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Symmetric spectra model global homotopy theory
of finite groups

MARKUS HAUSMANN

We show that the category of symmetric spectra can be used to model global equi-
variant homotopy theory of finite groups.
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0 Introduction

Equivariant stable homotopy theory deals with the study of equivariant spectra and
the cohomology theories they represent. While some of these equivariant theories are
specific to a fixed group, many of them are defined in a uniform way for all compact Lie
groups simultaneously, for example equivariant K —theory, Borel cohomology, equivari-
ant bordism or equivariant cohomotopy. The idea of global equivariant homotopy theory
is to view such a compatible collection of equivariant spectra—ranging through all
compact Lie groups — as one “global” object, in particular to capture its full algebraic
structure of restrictions, transfer maps and power operations. There have been various
approaches to formalizing this idea and to obtain a category of global equivariant
spectra, for example in Lewis, May and Steinberger [11, Chapter 2], Greenlees and
May [5, Section 5] and Bohmann [2]. Schwede [19; 18] introduced a new approach by
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1414 Markus Hausmann

looking at the well-known category of orthogonal spectra of Mandell, May, Schwede
and Shipley [13] from a different point of view: Every orthogonal spectrum X gives
rise to a G—orthogonal spectrum X for any compact Lie group G by letting G act
through its orthogonal representations. The fundamental observation used in [19] is that
the G —homotopy type of X is not determined by the nonequivariant homotopy type
of X, ie a stable equivalence of orthogonal spectra does not necessarily give rise to a
G —stable equivalence on underlying G —orthogonal spectra. Taking these G —homotopy
types for varying G into account gives rise to a much finer notion of weak equivalence
called global equivalence and thereby to the global stable homotopy category, which
splits each nonequivariant homotopy type into many global variants. A strength of
Schwede’s approach is that it on the one hand allows many examples (all the theories
mentioned above are represented by a single orthogonal spectrum in this sense) and on
the other hand is technically easy to work with, since the underlying category is just
that of orthogonal spectra.

The purpose of this paper is to show that the category of symmetric spectra introduced by
Hovey, Shipley and Smith [9] can also be used to model global equivariant homotopy
theory if one takes “global” to mean all finite groups instead of all compact Lie
groups. Symmetric spectra have the advantage that they can also be based on simplicial
sets and are generally more combinatorial, as it is sometimes easier to construct
actions of symmetric groups than of orthogonal groups. A main example is Schwede’s
construction of a model for global equivariant algebraic K—theory [16] (which we recall
in Section 6.3), whose output is a symmetric spectrum and usually not an orthogonal
spectrum.

Besides the fully global theory of orthogonal spectra, which takes into account all
compact Lie groups, Schwede [19] also provides a variant where only a fixed family of
groups is considered. In particular, there is a version for the family of finite groups Fin.
Then the main result of this paper can be stated as:

Theorem (Theorems 2.17 and 5.3) There exists a model structure on the category of
symmetric spectra of topological spaces or simplicial sets — called the global model
structure — which is Quillen equivalent to orthogonal spectra with the Fin—global
model structure of [19].

More precisely, the forgetful functor from orthogonal to symmetric spectra is the right
adjoint of a Quillen equivalence. The central notion in the global model structure
is that of a global equivalence of symmetric spectra. The basic idea is the same as
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for orthogonal spectra: every symmetric spectrum X gives rise to a G —symmetric
spectrum X for any finite group G by letting G act through its finite G —sets, ie the
homomorphisms G — X,. In particular, one can define its equivariant homotopy groups.
However, unlike for orthogonal spectra, equivariant homotopy groups cannot be used
to describe global equivalences — a phenomenon already present for nonequivariant
symmetric spectra and for G—symmetric spectra over a fixed finite group G. Instead
we make use of the notion of G —stable equivalence introduced in Hausmann [6] and
define amap f: X — Y of symmetric spectra to be a global equivalence if for all finite
groups G the map fg: Xg — Y is a G —stable equivalence. The more complicated
definition of G —stable equivalence and hence global equivalence is the main technical
difference to orthogonal spectra. The work in this paper lies in assembling the model
structures of [6] for varying G into a global one, for which Proposition 2.13 is central.

The cofibrations in our model structure are the same as in Shipley’s flat (or S—) model
structure introduced in Shipley [21], which hence forms a left Bousfield localization
of ours. This determines the model structure completely; the fibrant objects can be
characterized as global equivariant versions of 2—spectra (Definition 2.12), similarly
as for orthogonal spectra. We further show that the global model structure (or a positive
version) lifts to the categories of symmetric ring spectra and commutative symmetric
ring spectra (called “ultracommutative” in [19]), and more generally to categories of
modules, algebras and commutative algebras over a fixed (commutative) symmetric
ring spectrum.

While equivariant homotopy groups of symmetric spectra cannot be used to characterize
global equivalences, they nevertheless provide an important tool. We describe some
of their properties and their functoriality as the group varies. This functoriality turns
out to be more involved than for orthogonal spectra, as it interacts nontrivially with
the theory of (global equivariant) semistability, ie the relationship between “naive”
and derived equivariant homotopy groups of symmetric spectra. When X is globally
semistable, its equivariant homotopy groups carry restriction maps along arbitrary
group homomorphisms and transfer maps for subgroup inclusions, and the two are
related via a double coset formula. This functoriality describes a global version of
a Mackey functor that has previously been considered in an algebraic context, such
as by Webb [22] (where it is called an “inflation functor”) and Lewis [10] (“global
(9, oo)-Mackey functor”).

Throughout, we focus on the class of all finite groups, but symmetric spectra can also
be used to model global homotopy theory with respect to smaller families of groups,
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1416 Markus Hausmann

such as abelian finite groups or p—groups for a fixed prime p. In the appendix we give
a short treatment of the modifications needed to obtain such a relative theory.

The paper is organized as follows: In Section 1 we recall the definition of symmetric
spectra, explain how to evaluate them on finite G —sets (Section 1.2) and introduce
global free spectra (Section 1.3). Section 2 starts with the construction of the global
level model structure (Proposition 2.5), introduces global equivalences (Definition 2.9)
and global 2—spectra (Definition 2.12), explains the connection between the two
(Proposition 2.13) and, finally, contains a proof of the stable global model structure
(Theorem 2.17). In Section 3 we construct global model structures on module, algebra
and commutative algebra categories. Section 4 deals with equivariant homotopy groups
of symmetric spectra. Their definition is given in Section 4.1, their functoriality
is explained in Sections 4.3, 4.4 and 4.5 and the properties of globally semistable
symmetric spectra are discussed in Section 4.6. In Section 5 we prove that our model
structure is Quillen equivalent to Fin—global orthogonal spectra. Section 6 discusses
examples of symmetric spectra from the global point of view. Finally, the appendix
deals with global homotopy theory of symmetric spectra with respect to a family of
finite groups.

Acknowledgements I thank my advisor Stefan Schwede for suggesting this project
and for many helpful discussions and comments. I further thank the anonymous referee
for various suggestions for improvement. This research was supported by the Deutsche
Forschungsgemeinschaft Graduiertenkolleg 1150 Homotopy and cohomology. Final
revisions were made in Copenhagen under the support of the Danish National Research
Foundation through the Centre for Symmetry and Deformation (DNRF92).

1 Symmetric spectra

1.1 Definition

We begin by recalling the definition of a symmetric spectrum. For easier reading we
do not treat the simplicial and topological cases in parallel, but for the definitions and
the construction of the model structures concentrate on symmetric spectra of simplicial
sets. The translation to symmetric spectra of topological spaces is straightforward; see
also Remark 2.18.

We let S” denote the n—sphere, ie the n—fold smash product of S1:= Al /dAlL
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Definition 1.1 (symmetric spectrum) A symmetric spectrum X of simplicial sets
consists of

e abased X,—simplicial set X}, and
e abased structure map oy: Xy AS' — X,y

for all n € N. This data has to satisfy the condition that for all n,m € N the iterated
structure map

op NS Sm=2

m. y m o~ 1 m—1 m—1 n+1A

Opn4+-m—1
' Xn+m

is (X,xX,,)—equivariant, with X,, acting on S by permuting the coordinates.

A morphism of symmetric spectra f: X — Y is a sequence of based X, —equivariant

maps fn: X, — Y, such that f, 1 oa,gX) = 0,51)1 o(fuASh forall neN.

We denote the category of symmetric spectra by SpE.

Example 1.2 (suspension spectra) Every based simplicial set 4 gives rise to a
suspension symmetric spectrum A4 whose n™ level is A A S with X, —action
through S” and structure map the associativity isomorphism (AAS")AS! = AAS"T1.
For A = S this gives the sphere spectrum S.

Remark 1.3 (G -symmetric spectra) Throughout this paper we will often make use
of the theory of G —symmetric spectra for a fixed finite group G, by which we simply
mean a symmetric spectrum with a G —action.

Definition 1.4 (underlying G —symmetric spectra) Given a symmetric spectrum X,
we write X for the underlying G —symmetric spectrum obtained by giving X the
trivial G —action.

The fact that G acts trivially on X means that all the G —equivariance is encoded in
the symmetric group actions on the levels of Xz . The homotopical properties of X¢
depend on the evaluations on finite G—sets introduced below, which will usually not
carry trivial G —action. The “exterior action” of G being trivial corresponds to saying
that G acts trivially on the evaluations of X on trivial G —sets.

1.2 Evaluations

Let G be a finite group and M a finite G—set of cardinality m. We denote by
Bij(m, M) the discrete simplicial set of bijections between the sets m = {1,...,m}

Algebraic € Geometric Topology, Volume 19 (2019)



1418 Markus Hausmann

and M. It possesses a right X,,—action by precomposition and a left G —action by
postcomposition with the action on M.

Definition 1.5 (evaluation) The evaluation of a symmetric spectrum X on M is
defined as

X (M) := X A, Bij(m, M)+
= Xm ABij(m, M)+ /((0x, f) ~ (x, fo)| 0 € Zp),
with G —action through M.
Remark 1.6 This is the special case of an evaluation of a G —symmetric spectrum Y
on a finite G—set, in which case G acts diagonally on Y (M) =Y, Ax,, Bij(m, M) .
If Y = X for a symmetric spectrum X, ie if the exterior G—action on Y is trivial,

the two evaluations Y (M) and X (M) agree as G —simplicial sets. Hence, X (M) can
be thought of as the evaluation of the underlying G —symmetric spectrum Xg on M.

The following are two examples of evaluations:

Example 1.7 Let A be a based simplicial set and M a finite G —set. We denote by SM
the smash product of M copies of S! with permutation G —action, generalizing the
definition of the X, —permutation sphere S”. Then the map (X*®A)(M) — A A SM
that sends a class [(a A x) A f] to a A fx(x) is a G—isomorphism.

Example 1.8 Let G be the symmetric group ¥, and M be the natural ¥,—set n,
with X a symmetric spectrum. Then X (n) is canonically isomorphic to X, with the
Y, —action that is part of the data of the symmetric spectrum X. In contrast, evaluating
at {1,...,n} with trivial ¥,—action yields X}, with trivial action.

Moreover, these evaluations are connected by so-called generalized structure maps:
Let G be a finite group, M and N two finite G —sets of cardinalities m and n,
respectively, and X a symmetric spectrum. We further choose a bijection ¥: n => N.

Definition 1.9 (generalized structure map) The map

oprt XM ASY - X(MUN). (¥ A fIAs) = [op (e Ay ) A (S U],
is called the generalized structure map of M and N.
It is straightforward to check that the generalized structure map does not depend on

the choice of bijection v/: n = N. Furthermore, it is G—equivariant for the diagonal
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G —action on X(M) A SN, Again this is a special case of generalized structure maps
for G —symmetric spectra.

1.3 Global free symmetric spectra

For every finite group G and every finite G—set M, the above construction yields
functors
—(M): Sp¥ — G S,

from symmetric spectra to the category of based G —simplicial sets GSx . These functors
have left adjoints FC,, which is a consequence of the existence of a left adjoint for the
analogous evaluation functor from G —symmetric spectra to based G —simplicial sets.

Here we only give the necessary definitions to construct them; more details can be
found in [6, Section 2.4]. Given a finite K—set N for another finite group K, we put
. N—a(M
YX(M,N):= \/a:Mf—>N injective S o )'

This based simplicial set carries a right G —action by precomposition on the index-
ing wedge and a commuting left K-action for which an element k£ sends a pair
(a,x € SN=*M)) (o the pair (k oo,k - x € SN=kaM)y  Given another finite
K—set N’, there is a natural (G°Px K)—equivariant map

0]]\,\7/: SM NYASYN S EZ(M,NUN'), (.x)Ay > (@, x AY).

Definition 1.10 Let A be a based G—simplicial set and M a finite G—set. Then
the global free symmetric spectrum on A in level M is defined as (F ]\G,I(A))n =
A Ag X (M, n) with structure map

Angoy: (Arg Z(M,n)AS' > Arg Z(M,n+1).

More generally, if N is a finite K—set, the evaluation (F 1\3 (A))(N) is canonically
isomorphic to A Ag X (M, N) with K—action through N. The generalized structure
maps arise by smashing 0]]\\,’ " with 4 Ag —. Then we have:

Proposition 1.11 Let M be a finite G—set, A a based G —simplicial set and X a
symmetric spectrum. Then the assignment
mapg, = (Fyy(4), X) — mapg (4, X(M)),

[—Afidpr}+]
(A~

(f: FG.(4) - X) — Ang s LY, x ).

is a natural isomorphism.
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1420 Markus Hausmann

Here, the expression mapg, = (—, —) refers to the simplicial set of morphisms between
two symmetric spectra, which is recalled in the following subsection.

Proof This follows from [6, Proposition 2.14], since by definition F AG4 (A) is the
G —quotient of the free G—symmetric spectrum .%ps(A) and we are mapping into
spectra with trivial G —action. m]

1.4 Mapping spaces and spectra, smash products and shifts

In this section we quickly recall various point-set constructions for symmetric spectra,
which are all introduced in [9].

Example 1.12 ((co)tensoring over based spaces) Every based simplicial set 4 gives
rise to a functor AA—: SpE — sz by smashing each level and structure map with 4. It
is left adjoint to map(4, —): Sp” — Sp%, defined via map(A4, X)), =map(A4, X,) with
structure maps adjoint to map(4, X,) = map(A4, Q(X+1)) = Q(map(A4, X,41)).

Example 1.13 (geometric realization) Symmetric spectra of simplicial sets and
topological spaces are related by the adjunction of geometric realization |-| and
singular complex S. Both functors are constructed by applying the space level version
levelwise, making use of the fact that |-| commutes with — A S! and S commutes
with ©Q(—) to obtain structure maps (similarly to the previous example).

Example 1.14 (shifts) For every natural number » there is an endofunctor
sh”™: Sp¥ — Sp*

defined by sh’*(X), := Xy4m with X,,—action through the last m coordinates and
structure maps shifted by 7. There is a natural transformation ay: S" A X — sh"(X)
given in level m by the composite

n ~ n o) X (tm.n) _n
S"AXm = X AS" 25 X /255 Xy = sh (X)),
where 7, , denotes the permutation in ¥,,, that moves the first m elements {1,...,m}
past the last n elements {m + 1,...,m + n} and preserves the order of both of these
subsets.

In fact, via the same formula one can shift along arbitrary finite G—sets M, but the
result sh™(X) is in general a G —symmetric spectrum with nontrivial G —action.
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Example 1.15 (mapping spaces) Given two symmetric spectra X and Y there is
a mapping simplicial set mapg, = (X,Y) whose n—simplices are given by the set of
symmetric spectra morphisms from A" A X to Y.

Example 1.16 (internal Hom) Combining this with the shifts above gives internal
homomorphism spectra Hom(X, Y) defined by Hom(X,Y), := mapg = (X,sh"Y)
with X, —action through the first n coordinates in sh”(Y") and structure map sending a
pair (f: X — sh”(Y), x € S!) to the composite

a.ln
X L g A s (v) =1, gLy,

Example 1.17 (smash product) As shown in [9, Section 2], the category of sym-
metric spectra carries a symmetric monoidal smash product A with unit S, uniquely
characterized up to natural isomorphism by the fact that — A X is left adjoint to
Hom(X, —).

2 Global model structures

In this section we construct global model structures on the category of symmetric
spectra, beginning with a level model structure which is, later, left Bousfield localized
to obtain a stable version.

2.1 Level model structure

We recall the standard model structure on equivariant simplicial sets:

Definition 2.1 A map f: A — B of based G —simplicial sets is called a
o G-weak equivalence if the map f7: XH — YH i5a weak equivalence for all
subgroups H of G;

o G—fibration if the map fH: X — YH is a Kan fibration for all subgroups
H of G;

e G-—cofibration if it is degreewise injective.

It is well known that the above classes assemble to a proper, cofibrantly generated and
monoidal model structure on the category of based G —simplicial sets. We make use of
it to construct a global level model structure on symmetric spectra:
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1422 Markus Hausmann

Definition 2.2 A morphism f: X — Y of symmetric spectra is called a

o global level equivalence if each level f,: X, — Yy, is a X, —weak equivalence;
o global level fibration if each level f,: X, — Y, is a ¥, —fibration;

* flat cofibration if each latching map v,[f]: X, U, (x) Ln(Y) — Yy isa Xp—
cofibration.

For the definition of latching spaces and maps we refer to [9, Definition 5.2.1] or
[6, Section 2.5]. The following gives a different interpretation of global level equiva-
lences and fibrations:

Lemma 2.3 A morphism f: X — Y of symmetric spectra is a global level equivalence
(resp. global level fibration) if and only if for all finite groups G and all finite G —sets M,
the map f(M)%: X(M)® — Y(M)C is a weak equivalence (resp. Kan fibration) on
G —fixed points.

Proof Given a finite G—set M, any choice of bijection m =~ M defines a homomor-
phism ¢: G — X, and the G —fixed points X (M )© are naturally identified with X; ,f,(G) .
This translates between the different formulations. |

Remark 2.4 In [6], a morphism f: X — Y of G-symmetric spectra is a G—level
equivalence if for all subgroups H of G and all finite H-sets M, the map

FDOHE: x(m)2 > y(m)H

is a weak equivalence. Hence, a morphism of symmetric spectra is a global level
equivalence if and only if it induces a G —level equivalence on underlying G —symmetric
spectra for all finite groups G. Furthermore, every flat cofibration of symmetric spectra
induces a G —flat cofibration on underlying G —symmetric spectra.

Proposition 2.5 (level model structure) The global level equivalences, global level
fibrations and flat cofibrations define a proper, cofibrantly generated and monoidal
model structure on the category of symmetric spectra, called the global level model
structure.

Proof The existence of the model structure and its properness follows from [6,
Proposition 2.22] for G the trivial group, since the strong consistency condition
[6, Definition 2.21] is satisfied. Monoidality is a consequence of [6, Corollary 2.30]
for each finite group separately. |
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Since the suspension spectrum functor from based simplicial sets is a strong monoidal
left Quillen functor, the monoidality of the global model structure in particular implies
that it is simplicial. Let I and J denote sets of generating cofibrations and acyclic
cofibrations, respectively, for the Quillen model structure on simplicial sets. Then sets
of generating (acyclic) cofibrations for the global level model structure are given by

15 ={Ff(i)|neN, H<X,.iel} and J5' ={FJ(j)IneN,H<XZ,, jel},

respectively, where in each case the maps i and j are thought of as maps of H —spaces
with trivial action and H acts on #n via its embedding into %,,.

In order to obtain a global model structure on commutative symmetric ring spectra we
will also need a positive version of the global level model structure. For this we call a
morphism f: X — Y a positive global level equivalence (resp. positive global level
fibration) if fy: X, — Yy is a X, —weak equivalence (resp. X, —fibration) forall n > 1.
Furthermore, a positive flat cofibration is a flat cofibration which is an isomorphism in
degree 0. Then we have:

Proposition 2.6 (positive level model structure) The positive global level equiva-
lences, positive global level fibrations and positive flat cofibrations define a proper and
cofibrantly generated model structure on the category of symmetric spectra, called the
positive global level model structure.

Proof As above, this model structure can be obtained via [6, Proposition 2.22]. O

The positive global level model structure satisfies the pushout product axiom but not
the unit axiom, so it is not quite monoidal.

2.2 Global equivalences

In order to define the global (stable) equivalences we have to recall the notions of GQ2—
spectrum and G —stable equivalence for a fixed finite group G. In comparing to [6], we
always use the notions formed with respect to a complete G —set universe Ug. These
notions do not depend on a particular choice of such and so we omit it from the notation.

Definition 2.7 (GQ-spectra) A G—symmetric spectrum X is called a GQ2—spectrum
if for all subgroups H of G and all finite H-sets M and N, the composite

X (M) Tht, QVxX(MuN) - Q¥Xx(MuN))

is an H -weak equivalence, where X (M U N )/ is a fibrant replacement of X(M U N)
in the model structure on based H —simplicial sets.
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Here, the map Q¥ X(M UN) — QNM(X (M U N)/) is used to replace QN X (M UN)
by the derived loop space to make the property homotopically meaningful. When X
is G —level fibrant, the above condition is equivalent to the adjoint structure map &AA;
itself being an H —weak equivalence.

As recalled in Remark 2.4, amap f: X — Y of G-symmetric spectra is a G —level
equivalence if for all subgroups H < G and all finite H-sets M the evaluation
F(MYH: X(M)YH - Y (M)H is a weak equivalence. We denote the localization of G—
symmetric spectra at the G —level equivalences by yg: GSpE — GSpE [G-level eq.”!].

Definition 2.8 (G -stable equivalence) A morphism f: X — Y of G—symmetric
spectra is a G—stable equivalence if for all GQ—spectra Z the map

GSpZ[G-level eq.”1](Y, Z) M) GSpZ[G-level eq.”!(X, Z)

is a bijection.
Now we can define:

Definition 2.9 (global equivalence) A morphism f: X — Y of symmetric spectra
is a global equivalence if the induced morphism on underlying G —symmetric spectra
fa: Xg — Yg is a G—stable equivalence for all finite groups G.

Example 2.10 Every global level equivalence is a global equivalence, since it induces a
G -level equivalence on underlying G —symmetric spectra for all finite groups G. In fact,
every “eventual level equivalence” f: X — Y — in the sense that for every finite group G
there exists a finite G—set M such that (M UN)®: X(M UN)® - Y(M UN)C is
a weak equivalence for all finite G—sets N —is a global equivalence. This is easiest to
see via Proposition 4.5, since every eventual level equivalence induces an isomorphism
on equivariant homotopy groups, which are discussed in Section 4.

We make the definition of a global equivalence more concrete and consider the (under-
lying G—symmetric spectrum/G —fixed points) adjunction
(5)g: Sp™ 2 GSp™ :(-)°.

By definition, a map f of symmetric spectra is a global equivalence if and only if fg
is a G —stable equivalence for all G. Using the global level model structure on sz and
the G —flat level model structure on GSpZ, the adjunction forms a Quillen pair (since
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the underlying G —spectrum functor preserves all cofibrations and weak equivalences)
and so it can be derived to an adjunction between the homotopy categories

L(—)g: SpZ[global level eq.”'] 2 GSp*[G-level eq.”!] :(—)RC,

where the functor (—)g does not really need to be derived as it is homotopical. Using
this adjunction and the definition of a G —stable equivalence we see:

Corollary 2.11 A map f: X — Y of symmetric spectra is a global equivalence if
and only if for all finite groups G and all GS2—spectra Z the map

Sp=[global level eq.~!](Y, ZR) ﬂ) Sp¥[global level eq.”!](X, ZR%)

is a bijection.

Here, y: sz — sz[global level eq.”'] denotes the localization functor. This may
still be unsatisfactory, because the definition is not intrinsic to symmetric spectra as it
is not clear which symmetric spectra arise as the derived fixed points of G 2—spectra.
It turns out that these fixed points are again equivariant 2—spectra, in the following
global sense:

Definition 2.12 (global Q2—spectra) A symmetric spectrum X is called a global
Q—spectrum if for all finite groups G and all finite G—-sets M and N of which M is
faithful, the adjoint generalized structure map

~N
X(M) 2L QNx (M uN)) - @¥Xx M unN))
is a G—weak equivalence.

Again, the fibrant replacement is there to guarantee that the loop space is derived.
We note that every global 2—spectrum is in particular a nonequivariant $2—spectrum.
In general, a global 2—spectrum X is not quite a G2—spectrum on underlying G—
symmetric spectra for nontrivial finite groups G, as there is no faithfulness condition in
Definition 2.7. However, every faithful finite G—set N gives rise to a G Q2 -replacement
Xg — QN(shN(Xg)) of Xg (up to eventual G —level equivalence), but QN (shM(Xg))
has nontrivial exterior G —action and thus does not underlie a symmetric spectrum.
It is usually not possible to replace a symmetric spectrum by a globally equivalent
symmetric spectrum whose underlying G —symmetric spectra are G Q2—spectra for all
finite groups G at once (the most prominent exception being the Eilenberg—Mac Lane
spectrum H Z for the constant global functor Z discussed in [19, Construction 5.3.8]).
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As promised, we have:

Proposition 2.13 The derived fixed points ZRC of a GQ—spectrum Z form a global
Q —spectrum.

Proof As remarked above, we can use a G—flat fibrant replacement Z fof Z to
compute its right derived fixed points. We now recall from [6, Section 2.6] what
it means for a G —symmetric spectrum to be G —flat fibrant. Given two groups G
and K we let 9K denote the family of subgroups of G x K whose intersection
with {e} x K is trivial. Every such subgroup is of the form {(&, ¢(h)) | h € H} for a
unique subgroup H of G and group homomorphism ¢: H — K. Then the fact that
Z/ is G-flat fibrant means that each level Z,{ is (GxXy)-fibrant and in addition
cofree with respect to the family F¢>» ie the map Z,{ — map(E]-"f’Z”, Z,{) is
a (GxX,)-weak equivalence, where EF%Zn is a universal space for 7%= (see
[6, Section 1.3 and Definition 2.18]).

We now show that (Z f )@ forms a global Q—spectrum. Let K be a finite group and
M and N be finite K—sets of which M faithful (and of cardinality m). We consider
the evaluation Z/ (M) = Z,J,; Ayx,, Bij(m, M)4) and give it a (G x K)-action by
letting G act through Z,J,: and K through M. Likewise, we obtain a (G'x K)—action
on Z/ (M U N) and hence also on QN(Z/ (M U N)).

We claim the following:

(i) The map 5]\]}: ZS(M)—QN(ZS (MUN)) is an FK _weak equivalence, ie it

induces a weak equivalence on all fixed points for subgroups in the family F¢-X .

(ii) Both Z/ (M) and QN(Z/ (M U N)) are FO-K _cofree.

Together these imply that 5]\12: ZS (M) —QNZF (M UN)) isa (GxK)-weak equiv-
alence, as every FO-K _weak equivalence between FO-K —cofree (G x K)—simplicial
sets is a (G x K)-weak equivalence. In particular, the induced map on G —fixed points
(Gﬁ)G: (Zf)G(M) — QN((Zf)G(M LIN)) isa K—weak equivalence, which proves
the proposition.

Hence, it remains to show the claims; we begin with the first one. We let H be
a subgroup of G and ¢: H — K a group homomorphism. Then the composite
H — K — X s defines an H—action on M (and likewise on N ), which we denote
by ¢*(M). Pulling back Z/ (M) and Z/ (M UN) along the graph of ¢ yields the H—
simplicial sets Z f (p*(M)) and Z f (¢*(M U N)). In other words, we have to check
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whether the adjoint structure map o,,: ZS(p*(M)) — Q¥ N (Z S (p*(M u N)))
induces a weak equivalence on H —fixed points, but this is the case since Z fisa
G Q—spectrum.

The second claim follows from the observation that when restricting EF% > along
id x ¢ for an injective group homomorphism : K — X, one obtains a model
for EFX  This finishes the proof. O

It will be a consequence of Theorem 2.17 that global €2-spectra are precisely the local
objects with respect to the class of global equivalences. In other words, one could
alternatively characterize global equivalences as those morphisms that induce bijections
on all morphism sets into global €2—spectra in the global level homotopy category.

2.3 Stable model structure

In this section we introduce the global stable model structure on symmetric spectra. We
begin by constructing a global 2—spectrum replacement functor up to natural global
equivalence.

For this we let G be a finite group, M and N two finite G —sets and define
A FS (SN — FE(S0)

to be adjoint to the embedding SV < X (M, M UN)/G = (FZ(S%)(M UN)
associated to the inclusion M < M U N (see Section 1.3 for the definition of X (—, —)
and global free symmetric spectra). Under the adjunction isomorphism, AJI\V,I represents
the adjoint generalized structure map on G —fixed points,

mapg = (Fyy(S°), X) = X(M)°
@) N G G N
——— (QYX(M UN))Y ~ mapg, = (Fyrun (S7), X).
The morphisms )\]]\V,[ are usually not cofibrations, so we factor them as
G Ny A Ny M. GO
Fyrun(S™) —= Cyl(Ayy) — Fyy(SY)

via the levelwise mapping cylinder Cyl(—). It is a formal consequence, as explained
in the proof of [9, Lemma 3.4.10], that k]]\vl is a flat cofibration, since the global level
model structure is simplicial. Finally, we define

Jgsf ={iO Xﬁfl |i € I, G finite, M and N finite G—sets with M faithful} U Jgﬁ“’,
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where [ is a set of generating cofibrations of the Quillen model structure on based sim-
plicial sets. The notation f'0O0g stands for the pushout product (AAY)U px (BAX) —
(BAY) ofamap f: A — B of based simplicial sets with a morphism g: X — Y of
symmetric spectra. More precisely, we only include i O Xﬁfl for a chosen system of
representatives of isomorphism classes of triples (G, M, N) to ensure that J, gslt is a set.
Then we have:

Proposition 2.14 For a symmetric spectrum X the following are equivalent:

e X is a level fibrant global 2 —spectrum.
e X has the right lifting property with respect to the set J, g{

Proof We already know that X is global level fibrant if and only if it has the right
lifting property with respect to J, glt By adjunction, X has the right lifting property
with respect to {i O X}I\V/[ }tier if and only if

mapg, = (X]]\V/[, X): mapg, = (Cyl()\%), X)— mapg, = (FAGJI_,N(SN), X)

has the right lifting property with respect to the set /. Since the global level model
structure is simplicial, this map is always a Kan fibration. Hence, it has the right lifting
property with respect to I if and only if it is a weak homotopy equivalence. Since rﬁ
is a homotopy equivalence of symmetric spectra, this in turn is equivalent to
mapg s (A ]1\\'/[ ,X)
mapg, = (Fy; (S%), X) —————— mapg = (Fy; x (S™), X)
being a weak homotopy equivalence. As remarked above, this map can be identified
with the G —fixed points of the adjoint generalized structure map 5]\1} of X, which
finishes the proof. a

Corollary 2.15 If M is faithful, then )\AN/‘, is a global equivalence.

Proof This follows from Propositions 2.13 and 2.14 and the fact that F’ ]\glu N (S N
and FA(/;[ (S9) are flat. a

Since the global level model structure is simplicial, it follows that every morphism in J, gslt
is a flat cofibration. Furthermore, all domains and codomains of morphisms in J gblt are
small with respect to countably infinite sequences of flat cofibrations. So we can apply
the small object argument (see [4, Section 7.12]) to obtain a functor Q: sz — sz
with image in global {2—spectra and a natural relative J, gslt—cell complex ¢: id — Q.
Since every morphism in J, g‘f is a flat cofibration and global equivalence, it follows
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from [6, Proposition 4.2] applied to each finite group separately that every relative
J gslt—cell complex is a global equivalence. In particular, the morphisms gy: X — QX
are always global equivalences. This also implies that Q preserves global equivalences
by 2-out-of-3. Before we use these properties to construct the global stable model
structure we need one more lemma:

Lemma 2.16 Every global equivalence between global 2 —spectra is a global level
equivalence.

Proof Let f: X — Y be a global equivalence of global Q2—spectra. We have to show
that each f, is a X,—weak equivalence. For this we again denote by n the tautological
3., —set and consider the commutative diagram of X, —symmetric spectra

n
o

in
in —_— QE(ShE Xgn)

fsz lQ"(Sh"fzn)

an n—> Qr (Shﬂ YEn)
a;,zn
Since X and Y are global (2—spectra the horizontal arrows a[ﬂ\,zn and a%’,zn induce
¥.,—weak equivalences on all evaluations at faithful 3, —sets. In particular, using
Example 2.10 we see that they are both X, —stable equivalences and so Q%(sh” fx, )
is also a X, —stable equivalence. Furthermore, since # is a faithful ¥,—set, the 3, —
symmetric spectra Q%(sh” Xy, ) and Q%(sh” Yy,,) are X,Q—spectra. This implies
that Q#(sh” fx,) is even a X, —level equivalence by the Yoneda lemma. In particular,
it induces a X, —-weak equivalence when evaluated on n and hence so do fx, and f
(again using that the horizontal arrows induce X, —weak equivalences on all faithful
evaluations). This finishes the proof. |

Finally, a morphism of symmetric spectra is called a (positive) global fibration if
it has the right lifting property with respect to all morphisms that are (positive) flat
cofibrations and global equivalences. Then we have:

Theorem 2.17 (global model structures) The global equivalences, (positive) global
fibrations and (positive) flat cofibrations define a proper, cofibrantly generated and
monoidal model structure on the category of symmetric spectra, called the (positive)
global stable model structure.

Moreover, the fibrant objects of the (positive) global stable model structure are precisely
the (positive) global 2 —spectra.
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Here, a symmetric spectrum is called a positive global Q2—spectrum if it satisfies the
condition of Definition 2.12 in all cases except possibly for G = {e} and M = &.

Proof Both model structures are obtained via left Bousfield localization at the re-
spective global level model structures. We apply [3, Theorem 9.3] with respect to
the global 2—spectrum replacement functor Q and the natural global equivalence
q: id — Q just constructed. By Lemma 2.16, a morphism between global €2—spectra
is a global equivalence if and only if it is a (positive) global level equivalence, so the
global equivalences agree with the J—equivalences in the sense of Bousfield’s theorem.

It remains to check axioms (A1)—(A3) of [3, Section 9.2]. Axiom (A1) requires that
every (positive) global level equivalence be a global equivalence, which is Example 2.10.
For a symmetric spectrum X, the morphisms ggpx, Qgx: QX — QQX are global
equivalences between global 2—spectra, and hence global level equivalences by
Lemma 2.16, implying axiom (A2). For (A3) we are given a pullback square

VLX

|l
where f is a (positive) global level fibration, / is a global equivalence and X and Y
are (positive) global Q2—spectra. We have to show that g is also a global equivalence.

This is even true without any hypothesis on X and Y, as follows by applying the dual
version of [6, Proposition 4.2] for every finite group G.

Monoidality of the model structures is again implied by the respective monoidality of
the G —flat model structures [6, Proposition 6.1]. Finally, the statement about the fibrant
objects is a consequence of the characterization of the fibrations in the localized model
structure given in [3, Theorem 9.3] and the fact that X is a (positive) global £2—spectrum
if and only if the map gx: X — QX is a (positive) global level equivalence. |

The generating cofibrations are the same as for the respective level model structures.
In the nonpositive case, the generating acyclic cofibrations are given by J §f§ for the
positive version one has to take out those maps that are not positive flat cofibrations (ie
those involving a spectrum of the form F g}(—)). Finally, we note:

Remark 2.18 As written at the beginning of Section 1, analogs of all results of
this section also hold for symmetric spectra of topological spaces: There is a global
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level model structure where the weak equivalences (fibrations) are the morphisms
f: X — Y such that an . ¢ nH — YnH is a weak homotopy-equivalence (resp. Serre
fibration) for all » € N and all subgroups H of X,. The global stable model structure
is obtained by left Bousfield localization at the global equivalences, which can be
defined as in Definition 2.9 or alternatively be characterized as those morphisms
which become global equivalences after applying the singular complex functor. The
geometric realization/singular complex adjunction gives a Quillen equivalence between
the topological and the simplicial version of the model structures.

3 Multiplicative properties

We have seen in Theorem 2.17 that the global model structure is monoidal, ie that it
satisfies the pushout product and unit axioms. In this section we construct global model
structures on categories of modules, algebras and commutative algebras by further
checking that the monoid and strong commutative monoid axioms hold. In all cases, the
properties follow directly from the respective ones for G —symmetric spectra, since the
functor (—)¢ is strong symmetric monoidal and commutes with all limits and colimits.

3.1 Model structure on module and algebra categories

Given a model structure on symmetric spectra, a map of modules or algebras is called
a weak equivalence or fibration if its underlying morphism of symmetric spectra is so.
We say that the given model structure lifts to the category of modules or algebras if
these two classes define a model structure.

Theorem 3.1 For every symmetric ring spectrum R the positive and nonpositive
global stable model structures lift to the category of R—modules. If R is commutative,
these model structures are again monoidal.

Theorem 3.2 For every commutative symmetric ring spectrum R the positive and
nonpositive global stable model structures lift to the category of R—algebras. More-
over, every cofibration of R-algebras whose source is cofibrant as an R—module is a
cofibration of R—modules.

Both theorems are obtained via the results of [20], which show that it suffices to prove
that the monoid axiom (stated below) holds. The main ingredient is the following:
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Proposition 3.3 (flatness) (1) Smashing with a flat symmetric spectrum preserves
global equivalences.

(i) Smashing with an arbitrary symmetric spectrum preserves global equivalences
between flat symmetric spectra.

Proof This is a direct consequence of [6, Proposition 6.2]. O

For any symmetric spectrum Y we denote by {J gsf A Y }eenn the class of morphisms
obtained via (transfinite) compositions and pushouts from morphisms of the form j A Y,
where j lies in Jgslt.

Corollary 3.4 (monoid axiom) Every morphism in {J, gf AY }eenl is a global equiva-
lence.

Proof Again, this follows directly from the monoid axiom for the G —flat stable model
structure on G —symmetric spectra [6, Proposition 6.4]. a

By [20, Theorem 4.1], this implies Theorems 3.1 and 3.2.

3.2 Model structure on commutative algebra categories

The positive global model structure also lifts to the category of commutative symmetric
ring spectra (or, more generally, commutative algebras over a commutative symmetric
ring spectrum). We note that this is a very strong form of equivariant commutativity,
which induces norm maps and power operations on equivariant homotopy groups.
For this reason commutative symmetric (or orthogonal) ring spectra are called “ultra-
commutative” in [19] when they are considered from the point of view of global
homotopy.

Theorem 3.5 For every commutative symmetric ring spectrum R the positive global
model structure lifts to the category of commutative R—algebras.

Moreover, the underlying R—module map of a positive flat cofibration of commutative
R-algebras X — Y is a positive flat cofibration of R—modules if X is (not necessarily
positive) flat as an R—module. In particular, the symmetric spectrum underlying a
positive flat commutative symmetric ring spectrum is flat.

The part about positive flat cofibrations is merely a restating of Shipley’s result
[21, Proposition 4.1], since the cofibrations in the positive flat nonequivariant and
the positive global model structure on commutative algebras are the same.

Algebraic € Geometric Topology, Volume 19 (2019)



Symmetric spectra model global homotopy theory of finite groups 1433

In order to prove Theorem 3.5 we make use of results of [23]. For this we recall that
given a morphism f: X — Y of symmetric spectra, the n—fold pushout product 57"
is defined inductively via f07:= f o fBO@=1,

Proposition 3.6 (strong commutative monoid axiom) Let f: X — Y be a morphism
of symmetric spectra. Then:

() If f is a (positive) flat cofibration, then 5"/, is again a (positive) flat
cofibration.

(ii) If f is a positive flat cofibration and global equivalence, then so is f5"/%,.
Proof This follows immediately from [6, Proposition 6.22]. |

Applying [23, Theorem 3.2] (and [21, Proposition 4.1] for the part on cofibrations), we
obtain Theorem 3.5.

4 Equivariant homotopy groups of symmetric spectra

In this section we study equivariant homotopy groups of symmetric spectra. We say
that a countable G —set for a finite group G is a complete G —set universe if it allows
an embedding of every finite G—set. Then for every symmetric spectrum X, every
finite group G, every complete G —set universe Ug and every integer n, we define
an abelian group JT,? UG (X). Any two complete G—set universes are isomorphic,
which will imply that n,,G U (X) only depends on the choice of Ug up to natural
isomorphism. However, unlike for orthogonal spectra this isomorphism of homotopy
groups is not canonical: it is affected by the choice of isomorphism of G —set universes.
Hence, for arbitrary symmetric spectra X it is misleading to simply write JTnG (X). This
phenomenon also affects the functoriality of JrnG U (X) in group homomorphisms,
which we discuss in Section 4.3.

All this is tied to the fact that equivariant homotopy groups of symmetric spectra are
not homotopical, ie global equivalences generally do not induce isomorphisms on them.
If one works with the derived versions (ie replacing nnG Ue (X) by n,,G U (QX)) these
problems disappear and one obtains the same properties as for homotopy groups of
orthogonal spectra. In Section 4.6 we discuss criteria to detect for which symmetric
spectra the “naive” equivariant homotopy groups are already derived.
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4.1 Definition and global x ,—isomorphisms

Given a finite group G and a complete G'—set universe Ug, we denote by sG (Ug) the
poset of finite G —subsets of g, partially ordered by inclusion.

Definition 4.1 Let n € Z be an integer. Then the n™ G —equivariant homotopy group
71,? UG (X) of a symmetric spectrum of spaces X (with respect to Ug ) is defined as

7&Ue(X):= colim [S™M x(M)]°.
MesgU)

The connecting maps in the colimit system are given by the composites

G OASNM L MUN=M) N—M1G
O s L X(M) A SNM]

(o "+ nuUN G
—>[§", X (V)]

[S"™M X (M)

for every inclusion M C N. The last step implicitly uses the homeomorphism
X(MU(N—M))= X(N) induced from the canonical isomorphism M U(N—-M)=N.

To clarify what this exactly means for negative n we choose an isometric G —embedding
i R® < (RU6))G and only index the colimit system over those G—sets M in sq(U)
for which RM contains i (R™"). In this case the corresponding term is given by
[SM—IR™) X (M)]%, the expression M — i (R™) denoting the orthogonal com-
plement of i (R™) in RM. Since the space of embeddings R® <> (RUc)HC jg
contractible, the definition only depends on this choice up to canonical isomorphism
and so we leave it out of the notation. As long as S""M has at least two trivial
coordinates, the set [S""M X (M)]® carries a natural abelian group structure and
hence so does 7046 (X).

For a symmetric spectrum of simplicial sets we put JTnG U (X):= JTnG U (1X1).
Definition 4.2 A morphism f: X — Y of symmetric spectra is called a global 74—

isomorphism if for all finite groups G, all integers n € Z and every complete G —set
universe U , the induced map 2 Y6 ( f): P 46 (X) — w0 H6 (V) is an isomorphism.

In fact it suffices to require an isomorphism for a single choice of complete G —set
universe Ug for each finite group G, since any two are noncanonically isomorphic.

Remark 4.3 The definition of 7746 (X) agrees with that of 7 0-Uc (Xg) in Section 3
of [6]. Hence, a morphism of symmetric spectra is a global m«—isomorphism if and
only ifitis a EZG —isomorphism on underlying G —symmetric spectra for every finite
group G.
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The following is immediate from the definition:
Example 4.4 Every global level equivalence is a global m4—isomorphism.

Every global level equivalence is also a global equivalence, as we remarked in Example
2.10. It is not obvious from the definition that this is true for arbitrary global 7 —
isomorphisms, but it follows by applying [6, Theorem 3.36] for each finite group G:

Proposition 4.5 Every global r,—isomorphism is a global equivalence.

4.2 Properties

We now collect some properties of equivariant homotopy groups and global 7, —
isomorphisms, all implied by their respective versions for G —symmetric spectra. For
this we let C(f) denote the levelwise mapping cone of a morphism f: X — Y of
symmetric spectra, i (f): ¥ — C(f) the inclusion into the cone and ¢(f): C(f) —
S A X its cofiber. Dually, we let H(f) stand for the levelwise homotopy fiber,
p(f): H(f) — X the projection and j(f): Q(Y) — H(f) its fiber.

Proposition 4.6 Let G be a finite group and Ug a complete G —set universe. Then
the following hold:

(i) For every symmetric spectrum of spaces X the unit X — Q(S' A X) and the
counit S' A (Q2X) — X are global 1 4—isomorphisms. In particular, there are
natural isomorphisms

g UG (STAX) 2 10U (X) = 7 Y0 (QX).

(i1) For every morphism f: X — Y of symmetric spectra of spaces the sequences
"—>7TI?’MG(X) S GZ/IG(Y) i(f)x GZ/IG(C(]()) q(f)x« GuG(X)—)
and

“_>7TnG—i’-Zi{G (Y) ](f)* G Ug (H(f)) P(f)* G,L{G (X)A)”nG,MG (Y)—)

are exact. Furthermore, the natural morphism S' A H(f) — C(f) is a global
7T« —isomorphism.

(iii) For every family (X;);ey of symmetric spectra, the canonical map

P e (X)) - 7746 (Vier Xi)

iel
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is an isomorphism of abelian groups. If I is finite, the natural morphism
Vier Xi — [lics Xi is a global 1« —isomorphism.

(iv) Smashing with a flat symmetric spectrum preserves global 1 4« —isomorphisms.

In the second item we have implicitly used the isomorphisms of item (i) to obtain the
boundary maps.

Proof These are Propositions 3.6 and 6.2 in [6]. O

This proposition also has a simplicial analog, for which in item (i) and the second
long exact sequence in (ii) the constructions 2 and H(—) need to be replaced by their
derived versions.

4.3 Functoriality

An important feature of global homotopy theory of orthogonal spectra is that their
equivariant homotopy groups enjoy a rich functoriality in the group, they form a so-
called global functor. In short, every group homomorphism ¢: G — K induces a
restriction map ¢*: Jrf (X)—> Jrf (X) (depending only on its conjugacy class) and for
every subgroup H < G, there is a transfer homomorphism trg: rHXx) - n*G (X).
Moreover, restrictions and transfers are related by a double coset formula.

While the transfer homomorphism works similarly for symmetric spectra, a complication
arises when one tries to construct restriction maps. To explain this, we let X be a
symmetric spectrum, ¢: G — K a homomorphism of finite groups and x € n({( YK (X)
an element represented by a K -map f: SM — X(M) for a finite K —subset M of U .
Restricting all the actions along ¢ and making use of the equalities ¢*(S™M) = §¢" (M)
and ¢*(X(M)) = X(p*(M)), we can think of f asa G-map S¥ M) — X (¢*(M)).
In order for this to represent an element ¢*(x) in noG U (X) we have to choose
an embedding of ¢*(M) into Ug, but such an embedding is not canonical and —
unlike for orthogonal spectra— the outcome is in general affected by the choice one
makes. One might try to get around this by using the restricted universe ¢*(Ug)
instead of Ug , but this only works if ¢ is injective because otherwise ¢* (Ug) is not
complete.

This issue can be resolved by carrying an embedding ¢*(Ug) — Ug around as an
additional datum with respect to which one forms the restriction, as we now explain.
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4.4 Restriction maps

Let Finy denote the category of pairs (G,Ug) of a finite group G together with a
complete G —set universe g , in which a morphism (¢, &) from (G, Ug) to (K,Uk) is
a group homomorphism ¢: G — K and a G —equivariant embedding «: ¢* (Ug) — Ug .

Now we let X be a symmetric spectrum and (¢: G — K, a: ¢*(Ug) — Ug) a
morphism in Finy,. Further, let x be an element of n({( Uk (X) represented by a K—

map f: SM — X(M) with M C Ug . Then we define (¢, a)*(x) € nOG uG(X) as

the class of the composite

(xlpg)— X
§e00 ST 1 v K9 v i),

This class does not depend on the chosen representative f and hence we obtain a
restriction map
(. 0)*: 7y M (X) = 7y O (X).

The following is straightforward:

Proposition 4.7 For every symmetric spectrum X the assignment
(G.Ug) > 110 (X),
(G 25 K, o*Uxk) %Ug) — (((p,oe) : JTOK’MK(X) — nOG’MG(X)),

defines a contravariant functor (X ) from Finy, to abelian groups.

Usmg the suspensmn isomorphisms 7z, G.Uc (X) =~ JTO Uc (R"(X)) for n >0 as well
as nn Ue (X) =, G.Uc (ST"AX) for n <0, we obtain natural Flnu —functors 7,(X)
foralln e Z.

We note the following special cases of operations obtained this way:
(i) Every subgroup inclusion if]: H < G gives rise to a restriction homomorphism

(lH) 7T0 G,Ug (X) H(IH) (Z/[G)(

by applying the above construction to the morphism (ig,id): (H, (ig)*(uG)) —
(G,Ug) in Finy.

X).

(i) Every surjective group homomorphism ¢: G — K gives rise to a restriction
homomorphism

(. (o) 7 XN (x) > 7N (x),
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where N denotes the complete G —set universe of functions from G to the natural
numbers (and likewise for K) and (— o ¢) denotes the induced injective map by
precomposing with ¢.

(iii) Every pair of a subgroup ig: H < G and an element g € G induces a conjugation
homomorphism

x. HG)" o) gHg (O, )" Uc)

Cgt T (X)—m, sHe
by applying the above construction to the morphism

(€' (g g-—): (gHg " (i 5y ,-1)* U)) — (H, (i) Ua)).

(iv) Every injective G—equivariant self-map «: Ug < Ug gives rise to an endomor-
phism
. G.U G, U,
o-— 7y (X)) = T (X)

via (id, @)*. This defines an additive natural left action of the monoid Inj; (Ug, Ug)
on JTOG U6 (xy.

Any morphism in Fin;; can be written as a composite of those of type (i), (ii) and (iv).
The first three should be seen as genuine global equivariant operations which survive
to the global homotopy category, whereas nontriviality of the Inj;(Ug,Ug)—action
implies that the morphism X — QX is not a global m«—isomorphism and hence the
JTnG U (X) are not derived (see Proposition 4.13). In the nonequivariant case ({e}, N),
this action was examined in [17], the equivariant version (G,Ug) in [6].

We also included the conjugation maps above because they allow a cleaner description

of the double coset formula in Proposition 4.10. They have the following property:

Lemma 4.8 All inner conjugations c;," act as the identity on nOG U (X).

Proof Letxe JTOG U (X) be an arbitrary element, represented by a G—map f: SM —
X (M) for some finite M C Ug. Then, by definition, c;," (x) is the class represented
by the composite

seTON £ oM Sy XED, y o,

The map X(g-—): X(M) — X (M) is equal to multiplication by g. So, since f is
G —equivariant, this composite equals f* and hence ¢g (x) = ¢z ([/]) =[f]= x, which
proves the claim. |
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Remark 4.9 The category Fin;; comes with a forgetful functor to the category Fin of
finite groups. The functor is surjective on objects and morphisms, but it does not have
a section. In fact, for any nontrivial finite group G, there do not exist two lifts of the
homomorphisms i: {¢} — G and p: G — {e} such that their composite is the identity.
This is because the second component of any preimage (p: G — {e}, p* (Uyey) — Ug)
is never surjective, since the G —set universe p*(Uy,}) is trivial. Hence, the second
component of the composite is also not surjective, in particular not the identity. There
are symmetric spectra X for which (idy.y, o: Uyey = Uyey) does not act surjectively
on n({)e}’u{” (X) for every o which is not surjective (this is the case in Section 4.7);
hence, this shows that there is in general no way to turn the Finzolp —functor 7 ¢(X) into
a Fin°P—functor.

4.5 Transfer maps

The assignment (G, Ug) — nOG Ue (X) has more structure than that of a Finz{p —functor:
it also allows transfer maps of the form

H,($)*Us)

o (X) = 7040 (X)

trg: T

for a subgroup H of G and the restricted (complete) H —set universe (ig)* (Ug). The
construction and properties of these transfer maps are similar to those for orthogonal
spectra, so we will be brief (see [19, Constructions 3.2.7 and 3.2.22]).

Transfer maps are based on the following construction: Let M C Ug be a G—subset
which contains a copy of G/H. By thickening up the embedding G/H — M — RM
we obtain another G—embedding G xg D(RM) « RM, where D(—) denotes
the closed unit disc. Collapsing everything outside the image of the interior of
G x g D(RM) to a point yields a map pg: SM _ Gxg SM, the “Thom—Pontryagin
collapse map”.

Now let X be a symmetric spectrum of spaces and x € nOH i Ue) (X) an element
represented by an H-map f: SM — X(M). Without loss of generality we can
assume that M is in fact a G—subset of Ug and allows a G—embedding of G/H. Then
the transfer trfl (x) e JTOG U (X) is defined as the class of the composite

G
SM P, G M G¥HT Gy x (M) s X (M),

where p is the action map (which uses that X (M) is a G —space).
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Proposition 4.10 The transfer maps trg do not depend on the choice of embedding
G/H — Ug . They are additive and functorial in subgroup inclusions. Furthermore,
they are related to the restriction maps by the following formulas:

(i) For every morphism (¢: G — K, o: ¢*(Ug) — Ug) in Finy with surjective ¢
and every subgroup i: L < K, the relation

(¢, ) otrf =S, ;)0 (@ly=1(2): 07 (L) > L)

- Ky
holds as maps nOL’(lL) (MK)(X) — nf’uG (X).

(i) For every pair of subgroups H, J < G the double coset formula

-Gk G _ J * - H *
(ij) otrgy = Z tr]ﬂgHg—locgo(lg_ngﬂH)
[gleJ\G/H
holds.

Proof See [19, Proposition 3.2.32, Theorem 3.4.9 and Example 3.4.11] for orthogonal
spectra. m|

Since every morphism (¢, ) in Finy; can be written as the composite of a morphism
of type (i) and a subgroup inclusion as in (ii), these two can be combined to give a
general formula describing the interaction between restrictions and transfers. Again, the
definition of the transfer maps is extended to 7, (X) via the suspension isomorphisms.

4.6 Semistability

In these terms, a Fin—global functor in the sense of [19] (or, equivalently, an inflation
functor in the sense of [22]) can be described as a Finz{p —functor with transfers satisfying
the relations of Lemma 4.8 and Proposition 4.10 and for which the Finz,p —part factors
through Fin®P, ie for which the action of an element (¢, ) does not depend on the «
(see [19, Theorem 4.2.6ff]). This leads to the following definition:

Definition 4.11 (global semistability) A symmetric spectrum X is called globally
semistable if the Fin,} —functor 1, (X) factors through a Fin® —functor for every n € Z.

Then the previous discussion implies:

Proposition 4.12 If X is globally semistable, the homotopy groups JT*G U (X) only
depend on Ug up to canonical isomorphism (hence they can be denoted by JT*G (X))
and the collection 1« (X) = {n*G (X)}G finite naturally forms a Fin—global functor.
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The class of globally semistable symmetric spectra includes a lot of examples and is
closed under many operations, as the following proposition shows. For (i) we recall
from [6, Definition 3.22] (and the remark preceding it) that a G —symmetric spectrum X
is called G—semistable if the Injg (Ug,U g )—action on 77.',{-1 UH (X) is trivial for all
n € Z and all subgroups H < G.

Proposition 4.13 The following hold:

(i) A symmetric spectrum is globally semistable if and only the underlying G —
symmetric spectrum is G —semistable for every finite group G.

(i) Global 2 —spectra are globally semistable.

(iii)) Every symmetric spectrum underlying an orthogonal spectrum is globally semi-
stable.

(iv) Every symmetric spectrum X for which every homotopy group JT,,G U (X)isa
finitely generated abelian group is globally semistable.

(v) A symmetric spectrum is globally semistable if and only if the morphism
gx: X — QX isaglobal it «—isomorphism, in other words if and only if the map
from the naive to the derived equivariant homotopy groups is an isomorphism.

(vi) A morphism between globally semistable symmetric spectra is a global equiva-
lence if and only if it is a global 1 « —isomorphism.

Proof For (i), the “only if” part is clear. The other direction follows from the fact that
given a group homomorphism ¢: G — K and G -embeddings o1, as: ¢*(Ug) — Ug,
there exist B, B> € Injg(Ug,Ug) such that B oy = Broas.

Using (i), items (iv) and (vi) follow from [6, Corollaries 3.24 and 3.37]. Moreover,
every global Q2—spectrum can be replaced by a G 2—spectrum up to eventual level
equivalence (as explained after Definition 2.12), in particular up to EZ;{G —isomorphism.
Hence, Lemma 3.23 of [6] implies (ii). If gx: X — QX is a global m,—isomorphism,
then X is globally semistable, since we just argued that QX is globally semistable. If
in turn X is assumed to be globally semistable, we know that the global equivalence
qx: X — QX must be a global 7 4—isomorphism by (vi). This gives (v) and also (iii),
since every orthogonal spectrum allows a global m4—isomorphism to a global 2—
spectrum (see [19]), so we are done. O
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4.7 Example

We close this section with an example of a symmetric spectrum which is not globally
semistable, the free symmetric spectrum F i{e}S 1. There is a natural G—isomorphism
(FY9S1) (M) = My A SM, which implies that

7 & U6 (F STy = colim[SM, My A SMIC
MCuUg

~ colim[SM, Ug)4 A SM]°
M CUg
Gy
= 7, Y (2P Ue)).

with G acting on Ug . The tom Dieck splitting shows that this is a free abelian group
with basis {trIG{ (x)}, where (H,x) runs through representatives of G —conjugacy
classes of pairs of a subgroup H of G and an H —fixed point x of (ig)*(u(;).

Focusing on those basis elements that are not a transfer from a proper subgroup, we see:
Corollary 4.14 The Fin,} —functor 7o (F fe}(S 1)) contains the subfunctor

(G.Ug) = Z|Ug)°),
(¢: G — K, a: ¢*(Ux) = Ug) — (ZIUx)*1 = Zi(0* Ux)) 1 2 Z](w6) ).

This determines the whole FinZ,p —functor structure on o (F i{e} S1) via Proposition 4.10.
The action of a morphism (¢, ) in Finy; very much depends on the « and hence
F l{e} (S!) is not globally semistable.

5 Comparison to orthogonal spectra

In this section we show that global homotopy theory of symmetric spectra is equivalent
to Fin—global homotopy theory of orthogonal spectra in the sense of [19]. For this we
quickly recall the relevant definitions in the orthogonal context.

Definition 5.1 (orthogonal spectra) An orthogonal spectrum is a collection of based
O(n)—spaces {X, }nen With structure maps X, AS!— X, 1| whose iterates X, AS™—
Xy+m are (O(n)xO(m))—equivariant.

An orthogonal spectrum X can be evaluated on G -representations V' via the formula
Xn Ao(dim(»)) LRI™P) vy, | with G —acting through V' (where LRI y) de-
notes the space of linear isometries). Again, these are connected by G —equivariant
generalized structure maps of the form X (V) A SV — X(V @ W).
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Every orthogonal spectrum X has an underlying symmetric spectrum of spaces U(X)
by restricting the O(n)—action on X to a ¥,—action along the embedding as permu-
tation matrices. The resulting restriction functor U': Spo — SpE has a left adjoint L,
formally obtained via a left Kan extension (see [13, Sections 1.3 and II1.23] for details).
Note that, since the “underlying G —spectrum” functors (—)g both for symmetric and
orthogonal spectra are given on the point-set level by equipping a spectrum with trivial
action, it follows that they commute with U and L.

Example 5.2 For a finite G—set M there is a natural G —homeomorphism
UX)(M) = X(RM)
induced by linearizing a bijection m = M to a linear isometry R” = RM,

The linearization RU6) of a complete G —set universe Ug is a complete G —repre-
sentation universe. Moreover, the poset of G —subrepresentations of the form RM is
cofinal inside the poset of all finite-dimensional G —subrepresentations of RU6)  Asa
consequence, the equivariant homotopy groups of an orthogonal spectrum as defined
in [19, Section 3.1] are isomorphic to those of the underlying symmetric spectrum
defined in Section 4. Combining this with Proposition 4.13 we see that for a morphism
of orthogonal spectra f: X — Y the following are equivalent:

e f is a Fin—equivalence in the sense of [19, Definition 4.3.14].
e U(f) is a global m«—isomorphism of symmetric spectra.
e U(f) is a global equivalence of symmetric spectra.

Around this notion of equivalence, Schwede defines the Fin—global model structure on
orthogonal spectra [19, Theorem 4.3.17]. We have:

Theorem 5.3 The adjunction
L:SpT =2 sp? .U
is a Quillen equivalence for the global model structure on symmetric spectra of spaces

and the Fin—global model structure on orthogonal spectra.

Proof The Fin—cofibrations of orthogonal spectra are given by those morphisms
which have the left lifting property with respect to all morphisms f: X — Y such that
FONCG: X(V)¢ - Y (V)Y is an acyclic Serre fibration for all inner product spaces V
and finite subgroups G of O(V). Using the G—homeomorphism on evaluations of
Example 5.2, we see that the underlying morphism of symmetric spectra of any such f
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is an acyclic fibration in the global level model structure of Section 2. Hence, by
adjunction, L takes flat cofibrations to Fin—cofibrations. Applying [6, Theorem 7.5]
for every finite group G we see that L furthermore sends flat cofibrations which are
also global equivalences to Fin—equivalences; hence, L becomes a left Quillen functor
for the stable model structures and thus (L, U) a Quillen pair.

Hence, it remains to show that the adjunction induces an equivalence between the
homotopy categories. Since U preserves and reflects weak equivalences, it suffices
to show that for every flat symmetric spectrum X the morphism X — U(L(X)) is
a global equivalence. But, since the underlying G —symmetric spectrum X of a flat
symmetric spectrum X is G—flat, this follows from [6, Theorem 7.5]. |

6 Examples

Every orthogonal spectrum can be restricted to a symmetric spectrum, so all examples
in [19] also give examples for symmetric spectra and their global behavior. In this
section we list some constructions of symmetric spectra (from the point of view of
global homotopy theory) that do not arise from orthogonal spectra.

6.1 Suspension spectra of I —spaces

There is an unstable analog of symmetric spectra, called I —spaces. Again, these were
previously considered as a model for unstable nonequivariant homotopy theory (see for
example [14; 15; 12]). They come with a Day convolution product, the commutative
monoids over which model E,—spaces.

The category of I—spaces can also be used as a model for unstable global homotopy
theory. We quickly describe this point of view without giving proofs. The resulting
homotopy theory is equivalent to the category of orthogonal spaces with the Fin—global
model structure of [19, Theorem 1.4.8].

Let I denote the category of finite sets and injective maps.
Definition 6.1 An I—space is a functor from I to the category of simplicial sets.

Let A be an I —space. By functoriality, if a finite set M comes equipped with an
action of a finite group G, the evaluation A(M) becomes a G—space. Every injection
of G-sets M — N induces a G—equivariant map A(M) — A(N). Analogously
to the stable case, one can show that there is a level model structure on I —spaces,
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where the weak equivalences and fibrations are those morphisms that become G -weak
equivalences and G —fibrations on —(M) for all finite groups G and finite G —sets M,
respectively.

An I—space A is called static if for every injection M < N of faithful finite G —sets
the induced map A(M)% — A(N)C is a weak equivalence. A morphism of I —spaces
is a global equivalence if it induces bijections on all hom-sets into static I —spaces
in the level homotopy category. Together with the level cofibrations, these form the
global model structure for I —spaces.

For a static I —space A4, the evaluation A(M) at a faithful finite G—set M should be
thought of as the G —space underlying A. By the definition of static, its G —homotopy
type does not depend on the choice of M. The G-space underlying an arbitrary
I —space A is not as easy to describe directly, but it can be defined by first replacing
by a globally equivalent static I —space QA and then taking the underlying G —space
of QA. In this sense a global equivalence can be interpreted as a morphism that induces
equivalences on all underlying G —spaces.

Every I—space A gives rise to a suspension symmetric spectrum of spaces X° 4. Its
n™ level is given by A(n)+ A S™ with diagonal X, —action, the structure map

(A)+ ASHAS! > A(n+ 1) AS™T!

is the smash product of the induced map A(n — n 4 1) with the associativity isomor-
phism S” A S' = S"*1. This construction is left adjoint to 2°°: Sp> — I-spaces
defined by (Q®°(X))(M) := QM X (M). Since Q* turns level fibrant global Q-
spectra into static I —spaces, it is not hard to see that the adjunction (X°, 2°°) becomes
a Quillen pair for the respective global model structures.

Let A be a cofibrant static I —space. One can show that the G —homotopy type of the
underlying G —symmetric spectrum (X5°A4) is that of the suspension spectrum of the
underlying G —space of A in the sense described above. Hence, suspension spectra of
I —spaces assemble various equivariant suspension spectra into one global object.

Remark 6.2 In all of the above one can alternatively consider functors from I to the
category of topological spaces. Then the analogous statements hold.

Example 6.3 (global classifying spaces) Let G be a finite group and M a finite G—
set. This data gives rise to an I —space I (M, —)/G whose evaluation on a finite set N
is the set of injective maps from M to N, modulo the G —action by precomposition.
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Giving a morphism from I(M,—)/G to an I-space A is equivalent to picking a
G —fixed point in the evaluation A(M). So— by definition of the notion of global
equivalence — the global homotopy type of I(M,—)/G is the same for all faithful
G—sets M. The I—spaces I(M,—)/G for faithful M are called global classifying
spaces of G . Given another finite group K, the K—space underlying I(M,—)/G is a
classifying space for principal G-bundles in K—spaces; see [19, Proposition 1.1.26].

Ranging through all finite groups G, the suspension spectra of global classifying spaces
of finite groups (which are isomorphic to global free spectra of the form F A(/;[ SM form
a set of compact generators of the triangulated Fin—global stable homotopy category.

6.2 Ultracommutative localizations

Let A € Q be a subring, M(A,1) a Moore space for A in degree 1 and i: S! —
M (A, 1) a map inducing the inclusion Z < A on first homology. We define a
symmetric spectrum MA via MA, = M (A, 1)" with permutation X,—action and
structure map

M(A, DM A ST I arcg, NetD),

The associativity homeomorphisms M (4, 1) A M (A, 1) = M (A, ) N#+m) (o
gether with the equality S° = M (A4, 1)"? give MA the structure of an ultracommutative
symmetric ring spectrum.

To determine the global homotopy type of MA we note that the map M (A4, 1)AS! AN
M (A, 1)"? is a weak equivalence of spaces, since A ® Z — A ® A is an isomorphism.
So, given a subgroup H < 3,, the map

M(A, D) A(SHE = M4, 1) A SN@/H)
idai~N®m/H)

ST M(A ) A M(A )N ~ V(AT A (M (A, 1)) H
is also a weak equivalence. In other words, the morphism X°°(M (4, 1)) — sh MA
adjoint to the identity of M (A, 1) is a global level equivalence. The same argument
also shows that apz4: S A MA — sh MA is a positive global level equivalence. So
we find that MA is globally equivalent to a desuspension of the suspension spectrum
of M (A, 1) and hence its global homotopy type is that of the homotopy colimit of the
sequence

§ M, g M2 g M3

’
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where the n; range through the elements of Z that become inverted in A. Thus, the
(derived) smash product — A MA computes the A—localization in the global homotopy
category. On equivariant homotopy groups it has the effect of tensoring with A.

In particular, the ultracommutative structure on MA can be used to see that arithmetic
localizations of ultracommutative symmetric ring spectra are again ultracommutative
symmetric ring spectra, which is not a priori clear and does not hold in general for
equivariant localizations (see [8], in particular Section 4.1).

Remark 6.4 The construction of MA above works more generally for any based
space X together with a based map S' — X. This gives a functor from the category
of based spaces under S'! to ultracommutative ring spectra, which is left adjoint to
sending an ultracommutative ring spectrum Z to the unit map S' — Z,. The latter is
a right Quillen functor for the positive global model structure and the usual Quillen
model structure on spaces under S!, turning the adjunction into a Quillen pair. In
fact, the adjunction is already a Quillen pair if one uses the nonequivariant positive
projective model structure on commutative symmetric ring spectra (as constructed in
[13, Theorem 15.1]). This implies that the ultracommutative ring spectra that arise
through this construction are multiplicatively left-induced from nonequivariant commu-
tative ring spectra in the sense of appendix.

6.3 Global algebraic K —theory

In [16] Schwede introduces a symmetric spectrum model for global (projective or free)
algebraic K—theory of a ring R. Below we summarize the free version. In fact we
give a slight variation of that of [16], as we explain in Remark 6.5.

Let R be a discrete ring. Each level is the realization of a bisimplicial set kK R(M )n m,
which we now explain. A (0, m)-simplex of kR(M) is represented by a finite un-
ordered labeled configuration (Wy,..., Wg;xq,...,x) of the following kind:

e The x; are m—simplices of SM.
e The W; are finitely generated free submodules of the polynomial ring R[M ] with
variable set M such that their sum is direct and the inclusion W; @ --- @ Wj, —

R[M] allows an R-linear splitting.

These configurations are considered up to the equivalence relation that a labeled point
(W;, x;) can be left out if either W; is zero or x; the basepoint, and that if two x; are
equal, they can be replaced by a single one with label the sum of the previous labels.
The X7 —action is the diagonal one through its actions on S™ and R[M].
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General (n, m)-simplices are given by similar equivalence classes of configurations,
where instead of a single free submodule W;, each m—simplex x; carries an n—chain of
R-module isomorphisms (W;, => W;, = ----=> W, ) such that forevery 0 < j <n
the tuple (W1, ..., Wg;) satisfies the conditions above. The simplicial structure maps
in the first direction are the usual ones from the nerve; the ones in the second direction
are induced by SM. The spectrum structure maps kR(M)A SN — kR(M U N) are
given by smashing the configurations with an element of S and leaving the labels
unchanged.

In [16] Schwede shows the following:

e The symmetric spectrum kR is globally semistable.

e Its G-fixed point spectrum represents the direct sum K —theory of R[G]-lattices,
ie R[G]-modules that are finitely generated free as R—modules. In particular,
the equivariant homotopy groups 7% (kR) are the K—groups of R[G]-lattices.

e If R is commutative, the smash product of modules gives kR the structure of
an ultracommutative symmetric ring spectrum.

If R satisfies dimension invariance, the spectrum k£ R comes with a natural filtration: Let
k R"™(M) be the subspace of k R(M') of those configurations (Wy, ..., Wi xq1,..., X)
where the sum of the R-ranks of the W; is at most #, and similarly for higher simplices.
These subspaces are closed under the simplicial and spectrum structure and thus define
a symmetric subspectrum k R". This gives a filtration
% =kR® - kR' > - > kR = colimkR".
neN

The underlying nonequivariant filtration is studied by Arone and Lesh in [1], where
they call it the modified stable rank filtration of algebraic K —theory. In joint work with
Dominik Ostermayr [7], we extend some of their results to the global context to show
that the subquotients kR"/kR"~! are globally equivalent to suspension spectra of
certain I —spaces associated to the lattice of nontrivial direct sum decompositions of R”.
This can be used to give an algebraic description of the Fin—global functors n(? (kKR™).

Remark 6.5 The version of kR we described here differs slightly from that in [16].
There the tuple (W7y,..., W;) has to satisfy the additional property that for every
monomial ¢ =[],,car mim € R[M] there is at most one i such that W; contains an
element whose #—component is nontrivial (which in that setup in particular guarantees
that the sum of the W; is direct). The inclusion from the kR in [16] to the one above
is a global level equivalence.
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Appendix Model structures with respect to families

In this appendix we explain how to construct model structures with respect to global
families of finite groups. For every such family we define two model structures, a
projective and a flat one, both useful for constructing derived adjunctions. In the case of
the family of trivial groups (where the homotopy category is the nonequivariant stable
homotopy category) the projective model structure equals the one in [9, Section 5.1]
and the flat model structure is the one introduced in [21]. For the global family of all
finite groups the two model structures coincide.

Definition A.1 (global family) A global family is a nonempty class of finite groups
which is closed under subgroups, quotients and isomorphism.

Let F be a global family.

Definition A.2 A morphism f: X — Y of symmetric spectra is called

o an F-level equivalence if f,J: X, — Y7 is a weak equivalence for all
subgroups H < ¥, which lie in F;

e a projective F—level fibration if an ¢ ,fl — YnH is a Kan fibration for all
subgroups H < ¥, which lie in F;

* aprojective F—cofibration if each latching map v,[f]: X, UL, (x) Ln(Y) — Yy
is a X, —cofibration with relative isotropy in F;

e aflat F-level fibration if it has the right lifting property with respect to all flat
cofibrations (as defined in Definition 2.2) that are also F—level equivalences.

Then the following two propositions can again be obtained via [6, Proposition 2.22]:

Proposition A.3 The classes of F—level equivalences, projective F —level fibrations
and projective F —cofibrations define a cofibrantly generated, proper and monoidal
model structure on the category of symmetric spectra.

Proposition A.4 The classes of F—-level equivalences, flat F —level fibrations and flat
cofibrations define a cofibrantly generated, proper and monoidal model structure on the
category of symmetric spectra.

From the point of view of F—global homotopy theory we have to remember the G —
homotopy type of a symmetric spectrum for all groups G in F, which leads to the
following definition of stable equivalence:
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Definition A.5 (F-global equivalences) A morphism f: X — Y is called an F—
global equivalence if it is a G —stable equivalence (in the sense of Definition 2.8) for
all groups G € F.

A morphism of symmetric spectra is called a projective (flat) F—fibration if it has the
left lifting property with respect to all morphisms that are projective F—cofibrations
(respectively flat cofibrations) and F—equivalences. Then we have:

Proposition A.6 The classes of F—global equivalences, projective F —fibrations and
projective JF —cofibrations determine a cofibrantly generated, proper and monoidal
model structure on the category of symmetric spectra, called the projective F—global
stable model structure.

Proposition A.7 The classes of F—global equivalences, flat F —fibrations and flat
cofibrations determine a cofibrantly generated, proper and monoidal model structure on
the category of symmetric spectra, called the flat F —global stable model structure.

Each of these model structures can be obtained via a left Bousfield localization of
the respective level model structure. For example, this can be done by applying the
small object argument to the subset of those maps i O X]]\V,[ used in Section 2.3 that
are associated to a finite group G € F and finite G—sets M and N (of which M
is faithful). It follows that a symmetric spectrum is fibrant in either of the F—global
model structures if and only if it is fibrant in the respective level model structure and
in addition an F—global $2—spectrum, ie if it satisfies the condition in Definition 2.12
for all G € F (instead of for all finite G). The flat F—global model structure can also
be obtained by left Bousfield localizing the full global model structure.

Since every projective F—cofibration is a flat cofibration, the F—global model structure
and the flat F—global model structure are Quillen equivalent via the identity adjunction.
Furthermore, the same proof as that of Theorem 5.3 applies to show that the projective
F—model structure is Quillen equivalent to the F—global model structure on orthogonal
spectra as introduced in [19, Theorem 4.3.17].

Let 7/ C F be an inclusion of global families of finite groups. Then, by definition,
every F—global equivalence is an F'—global equivalence and hence the localization
SpE — sz[}"—global eq.”!] factors uniquely through a functor

SpZ[F-global eq.”'] — SpZ[F'—global eq.”!].
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This functor has both a left and a right adjoint (both fully faithful) obtained by deriving
the identity adjunction with respect to the projective and flat model structures, respec-
tively. In particular, this defines two functors from the nonequivariant stable homotopy
category to the global stable homotopy category. It can be shown [19, Example 4.5.19
and Proposition 4.5.8] that the right adjoint gives rise to Borel theories, whereas the im-
age of the left adjoint is given by symmetric spectra with constant geometric fixed points.

Finally, both the projective F—global stable model structure and the flat F—global
stable model structure lift to categories of modules over a symmetric ring spectrum and
algebras over a commutative symmetric ring spectrum. There exist positive versions
of both model structures which lift to the category of commutative algebras over a
commutative symmetric ring spectrum. These allow the construction of “multiplicative”
change-of-family functors, but there is a caveat: a positive projective F—cofibrant
commutative symmetric ring spectrum is in general not projective F—cofibrant as a
symmetric spectrum if F is not the family of all finite groups. As a consequence, the
underlying symmetric spectrum of a left-induced ultracommutative symmetric ring
spectrum is in general not left-induced.
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