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Classifying spaces from Ore categories with Garside families

STEFAN WITZEL

We describe how an Ore category with a Garside family can be used to construct
a classifying space for its fundamental group(s). The construction simultaneously
generalizes Brady’s classifying space for braid groups and the Stein–Farley complexes
used for various relatives of Thompson’s groups. It recovers the fact that Garside
groups have finite classifying spaces.

We describe the categories and Garside structures underlying certain Thompson
groups. The indirect product of categories is introduced and used to construct new
categories and groups from known ones. As an illustration of our methods we
introduce the group braided T and show that it is of type F1 .
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There are many results establishing finiteness properties of Thompson groups. The
proofs typically follow the same blueprint, due to Brown, Stein and Farley, to reduce
the problem to its technical core, which is then solved individually; examples are due
to Brown [16], Stein [36], Farley [23], Bux, Fluch, Marschler, Witzel and Zaremsky
[24; 18; 43], Martínez-Pérez, Matucci and Nucinkis [31] and Belk and Forrest [3]. This
fact is well known to experts but it is not apparent when looking at the articles. The
reason is that the proofs are phrased using very different language. The present article
provides a uniform formalization of the common (“blueprint”) part of the mentioned
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1478 Stefan Witzel

proofs. The result is a theorem that reduces a statement about finiteness properties of
Thompson groups to its technical core, which is about connectivity of certain complexes.

In formalizing the blueprint it is fruitful to employ the language of categories, not
because any sophisticated category theory would be used, but because categories are
flexible enough to model posets, monoids, complexes and other objects that occur in
the constructions. A single category encodes at the same time the Thompson group
(its fundamental group) as well as the complex for it to act on (a subcomplex of the
realization).

In formulating the proof categorically we find that the assumptions that make it work
are established concepts in the (recent) literature — see Dehornoy, Digne, Godelle,
Krammer and Michel [22]; the key notions are those of an Ore category and of a Garside
family (see Section 1 for definitions). An Ore category not only has the property that
elements of its fundamental group can be written as a fraction of two morphisms (eg
“tree diagrams”), it also gives rise to a contractible space for it to act on. A Garside
family of morphisms (eg “elementary splits”) is what is needed to make the Quillen
trick work and reduce to the smaller Stein–Farley complex. In the abstract formulation
our results apply not only to Thompson groups but also to Garside groups such as the
braid groups BRAIDn and possibly to entirely different examples.

The main results are given in Section 3 in greater generality (see Observation 1.7 for
the relationship between a Garside map and a Garside family).

Theorem A Let C be a small right-Ore category that is factor-finite and admits a
right-Garside map �, and let � 2Ob.C/. There is a contractible simplicial complex X

on which G D �1.C;�/ acts. The space is covered by the G–translates of compact
subcomplexes Kx for x 2 Ob.C/. Every stabilizer is isomorphic to a finite-index
subgroup of the automorphism group C�.x;x/ for some x 2 Ob.C/.

Taking C to be a Garside monoid and � to be the Garside element, one immediately
recovers the known fact that Garside groups, and braid groups in particular, have finite
classifying spaces; see Charney, Meier and Whittlesey [20]. In fact, if C is taken to be
the dual braid monoid, the quotient GnX is precisely Brady’s classifying space for
BRAIDn [10].

In the case of Thompson’s group F the complex in Theorem A is the Stein–Farley com-
plex. The action is not cocompact in this case because C has infinitely many objects. In
order to obtain cocompact actions on highly connected spaces, we employ Morse theory.
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Theorem B Let C , �, � be as in Theorem A and let �WOb.C/! N be a height
function such that fx 2 Ob.C/ j �.x/� ng is finite for every n 2N. Assume that

(STAB) C�.x;x/ is of type Fn for all x ,

(LK) there exists an N 2N such that jE.x/j is .n�1/–connected for all x with
�.x/�N .

Then �1.C;�/ is of type Fn .

The complexes jE.x/j depend on C and � and are described in Section 3.4. Estab-
lishing condition (LK) is what we referred to as the technical core of the problem in
the beginning.

Theorem B provides a general scheme for proving that an (eligible) group is of type F1 :
first describe the category, second analyze the complexes jE.x/j, and then apply the
theorem. This scheme will be illustrated in Section 5 (describe the category) and
Section 6 (analyze the complexes, apply the theorem) on the examples of Thompson’s
groups F, T and V , their braided versions and some other groups. To our knowledge
this is the first time that Garside structures are studied in connection with Thompson
groups. In the process we define the Thompson group BT, braided T , and prove (see
Theorem 6.7):

Theorem C The braided Thompson group BT is of type F1 .

Although braided versions of V — see Dehornoy [21] and Brin [15] — and F — see
Brady, Burillo, Cleary and Stein [11] — exist in the literature, our main merit is to be
able to define braided T . The fact that it is F1 then follows from Theorem B and
results from [18]. To explain the issue of defining BT we need to digress a bit (see also
Remark 5.11). The category underlying Thompson’s group F is the category of forests,
where a morphism m n is a rooted forest with m roots and n leaves (see Section 2).
The categories underlying Thompson’s groups T and V are obtained by adding in
the cyclic groups .Z=nZ/n2N respectively the symmetric groups .SYMn/n2N . The
categories underlying the braided groups BF, BT and BV are obtained from the forest
category by adding in, for each n, the preimage under the map BRAIDn! SYMn of
the trivial group, the cyclic group and the full symmetric group, respectively.

When Brin first introduced BV, he avoided using categories by starting with the monoid
of forests with infinitely many roots and leaves and added in the braid group on infinitely
many strands limn BRAIDn . He then described which elements of the resulting infinite-
strand group should belong to BV by hand. The reason that this workaround is not
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viable for BT, or actually even for T , is simply that the finite cyclic groups .Z=nZ/n2N

do not have enough inclusions into each other and therefore no limiting object (nor do
their preimages in BRAIDn ).

Formally, the process of adding groups to the forest monoid mentioned in the last
paragraph is formation of the indirect product (or Zappa–Szép product) F‰G , where F
is the forest category and G is the category containing the groups in question. We
introduce the indirect product of categories in Section 4.

The applications of Theorem B are somewhat similar to those of Thumann’s results [37],
so we should clarify how they compare. Basically, Theorem B applies to more general
situations but has less power built in. Thumann’s framework is restricted to symmetric
or braided operads but the connectivity proofs from [18] verifying condition (LK) are
already included. Our results apply to more general settings such as the ones discussed
in Sections 5.3 and 5.5, and in particular to groups that are not of type F1 , but leave
the work of checking (LK) to the user.

The article is organized as follows. The basic notions are introduced in Section 1.
The underlying structures for braid groups and Thompson’s group F are described
in Section 2. Section 3 contains the main construction and the proofs of Theorems A
and B. The indirect product of categories is introduced in Section 4 and is used in
Section 5 to construct the categories underlying Thompson’s groups and their braided
versions. In Section 6, Theorem B is applied to the examples from Section 5 to deduce
finiteness properties, among them Theorem C. In Section 7 we briefly sketch how
further Thompson groups fit into our framework. Since the results about finiteness
properties and the indirect product may be of independent interest, we include the
following leitfaden:

Section 1

Section 2 Section 4 Section 3

Section 5
Section 6

Section 7

This article arose out of the introduction to the author’s Habilitation thesis [40], which
in addition covers Thompson groups arising from matrix groups via cloning systems;
see [43] and Section 5.3. More recently our results were used in proving that for every n
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there exists a simple group that is of type Fn�1 but not of type Fn ; see Skipper, Witzel
and Zaremsky [35].

1 Categories generalizing monoids

We start by collecting basic notions of categories regarding them as generalizations of
monoids. Our exposition is based on [22, Chapter II], where the perspective is similar.
The main difference is notational; see Remark 1.1 below.

A monoid may be regarded as (the set of morphisms) of a category with a single object.
For us categories will play the role of generalized monoids where the multiplication
is only partially defined. In particular, all categories in this chapter will be small. The
requirement that they be locally small is important and taking them to be small is con-
venient; for example, it allows us to talk about morphisms of categories as maps of sets.

Let C be a category. Notationally, we follow [22] in denoting the set of morphisms of C
by C as well (thinking of them as elements), while the objects are denoted by Ob.C/.
The identity at x will be denoted by 1x . If f is a morphism from y to x , we call y

the source and x the target of f . Our notation for composition is the familiar one for
functions, that is, if f is a morphism from y to x and g is a morphism from z to y , then
fg exists and is a morphism from z to x . If x;y 2 Ob.C/ then the set of morphisms
from y to x is denoted by C.x;y/, the set of morphisms from y to any object is denoted
by C.�;y/ and the set of morphisms from any object to x is denoted by C.x;�/. This
may be slightly unusual but renders the following intuitive expression valid:

f 2 C.x;y/; g 2 C.y; z/ D) fg 2 C.x; z/.

The corresponding diagram is

x y z
f g

fg

When we write an expression involving a product of morphisms, the requirement that
this product exists is usually an implicit condition of the expression. Thus, fg D h

means that the source of f is the target of g and that the equality holds.

Remark 1.1 The net effect of the various differences in notation is that our formalism
is consistent with [22], only the meaning of source/target, from/to and the direction of
arrows are switched. The reason for this decision is that some of our morphisms will
be group elements which we want to act from the left.
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1.1 Groupoids

A morphism f 2 C.x;y/ is invertible if there is an inverse, namely a morphism
g 2 C.y;x/ such that fg D 1x and gf D 1y . The set of invertible morphisms in
C.x;y/ is denoted by C�.x;y/ and the set of all invertible morphisms by C� . A
groupoid is a category G in which every morphism is invertible: G D G� . Just as every
monoid naturally maps to a group, every category naturally maps to a groupoid; see
[22, Section 3.1]:

Theorem 1.2 For every category C there is a groupoid Gpd.C/ and a morphism
�W C! Gpd.C/ with the following universal property: if 'W C! G is a morphism to a
groupoid then there is a unique morphism y'W Gpd.C/! G such that ' D y' ı �.

The groupoid Gpd.C/ and the morphism � are determined by C uniquely up to unique
isomorphism.

We call Gpd.C/ the enveloping groupoid of C . The morphism � is a bijection on objects
but it is not typically injective (on morphisms). One way to think about the enveloping
groupoid is as the fundamental groupoid of C :

The nerve of C is the simplicial set whose k –simplices are diagrams

x0
f1
 � x1

f2
 � x2 � � �  xk�1

fk
 � xk

in C . The i th face is obtained by deleting xi and replacing fi and fiC1 by fifiC1

and the j th degenerate coface is obtained by introducing 1xj
between fj and fjC1 .

Proposition 1.3 [33, Proposition 1] The groupoid Gpd.C/ is canonically isomorphic
to the fundamental groupoid of the realization of the nerve of C .

In particular, the fundamental group of C in an object x is just the set of endomorphisms
of Gpd.C/ in x : �1.C;x/D Gpd.C/.x;x/.

1.2 Noetherianity conditions

If fg D h then we say that f is a left-factor of h and that h is a right-multiple of f .
It is a proper left-factor or proper right-multiple if g is not invertible. We say that f
is a (proper) factor of h if efg D h (and one of e and g is not invertible).

The category C is Noetherian if there is no infinite sequence f0; f1; : : : such that fiC1 is
a proper factor of fi . It is said to be strongly Noetherian if there exists a map ıW C!N
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that satisfies ı.fg/� ı.f /C ı.g/ and, for f 2 C noninvertible, ı.f /� 1. Clearly, a
strongly Noetherian category is Noetherian. See [22, Sections II.2.3 and II.2.4] for a
detailed discussion.

We call a height function a map �W Ob.C/! N such that �.x/ D �.y/ if C.x;y/
contains an invertible morphism and �.x/ < �.y/ if C.x;y/ contains a noninvertible
morphism. Note that the existence of a height function implies strong Noetherianity by
taking ı.f /D �.y/� �.x/ if f 2 C.x;y/.

We say that C is factor-finite if every morphism in C has only finitely many factors up
pre- and postcomposition by invertibles. This condition implies strong Noetherianity
(see [22, Proposition 2.48]).

1.3 Ore categories

Two elements g; h 2 C.x;�/ have a common right-multiple d if there exist elements
e; f 2 C with geD hf D d . It is a least common right-multiple if every other common
right-multiple is a right-multiple of d . We say that C has common right-multiples if any
two elements with the same target have a common right-multiple. We say that it has
conditional least common right-multiples if any two elements that have a common right-
multiple have a least common right-multiple. We say that it has least common right-
multiples if any two elements with the same target have a least common right-multiple.
We say that C is left-cancellative if ef D eh implies f D h for all e; f;g 2 C . All of
these notions have obvious analogues with left and right interchanged. A category is
cancellative if it is left-cancellative and right-cancellative.

Lemma 1.4 If C is cancellative and f 2 C has a left-inverse or right-inverse then it is
invertible.

Proof Let f 2 C.x;y/ and assume that there is an e 2 C.y;x/ that is a left-inverse
for f , that is, ef D 1y . Then fef D f and canceling f on the right shows that e is
also a right-inverse. The other case is symmetric.

Lemma 1.5 Let C be strongly Noetherian. Then C has least common right-multiples
if and only if it has greatest common left-factors.

Proof Suppose that C has least common right-multiples and let f;g 2 C.x;�/. Let s

and t be common left-factors of f and g and let r be a least common right-multiple
of s and t . Then, since f and g are common right-multiples of s and t , they are
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right-multiples of r , meaning that r is a common left-factor. If s and t are not right-
multiples of each other then ı.r/ > ı.s/; ı.t/ and an induction on ı.r/� ı.f /; ı.g/
over the common left-factors of f and g produces a greatest common left-factor. The
other direction is analogous.

We say that C is right/left-Ore if it is cancellative and has common right/left-multiples.

Theorem 1.6 A category C that is right-Ore embeds in a groupoid G such that every
element h 2 G can be written as hD fg�1 with f;g 2 C .

The groupoid G in the theorem is called the Ore localization Ore.C/ of C . Using the
universal property, it is not hard to see that it coincides with the enveloping groupoid
of C .

The fundamental group of an Ore category has a particularly easy description. In
general, an element of �1.C;x/ is represented by a sequence f0g�1

1
f1 � � � fn�1g�1

n

with fi ;gi 2 C.xi ;�/ and fj ;gjC1 2 C.�;yj /. But if C has common right-multiples,
then g�1

1
f1 can be rewritten as f 0

1
g0

1
�1 and so the sequence can be shortened to

.f0f
0

1
/.g2g0

1
/�1f2 � � � fn�1g�1

n . Iterating this argument, we find that every element
of �1.C;x/ is of the form fg�1 with f;g 2 C.x;�/.

1.4 Presentations

We introduce presentations for categories. This is analogous to the situation for monoids
and we will be brief. See [22, Section II.1.4] for details.

A (small) precategory S consists of a set of objects Ob.S/ and a set of morphisms S .
As for categories, each morphism has a source and a target that are objects and it is a
morphism from the source to its target. The set of morphisms from y to x is denoted
by S.y;x/. The monoidal aspects of a category are missing in a precategory: it does
not have identities or a composition.

Given a precategory S there exists a free category S� generated by S . It has the
universal property that if �W S! C is a morphism of precategories and C is a category,
then � uniquely factors through S ! S� . One can construct S� to have the same
objects as S and have morphisms finite words in S that are composable.

A relation is a pair r D s of morphisms in S� with the same source and target. If
�W S� ! C is a morphism, the relation holds in C if �.r/ D �.s/. A presentation
consists of a precategory S and a family of relations R in S� . The category it presents
is denoted by hS jRi.
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It has the universal property that if �W S! C is a morphism of precategories and C is a
category in which all relations in R hold then � uniquely factors through S!hS jRi.
One can construct hS jRi by quotienting S� by the symmetric, transitive closure of
the relations.

1.5 Garside families

The following notions are at the core of [22]. We will sometimes be needing the
notions with the reverse order. What in [22] is referred to as a Garside family in a
left-cancellative category will be called a left-Garside family here to avoid confusion
in categories that are left- and right-cancellative.

Let C be a left-cancellative category and let S � C be a set of morphisms. We
denote by S] the set C� [SC� of morphisms that are invertible or left-multiples of
invertibles by elements of S . We say that S] is closed under (left/right-)factors if every
(left/right-)factor of an element in S] is again in S] . An element s 2 S is an S–head
of f 2 C if s is a left-factor of f and every left-factor of f in S is a left-factor
of s [22, Definition IV.1.10]. The set S is a left-Garside family if S] generates C , is
closed under right-factors and every noninvertible element of C admits and S–head
[22, Proposition IV.1.24]. If S is a left-Garside family then C�S � S] , so in fact
S] D C�[ C�SC� [22, Proposition III.1.39].

All notions readily translate to right-Garside families, except that the head is called an
S–tail if S is a right-Garside family. Note that S] is defined as C�[ C�S when S is
(regarded as) a right-Garside family.

We will be interested in Garside families that are closed under factors. We describe
two situations where this is the case.

Let C be left-cancellative and consider a map �W Ob.C/! C with �.x/ 2 C.x;�/.
We write

Div.�/D fg 2 C j ghD�.x/ for some x 2 Ob.C/; h 2 Cg;
eDiv.�/D fh 2 C j ghD�.x/ for some x 2 Ob.C/; g 2 Cg;

for the families of left- and right-factors of morphisms in the image of �. Such a map
is a right-Garside map if Div.�/ generates C , if eDiv.�/� Div.�/, and if, for every
g 2 C.x;�/, the elements g and �.x/ admit a greatest common left-factor. If � is a
right-Garside map then Div.�/ is a left-Garside family closed under left-factors and
thus under factors [22, Proposition V.1.20]. We note the following for future reference:
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Observation 1.7 Let C be a left-cancellative, factor-finite category and let � be a
right-Garside map. Then S WDDiv.�/ is a left-Garside family closed under factors and
S.x;�/ is finite for every x 2 Ob.C/.

Let C be right-Ore. A right-Garside family is strong if for s; t 2S] there exist s0; t 0 2S]

such that st 0 D ts0 is a least common right-multiple of s and t [22, Definition 2.29].
If S is a strong right-Garside family then S] is also closed under left-factors and thus
is closed under factors [22, Proposition 1.35].

2 Fundamental examples

2.1 Thompson’s group F and the category F

Our description of Thompson’s groups is not the standard one, which can be found
in [19]. An element of Thompson’s group F is given by a pair .TC;T�/ of finite
rooted binary trees with the same number of leaves, say n. If we add a caret to the i th

leaf (1� i � n) of TC , that is we make it into an inner vertex with two leaves below
it, we obtain a tree T 0C on nC 1 vertices. If we also add a caret to the i th leaf of T�

we obtain another tree T 0� . We want to regard .T 0C;T
0
�/ as equivalent to .TC;T�/ so

we take the reflexive, symmetric, transitive closure of the operation just described and
write the equivalence class by ŒTC;T��. Thompson’s group F is the set of equivalence
classes ŒTC;T��.

In order to define the product of two elements ŒTC;T�� and ŒSC;S��, we note that
we can add carets to both tree pairs to get representatives ŒT 0C;T

0� D ŒTC;T�� and
ŒT 0;T 0�� D ŒSC;S��, where the second tree of the first element and the first tree of
the second element are the same. Therefore, multiplication is completely defined by
declaring that ŒT 0C;T

0� � ŒT 0;T 0��D ŒT
0
C;T

0
��. It is easy to see that ŒT;T � is the neutral

element for any tree T and that ŒTC;T���1 D ŒT�;TC�.

We have defined the group F in such a way that a categorical description imposes itself;
see [2]. We define F to be the category whose objects are positive natural numbers and
whose morphisms m n are binary forests on m roots with n leaves. Multiplication
of a forest E 2 F.`;m/ and a forest F 2 F.m; n/ is defined by identifying the leaves
of E with the roots of F and taking EF to be the resulting tree. Pictorially this
corresponds to stacking the two forests on top of each other (see Figure 1).

Proposition 2.1 The category F is strongly Noetherian and right-Ore. In fact, it has
least common right-multiples and greatest common left-factors.
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: : :

: : :

D

: : :

Figure 1: Multiplication of forests (taken from [42])

Proof The identity map �W N D Ob.F/!N is a height function on F. Thus, F is
strongly Noetherian.

The least common right-multiple of two forests in F.m;�/ is their union (regarding
both forests as subforests of the leafless binary forest on m roots). The greatest common
left-factor is their intersection. Left-cancellativity means that given a forest f 2F.m; `/
and a left-factor a 2F.m; n/, the forest in b 2F.n; `/ with f D ab is unique. Indeed,
it is the forest obtained from f by removing a and turning the leaves of a into roots.
Right-cancellativity means that a is uniquely determined if f D ab . To see this, we
identify the leaves of f with the leaves of b . Now the common predecessor in f of a
set of leaves of a tree of b is a leaf of a and every leaf of a arises in that way.

The proposition together with the remark at the end of Section 1.3 shows that every
element of �1.F ; 1/ is represented by fg�1 where f;g 2 F.1;�/ are binary trees.
Cancellativity ensures that fg�1 D f 0g0

�1 if and only if there exist h and h0 such
that f hD f 0h0 and ghD g0h0. Comparing this description with our definition of F

we see:

Proposition 2.2 Thompson’s group F is isomorphic to �1.F ; 1/.

Later on it will be convenient to have a presentation for F. The shape of the relations
will not come as a surprise to the reader familiar with Thompson’s groups. A proof
can be found in [40].

Proposition 2.3 The category F has a presentation with morphisms �n
i W n nC 1

for 1� i � n as generators subject to the relations

(2-1) �n
i �

nC1
j D �n

j �
nC1
iC1

for 1� j < i � n.

Every morphism in F.m; n/ can be written in a unique way as �m
im
� � ��n�1

in�1
with .ij /j

nondecreasing.
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Remark 2.4 The relations (2-1) reflect a commutation phenomenon: for any forest,
adding a caret to the i th leaf and then to the j th leaf has the same effect as doing it the
other way around. That it does not algebraically look like a commutation relation is
due to the fact the index of the right one of the two leaves has changed when adding the
left caret. This is inevitable in the present setup because the i th leaf has no identity as
a particular vertex in the infinite rooted binary tree but simultaneously represents all i th

leaves of trees with n leaves. A larger category in which the relations are algebraically
commutation relations will appear in Section 5.5.

Note that since F is connected, the fundamental groups at different objects are isomor-
phic. This corresponds to the elementary fact that the tree pair .TC;T�/ representing
an element of F can always be chosen so that TC and T� contain an arbitrary fixed
subtree.

The most convenient way to exhibit a Garside family in F is by describing a right-
Garside map: for every n 2N D Ob.F/ let �.n/ be the forest where every tree is a
single caret.

Proposition 2.5 The map �W Ob.F/! F is a right-Garside map.

Proof The family Div.�/ consists of morphisms where every forest is either a single
caret or trivial. Every forest can be built of from these, for example by adding one
caret at a time. This shows that Div.�/ generates F. The family eDiv.�/ also consists
of morphisms where every forest is either a single caret or trivial with the additional
condition that the total number of leaves is even and the left leaf of every caret has an
odd index. In particular, eDiv.�/� Div.�/. If g 2 F.x;�/ then g and �.x/ have a
greatest common left-factor by Proposition 2.1.

With Observation 1.7 we get:

Corollary 2.6 The category F admits a left-Garside family S that is closed under
factors such that S.x;�/ is finite for every x 2 F.

Remark 2.7 The family Div.�/ is in fact a right- as well as a left-Garside family. It
is strong as a right-Garside family but not as a left-Garside family.

If instead of rooted binary trees one takes rooted n–ary trees (n� 2) in the description
above, one obtains the category Fn . Everything is analogous to F but the new aspect
that occurs for n> 2 is that the category is no longer connected: the number of leaves
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of an n–ary tree with r roots will necessarily be congruent to r modulo n� 1; hence,
there is no morphism in Fn connecting objects that are not congruent modulo n�1. As
a consequence, the point at which the fundamental group is taken does matter and we
obtain n�1 different groups for each category. It turns out, however, that the fundamen-
tal groups are in fact isomorphic independently of the basepoint [16, Proposition 4.1]
and are denoted by

Fn;1 D �1.Fn; 1/.

The groups Fn;1 are the smallest examples of the Higman–Thompson groups intro-
duced by Higman [27]. As we will see later, the fundamental groups of the different
components are nonisomorphic in the categories for the larger Higman–Thompson
groups.

2.2 Braid groups

The braid group on n strands, introduced by Artin [1], is the group given by the
presentation

(2-2) BRAIDn D
˝
�1; : : : ; �n�1 j �i�j D �j�i if ji � j j � 2;

�i�iC1�i D �iC1�i�iC1 if 1� i � n� 2
˛
.

Its elements, called braids, can be conveniently depicted as braid diagrams as in
Figure 2, illustrating a physical interpretation as braids on n strands. The first relations
are commutation relations; the second are braid relations. The group BRAIDn arise as
the fundamental group of the configuration space of n unordered points in the disc and
as the mapping class group of the n–punctured disc; see [7; 29] for more details.

What is known as Garside theory today arose out of Garside’s study of braid groups [25].
In this classical case, the category C has a single object and thus is a monoid. Specif-
ically, a Garside monoid is a monoid M with an element � 2M, called a Garside
element, such that:

D

Figure 2: Diagrams illustrating the braid relation
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(i) M is cancellative and has least common right- and left-multiples and greatest
common right- and left-factors.

(ii) The left- and right-factors of � coincide, they are finite in number, and they
generate M.

(iii) There is a map ıW M ! N such that ı.fg/ � ı.f /C ı.g/ and ı.g/ > 0 if
g ¤ 1.

A Garside group is the group of fractions of a Garside monoid. Among the main
features of Garside groups is that they have solvable word problem and conjugacy
problem.

Note that a Garside monoid, regarded as a category with one object is, by definition,
left- and right-Ore and strongly Noetherian. Moreover, the family of factors of � is a
left- and right-Garside family.

To see that braid groups are in fact Garside groups, consider the braid monoid BRAIDCn .
It is obtained by interpreting the presentation (2-2) as a monoid presentation. It is a
nontrivial consequence of Garside’s work that the obvious map BRAIDCn ! BRAIDn

is injective, so that the braid monoid can be regarded as a subset of the braid groups.
Its elements are called positive braids and are characterized by the property that left
strands always overcrosses the right strand. The element � in BRAIDCn is the braid
that performs a full half twist and is characterized by the fact that every strand crosses
every other strand precisely once; see Figure 3. Its (left- or right-) factors are the
braids where every strand crosses every other strand at most once. The function ı is
simply the number of crossings, which is the same as length as a word in the generators.
Now BRAIDCn is a Garside monoid with Garside element �; see [22, Section I.1.2,
Proposition IX.1.29]. Its group of fractions is BRAIDn , which is therefore a Garside
group.

It was noted by Birman, Ko and Lee [8] that there is in fact another monoid BRAID�Cn ,
called the dual braid monoid, that also admits a Garside element �� and has BRAIDn

as its group of fractions; see also [22, Section I.1.3]. This monoid is in many ways
better behaved than BRAIDCn . Brady [10] used the dual braid monoid to construct a
finite classifying space for the braid group.

Note that adding the relations �2
i to the presentation (2-2) results in a presentation

for the symmetric group SYMn . In particular, there is a surjective homomorphism
� W BRAIDn! SYMn that takes �i to the transposition si WD .i iC1/.
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Figure 3: The element � in BRAIDC
7

The symmetric group is a finite Coxeter group and the braid group is its corresponding
Artin group. For every Coxeter system .W;S/ there exists an Artin group AW obtained
analogously and a morphism � W AW !W . Whenever W is finite, the Artin group AW

again contains a Garside monoid and a dual Garside monoid; see [12; 5].

3 Finiteness properties of fundamental groups of Ore
categories

A classifying space for a group G is a CW complex B whose fundamental group is G

and whose universal cover X D zB is contractible. Since G acts freely on X with
quotient B DGnX, one can equivalently say that a classifying space is the quotient
of a contractible CW complex by a free G–action. Our goal in this section is to
construct “good” classifying spaces for fundamental groups of Ore categories. The
best classifying spaces are compact ones; they have finitely many cells so we also refer
to them as finite. If G admits a finite classifying space, we say that it is of type F.
If a finite classifying space does not exist, we aim at classifying spaces with weaker
finiteness properties. We start by constructing an action on a contractible space.

3.1 Contractible spaces from Ore categories with Garside families

Let C be a category that is right-Ore and strongly Noetherian. Let S be a left- or right-
Garside family such that S] is closed under factors. Let � 2 Ob.C/ be a base object.
Our goal is to construct a contractible space X on which �1.C;�/ acts with good
finiteness properties of the stabilizers as well as the quotient. In the whole discussion C
can be replaced by the component of � in C , so all assumptions only need to be made
for objects and morphisms in that component.
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We put E D S] and recall that E D C�[C�SC� . We call the elements of E elementary.
Let ıW C!N be a map that witnesses strong Noetherianity. Note that if f 2 C.x;y/
and g 2 C�.�;x/ and h 2 C�.y;�/ are invertible then

�ı.g�1/C ı.f /� ı.h�1/� ı.gf h/� ı.g/C ı.f /C ı.h/;

so ı.f /D ı.gf h/ and ı is invariant under pre- and postcomposition by invertibles.

We define the set P DOre.C/.�;�/=C� , that is, elements of P are equivalence classes
xa of elements a 2Ore.C/.�;�/ modulo the equivalence relation that xaD Na0 if there
exists a g 2 C� with agD a0. We define a relation � on P by declaring xa� xb if there
exists an f 2 C with af D b .

Lemma 3.1 The relation � is a partial order on P in which any two elements have a
common upper bound. In particular, the realization jP j is contractible.

Proof Note first that whether f D a�1b lies in C is independent of the representatives.
Reflexivity and transitivity are clear. If xa� xb � xa then there exist f; h 2 C and g 2 C�

such that af D b and bh D ag , showing that f h is a unit. In particular, f has a
right-inverse and h has a left-inverse, so f and h are units by Lemma 1.4. This
shows xaD xb .

For any a 2 Ore.C/ there is an f 2 C such that af 2 C . Since C has common right-
multiples, it follows that for any two elements a1; a2 2Ore.C/ there exist f1; f2 2 C
with a1f1 D a2f2 .

We define a second, more restrictive relation � on P by declaring that xa� xb if there
exists an e 2 E with ae D b . Note that this relation will typically not be transitive.
However, if xa � xb and xa � xc � xb then xa � xc � xb because E is closed under factors.
The complex X � jP j consists of those chains in jP j that are chains with respect to �.
In particular, P is the vertex set of X.

Proposition 3.2 The complex X is contractible.

Proof Note that X is a subspace of jP j containing all the vertices. One can obtain jP j
from X by gluing in (realizations of) intervals Œxa; xb� not yet contained in X. To
organize the gluing, note the following: if Œxc; xd � is a proper subinterval of Œxa; xb� with
f D a�1b 2 C and h D c�1d 2 C , then h is a proper factor of f . To an interval
Œxa; xb� with f D a�1b we assign the height yı.Œxa; xb�/ D ı.f /. Note that this is well

Algebraic & Geometric Topology, Volume 19 (2019)



Classifying spaces from Ore categories with Garside families 1493

defined, because any other representative f 0 will differ from f only by invertibles
and ı is invariant under pre- and postcomposition by invertibles. Note also that proper
subintervals have strictly smaller yı–value. We can therefore glue in the intervals
with increasing value of yı and be sure that when we glue in an interval, any proper
subinterval is already glued in.

For any n 2N let jP jyı<n
be the subcomplex of jP j consisting of X and intervals of

yı–value < n. If X was not contractible, there would be a sphere in X that could not
be contracted in X but in jP j. The contraction would be compactly supported, and
hence use simplices supported on finitely many simplices. It therefore suffices to show
that the inclusion X ! jP jyı<n

is a homotopy equivalence for all n 2N.

For nD 0 this is clear, so assume n> 0. Then

jP jyı<n
D jP jyı<n�1

[

[
yı.Œxa;xb�/Dn�1

jŒxa; xb�j.

The intervals that are glued in meet only in jP jyı<n�1
and they are glued in along

jŒxa; xb/j [ j.xa; xb�j. This is a suspension of j.xa; xb/j and so it suffices to show that the
open interval is contractible.

If S is a left-Garside family, every element h of C , and every left-factor of f in partic-
ular, has an S–head head.g/. We define the map � W Œxa; xb�! Œxa; xb� by ah 7! a head.h/.
Note that �.xb/ < xb because otherwise Œxa; xb� is already contained in jP j. Note also
that �.xc/ > xa for xc > xa because the head of a noninvertible is not invertible. This
shows that � restricts to a map .xa; xb/! .xa; xb/ with xc � �.xc/� �.xb/ and we can apply
[34, Section 1.5] to see that j.xa; xb/j is contractible.

If S is a right-Garside family, � is defined by bh�1 7! b tail.h/�1 . For the same
reasons as above, � restricts to a map .xa; xb/! .xa; xb/ with xc � �.xc/ � �.xa/ and we
can again apply [34, Section 1.5].

There is an obvious action of �1.C;�/ on X which is given by precomposition: if
g 2 �1.C;�/DOre.C/.�;�/ and a 2Ore.C/.�;�/ then gxaD ga and the relations �
and � are clearly preserved under this action.

Next we want to look at stabilizers and weak fundamental domains. These will be partic-
ularly well behaved with an additional assumption. We say that S is (right-)locally finite
if for every object x 2 Ob.C/ the set S.x;�/ is finite up to pre- and postcomposition
by invertibles. Local finiteness of S does not imply that X is locally finite but does
imply:
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Observation 3.3 Assume that S is locally finite. For every xa 2 P there are only
finitely many xb 2 P with xa� xb . In particular, there are only finitely many simplices
for which xa is �–minimal.

Lemma 3.4 Every simplex-stabilizer of the action of �1.C;�/ on X is isomorphic to
a subgroup of C�.x;x/ for some x 2 Ob.C/. If S is locally finite, the subgroup has
finite index.

Proof Let xa be a vertex in X with a 2Ore.C/.�;x/ and suppose that g 2 �1.C;�/
fixes xa, that is, xaD gxaD ga. Then a�1ga 2 C�.x;x/. This shows that the stabilizer
of xa is conjugate to C�.x;x/. If S is locally finite then Observation 3.3 implies that
the stabilizer of an arbitrary simplex has finite index in a vertex stabilizer.

Corollary 3.5 If C�.x;x/ D f1xg for every object x 2 Ob.C/ then the action of
�1.C;�/ on X is free. If C�.x;x/ is finite then the action is proper.

Now let us pick, for every x 2 Ob.C/, a morphism fx 2Ore.C/.�;x/ arbitrarily and
let Kx �X be the union of the realizations of the intervals Œ xfx; fxe� with e 2 E.x;�/.

Lemma 3.6 The complex X is covered by the �1.C;�/–translates of the complexes
Kx for x 2 Ob.C/. If S is locally finite then each Kx is compact.

Proof If � D ff � fe1 � � � � � fekg is a simplex in X with f 2Ore.C/.�;x/ and
e1; : : : ; ek 2 E.x;�/, then fxf

�1 2 �1.C;�/ and fxf
�1Kx contains � . The second

statement is clear.

The ideal special case is:

Corollary 3.7 If C has no nonidentity invertible morphisms and has only finitely
many objects and if S is locally finite, then �1.C;�/ has a finite classifying space.

Proof Under the assumption, the action of �1.C;�/ is free by Corollary 3.5 and
cocompact by Lemma 3.6. The quotient is then a finite classifying space.

In particular, we recover the main result of [20]:

Corollary 3.8 Every Garside group G has a finite classifying space.

In the case of the dual braid monoid, the complex we constructed is precisely the dual
Garside complex constructed by Brady [10].
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3.2 Finiteness properties

Topological finiteness properties of a group G were introduced by Wall [38; 39] and are
conditions on how finite a classifying space for G can be chosen. A group is said to be
of type Fn if it admits a classifying space B whose n–skeleton B.n/ has finitely many
cells. Equivalently a group is of type Fn if it acts freely on a contractible space X

such that the action on X .n/ is cocompact. It is clear that type Fn implies type Fm

for m< n and one defines the finiteness length �.G/ to be the supremal n for which
G is of type Fn . If �.G/D1 then G is said to be of type F1 .

In low dimensions, these properties have familiar descriptions: a group is of type F1

if and only if it is finitely generated, and it is of type F2 if and only if it is finitely
presented.

Given a group G, in order to study its finiteness properties, one needs to let G act on
a highly connected space X. If the action is free, then the low-dimensional skeleta
of GnX are those of a classifying space. A useful result is Brown’s criterion, which
says that one does not have to look at free actions; see [16, Propositions 1.1, 3.1]:

Theorem 3.9 Let G act cocompactly on an .n�1/–connected CW complex X. If the
stabilizer of every p–cell of X is of type Fn�p then G is of type Fn .

The full version of Brown’s criterion also gives a way to decide that a group is not of
type Fn . We formulate it here only to explain why we will not be able to apply it:

Theorem 3.10 Let G act on an .n�1/–connected CW complex X and assume that
the stabilizer of every p–cell of X is of type Fn�p . If G is of type Fn then, for every
cocompact subspace Y and any basepoint � 2 Y , there exists a cocompact subspace
Z � Y such that the maps �k.Y;�/! �k.Z;�/ induced by inclusion have trivial
image for k � n� 1.

Theorem 3.10 can be used to show that a group is not of type Fn if this is visible in
the topology of X. On the other hand, if the stabilizers have bad finiteness properties,
we cannot decide whether G has good finiteness properties or not: in that case we are
looking at the wrong action.

3.3 Combinatorial Morse theory

In order to study connectivity properties of spaces and apply Brown’s criterion we will
be using combinatorial Morse theory as introduced by Bestvina and Brady [6]. Here
we give the most basic version used in Section 3.4.
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Let X be the realization of an abstract simplicial complex, regarded as a CW complex.
A Morse function is a function �W X .0/!N with the property that �.v/¤ �.w/ if v
is adjacent to w . For n 2N the sublevel set X�<n is defined to be the full subcomplex
of X supported on vertices v with �.v/< n. The descending link lk# v of a vertex v is
the full subcomplex of lk v of those vertices w with �.w/� �.v/ and the descending
star st# is defined analogously. That � is a Morse function implies that the inequality
�.w/� �.v/ is strict for the descending link and for the descending star is not strict
only when w D v . In particular, the descending star is the cone over the descending
link.

The goal of combinatorial Morse theory is to compare the connectivity properties of
sublevel sets to each other and to those of X. The tool to do so is a basic lemma, called
the Morse lemma:

Lemma 3.11 Let � be a Morse function on X. Let m� n�1 and assume that for
every vertex v with m� �.v/ < n the descending link of v is .d�1/–connected. Then
the pair .X�<n;X�<m/ is d –connected, that is, �k.X�<m!X�<n/ is an isomorphism
for k < d and an epimorphism for k D d .

Proof The basic observations are that

X�<mC1 DX�<m[

[
�.v/Dm

st# v,

that st# v \ st# v0 � X�<m for �.v/ D m D �.v0/, and that st# v \X�<m D lk# v .
As a consequence (using compactness of spheres) it suffices to study the extension
Y WDX�<m[lk# v st# v for an individual vertex v with �.v/Dm.

In this situation, �k.Y;X�<m/ Š �k.st# v; lk# v/ for k � d . This can be seen by
separately looking at �1 and H� (where excision holds) and applying Hurrewicz’s
theorem [26, Theorem 4.37]. The statement now follows from the long exact homo-
topy/homology sequence for the pair .st# v; lk# v/.

3.4 Finiteness properties of fundamental groups of Ore categories

We take up the construction from Section 3.1. So C is again a right-Ore category, S is a
left- or right-Garside family closed under factors, and �2Ob.C/ is a base object. More
than requiring strong Noetherianity, we now need a height function �W Ob.C/!N.

We use these data and assumptions to provide a criterion to prove finiteness properties
for the fundamental group.
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We need to introduce one further space construction. It is another variant of the
nerve construction. For x 2 Ob.C/ let E.x/ be the set of equivalence classes in
a 2 E.�;x/X E�.x;x/ modulo the equivalence relation that xaD Na0 if there exists a
g 2 C� with ga D a0. We define a relation � on E.x/ by declaring xa � xb if there
is an f 2 C with faD b . Note that if g and f as above exist, they lie in E , so the
description can be formulated purely in terms of E . As in Lemma 3.1 one sees that �
is a partial order on E.x/; however, it is usually not contractible.

Theorem 3.12 Let C be a right-Ore category and let � 2 Ob.C/. Let S be a locally
finite left- or right-Garside family that is closed under factors. Let �W Ob.C/!N be a
height function such that fx 2 Ob.C/ j �.x/� ng is finite for every n 2N. Assume

(STAB) C�.x;x/ is of type Fn for all x ,

(LK) there exists an N 2N such that jE.x/j is .n�1/–connected for all x with
�.x/�N .

(If � is unbounded on the component of � then it suffices if (STAB) holds for every x

with �.x/ beyond a fixed bound.)

Then �1.C;�/ is of type Fn .

Remark 3.13 Recall that C can be replaced by the component of � in C , so all
assumptions need to be made only for that component.

Proof We take X to be the complex constructed in Section 3. Assume first that (STAB)
holds for all x 2 Ob.C/.

For a vertex xa 2X with a 2Ore.C/.�;x/ we define �.xa/D �.x/. This is a �1.C;�/–
invariant Morse function, which we think of as height. For n 2 N we consider the
subcomplex X�<n supported on vertices of height < n.

We want to see that every X�<n is �1.C;�/–cocompact. To do so we note that �1.C;�/
acts transitively on vertices xa with a 2Ore.C/.�;x/: indeed, if xb is another such then
ba�1 2 �1.C;�/ takes xa to xb . It follows from the assumption on � that there are only
finitely many vertices xa with �.xa/ < n up to the �1.C;�/–action. Cocompactness now
follows from Observation 3.3.

Stabilizers are of type Fn by Lemma 3.4 because finiteness properties are inherited by
finite-index subgroups.

Let N be large enough that all the x 2 Ob.C/ for which the nerve of jE.x/j is not
.n�1/–connected have �.x/ <N . We have just seen that �1.C;�/ acts on X�<N co-
compactly with stabilizers of type Fn , so once we show that X�<N is .n�1/–connected,
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we are done by Theorem 3.9. We want to apply the Morse lemma (Lemma 3.11), so let
us look at the descending link of a vertex xb of X, where b 2 C.�;x/. The vertices in
the descending link are the xa that are comparable with xb and have �.xa/ < �.xb/. The
condition on the height shows that a cannot be a right-multiple of b but has to be a
left-factor. Thus, a�1b 2 E.�;x/ and the descending link of xb is the realization of
fxa j a� bg. We see that the map E.�;x/XE.x;x/!fxa j a� bg that takes f to af �1

is an order-reversing surjection. The definition of E.x/ is made so that the induced
map E.x/!fxa j a� bg is well defined and an order-reversing bijection. Since jE.x/j
is .n�1/–connected by assumption, this completes the proof in the case that (STAB)
holds for all x .

If (STAB) only holds for x with �.x/�M, let �0 be in the component of � satisfying
�.�0/ >M. Since C is Ore, one sees that

�1.C;�/D �1.C;�0/D �1.C��M ;x0/;

where C��M is obtained from C by removing objects y with �.y/ <M. Moreover,
local finiteness of S implies that the complexes E.y/ for C and for C��r are the same
for y in the component of �0 once �.y/ is large enough. One can therefore consider
C��M instead of C , with the effect that the groups C�.x;x/ only need to be of type Fn

when �.x/�M.

Corollary 3.14 Let C , S , � and � be as in the theorem. If C�.x;x/ is of type F1

for every x and the connectivity of jE.x/j tends to infinity for �.x/ ! 1, then
�1.C;�/ is of type F1 .

The construction of X uses two important ideas. One is the passage from jP j to X,
which is due to Stein; see [36, Theorem 1.5]. The other is to take P to consist of C�–
equivalence classes and goes back to [18]. Apart from these ideas the main difficulty in
proving that �1.C;�/ is of type Fn lies in establishing the connectivity properties of
the complexes jE.x/j. This problem depends individually on the concrete setup and
we will see various examples later.

3.5 Example: F is of type F1

As a first illustration of the results in this section we reprove a result due to Brown and
Geoghegan [17]:

Proposition 3.15 Thompson’s group F is of type F1 .
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We have seen in Proposition 2.1 that F is right-Ore and admits a height function and
by Corollary 2.6 it has a locally finite left-Garside family that is closed under factors.
Moreover, F�.x;x/Df1xg for every x , so (STAB) is satisfied as well. It only remains
to verify (LK). Although things are not always as easy, we remark that this is the typical
situation: property (LK) is where one actually needs to show something.

To understand the complexes jE.n/j we first need to unravel the definition. Recall
that a matching of a graph � is a set of edges M �E.�/ that are pairwise disjoint.
Matchings are ordered by containment and we denote the poset of matchings by M.�/.
In fact, since every subset of a matching is again a matching, M.�/ is (the face poset
of) a simplicial complex, the matching complex. We denote by Ln the linear graph on
n vertices f1; : : : ; ng, so its edges are fi; i C 1g for 1� i < n.

Lemma 3.16 The poset EF .n/ is isomorphic to M.Ln/.

Proof Let f 2 EF .�; n/, so f is an element of EF .n/. We identify the roots of f
with the vertices of the linear graph Ln on the vertices f1; : : : ; ng. Every caret of f
connects two of these roots and thus corresponds to an edge of Ln . All these edges are
disjoint, so the resulting subgraph Mf of Ln is a matching. It is clear that, conversely,
every matching of Ln arises in a unique way from an elementary forest.

If h� f then h is a left-multiple of f , that is, f can be obtained from h by adding
carets to some roots of h that do not have carets yet. On the level of graphs this means
that Mf is obtained from Mh by adding edges so that Mh � Mf in the poset of
matchings.

Remark 3.17 In particular, EF .n/ is (the face poset of) a simplicial complex. The
realization as a poset is the barycentric subdivision of the realization as a simplicial
complex, and in particular both are homeomorphic. So there is no harm in working with
the coarser cell structure where elements of EF .n/ are simplices rather than vertices.
This fact applies in most of our cases.

Matching complexes of various graphs have been studied intensely and their connectivity
properties can be verified in various ways [9]. In fact, for linear and cyclic graphs the
precise homotopy type is known [30, Proposition 11.16].

Rather than using the known optimal connectivity bounds we use the opportunity to
introduce a criterion due to Belk and Forrest [3, Theorem 4.9] that is particularly well
suited to verifying that the connectivity of the spaces E.x/ tends to infinity in easier
cases. We need to introduce some notation.
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An abstract simplicial complex X is flag if every set of pairwise adjacent vertices forms
a simplex. A simplex � in a simplicial flag complex is called a k –ground for k 2N

if every vertex of X is connected to all but at most k vertices of � . The complex is
said to be .n; k/–grounded if there is an n–simplex that is a k –ground.

Theorem 3.18 [3, Theorem 4.9] For m; k 2N every .mk; k/–grounded flag com-
plex is .m�1/–connected.

The reference requires m; k�1 but it is clear that every .0; k/–grounded flag complex is
nonempty, and every .0; 0/–grounded flag complex is a cone and therefore contractible.

Using Theorem 3.18 we verify:

Lemma 3.19 For every n 2 N let �n be a subgraph of Kn containing Ln . The
connectivity of M.�n/ goes to infinity as n goes to infinity.

Proof Consider the matchings of Ln that use only the edges f2i � 1; 2ig for 1 �

i �
�

n
2

˘
. They form an

��
n
2

˘
�1
�
–simplex � in M.�n/. If v D fj ; kg is any edge

of �n , so a vertex of M.�n/, then there are at most 2 vertices of � that v is not
connected to: one is fj � 1; j g or fj ; j C 1g, the other is fk � 1; kg or fk; k C 1g.
This shows that M.�n/ is

��
n
2

˘
�1; 2

�
–grounded, so by Theorem 3.18 it is

��
n
4

˘
�1
�
–

connected.

Proof of Proposition 3.15 We want to apply Corollary 3.14. The only thing left to
check is condition (LK). This follows from Lemmas 3.16 and 3.19.

4 The indirect product of two categories

The construction introduced in this section will help us to produce more interesting
examples. It is usually called the Zappa–Szép product in the literature of groups
and monoids; see [14]. The Zappa–Szép product naturally generalizes the semidirect
product in the same way as the semidirect product generalizes the direct product. We
think that such a basic construction should have a simpler name and therefore call it
the indirect product.

For motivation, let M be a monoid (or group) whose multiplication we denote by ı
and suppose that M decomposes uniquely as M DAıB . By this we mean that A and
B are submonoids of M such that every element m 2M can be written in a unique
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way as m D a0 ı b0 with a0 2 A and b0 2 B . In particular, if b 2 B and a 2 A, the
product mD b ıa can be rewritten as b ıaD a0 ıb0. This allows us to formally define
maps B �A!A, .b; a/ 7! b � a WD a0, and B �A! B , .b; a/ 7! ba WD b0, so that

b ı aD .b � a/ ı ba.

These maps turn out to be actions of monoids on sets. If both actions are trivial then
M is a direct product, if one of the actions is trivial then M is a semidirect product,
and in general it is an indirect product.

We therefore start by introducing the appropriate notion of actions of categories.

4.1 Actions

Let C be a category and let .Xm/m2Ob.C/ be a family of sets, one for each object of C .
We say that a left action of C on .Xm/m is a family of maps

C.n;m/�Xm!Xn; .f; s/ 7! f � s;

satisfying 1m � s D s for all m 2 Ob.C/ and s 2Xm and fg � s D f � .g � s/ whenever
fg is defined. A right action is defined analogously. An action is said to be injective if
f �x D f �y implies x D y . Note that actions of groupoids are always injective.

In our examples the family .Xm/m itself will consist of morphisms of a category with
the same objects as C . We have to bear in mind, however, that the action is on these as
sets and does not preserve products.

4.2 The indirect product

Let C be a category and let F and G be subcategories. We say that C is an internal
indirect product F ‰ G if every h 2 C can be written in a unique way as hD fg with
f 2 F and g 2 G . Note that this means in particular that Ob.C/D Ob.F/D Ob.G/.
Given elements f 2F.x;�/ and g 2 G.�;x/ there exist then unique elements f 0 2F
and g0 2 G such that gf D f 0g0 ; see Figure 4 (left). In this situation we define g � f

to be f 0 and gf to be g0.

The following properties are readily verified — see Figure 4 (center and right) — the
last four hold whenever one of the sides is defined:

(IP1) 1x �f D f for f 2 F.x;�/.

(IP2) g1y D g for g 2 G.�;y/.
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1

g1�.g2�f /

g2

f

g
f

2

g2�f

Figure 4: The indirect product

(IP3) .g1g2/ �f D g1 � .g2 �f /.

(IP4) gf1f2 D .gf1/f2 .

(IP5) 1
f
x D 1y for f 2 F.x;y/.

(IP6) g � 1y D 1z for g 2 G.z;x/.

(IP7) .g1g2/
f D g

.g2�f /
1

g
f
2

.

(IP8) g � .f1f2/D .g �f1/.g
f1

2
�f2/.

The first four relations say that the map .g; f / 7! g �f is an left action of G on the sets
.F.x;�//x and that .g; f / 7! gf is a right action of F on the sets .G.�;y//y . The
next two relations say that identity elements are taken to identity elements, while the
last two are cocycle conditions. We call actions satisfying (IP1)–(IP8) indirect product
actions.

Now assume that conversely categories F and G with Ob.F/ D Ob.G/ are given
together with indirect product actions of F and G on each other. Then the external
indirect product C D F ‰ G is defined to have objects Ob.C/D Ob.F/D Ob.G/ and
morphisms

C D
[

x2Ob.C/

f.f;g/ j f 2 F.�;x/;g 2 G.x;�/g.

Composition is defined by

(4-1) .f1;g1/.f2;g2/D .f1.g1 �f2/;g
f2

1
g2/.

Lemma 4.1 The external indirect product F ‰ G is well defined. It is naturally
isomorphic to the internal indirect product of the copies of F and G inside F ‰ G .

Proof That the identity morphisms .1x; 1x/ behave as they should is easily seen
using relations (IP1), (IP2), (IP5) and (IP6). To check associativity we verify the four
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�

�

�

�

�

�

�

�

��

g1

f2

g2

f3

f1

g3

g1 �f2

g
f2

1

g2 �f3

g
f3

2

g
f2

1
� .g2 �f3/

.g
f2

1
/g2�f3

g1 � .f2.g2 �f3//

.g
f2

1
g2/

f3

.g
f2

1
g2/ �f3

g
f2.g2�f3/

1

Figure 5: Associativity in F ‰ G . The thick dashed and gray paths are the
components of .f1;g1/..f2;g2/.f3;g3// and ..f1;g1/.f2;g2//.f3;g3/ ,
respectively.

equations

g
f2.g2�f3/
1

(IP4)
D .g

f2

1
/g1�f3 ;(4-2)

.g
f2

1
g2/ �f3

(IP3)
D g

f2

1
� .g2 �f3/;(4-3)

g
f2.g2�f3/
1

g
f3

2

(4-2)
D .g

f2

1
/g1�f3g

f3

2

(IP7)
D .g

f2

1
g2/

f3 ;(4-4)

.g1 �f2/..g
f2

1
g2/ �f3/

(4-3)
D .g1 �f2/.g

f2

1
� .g2 �f3//

(IP8)
D g1 � .f2.g2 �f3//I(4-5)

see Figure 5.

The categories F and G naturally embed into the external indirect product F ‰ G
as f 7! .f; 1y/ for f 2 F.�;y/ and g 7! .1x;g/ for g 2 G.x;�/. Any morphism
of F ‰ G decomposes as .f;g/ D .f; 1y/.1y ;g/ and it is clear from (4-1) that the
respective actions on each other are the ones used to define F ‰ G .

If the action of G on F is trivial then the indirect product is a semidirect product F ËG .
Similarly, if the action of F on G is trivial then it is a semidirect product FÌG . Finally,
if both actions are trivial then the indirect product is in fact a direct product F �G .
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We close the section by collecting facts that ensure that an indirect product is Ore.

Lemma 4.2 If F and G are right-cancellative and the action of F on G is injective
then F ‰ G is right-cancellative. Symmetrically, if F and G are left-cancellative and
the action of G on F is injective, then F ‰ G is left-cancellative.

Proof If f1g1fgD f2g2fg then f1.g1 �f /D f2.g2 �f / and g
f
1

gD g
f
2

g . Since G
is right-cancellative the latter equation shows that g

f
1
Dg

f
2

and injectivity of the action
then implies g1D g2 . Putting this in the former equation and using right-cancellativity
of F gives f1 D f2 .

Observation 4.3 Let F have common right-multiples and let G be a groupoid. Then
F ‰ G has common right-multiples.

Proof Let fg 2 F ‰ G with f 2 F and g 2 G . Since G is a groupoid, f is both a
left-factor and a right-multiple of fg . It follows that common right-multiples exist in
F ‰ G because they exist in F.

Observation 4.4 Let F have no nontrivial invertible morphisms and let G be a
groupoid. Then .F ‰ G/� D G .

Proposition 4.5 Let C D F ‰ G , where F has no nontrivial invertibles and G is a
discrete groupoid.

(i) If F is right-Ore and the action of F on G is injective, then C is right-Ore.

(ii) If F is strongly Noetherian then so is C .

(iii) If � is a height function on F then it is a height function on C .

(iv) If S is a left-Garside family in F then it is a left-Garside family in C .

(v) If S is a right-Garside family in F then SG is a right-Garside family in C .

Proof Property (i) follows from Lemma 4.2 and Observation 4.3. Properties (ii)
and (iv) follow from the fact that for f 2 F and g 2 G the morphisms f and fg

are right-multiples by invertibles of each other. Property (iii) follows from G being
discrete (ie every morphism being an endomorphism). Toward (v), it is clear that every
right-factor of SG is contained in SG . Moreover, if t is an S–tail for f then tg is a
S–tail for fg .
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5 Examples: categories constructed by indirect products

In this section we show how the indirect product can be used to construct new groups.
The basic examples are Thompson’s groups T and V as well as the braided Thompson
groups, which all arise as fundamental groups of categories of the form F ‰ G where
G is an appropriate groupoid. More generally, the groups studied in joint work with
Zaremsky [43] are essentially by definition groups that can be obtained in this form.
Later we also describe other groups obtained via indirect products.

We will sometimes draw pictures to motivate our definition. In these pictures the up
direction always corresponds to left in our notation and down corresponds to right.
This is especially relevant for group elements. For example, a permutation X  X ,
g.x/ 7!x , will be depicted by connecting the point x at the bottom to the point g.x/

at the top.

5.1 Thompson’s groups T and V

In this section we introduce Thompson’s groups T and V as fundamental groups of
categories T and V . The categories will be obtained from F as indirect products with
groupoids and we start by introducing these.

We define GT and GV to be groupoids whose objects are positive natural numbers
with GT .m; n/D∅ for m¤ n. We put GT .n; n/DZ=nZ and GV .n; n/D SYMn . We
want to define T D F ‰ GT and V D F ‰ GV and have to specify the actions that
define these indirect products. That is, given a forest f 2F.m; n/ and a group element
g 2 G.m;m/ we need to specify how the product gf should be written as .g �f /gf

with g �f 2 F.m; n/ and gf 2 G.n; n/ (for G one of GT and GV ).

Since GT is contained in GV , it would suffice to only define the actions for GV , but
we look at the simpler case of GT first.

=

Figure 6: Defining F‰GT . The picture shows how to write gf as .g �f /gf

in the case where f is the caret �3
3
2 F.3; 4/ and gD 1CZ=3Z 2 GT .3; 3/ .

The dashed strand gets doubled under the action of f . As a result, g �f D

�3
1
2 F.3; 4/ and gf D 2CZ=4Z 2 GT .4; 4/ .
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We need to rewrite a cyclic permutation followed by a tree as a tree followed by a cyclic
permutation. This is illustrated in Figure 6. For f 2 F.m; n/ and g D `CZ=mZ 2

GT .m;m/ the forest g � f is just f with the trees rotated by ` to the right. The
definition of gf is more subtle: looking at the figure we see that we have to define
it to be k CZ=nZ, where k is the number of leaves of the first ` trees of g � f , or
equivalently, to be the number leaves of the last ` trees of f . Note that this number
does not depend on the chosen representative `: if we replace ` by `Cm, instead of k

we get k C n, because we counted every leaf once more. If k` denotes the number
of leaves of the last ` trees of f , the sequence .k`/0�`<m is strictly increasing. This
shows:

Observation 5.1 The action of F on GT is injective.

Lemma 5.2 The actions of F and GT on each other are indirect product actions.

Proof Conditions (IP1), (IP2), (IP3), (IP4), (IP5) and (IP6) are clear.

The condition (IP7) in our setting follows from the fact that the last kC ` trees of f
are the last ` trees of f plus the last k trees of .`CmZ/ �f . Condition (IP8) can be
verified by drawing a picture.

The lemma allows us to define T D F ‰ GT . Combining Observation 5.1 with
Proposition 2.1 and Corollary 2.6 and applying Proposition 4.5 we find:

Corollary 5.3 The category T is right-Ore and admits a height function and a left-
Garside family S that is closed under factors such that S.x;�/=S� is finite for every x .

The fundamental group �1.T ; 1/ is Thompson’s group T .

Now we want to define the actions of F and GV on each other. So let f 2F.m; n/ and
let g 2 GV .m;m/. The action of GV on F is again as expected: the forest f 0D .g �f /
is given by the relationship that the g.j /th tree of f 0 is the j th tree of f . The
permutation g0 D gf 2 GV .n; n/ has the following description. Identify f1; : : : ; ng
with the leaves of f and with the leaves of .g �f /. If i is the k th leaf of the j th tree
of f then g0.i/ is the k th leaf of the g.j /th tree of g �f ; see Figure 6.

At this point it becomes clear that working with the actions as described above is
virtually impossible. To obtain a more explicit algebraic description, we make use of
the presentation of F. Property (IP4) tells us that we know how any element of F acts
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as soon as we know how the generators act and property (IP8) tells us that we know how
GV acts on any element once we know how it acts on the generators of F. It therefore
suffices to specify both actions for generators of F. Checking well-definedness then
means to check various conditions coming from the relations in F.

So now we consider g 2 GV .m;m/ and �m
i 2 F.m;mC 1/ and define the actions on

each other. We start again with the easy case,

(5-1) g ��i D �g.i/.

Working out g�i we have to distinguish four cases depending on the position of a point
relative to i and relative to g.i/:

(5-2) g�i .j /D

8̂̂̂<̂
ˆ̂:

g.j / if j � i; g.j /� g.i/;

g.j � 1/ if j > i; g.j � 1/� g.i/;

g.j /C 1 if j � i; g.j / > g.i/;

g.j � 1/C 1 if j > i; g.j � 1/ > g.i/.

Since i D j if and only if g.i/D g.j /, the inequalities in the second and third case
can be taken to be strict.

Lemma 5.4 The formulas (5-1) and (5-2) define well-defined indirect product actions
of F and GV on each other.

Proof The conditions that involve only the action of GV , namely (IP1), (IP3) and (IP6),
are clear. Condition (IP2) is defined to hold. Verifying conditions (IP5) and (IP7) on
the �i is straightforward, although in the second case tedious.

Conditions (IP4) and (IP8) should also be defined to hold, but in order for this to be
well defined, we need to check them on relations. That is, we need to verify that

.g�i /�j D g�i�j D g�j�iC1 D .g�j /�iC1

and
.g ��i/.g

�i

2
��j /D g � .�i�j /D g � .�j�iC1/D .g ��j /.g

�j

2
��iC1/

for j < i . These are again not difficult but tedious and we skip them here. See
[43, Example 2.9] for a detailed verification.

Thus, we can define V D F ‰ GV .

Lemma 5.5 The action of F on GV defined by (5-2) is injective.
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Proof Since by definition g�i1
����in D .� � � .g�i1 / � � � /�in , we only need to check that

the map g 7! g�i defined in (5-1) is injective. But g can be recovered from g�i as
follows. Let �i ; �i W N!N be given by

�i.j / WD

�
j if j � i;

j C 1 if j > i;
�i.j / WD

�
j if j � i;

j � 1 if j > i:

Then g.j /D �i.g
�i .�i.j ///.

Proposition 2.1, Corollary 2.6 and Proposition 4.5 now imply:

Corollary 5.6 The category V is right-Ore and admits a height function and a left-
Garside family S that is closed under factors such that S.x;�/=S� is finite for every x .

The fundamental group �1.V; 1/ is Thompson’s group V .

5.2 The braided Thompson groups

The group BV, called braided V , was introduced independently by Brin [15] and
Dehornoy [21]. We describe it using our framework, which is similar to Brin’s approach.

To define the categories underlying the braided Thompson groups, we define the
groupoid GBV to have as objects natural numbers, and to have morphisms GBV.m; n/D∅
for m¤ n, and GBV.n; n/D BRAIDn . Note that the morphisms � W BRAIDn! SYMn

define a morphism GBV ! GV , which we denote by � as well. We want to define a
indirect product F‰ GBV and need to define actions of F and GBV on each other. Our
guiding picture is Figure 7.

We define the action of GBV on F simply as the action of GV composed with � . In
particular, �i ��i D �iC1 , �i ��iC1 D �i and �i ��j D �j for j ¤ i; i C 1. The action

D

Figure 7: Defining F ‰ GBV
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of F on GBV we only define for generators acting on generators by

�
�j

i WD

8̂̂̂<̂
ˆ̂:
�iC1 if j < i;

�i�iC1 if j D i;

�iC1�i if j D i C 1:

�i j > i C 1.

Lemma 5.7 The formulas above define well-defined indirect product actions of F
and GBV on each other.

In the proof we will use the fact that there is a set-theoretic splitting �W SYMn! BRAIDn

that takes a reduced word w.s1; : : : ; sn�1/ to the braid w.�1; : : : ; �n�1/. This map is
not multiplicative but if ˇ is a positive word (meaning involving no inverses) of length
at most 3 in the �i then ��.ˇ/D ˇ .

Proof As in the proof of Lemma 5.4 most conditions hold by definition but we need
to check well-definedness on relations. Namely,

.�i�iC1�i/ ��k D �i � .�iC1 � .�i ��k//D �iC1 � .�i � .�iC1 ��k//(5-3)

D .�iC1�i�iC1/ ��k ;

.�i�iC1�i/
�k D �

.�iC1�i /��k

i �
�i ��k

iC1
�
�k

i D �
.�i�iC1/��k

iC1
�
�iC1��k

i �
�k

iC1
(5-4)

D .�iC1�i�iC1/
�k ;

.�i�j / ��k D �i � .�j ��k/D �i � .�j ��k/D .�j�i/ ��k ;(5-5)

.�i�j /
�k D �

�j ��k

i �
�k

j D �
�i ��k

j �
�k

i D .�j�i/
�k ;(5-6)

�i � .�`�k/D .�i ��`/.�
�`

i ��k/D .�i ��k/.�
�k

i ��`C1/(5-7)

D �i � .�k�`C1/;

�
�`�k

i D .�
�`

i /�k D .�
�k

i /�`C1 D �
�k�`C1

i(5-8)

for i � j � 2, ` > k .

Relations (5-3) and (5-5) follow from Lemma 5.4. For the remaining relations note
that �.ˇ�k /D �.ˇ/�k . Now (5-7) follows from Lemma 5.4 as well because

(5-9) �.�
�`

i / ��k D �
�`

i ��k and �.�
�k

i / ��`C1 D �
�k

i ��`C1.

Relation (5-8) follows from Lemma 5.4 by noting that both sides are positive words of
length at most 3 and applying �.
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We verify (5-4) by distinguishing cases. The cases k < i and k > i C 2 are clear. If
k D i C 1 then the left-hand side equals .�iC1�i/�iC2.�iC1�i/ and the right-hand
side equals .�iC1�iC2/�i.�iC1�iC2/. Both are equivalent through two braid relations
with intermediate commutator relations. The cases k D i and k D iC2 are symmetric
and we only verify k D i . The left-hand side equals �i.�iC1�iC2/.�i�iC1/ while the
right-hand side equals .�iC1�iC2/.�i�iC1/�iC2 . Again these are equivalent through
two braid relations with intermediate commutator relations.

Relation (5-6) is left to the reader.

For future reference we record (5-9), which in the presence of Lemma 5.7 can be
formulated as:

Observation 5.8 The morphism � W GBV ! GV is equivariant with respect to the
F –action in the sense that

�.ˇf /D �.ˇ/f

for ˇ 2 GBV and f 2 F.

We define the category BV to be F ‰ GBV with the above indirect product actions.

Lemma 5.9 The action of GBV on F is injective.

Proof We only need to check that ˇ 7! ˇ�i is injective. But ˇ can be recovered
from ˇ�i by removing the .iC1/st strand.

Corollary 5.10 The category BV is right-Ore.

The fundamental group �1.BV; 1/ is the braided Thompson group BV.

It is now easy to define braided versions of T and F. We let GBT and GBF be the
inverse image under � W GBV! GV of GT and GF , respectively. Both of these act on F
by restricting the action of GBV , which is the same as to say that they act through � .

The action of F of GBV leaves GBT and GBF invariant and restricts to actions on these,
thanks to Observation 5.8: we know from Section 5.1 that F leaves GT invariant and it
is axiomatically required that it leaves the trivial groupoid invariant. Hence, if ˇ 2 GBT

and f 2F then �.ˇf /D �.ˇ/f 2 GT , so that ˇf 2 GBT , and an analogous reasoning
applies for ˇ 2 GBF .

As a consequence we can define the categories BT D F ‰ GBT and BF D F ‰ GBF ,
which are right-Ore. The group BF D �1.BF ; 1/ is called braided F and was first
introduced in [11]. We call the group BT D �1.BT ; 1/ braided T .
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Remark 5.11 The group BT was not introduced before for the following technical
reason. Instead of our category BV, Brin [15] used a monoid that can be thought of as
a category with a single object ! which represents countably infinitely many strands.
This is possible because splitting one of countably infinitely many strands leads to
countably infinitely many strands and because braid groups BRAIDn are contained in
a braid group lim

��!
BRAIDn on infinitely many strands. A practical downside of that

approach is that the group of fractions of that monoid is too big, so one needs to
describe which elements should be elements of BV. A formal downside is that groups
like BT or even T cannot be described because Z=nZ is not contained in Z=.nC1/Z,
so that the needed limit does not exist.

Despite this formal problem, the main topological ingredient to establishing the finite-
ness properties of BT has been verified in [18, Section 3.4].

Remark 5.12 Since braid groups are themselves groups of fractions, one can also
obtain BV as the fundamental group of the category F ‰ GC

BV
, where GC

BV
.n; n/ is

the monoid of positive (or dual positive) braids rather than the full braid group (and
analogous statements hold for BF and BT ). This possibility has been noted by several
people; see for example the last paragraph of Section 3.1 in [28]. When applying
Theorem 3.12, condition (STAB) would become trivial, so verifying condition (LK) will
presumably be accordingly harder.

5.3 Groups arising from cloning systems

In [43] Zaremsky and the author have defined (filtered) cloning systems to be the data
needed to define indirect product actions of F and a groupoid on each other. Thus, the
groups considered there are by definition fundamental groups of categories F ‰ G ,
where G is a groupoid. However, the approach follows Brin [15] to construct the groups
as subgroups of an indirect product of monoids F1‰ G1 . As a consequence it has
to deal with technical complications such as the notion of being properly graded, as
well as practical shortcomings such as being unable to construct (braided) T .

Our categorical approach removes the necessity that the groups .Gn/n fit into a directed
system of groups and therefore the whole discussion goes through without that assump-
tion. Thus, a cloning system is given by a sequence .Gn/n2N of groups, a sequence
.�n/n2N W Gn! Sn of morphisms and a family of maps .�n

k
/k�nW Gn!GnC1 such

that the following hold for all k � n, k < ` and g; h 2Gn :
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(CS1) Cloning a product .gh/�n
k
D .g/�n

�.h/k
.h/�n

k
.

(CS2) Product of clonings �n
`
ı �nC1

k
D �n

k
ı �nC1
`C1

.

(CS3) Compatibility �nC1..g/�
n
k
/.i/D .�n.g//&

n
k
.i/ for all i ¤ k; kC 1.

Here &n
k

describes the action of F on GV , so that .g/&n
k
.j /D g�k .j / as in (5-1).

Given a cloning system, a groupoid G is defined by setting G.m; n/D∅ if m¤ n and
setting G.n; n/DGn . Indirect product actions of F and G on each other are defined by
g ��n

k
D �nC1

�n.g/k
and g�

n
k D .g/�n

k
for g 2Gn . The axioms (CS1), (CS2) and (CS3)

ensure that these indeed define indirect product actions.

5.4 The Higman–Thompson groups

In total analogy to Section 5.1 one can define Tn D Fn‰ GT and Vn D Fn‰ GV . As
mentioned in Section 2 the category Fn is not connected for n> 2 and neither are the
categories Tn and Vn . Thus, it makes sense to define the groups

Tn;r D �1.Tn; r/; Vn;r D �1.Vn; r/

and, unlike the situation of Fn , these groups are generally nonisomorphic for different r ;
see [27; 32] for a precise statement concerning the Vn;r . They are the remaining
Higman–Thompson groups.

5.5 Groups from graph rewriting systems

We now look at indirect products that do not involve F. The corresponding groups
have been introduced and described in some detail in [3]. In this section, when we
talk about graphs we will take their edges to be directed and allow multiple edges and
loops. In particular, every edge has an initial and a terminal vertex. The edge set of a
graph G is denoted by E.G/ and the vertex set by V .G/.

An edge replacement rule e ! R consists of a single directed edge e and a finite
graph R that contains the two vertices of e (but not e itself). If G is any graph and "
is an edge of G, the edge replacement rule can be applied to G at " by removing "
and adding in a copy of R while identifying the initial/terminal vertex of " with the
initial/terminal vertex of e in R. The resulting graph is denoted by G C ". If ı is
another edge of G, then it is also an edge of G C " and so the replacement rule can be
applied to G C " at ı . We regard G C "C ı and G C ı C " as the same graph.
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The vagueness inherent in the last sentence can be remedied by declaring that a graph ob-
tained from G by applying the edge replacement rule (possibly many times) has as edges
words in E.G/�E.R/� and as vertices words in V .G/[ .E.G/�E.R/� �V .R//.
For example, the graph G C "C ı would have edges � 2E.G/X f"; ıg as well as "�
and ı� for � 2E.R/ and vertices v 2 V .G/ as well as "w and ıw for w 2 V .R/.

For every edge replacement rule e!R we define a category Re!R whose objects
are finite graphs. In order for the category to be small we will take the graphs to have
vertices and edges coming from a fixed countable set, which in addition is closed under
attaching words in E.R/ and V .R/. The category is presented by having generators

�G
" 2Re!R.G;G C "/ for G a graph and " an edge of G

subject to the relations

(5-10) �G
ı �

GCı
" D �G

" �
GC"
ı

for G a graph and ı and " distinct edges of G.

Lemma 5.13 For any edge replacement rule e!R the category Re!R is right-Ore.

Proof Thanks to the relations (5-10) a morphism �"1
� � ��"k

in Re!R is uniquely
determined by its source, its target and the set f"1; : : : ; "kg. The claim now follows by
taking differences and unions of these sets of edges.

As in previous sections, the second ingredient will be a groupoid. Its definition does
not depend on the edge replacement rule, except possibly for the foundational issues of
choosing universal sets of vertices and edges. We define Ggraph to have as objects finite
graphs and as morphisms isomorphisms of graphs.

We define actions of Re!R and Ggraph on each other as follows. If gW G!G0 is an
isomorphism of graphs and " 2E.G/ is an edge, then

g ��G
" D �

G0

g."/

and g�" is the isomorphism G C "!G0C g."/ that takes ı to g.ı/ for ı2E.G/Xf"g

and that takes "� to g."/� for � 2 V .R/[E.R/. The following is easy to verify:

Observation 5.14 The actions of Re!R and Ggraph on each other defined above are
well-defined indirect product actions. The action of Re!R on Ggraph is injective.

As a consequence we obtain a right-Ore category RGe!R WDRe!R ‰ Ggraph and for
every finite graph G we obtain a potential group �1.RGe!R;G/.
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Example 5.15 If we consider the edge replacement rule

e D DL2

v

w

v

w

!

and take L1 to be the graph consisting of a single edge, then �1.RGe!L2
;L1/

is isomorphic to F. Similarly, if C1 is the graph consisting of a single loop then
�1.RGe!L2

;C1/ is isomorphic to T . Finally, V arises as �1.RGe!D2
;L1/, where

the rule e!D2 replaces an edge by two disconnected edges.

Various fundamental groups of categories arising from graph rewriting systems are
described in [3]. Here we will only mention the Basilica–Thompson group, introduced
by them in [4].

We consider the replacement rule

e D DR

v

w

v

w

!

and the graph

G D

The Basilica–Thompson group is TB WD �1.RGe!R;G/.

6 Examples: finiteness properties

In this section we give various examples of applications of Theorem 3.12 and Corollary
3.14. In most cases these finiteness properties are known and the proofs involve proving
that certain complexes are highly connected. We will see that these complexes always
coincide with the complexes jE.x/j. As a consequence the connectivity statement
from the literature together with Theorem 3.12 gives the result.
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6.1 Finiteness properties of Thompson’s groups

We start with the categories T and V . The conditions needed to apply the results from
Section 3 have been verified in Corollaries 5.3 and 5.6.

In order to apply Corollary 3.14 two more things are left to verify: that automorphism
groups are of type F1 and that the connectivity of the simplicial complexes jE.n/j goes
to infinity with n. The groups F.n; n/D f1g, T .n; n/D Z=nZ and V.n; n/D SYMn

are all finite and therefore of type F1 .

In order to describe the complexes E.n/, we need to talk about further graphs. The
cyclic graph is denoted by Cn , it has the same edges as Ln and additionally f1; ng.
The complete graph Kn has all edges fi; j g for 1 � i < j � n. We describe the
complexes E.n/ in the case of V and leave T to the reader.

Lemma 6.1 The poset ET .n/ is isomorphic to M.Cn/.

Lemma 6.2 There is a poset morphism EV.n/ ! M.Kn/ whose fibers over k –
simplices are k –spheres.

Proof Every element of .E ‰ GV /.�; n/ can be written as a product fg of an
elementary forest f 2 E.�; n/ and a permutation g 2 GV .n; n/. By definition the
vertices of E.n/ are these products modulo multiplication by permutations from
the left. As in Lemma 3.16 an elementary forest can be interpreted as a matching
on Ln . Under this correspondence, the group GV .n; n/D SYMn acts on the vertices
of Ln and the permutations from the left act on components of the matching. Thus,
elements of .E ‰ GV /.�; n/ can be described by matchings on the linear graph on
g�1.1/; : : : ;g�1.n/ modulo reordering the components of the matching.

The possibility of reordering the vertices of the matching means that any two elements
of f1; : : : ; ng can be connected and so we obtain a map jE.n/j !M.Kn/ to the
matching complex of the complete graph on f1; : : : ; ng. This map is clearly surjective.

It is not injective because in E.n/ the order of two matched vertices matters while in
M.Kn/ it does not. For example, �i and �i.i iC1/ map to the same vertex in M.Kn/.
As a result the fiber over a k –simplex is a join of k C 1 many 0–spheres, ie a k –
sphere.

The fact that the morphism in Lemma 6.2 is not an isomorphism means that we have to
do one extra step, namely to apply the following result by Quillen [33, Theorem 9.1].
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Rather than giving the general formulation for posets we restrict to face posets of
(n–skeleta of) simplicial complexes, to save us some notation.

Theorem 6.3 Let n 2N and let f W X ! Y be a simplicial map. Assume that Y is
.n�1/–connected and that for every k –simplex � of Y the link lk � is .n�dim ��2/–
connected and the fiber jf �1.�/j is .k�1/–connected. Then X is .n�1/–connected.

Theorem 6.4 Thompson’s groups T and V are of type F1 .

Proof Using Corollary 3.14 we need to show that the connectivity of the complexes
jE.n/j goes to infinity as n goes to infinity. We work with the simplicial complexes
E.n/ instead. In the case of T the complexes are matching complexes by Lemma 6.1
whose connectivity goes to infinity by Lemma 3.19. In the case of V the complexes
map to matching complexes with good fibers by Lemma 6.2. Noting that the link of a
k –simplex in M.Kn/ is isomorphic to M.Kn�2.kC1//, we can apply Theorem 6.3 to
see that the connectivity of EV goes to infinity as well.

The proof for the Higman–Thompson groups is completely analogous.

6.2 Finiteness properties of braided Thompson groups

We have already seen that BF, BT and BV are right-Ore. That they admit a height
function and a left-Garside family follows via Proposition 4.5, just as it did for T
and V . The braid groups BV�.n; n/D GBV.n; n/ are of type F by Corollary 3.8 (and
hence of type F1 ). Consequently the finite-index subgroups of pure braids BF�.n; n/
and of cyclically permuting braids BT �.n; n/ are of type F as well.

It remains to understand the complexes jE.n/j. For that purpose, we will want to think
of braid groups as mapping class groups. Let D be a closed disc with n punctures
p1; : : : ;pn , which we can think of as distinguished points in the interior of D. The
mapping class group of the n–punctured disc is

HomeoC.D X fp1; : : : ;png; @D/=HomeoC
0
.D X fp1; : : : ;png; @D/;

where HomeoC.D X fp1; : : : ;png; @D/ is the group of orientation-preserving homeo-
morphisms of D X fp1; : : : ;png that fix @D and HomeoC

0
.D X fp1; : : : ;png; @D/ is

the subgroup of homeomorphisms that are isotopic to the identity. It is well known
that the mapping class group of the n–punctured disc is isomorphic to the braid group;
see for example [29].
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With this description in place, we can start to look at the complexes jE.n/j. Let
fg 2E.n/ with f 2 E.�; n/ and g 2 GBV.n; n/. Regard the n punctures p1; : : : ;pn

as the vertices of an Ln embedded into D. As we have seen before, f corresponds
to a matching Mf on Ln , which we now regard as a disjoint selection of the fixed
arcs connecting pairs of adjacent punctures. The element g , regarded as a mapping
class, acts on Mf and we obtain a set Mf g of disjoint arcs connecting some pairs
of punctures. Such a collection of arcs is called an arc matching in [18]. Note that if
f 2 E.k; n/, so that the arc matching consists of n� k arcs, then removing the arcs
from the punctured disc results in a k –punctured disc. The action of GBV.k; k/ from
the left is just the action of the mapping class group of that k –punctured disc and in
particular does nothing to Mf .

For a subgraph � of Kn the arc matching complex MA.�/ is the simplicial complex
whose k –simplices are sets of pairwise disjoint arcs connecting punctures with the
condition that an arc can only connect two punctures if they are connected by an edge
in � .

Proposition 6.5 There exist surjective morphisms of simplicial complexes

(i) EBF .n/!MA.Ln/,

(ii) EBT .n/!MA.Cn/,

(iii) EBV.n/!MA.Kn/,

whose fiber over any k –simplex is the join of k countable infinite discrete sets.

Proof The product fg 2 E.n/ is taken to the arc matching Mf g as described
above. Since GBF.n; n/ takes every puncture to itself, the map (i) maps onto MA.Ln/.
Similarly, since GBT.n; n/ cyclically permutes the punctures, the map (ii) maps into
MA.Cn/. Surjectivity is clear.

To describe the fibers consider a disc D0 containing pi and piC1 but none of the other
punctures and let ˇ be a braid that is arbitrary inside D0 but trivial outside. Then �iˇ

maps to the same arc (D vertex of MA.Kn/) irrespective of ˇ . Thus, the fiber over
this vertex is the mapping class group of D0 X fpi ;piC1g in the case of BV and is the
pure braid group of D0 X fpi ;piC1g in the cases of BF and BT . In either case it is a
countable infinite discrete set.

The connectivity properties of arc matching complexes have been studied in [18]. We
summarize Theorem 3.8, Corollary 3.11 and the remark in Section 3.4 from there in
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the following theorem. It applies to arc matching complexes not only on disks but on
arbitrary surfaces with (possibly empty) boundary.

Theorem 6.6 (i) MA.Kn/ is .�.n/�1/–connected,

(ii) MA.Cn/ is .�.n�1/�1/–connected,

(iii) MA.Ln/ is .�.n/�1/–connected,

where �.n/D
�

n�1
3

˘
and �.n/D

�
n�1

4

˘
.

Theorem 6.7 The braided Thompson groups BF, BT and BV are of type F1 .

Proof We want to apply Corollary 3.14. By Proposition 6.5 the complexes E.n/ map
onto arc matching complexes and we want to apply Theorem 6.3. To do so, we need to
observe that the link of a .kC1/–simplex on an arc matching complex on a surface
with n punctures is an arc matching complex with n� 2k punctures, where the k arcs
connecting two punctures have been turned into boundary components. Putting these
results together shows that the connectivity properties of E.n/ go to infinity with n by
Theorem 6.6.

6.3 Absence of finiteness properties

Theorem 3.12 gives a way to prove that certain groups are of type Fn . If the group is
not of type Fn , one of the hypotheses fails. We will now discuss to what extent the
construction is (un)helpful in proving that the group is not of type Fn , depending on
which hypothesis fails.

In the first case the groups C�.x;x/ are not of type Fn (even for �.x/ large). In
this case the general part of Brown’s criterion, Theorem 3.10, cannot be applied.
Thus, the whole construction from Section 3.4 is useless for showing that �1.GC;�/

is not of type Fn . An example of this case are the groups T .B�.OS // treated in
[43, Theorem 8.12]. The proof redoes part of the proof that the groups C�.x;x/,
which are the groups in Bn.OS / in this case, are not of type Fn D FjS j .

In the second case the complexes E.x/ are not (even asymptotically) .n�1/–connected.
In this case Brown’s criterion, Theorem 3.10, can in principle be applied, but not by
using just Morse theory. An example of this case is the Basilica–Thompson group
from Section 5.5, which is not finitely presented [41], so n D 2. A morphism in
RGe!R DRe!R‰ Ggraph is declared to be elementary if there are edges fe1; : : : ; ekg
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� � �

Figure 8: Arbitrarily large graphs H with E.H / not simply connected

of G such that f D �e1
� � ��ek

. The function �W Re!R!N is the number of edges
of a graph. The basepoint � is the Basilica graph G.

The connectivity assumption of Theorem 3.12 is violated because the RGe!R –compo-
nent of G contains graphs H with arbitrarily many edges for which E.H / is not simply
connected. Examples of such graphs are illustrated in Figure 8. In these examples
E.H / has four vertices: two vertices vll , vul corresponding to the loops on the left and
two vertices vlr and vur corresponding to the loops on the right. The left vertices are
connected to the right vertices but not to each other and neither are the right vertices.
Thus, E.H / is a circle vll; vlr; vul; vur and is not simply connected.

Looking into the proof of Theorem 3.12 we can compare directly what the non-
simple connectedness of E.H / tells us and what is needed to apply Brown’s crite-
rion (Theorem 3.10) in order to prove that the group is not of type Fn . To apply
Theorem 3.10, one needs to show that for every m there is an arbitrarily large n such
that, passing from X�<m to X�<nC1 , a nontrivial 1–sphere in X�<m is filled in. The
assumption that E.H / is not simply connected for �.H /D n translates via the Morse
argument to the statement that when passing from X�<n to X�<nC1 either a nontrivial
1–sphere in X�<n is filled in, or a nontrivial 2–sphere is created. The proof in [41] that
the Basilica–Thompson group TB is not finitely presented therefore needs to rule out
the second possibility and also show that the 1–sphere that is filled in was nontrivial
already in X�<m .

7 Sketch of further examples

In this final section we sketch two further examples of categories associated to Thomp-
son groups that fit in our framework. This is aimed mainly at experts who already know
the groups and we will be brief.
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7.1 Brin–Thompson groups

The higher-dimensional versions of V , denoted by sV for s � 1, were introduced
by Brin [13]. If C D f0; 1g! denotes Cantor space, a morphism in V.m; n/ can be
interpreted as a homeomorphism (subject to conditions)

f1; : : : ;mg �C  f1; : : : ; ng �C

that represents subdividing m copies of C into n copies. The category sV similarly
consists of homeomorphisms

f1; : : : ;mg �C s
 f1; : : : ; ng �C s

that represent subdividing m copies of C s into n copies. See Figure 9 for an example
illustrating composition. The Brin–Thompson groups are the groups sV D �1.sV; 1/.

1
2

3

1
23

4
5

f

g

1

2
3

4 5

fg

Figure 9: Composition of two morphisms in 2V

If one wants to obtain a presentation for sV whose objects are the natural numbers,
one always needs to pick an order for the copies of C s and the order is changed under
relations. The presentation will therefore involve GV from the start. Besides that, we
take generators

�n
a;i 2 sV.n; nC 1/ for 1� a� s; 0� i < n

representing the subdivision of the .iC1/st of n copies of C s in the ath direction. For
each direction these satisfy the familiar relations

(7-1) �n
a;i�

nC1
a;j D �

n
a;j�

nC1
a;iC1

for 1� a� s; 0� j < i < n.

In addition, for two distinct directions we have the relations

(7-2) �n
a;i�

nC1
b;iC1

�nC2
b;i
D �n

b;i�
nC1
a;iC1

�nC2
a;i siC1 for 1� a< b � s; 0� i < n

(recall that siC1 is the transposition .iC1 iC2/).
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D

Figure 10: A relation in F2;3 , also depicted in [36, page 485]

We claim without proof that sV has the presentation

sV D hGV ; �
n
a;i j relations in GV ; (7-1); (7-2)i.

To apply Theorem B to this setup one needs to verify condition (LK). This verification
is the essence of [24].

7.2 Stein–Thompson groups

The idea underlying the Stein–Thompson groups is to allow carets with different arity
chosen from a finite set S D fn1; : : : ; nkg; see [36]. Thus, the underlying category FS

may be thought of as generated by Fn1
; : : : ;Fnk

. There are number-theoretic relations,
however. For instance, a tree that has a full layer of n1 –carets followed by a full layer
of n2 –carets is the same as one with a full layer of n2 –carets followed by a full layer
of n1 –carets; see Figure 10. We refrain from writing down a presentation but we
should point out that the perspective taken in [36] is fairly close to ours. This does not
include the F1–proof as Stein’s space is carefully tailored to provide more precise
homological information.

The categories TS D FS ‰ GT and VS D FS ‰ GV arise as indirect products in a
straightforward manner.

It is clear that the categories are right-Ore and admit a height function.

A Garside family consists of the family of forests S where along any path from root to
leaf at most one ni –caret is met for any i . The maximal such tree �.x/ 2 FS .x;�/

is the one that has a full layer of ni –carets for each i . Any two elements in S.x;�/
have a least common right multiple by [36, Proposition 1.2]. This together with the
height function implies the existence of S–heads.

The rest of the proof that the groups are of type F1 is completely analogous to that
for Thompson’s groups and the Higman–Thompson groups in Section 5.1.
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