/
ıˆ ı‰.0/ is a CAT ambient

isotopy for which ˆ0
1
ı�0 agrees with �1 on N 0. The CAT homeomorphism ˆ0

1
extends

to one sending Z0 to Z1 with the required properties.

We can now address uniqueness of ladder surgeries. Note that their definition immedi-
ately extends to unoriented manifolds, provided that we use locally orienting multirays.

Corollary 4.13 For a CAT manifold X, discrete S and iD0; 1, let 
˙i W S�Œ0;1/ ,!
X be locally orienting CAT multirays with disjoint images (for each fixed i ) such that
the end functions �


˙
i

W S ! E.X / are independent of i . Suppose that for each
s 2 ��1


�
0
.EO/\ �

�1


C

0
.EO/, the local orientations of the corresponding rays in 
˙i induce

the same orientation of the end for i D 0; 1. Then the manifolds Zi obtained by ladder
surgery on X along 
˙i are CAT homeomorphic.

Proof As in the previous proof, we assume that each ray of 
˙
0

determining an
orientable end induces the same orientation of that end as the corresponding ray of 
˙

1
,

after reversing orientations on some mated pairs of rays (with the mate determining
a nonorientable end). Since the end functions are independent of i , there is a proper
homotopy of 
˙

0
for each choice of sign, after which 
˙i .s; n/ is independent of i for

each s 2 S and n 2 ZC (as in the proof of Lemma 4.11). We can assume the local
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orientations agree at each of these points, after possibly changing the homotopy on
each ray determining a nonorientable end. The proper homotopy of 
˙

0
jS�ZC extends

to an ambient isotopy as in the proof of Lemma 4.12, without dimensional restriction
(since we only deal with the 0–skeleton Y0 ).

5 Smoothings of open 4–manifolds

Recall from Section 2 that end summing with an exotic R4 can be defined as an
operation on the smooth structures of a fixed topological 4–manifold, and that one can
similarly change smoothings of n–manifolds by summing with an exotic R�Sn�1

along a properly embedded line. (The latter is most interesting when nD 4, but the
comparison with higher dimensions is illuminating.) We now address uniqueness of
both operations, expressing them as monoid actions on the set of isotopy classes of
smoothings of a topological manifold. We define an action of a monoid M on a set S
by analogy with group actions: each element of M is assigned a function S ! S ,
with the identity of M assigned idS , and with monoid addition corresponding to
composition of functions in the usual way.

We first consider end summing with an exotic R4 . The second author showed in [19]
that the set R of oriented diffeomorphism types of smooth manifolds homeomorphic
to R4 admits the structure of a commutative monoid under end sum, with identity given
by the standard R4 , and such that countable sums are well defined and independent
of order and grouping. (Infinite sums were defined as simultaneously end summing
onto the standard R4 along a multiray in the latter. Thus, the statement follows
from Theorem 4.6 with the two multirays 
Ci in R4 differing by a permutation of S,
and with Corollary 4.8 addressing grouping; see also Section 6.) For any set S, the
Cartesian product RS inherits a monoid structure with the same properties, as does the
submonoid RS

c of S –tuples that are the identity except in countably many coordinates.
Note that every action by such a monoid inherits a notion of infinite iteration, since we
can sum infinitely many monoid elements together before applying them. In the case
at hand, we obtain the following corollary of the lemmas of the previous section. We
again split a multiray 
 W S � Œ0;1/!X into two multirays 
MLW SML� Œ0;1/!X

and 
badW Sbad � Œ0;1/!X, according to which rays determine Mittag-Leffler ends.

Corollary 5.1 Let X be a TOP 4–manifold with a locally orienting TOP multiray

 W S � Œ0;1/!X. Then 
 determines an action of RS on the set S.X / of isotopy
classes of smoothings of X. The action only depends on the proper homotopy class of
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the locally orienting multiray 
bad , the function �
ML and the subset of SML inducing a
preassigned orientation on the orientable ends. In particular , if X is oriented (or orien-
tations are specified on all orientable Mittag-Leffler ends) then the monoid REML.X /

c

acts canonically on S.X /.

Note that orientation reversal induces an involution on the monoid R, and changing
the local orientations of 
 changes the action by composing with this involution on the
affected factors of RS.

Proof To define the action, fix a smoothing on X and an indexed set fRs j s 2 Sg of
elements of R. According to Quinn [36] — see also [14] — 
 can be made smooth by a
TOP ambient isotopy. For each s2S, choose a smooth ray 
 0 in Rs , and use it to sum Rs

with X along the corresponding ray in X. We do this by homeomorphically identifying
the complement of a tubular neighborhood of 
 0 (with smooth R3 boundary) with a
corresponding closed tubular neighborhood of the ray in X (preserving orientations),
then transporting the smoothing of Rs to X. We assume the identification is smooth
near each boundary R3 , and then the smoothing fits together with the given one on the
rest of X. This process can be performed simultaneously for all s 2S, provided that we
work within a closed tubular neighborhood of 
 . Each ray 
 0 is unique up to smooth
ambient isotopy (Lemma 4.12), and the required identifications of neighborhoods
(homeomorphic to the half-space Œ0;1/�R3 ) are unique up to topological ambient
isotopy that is smooth on the boundary (by the Alexander trick), so the resulting
isotopy class of smoothings on X is independent of choices made in the Rs summands.
Similarly, the resulting smoothing is changed by an isotopy if the original smoothing of
X is isotoped or 
 is changed by a proper homotopy (Lemma 4.12 again). In particular,
the initial choice of smoothing of 
 does not matter. Since the proper homotopy class
of the locally orienting multiray 
ML is determined by �
ML and the orientation data
(Lemma 4.11(b)), we have a well-defined function S.X /! S.X / determined by an
element of RS and the data given in the corollary.

The rest of the corollary is easily checked. To verify that we have a monoid action,
consecutively apply two elements fRsg and fR0sg of RS. This uses the multiray �
twice. After summing with each Rs , however, � lies in the new summands, so we are
equivalently end summing X with the sum of the two elements of RS as required. If
we enlarge the index set S of fRsg while requiring all of the new summands Rs to
be R4 , the induced element of S.X / will be unchanged, so it is easy to deduce the
last sentence of the corollary even when EML is uncountable.
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In contrast with more general end sums, the action of RS on S.X / is not known to
vary with the choice of proper homotopy class of 
 (for a fixed end function).

Question 5.2 Suppose that two locally orienting multirays in X have the same end
function , and that for each s2S, the two corresponding rays induce the same orientation
on the corresponding end , if it admits one. Can the two actions of RS on S.X / be
different?

We can also ask about diffeomorphism types rather than isotopy classes as in Question 1.2.
Clearly, any example of nonuniqueness must involve an end that fails to be Mittag-
Leffler, such as one arising by ladder surgery. While such examples seem likely to
exist, there are also reasons for caution, as we now discuss.

First, not every exotic R4 can give such examples. Freedman and Taylor [15] con-
structed a “universal” R4 , RU 2R, which is characterized as being the unique fixed
point of the R–action on itself. They essentially showed that for any smoothing †
of a 4–manifold X, the result of end summing with copies of RU depends only on
the subset of E.X / at which the sums are performed, regardless of whether those
ends are Mittag-Leffler. Then R subsequently acts trivially on each of those ends.
They also showed that the result of summing with RU on a dense subset of ends
creates a smoothing depending only on the stable isotopy class of † (classified by
H 3.X; @X IZ=2/). For such a smoothing, RS acts trivially for any choice of multiray.
The main point is that the universal property is obtained through a countable collection
of disjoint compact subsets of RU that allow h–cobordisms to be smoothly trivialized.
If X is summed with RU on one side of a ladder sum (for example), those compact
subsets are also accessible on the other side by reaching through the rungs of the ladder.

A second issue is that examples of nonuniqueness would be subtle and hard to distin-
guish:

Proposition 5.3 Let X be a TOP 4–manifold with smoothing †. Let


0; 
1W S � Œ0;1/!X

be multirays as in the above question, inducing smoothings †0 and †1 , respectively,
via a fixed element of RS. Then, for every compact DIFF 4–manifold K , every †0 –
smooth embedding �W K!X is TOP ambiently isotopic to a †1 –smooth embedding.
After isotopy of †1 , every neighborhood of infinity in X contains another such
neighborhood U such that whenever �.K/�U and K is a 2–handlebody, the resulting
isotopy can be assumed to keep �.K/ inside U.
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This shows that many of the standard 4–dimensional techniques for distinguishing
smooth structures will fail in the above situation. One of the oldest techniques for
distinguishing two smoothings on R4 is to find a compact DIFF manifold that smoothly
embeds in one but not the other [19]. A newer incarnation of this idea is the Taylor
invariant [39], distinguishing DIFF 4–manifolds via an exotic R4 embedded in one
with compact closure. Clearly, such techniques must fail in the current situation. Most
recently, the second author [23] constructed infinite families of smooth structures on
many open 4–manifolds, distinguished by the minimal genera of smoothly embedded
surfaces representing various homology classes. However, any such surface for the
above smoothing †0 will be homologous to one of the same genus for †1 and
vice versa. Minimal genera at infinity [23] will also fail: if we choose a system of
neighborhoods U of infinity as in the proposition, any corresponding sequence of
†0 –smooth surfaces in these will be homologous to a corresponding sequence for
†1 with the same genera. A possibility remains of distinguishing †0 and †1 by
sequences of smoothly embedded 3–manifolds approaching infinity (such as by the
engulfing index of Bižaca and Gompf [5]; see also [23, Remark 4.3(b)]) but there
does not currently seem to be any good way to analyze such sequences. Note that
the situation is not improved by passing to a cover, since the corresponding lifted
smoothings will behave similarly. (The multirays 
i will lift to multirays, and for
each s 2 S the lifts of the corresponding rays of 
0 and 
1 will be multirays with end
functions whose images have the same closure in E. zX /; see the last paragraph of the
proof of [22, Theorem 8.1]. The proof below still applies to this situation.)

Proof For the first conclusion, let x�i W S � Œ0;1/�D3! X be the closed tubular
neighborhood maps of the multirays 
i used for the end sums. By properness, both
subsets x��1

i �.K/ are contained in a single subset of the form T D S0 � Œ0;N ��D3

for some finite S0 � S and N 2 ZC . We need a †–smooth ambient isotopy ˆt

of idX such that ˆ1 ı x�0 D x�1 on T , allowing no new intersections with �.K/, ie
with x��1

1
ˆ1�.K/ still lying in T . This is easily arranged, since for each s 2 S0

the corresponding rays of 
0 and 
1 determine the same end and induce the same
orientation on it if possible. This allows us to move 
0.s;N / to 
1.s;N / so that the
local orientations agree, and then complete the isotopy following the initial segments of
the rays. (The end hypothesis is needed when X � �.K/ is disconnected, for example.)
After we perform the end sums, our isotopy will only be topological. However, ˆ1 ı �

will be †1 –smooth, as required, since the new smoothings correspond under ˆ1 on
the images of T and the smoothing † is preserved elsewhere on �.K/.
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For the second statement, assume (isotoping †1 ) that the images of x�i for i D 0; 1 are
disjoint. Given a neighborhood of infinity, pass to a smaller neighborhood U such that
the two subsets x��1

i .U / are equal, with complement of the form S1 � Œ0;N
0��D3

for some finite S1 and N 0 2 ZC . For any K and � with �.K/� U, we can repeat the
previous argument. There is only one difficulty: if K DM 3 � I, for example, some
sheets of M may be caught between @U and the moving image of 
0 during the final
isotopy, and be pushed out of U. However, if K is a handlebody with all indices 2 or
less, we can remove the image of K from the path of 
0 (which will be following arcs
of 
1 ) by transversality. The statement now follows as before.

Elements of R can be either large or small, depending on whether they contain a com-
pact submanifold that cannot smoothly embed in the standard R4 (eg [26, Section 9.4]).
Action on S.X / by small elements does not change the invariants discussed above
(except for 3–manifolds at infinity), but still can yield uncountably many diffeomor-
phism types [23, Theorem 7.1]. However, large elements typically do change invariants.
In particular, the minimal genus of a homology class can drop under end sum with,
for example, the universal R4 [23, Theorem 8.1]. For Stein surfaces, the adjunction
inequality gives a lower bound on minimal genera, which is frequently violated after
such sums. Thus, the following application of Corollary 4.10 seems surprising:

Theorem 5.4 (Bennett [3, Corollary 4.1.3]) There is a family fRt j t 2Rg of distinct
large elements of R (with nonzero Taylor invariant) such that if Z is obtained from
a Stein surface X by any orientation-preserving end sums with elements Rt then the
adjunction inequality of X applies in Z .

Nevertheless, we expect such sums to destroy the Stein structure, since every handle
decomposition of each Rt requires infinitely many 3–handles. The idea of the proof is
that [3] or [4] constructs such manifolds Rt embedded in Stein surfaces, in such a way
that the sums can be performed pairwise. By Corollary 4.10, we obtain Z embedded
in a Stein surface, so that the adjunction inequality is preserved.

Next we consider sums along properly embedded lines. For a fixed n� 4, let Q denote
the set of oriented diffeomorphism types of manifolds homeomorphic to R�Sn�1 , with
a given ordering of their two ends. Each such manifold admits a DIFF proper embedding
of a line, preserving the order of the ends, and this is unique up to DIFF ambient isotopy
by Lemma 4.12. Thus, Q has a well-defined commutative monoid structure induced
by summing along lines, preserving orientations on the lines and n–manifolds. (This
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time, properness prevents infinite sums.) The identity is R�Sn�1 with its standard
smoothing. For nD 5; 6; 7, Q is trivial, and for n> 5, Q is canonically isomorphic
to the finite group ‚n�1 of homotopy .n�1/–spheres [30] (by taking their product
with R). However, when n D 4, Q has much more structure: High-dimensional
theory predicts that Q should be Z=2, but in fact it is an uncountable monoid with
an epimorphism to Z=2 (analogous to the Rokhlin invariant of homology 3–spheres).
Uncountability is already suggested by Corollary 5.1, but the structure of Q is richer
than can be obtained just by acting by R at the two ends, as can be seen as follows.
For V;V 0 2Q, call V a slice of V 0 if it embeds in V 0 separating the ends. (For this
discussion, orientations and order of the ends do not matter.) Every known “large”
exotic R4 has a neighborhood of infinity in Q with the property that disjoint slices are
never diffeomorphic [19]. This neighborhood clearly has infinitely many disjoint slices,
which form an infinite family in Q such that no two share a common slice. Thus, no
two are obtained from a common element of Q by the action of R�R. A similar
family representing the other class in Z=2 is obtained from the end of a smoothing of
Freedman’s punctured E8 –manifold.

To get an action on S.X / for n � 4, let 
 W S � R ! X (with S discrete) be a
proper, locally orienting TOP embedding. Then QS has a well-defined action on S.X /
(although without infinite iteration) by the same method as before, and this only
depends on the proper homotopy class of 
 . (We assume after proper homotopy that

�1.@X / D ∅. To see that a self-homeomorphism rel boundary of R �Dn�1 is
isotopic to the identity, first use the topological Schoenflies theorem to reduce to the
case where f0g�Dn�1 is fixed.) Note that while Q admits only finite sums, the set S

may be countably infinite. Examples 3.4 showed that the action of Q on S.X / for a
two-ended 4–manifold X can depend on the choice of line spanning the ends, and in
high dimensions, even the resulting diffeomorphism type can depend on the line. We
next find fundamental group conditions eliminating such dependence.

To obtain such conditions, note that the fundamental progroup of X based at a ray 

has an inverse limit with well-defined image in �1.X; 
 .0//. In the Mittag-Leffler case,
its image equals the image of �1.U2; 
 .2// for a suitably defined neighborhood system
of infinity (ie with j D i C 1 in Definition 4.1). If 
 is instead a line, it splits as a pair

˙ of rays, obtained by restricting its parameter ˙t to Œ0;1/, determining ends �˙
and images G˙��1.X; 
 .0// of the corresponding inverse limits. We will call the pair
.��; �C/ a Mittag-Leffler couple if both ends are Mittag-Leffler and the double coset
space G�n�1.X; 
 .0//=GC is trivial. The proof below shows that 
 is then uniquely
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determined up to proper homotopy by the pair of ends, so the condition is independent
of choice of 
 (as well as the direction of 
 ). A proper embedding 
 W S�R!X now
splits into 
ML and 
bad according to which lines connect Mittag-Leffler couples, and
the restriction �
ML of the end function �
 W S �f˙1g! E picks out the corresponding
pairs of Mittag-Leffler ends. For simplicity, we now assume X is oriented.

Corollary 5.5 Let X be an oriented topological n–manifold (with n � 4) with a
proper embedding 
 W S �R! X. Then 
 determines an action of QS on S.X /,
depending only on the proper homotopy classes of 
bad and 
ML . If the latter consists
of finitely many lines , it only affects the action through its end function �
ML .

If X is simply connected and EML is finite, we obtain a canonical action of QEML�EML

on S.X /.

Proof For a proper embedding 
 of R determining a Mittag-Leffler couple �˙ as
above, we show that any other embedding 
 0 determining the same ordered pair of ends
is properly homotopic to 
 . This verifies that Mittag-Leffler couples are well defined,
and proves the corollary. (The finiteness hypothesis guarantees properness of the
homotopy that we make using the proper homotopies of the individual lines.) Let fUig

be a neighborhood system of infinity as in the proof of Lemma 4.11, and reparametrize
the four rays 
˙ and
 0

˙
accordingly (fixing 0). As before, we can properly homotope 
 0

to agree with 
 on Z�R, so that 
 and 
 0 are related by a doubly infinite sequence
of loops. The loop captured between ˙2 (starting at 
 .0/, then following 
� , 
 0 and,
backwards, 
C ) represents a class in �1.X; 
 .0// that by hypothesis can be written in
the form w�wC with w˙ 2G˙ . After a homotopy of 
 0 supported in Œ�2; 2�, we can
assume that 
 0 D 
 on Œ�1; 1�, and the innermost loops are given by w˙ pulled back
to �1.U1; 
 .˙1//. Working with each sign separately, we now complete the proof
of Lemma 4.11(a), denoting the pullback of w˙ by x1 as before. By the definition
of G˙ , x1 can be assumed to pull back further to �1.U2; 
˙.2//; let y2 be the inverse
of such a pullback. Completing the construction, we see that z1 D 1, so that 
 0 is then
properly homotoped to 
 rel Œ�1; 1�.

Corollary 5.5 is most interesting when nD 4, since classical smoothing theory reduces
the higher-dimensional case to discussing the Poincaré duals of the relevant lines in
H n�1.X; @X I‚n�1/. When nD 4, this same discussion applies to the classification of
smoothings up to stable isotopy (isotopy after product with R) by the obstruction group
H 3.X; @X IZ=2/, but one typically encounters uncountably many isotopy classes (and
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diffeomorphism types) within each stable isotopy class. Note that the above method
can be used to study sums of more general CAT manifolds along collections of lines.
In dimension 4, one can also consider actions on S.X / of the monoid Qk of oriented
smooth manifolds homeomorphic to a k –punctured 4–sphere †k with an order on
the ends, generalizing the cases Q1 DR and Q2 DQ considered above. (The monoid
operation is summing along k –fold unions of rays with a common endpoint; see the
end of Gompf [20] for a brief discussion.) However, little is known about this monoid
beyond what can be deduced from Corollaries 5.1 and 5.5 and the structure of R
and Q. It follows formally from having infinite sums that R has no nontrivial invertible
elements, and no nontrivial homomorphism to a group [19]; see also Theorem 6.2.
However, the other monoids do not allow infinite sums. This leads to the following
reformulation of Question 3.5:

Question 5.6 Does Q (or more generally any Qk with k � 2) have any nontriv-
ial invertible elements? Is H 3.†k IZ=2/ the largest possible image of Qk under a
homomorphism to a group?

6 1–handle slides and 0=1–handle cancellation at infinity

Our uniqueness result for adding 1–handles at infinity (Theorem 4.6) easily extends to
adding both 0– and 1–handles at infinity, while allowing infinite slides and cancellation
(Theorem 6.1). With compact handles of index 0 and 1, one may easily construct
countable handlebodies that are contractible, but are distinguished by their numbers
of ends. In this regard, adding 0– and 1–handles at infinity turns out to be simpler.
For instance, in each dimension at least four, every (at most) countable, connected and
oriented union of 0– and 1–handles at infinity is determined by its first Betti number.
As an application of Theorem 6.1, we give a very natural and partly novel proof of the
hyperplane unknotting theorem. The novelty here is that 0– and 1–handles at infinity
provide the basic framework in which we employ Mazur’s infinite swindle.

For simplicity, we assume throughout this section that all manifolds are oriented and
all handle additions respect orientations.

Let X be a possibly disconnected CAT n–manifold with n� 4. Add to X a collection
of 0–handles at infinity W D

F
i2J wi where each wi is CAT homeomorphic to Rn .

The index set J and all others below are discrete and countable. Attach to X tW a
collection of 1–handles at infinity H D

F
i2S hi where each hi is CAT homeomorphic
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h1

h2

h3 h4

h5

h6

h7

h8

h9

h10

h11

h12 h13

w1

w2

w3

w4

w5 w6

X

Figure 2: Manifold Z obtained from the manifold X by adding 0– and
1–handles at infinity, the latter denoted by arcs

to Œ0; 1��Rn�1 (see Figure 2). By Definition 2.1 and Theorem 4.6, H is determined
by multiray data 
�; 
CW S � Œ0;1/ ,!X tW with disjoint images.

To this data, we associate a graph G defined as follows (see Figure 3). Let fvi j i 2 Ig

be the set of proper homotopy classes of rays in the multiray data for H that lie in X.
Each vi has at least one representative of the form 
�.ji/ or 
C.ji/ for some ji 2 S.
The vertex set V of G is

V WD fvi j i 2 Ig t fwi j i 2 J g:

D1
C1

C2

C3

v1

v2

v3

v4

v5

w1

w2

w3

w4

w5 w6

P1 D fv1; v2; v4g

P2 D fv3g

P3 D fv5g

Figure 3: Graph G associated to the construction in Figure 2 and induced
partition of the vertices vi in X
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The collection E of edges of G is bijective with the 1–handles at infinity H and thus
is indexed by S. The edge ei , with i 2 S, corresponding to hi is formally defined
to be the multiset of the two vertices in V determined by the multiray data of hi . In
particular, E itself is a multiset, and the graph G is countable, but is not necessarily
locally finite, connected or simple. Indeed, G may have multiple edges and loops. Let
C D

F
i2I.C / Ci be the connected components of G such that each component Ci

contains a vertex vj.i/ in X. Let D D
F

i2I.D/Di be the remaining components of
G where each component Di contains no vertex vj in X. Notice that C induces a
partition P D fPj j j 2 I.C /g of fvi j i 2 Ig where Pj is the subset of vertices in
fvi j i 2 Ig that lie in Cj . Below, Betti numbers bk are finite or countably infinite.

Theorem 6.1 For a CAT n–manifold X with n�4, the CAT oriented homeomorphism
type of the manifold Z obtained by adding 0– and 1–handles at infinity to X as above
is determined by:

(a) The set of pairs .Pj ; b1.Cj // where Pj 2 P .

(b) The multiset with elements b1.Di/ where i 2 I.D/.

Thus, we only need to keep track of which proper homotopy classes of rays in X

are used by at least one 1–handle (encoded as the vertices in each Pj ), together with
the most basic combinatorial data of the new handles. When the relevant ends are
Mittag-Leffler, we can replace the ray data by the set of corresponding ends. The
theorem implies that all 0–handles at infinity can be canceled except for one in each
component of Z disjoint from X, and that we can slide 1–handles over each other
whenever their attaching rays are properly homotopic (eg whenever they determine
the same Mittag-Leffler end). Furthermore, any reasonable notion of infinitely iterated
handle sliding is allowed.

Proof First, consider a component Di of G. Let M denote the component of Z

corresponding to Di . By Corollary 4.7, we can and do assume that the rays used to
attach 1–handles at infinity in M are radial (while still remaining proper and disjoint).
Then, when Di is a tree, we can easily describe M as a nested union of smooth
n–disks, so it is a copy of Rn . In general, a spanning tree T of Di determines a copy
of Rn in M (namely, one ignores a subset of the 1–handles at infinity). Thus, M

is Rn with b1.Di/ 1–handles at infinity attached. By Corollary 4.7, such a manifold
is determined by b1.Di/.

Second, consider a component Cj of G. Let N denote the component of Z corre-
sponding to Cj . Let N 0 be the n–manifold obtained from N as follows. For each
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vertex vk in Cj , introduce a 0=1–handle pair at infinity where the new 1–handle at
infinity attaches to a ray in the class vk and to a ray in the new 0–handle at infinity.
Also, the 1–handles at infinity in N attached to rays in the class of vk attach in N 0

to rays in the new 0–handle at infinity. Theorem 4.6 implies that N and N 0 are CAT

oriented homeomorphic. The graph C 0j corresponding to N 0 is obtained from Cj by
adding a leaf to each vk . Let T be a spanning tree of the connected graph obtained
by removing the new leaves from C 0j . Then, T determines a copy of Rn in N 0. This
exhibits N 0 as the components of X containing the vertices in Pj , a single 0–handle
at infinity w0 , b1.Cj / oriented 1–handles at infinity attached to w0 , and an oriented
1–handle at infinity from each vk 2 Pj to w0 .

As an application of 1–handle slides and 0=1–handle cancellation at infinity, we prove
the hyperplane unknotting theorem of Cantrell [9] and Stallings [38]. Recall that we
assume CAT embeddings are locally flat.

Theorem 6.2 Let f W Rn�1! Rn be a proper CAT embedding with n � 4, and let
H D f .Rn�1/. Then there is a CAT homeomorphism of Rn that carries H to a linear
hyperplane.

A CAT ray in Rk is unknotted provided there is a CAT homeomorphism of Rk that
carries the ray to a linear ray. Recall that each CAT ray in Rk , k � 4, is unknotted. For
CATD PL and CATDDIFF , this fact follows from general position, but for CATD TOP it
is nontrivial and requires Homma’s method (see Lemma 4.12 above and [8, Section 7]).
Thus, the following holds under the hypotheses of Theorem 6.2 by taking r to be the
image under f of a linear ray in Rn�1 : There is a CAT ray r �H that is unknotted in
both H and Rn , where the former means f �1.r/ is unknotted in Rn�1 .

The hyperplane H separates Rn into two connected components by Alexander duality.
Let A0 and B0 denote the closures in Rn of these two components as in Figure 4. So,
@A0 DH D @B0, and H has a bicollar neighborhood in Rn . Using the bicollar, define

A WDA0[ .open collar on H in B0/;

B WDB0[ .open collar on H in A0/;

as in Figure 4. Figure 4 also depicts CAT rays a�A and b � B that are radial with
respect to the collarings. Evidently, a and b are CAT ambient isotopic to r in A

and B , respectively. (These simple isotopies have support in a neighborhood of the
open collars).
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Rn

H

A0

B0 r

a

b

.A; r/

.B; r/

Figure 4: Closures A0 and B0 of the complement of H in Rn (left) and their
unions A and B with open collars on H (right)

Lemma 6.3 It suffices to show that A0 and B0 are CAT homeomorphic to the closed
upper half-space Rn

C .

Proof We are given CAT homeomorphisms gW A0!Rn
C and hW B0!Rn

C . Replace
h by its composition with a reflection so that h maps B0!Rn

� . Note that g and h

need not agree pointwise on H. Identify Rn�1 � f0g with Rn�1 . We have a CAT

homeomorphism j W Rn�1!Rn�1 given by the restriction of gıh�1 to Rn�1 . Define
the CAT homeomorphism kW B0!Rn

� by k D .j � id/ıh (that is, compose h with j

at each height). Now, g and k agree pointwise on H. For CATD TOP and CATD PL ,
the proof of the lemma is complete. For CATD DIFF , one smooths along collars as in
Hirsch [27, Theorem 1.9, page 182].

D .A; a/Š .A; r/

D .B; b/Š .B; r/

D .Rn; c/

Figure 5: Notation for relevant manifold/ray pairs

We will use the symbols in Figure 5 to denote the indicated manifold/ray pairs. Here,
c is a radial ray in Rn . All rays in this proof, such as a and b , will be parallel (CAT

ambient isotopic) to r or c . An added 1–handle at infinity will be denoted by an arc
connecting such symbols as in Figure 6.

Lemma 6.4 All three of the manifold/ray pairs in Figure 6 are CAT homeomorphic to
one another.
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ŠŠ

Figure 6: Isomorphic manifold/ray pairs

Proof First, we claim that adding a 1–handle at infinity to .A; a/t .B; b/ yields Rn .
Recalling the collars in Figure 4, the claim would be evident if we could choose the
tubular neighborhood maps for the 1–handle at infinity to be the full collars in the Rn�1

directions. However, an open tubular neighborhood must, by our definition, extend
to a closed tubular neighborhood. So, instead we use smaller tubular neighborhoods
inside the collars as follows. Identify the collar on H in A with Rn�1 � Œ0; 1/ so that
H corresponds to Rn�1 � f0g and the ray a corresponds to f0g �

�
1
2
; 1
�
. For each

t 2
�

1
2
; 1
�
, there is an open horizontal .n�1/–disk in Rn�1 � Œ0; 1/ at height t , of

radius 1=.1� t/ and with center on a. The union of these disks is our desired open
tubular neighborhood of a. Similarly, we obtain an open tubular neighborhood of b

using the compatible collar in B . The claim follows by attaching the 1–handle at
infinity using these tubular neighborhood maps and reparametrizing collars. Next, let
a0 and b0 be the indicated rays in Figure 6 parallel to a and b , respectively. The lemma
follows by shrinking the above tubular neighborhood maps in the Rn�1 directions to
be disjoint from a0 and b0, respectively.

Lemma 6.5 It suffices to prove that .A; a/ and .B; b/ are CAT homeomorphic as
pairs to .Rn; c/.

Proof First, consider the cases CATD DIFF and CATD PL . The collar on H in A is
a CAT closed regular neighborhood of a in A with boundary H. Using the hypothesis
.A; a/Š .Rn; c/, apply uniqueness of such neighborhoods in .Rn; c/ to see that A0 is
CAT homeomorphic to Rn

C . Similarly, B0 is CAT homeomorphic to Rn
C . Now, apply

Lemma 6.3.

For CATD TOP , we are given a homeomorphism gW .A; a/! .Rn; c/. Let V ŠRn
C

be the collar added to A0 along H to obtain A as in Figure 4. Let U Š Rn
C be a

collar on H in A on the opposite side of H as in Figure 7. Recall that Rn itself is an
open mapping cylinder neighborhood of c in Rn (see Kwun and Raymond [32] and
Calcut, King and Siebenmann [8, pages 1816 and 1831]). Similarly, U [V is an open
mapping cylinder neighborhood of a in U [V . So, g.U [V / is another open mapping
cylinder neighborhood of c in Rn . Uniqueness of such neighborhoods (see [32; 8])
implies there exists a homeomorphism hW g.U [V /!Rn that fixes g.V / pointwise.
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{
{

.A; a/

U

V

a H

g

Š

c

.Rn; c/

Figure 7: Homeomorphic manifold/ray pairs .A; a/ and .Rn; c/ . Also de-
picted are the hyperplane H, the collar V added to A0 to obtain A , a collar
U on the other side of H, and their images in Rn .

Therefore,
g.U /ŠRn

� Int g.V /D g.A0/:

Hence, A0 Š U Š Rn
C . Similarly, B0 is homeomorphic to Rn

C . Again, Lemma 6.3
completes the proof.

Finally, we come to the heart of the proof of the hyperplane unknotting theorem. Mazur’s
infinite swindle [33] is realized as 1–handle slides and 0=1–handle cancellations at
infinity. Figure 8 proves that .A; a/ is CAT homeomorphic to .Rn; c/. In Figure 8, the

Š

Š

Š

Š

Š

Figure 8: Mazur’s infinite swindle as 1–handle slides and 0=1–handle can-
cellations at infinity
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horizontal region is a copy of Rn . The first, third and fifth isomorphisms in Figure 8
hold by Theorem 6.1. The second and fourth isomorphisms hold by Lemma 6.4. With
.A; a/Š .Rn; c/, Figure 6 implies that .B; b/Š .Rn; c/. By Lemma 6.5, our proof of
the hyperplane unknotting theorem is complete.
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