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Homotopy theory of unital algebras

BRICE LE GRIGNOU

We provide an extensive study of the homotopy theory of types of algebras with
units, for instance unital associative algebras or unital commutative algebras. To this
purpose, we endow the Koszul dual category of curved coalgebras, where the notion
of quasi-isomorphism barely makes sense, with a model category structure Quillen
equivalent to that of unital algebras. To prove such a result, we use recent methods
based on presentable categories. This allows us to describe the homotopy properties
of unital algebras in a simpler and richer way. Moreover, we endow the various model
categories with several enrichments which induce suitable models for the mapping
spaces and describe the formal deformations of morphisms of algebras.
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Introduction

Among the various types of algebras, some of them include units, like the ubiquitous
unital associative algebras and unital commutative algebras or the unital Batalin—
Vilkovisky algebras, which arose in mathematical physics. When working with a chain
complex carrying such an algebraic structure, like the de Rham algebra of differential
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1542 Brice Le Grignou

manifolds, one would like to understand the properties that this algebraic data satisfies
up to quasi-isomorphisms. The purpose of the present paper is to develop a framework
which allows one to prove the homotopical properties carried by types of algebras with
units, that is, their properties up to quasi-isomorphisms.

In order to work with types of algebras in a general way, one needs a precise notion
which encodes these ones. This is achieved by the concept of an operad. Operads are
generalizations of associative algebras which encode some types of algebras (associa-
tive, commutative, Lie, Batalin—Vilkovisky, ...) in a way that a representation of an
operad & is a chain complex together with a structure of algebra of the type encoded
by £.

Further, one of the most common and powerful tool to study homotopical algebra—
that is to study categories with a notion of weak equivalences —is the model category
structure introduced by Daniel Quillen, which makes the manipulation of weak equiva-
lences easier by means of other maps, called cofibrations and fibrations, respectively.
Hinich proved in [15] that the category of algebras over an operad carries a model
structure whose weak equivalences are quasi-isomorphisms and whose fibrations are
surjections. In a purely theoretical perspective, this model structure describes all the
homotopical data of this category. However, the cofibrant objects are not easy to handle;
they are the retracts of free algebras whose generators carry a particular filtration.

Hinich [16] embedded the category of differential graded (dg) Lie algebras into the
category of dg cocommutative coalgebras. From the model structure of the category of
dg Lie algebras he obtained a model structure on the category of dg cocommutative
coalgebras which is Quillen equivalent to the first one. In this new model category, any
object is cofibrant. Moreover, this context allows one to build an obstruction theory for
the existence of the algebra structures and the algebra morphisms. So this new context
of dg cocommutative coalgebras is more suitable to study the homotopy theory of dg
Lie algebras than the category of dg Lie algebras itself. With a similar perspective,
Lefevre and Hasegawa embedded the category of nonunital dg associative algebras into
the category dg coassociative coalgebras, shown to be Quillen equivalent to the first
one; see [18]. Vallette generalized these results to all types of algebras encoded by any
operad satisfying a technical condition: that it is an augmented operad. Augmented
operads are related to the dual notion of conilpotent cooperads by an adjunction called
the operadic bar—cobar adjunction € - B. Vallette embedded the category of algebras
over an augmented operad &2 into category of coalgebras over a cooperad £21 called the
Koszul dual of &2. He transferred the model structure on the category of &?—algebras
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to the category of &i—coalgebras and got again a Quillen equivalence between these
two model categories; see [26].

However the operads describing types algebras with units do not satisfy the technical
condition to be augmented. To extend the result of Vallette to categories of algebras
over any operad, one first needs to modify the operadic bar—cobar adjunction. Inspired
by the work of Hirsh and Milles [17], we introduce an adjunction a la bar—cobar relating
dg operads to curved conilpotent cooperads:

Q
curved conilpotent cooperads <_—u> dg operads.
B,

Moreover, any morphism of dg operads f from a cobar construction 2,% of a curved
conilpotent cooperad ¢ to an operad & comes equipped with an adjunction Q5 — By
relating & —algebras to ¥ —coalgebras,

2

% —coalgebras —— Z-algebras.

By
The model structure of &?—algebras can be transferred to the category of ¥ —coalgebras
along this adjunction.

Theorem 82 Let a: ¢ — & be an operadic twisting morphism and let Q4 —| By be
the bar—cobar adjunction between &7 —algebras and € —coalgebras induced by o. There
exists a model structure on the category of ¥ —coalgebras whose cofibrations (resp.
weak equivalences) are morphisms whose image under €2, is a cofibration (resp. weak
equivalence). With this model category structure, the adjunction Q24 —| By is a Quillen
adjunction.

To prove this theorem, we use new techniques coming from category theory. Specifically,
we utilize a theorem of Bayeh, Hess, Karpova, Kedziorek, Riehl and Shipley [3]
involving presentable categories.

We study in detail the particular case where the morphism of operads f from ©,%
to & is a quasi-isomorphism, for instance if f is the identity ¢ of ©,%. In this
case, the Quillen adjunction 2, - B, is a Quillen equivalence. We show that the
fibrant ¢ —coalgebras are the images of the €2, % —algebras under the functor B,. So,
switching from the category of €2,% —algebras to the category of ¥—coalgebras by the
functor B, amounts to introducing new morphisms between 2,% —algebras. These
new morphisms can be built using obstruction methods. Moreover, any €2,% —algebra
becomes cofibrant in this new context.
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1544 Brice Le Grignou

This article also deals with enrichments of the category of &?—algebras for any differen-
tial graded operad 22, and of the category of & —coalgebras for any curved cooperad €.
These two categories are enriched in simplicial sets in a way that recovers the mapping
spaces. Further, they are tensored, cotensored and enriched in cocommutative coalge-
bras. These cocommutative coalgebras encode the formal deformations of morphisms of
algebras over an operad. Indeed, for any two algebras A and A’ over an operad &, the
atoms of their mapping cocommutative coalgebra {A, A’} — that is, the closed elements
e € {A, A}y such that A(e) = e ® e — are exactly the morphisms of &—algebras
from A to A’. Moreover, if A is cofibrant, the maximal coaugmented conilpotent
subcoalgebra of {A, A’} that contains an atom f is the bar construction of the Lie
algebra that controls the formal deformations of the morphism /. In the context of
nonsymmetric operads and nonsymmetric cooperads, this enrichment can be extended
to all coassociative coalgebras. These coassociative coalgebras encode in single objects
both the mapping spaces and the deformation of morphisms.

Finally, we apply the framework developed here to concrete operads like the operad
uA4s of unital associative algebras and the operad uCom of unital commutative algebras.
For these two operads, the process of curved Koszul duality developed in [17] relates
the curved cooperads u#4s' and uCom! to the operads u4s and uCom, respectively.
We show that the category of u4s!—coalgebras and the category of uComi—coalgebras
are equivalent to the category of curved conilpotent coassociative coalgebras and the
category of curved conilpotent Lie coalgebras, respectively.

Layout

The article is organized as follows. In Section 1, we recall several notions about
category theory, and homological algebra. In Section 2, we recall the notions of
operads, cooperads, algebras over an operad and coalgebras over a cooperad. We also
prove some results, as the presentability of the category of coalgebras over a curved
cooperad, that we will need in the sequel. Section 3 deals with enrichments of the
category of algebras over an operad and of the category of coalgebras over a curved
cooperad; specifically, we study enrichments over simplicial sets, cocommutative
coalgebras and coassociative coalgebras. In Section 4, we introduce an adjunction a
la bar—cobar between operads and curved cooperads related to a notion of twisting
morphism. We use it to define an adjunction between &?-algebras and ¥ —coalgebras
for a twisting morphism from a curved cooperad ¢ to an operad &. In Section 5,
we recall the projective model structure on the category of algebras over an operad.
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We describe models for the mapping spaces and we show that the enrichment over
cocommutative coalgebras encodes deformations of morphisms. Section 6 transfers the
projective model structure on &?—algebras along the previous adjunction to obtain a
model structure on ¥ —coalgebras and a Quillen adjunction. Section 7 deals with these
model structures in the case where the operad & is the cobar construction $2,% of €.
In particular, the adjunction induced is a Quillen equivalence. Finally, in Section 8, we
apply the formalism developed in the previous sections to study the examples of unital
associative algebras and unital commutative algebras.
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Conventions and notation

e We work over a field K. Note that no further assumption is needed when working
with nonsymmetric operads. However, when dealing with homotopy results that
concern all operads and cooperads and their algebras and coalgebras, we will assume
the characteristic of the field to be zero.

e The category of Z—graded K—modules, that is, functors from the discrete category Z
to the category of K—vector spaces, is denoted by gMod. The category of chain
complexes, that is, Z—graded K-modules equipped with a degree —1 square-zero map,
is denoted by dgMod. They are endowed with their usual closed symmetric monoidal
structures. The internal hom is denoted by [,]. The category of chain complexes is
also endowed with its projective model structure, where the weak equivalences are
the quasi-isomorphisms and where the fibrations are the degreewise surjections. The
degree of a homogeneous element x of a graded K—module or a chain complex is
denoted by |x|.

e For any integer n, let D" be the chain complex generated by one element in
degree n and its boundary in degree n — 1. Let S” be the chain complex generated by
a cycle in degree n.
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1546 Brice Le Grignou

e The category of simplicial set is denoted by sSet. It is endowed with its Kan—Quillen
model structure; see Goerss and Jardine [13, I.11.3].

¢ A diagram of the form

L
C?D

means that the functor R is right adjoint to the functor L.

e For any graded K-module V endowed with a filtration (F,V),eN, the graded
complex associated to this filtration is denoted by GV. In other words,

Gv=EPaGv
n

where G,V = F,V/F,_1V. If V is a chain complex such that (F,V),cN is a filtration
of chain complexes, that is, d(F,V) C F,V for any integer n, then GV inherits the
structure of a chain complex.

1 Preliminaries

In this first section, we recall some categorical concepts like the presentability and
the notions of enrichment, tensoring and cotensoring. Moreover, we describe several
notions of coalgebras, like coassociative coalgebras and cocommutative coalgebras,
that have been extensively studied in [11] and [16], respectively. More specifically,
the category of coassociative coalgebras admits a model structure related by a Quillen
adjunction to the category of simplicial sets; the category of conilpotent cocommutative
coalgebras admits a model structure Quillen equivalent to the projective model structure
on Lie algebras. Finally, we describe the Sullivan polynomial algebras.

1.1 Presentable categories

Definition 1 (presentable category) Let C be a cocomplete category. An object X
of C is called compact if for any filtered diagram F: I — C the map

colim(homc (X, F)) — homc¢ (X, colim F)

is an isomorphism. The category C is said to be presentable if there exists a set of
compact objects such that any object of C is the colimit of a filtered diagram involving
only these compact objects.
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The following proposition is a classical result of category theory:

Proposition 2 [1] A functor L: C — D between presentable categories is a left
adjoint if and only if it preserves colimits.

1.2 Tensoring, cotensoring and enrichment

In this section, we recall the definition of tensored-cotensored-enriched category over a
monoidal category. See [5] for the original reference.

Definition 3 (action, coaction) Let (E, ®,Z) be a monoidal category and let C be a
category.

e An enrichment of C over E is a bifunctor [—, —]: C°? x C — E together with
functorial morphisms

vx,v,z: [Y.Z]®[X. Y] = [X,. Z], vx:T—[X, X]

for any objects X, ¥ and Z of C and which are composition and unit in terms
of the commutative diagrams

[Y,Z]@[X,Y]®[V,X]M[X,ZN@W»X]
Id®VV.X,Y®Idl lVV,X,Z
Y. Z)® V. Y] ——— v. 2]

X, Y]®[X, X] 2% 1x, v] 2 [y, v]® (X, Y]
b

(X.Y]

e A right action of E on C is a functor
—<a4—:CxE—=C
together with functorial isomorphisms

{X<1(A®B):(X<1A)<ll’>’,
X<I~X,
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1548 Brice Le Grignou

forany X € C and any A, B € E; these functors are compatible with the monoidal
structure of E in terms of the commutative diagrams

(X<1A)<aB)<C—— (X< (A®B))<C— X <1 ((A®B)RC)

l l

(X <A)<a(B®C) X<1(A®(BRC0))

(X<I)<A X<a@IZ®A

~

X <A

e A left coaction of E on C is a functor
(= =) E®PxC—C
together with functorial isomorphisms

{(A@B, X) ~ (A(B, X)),
(Z,X)~ X,

which satisfy the commutative duals of the diagrams above.

Definition 4 (category tensored-cotensored-enriched over a monoidal category) Let
E be a monoidal category and let C be a category. We say that C is tensored-cotensored-
enriched over E if there exist three functors

{— -} CPxC—>E —<9—CxE—>C, (-, -)E?xC—C,
together with functorial isomorphisms
homc(X <A, Y) ~homg(A4,{X,Y}) ~homc(X, (A4,Y))

for any X,Y € C, any A, B € E and where Z is the monoidal unit of E, such that
— < — defines a right action of E on C.

The axioms and terminology of these notions are justified by the following proposition:

Proposition 5 If the category C is tensored-cotensored-enriched over E, then it is
enriched in the usual sense and the functor (—, —) is a left coaction in the sense of
Definition 3.

Proof Suppose that the category C is tensored-cotensored-enriched over E. On the one
hand, let us define the composition relative to the enrichment {—, —}. For any objects
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X and Y of C, the identity morphism of {X, Y} defines a morphism X <{X,Y}—Y.
So, for any objects X, Y and Z, we have a map

X<a({X, Y}V, Z) (X <1{X,Y)<{Y. Z} > Y <{Y, Z} > Z

and hence amap {X,Y} ®{Y, Z} — {X, Z}. Thus is defined the composition. The
coherence diagrams of Definition 3 ensure us that the composition is associative and
gives us a unit. On the other hand, let us show that the functor (—, —) is a left coaction.
For any X,Y € C and any A, B € E, we have functorial isomorphisms

homc (X, (A® B,Y)) ~homc(X <(A® B),Y) ~homc((X <A)<B,Y)
~homc(X <A, (B,Y)) >~ homc(X, (A(B, Y))).

By the Yoneda lemma, this gives us a functorial isomorphism (A® B, Y) >~ (A(B,Y)).
This functorial isomorphism satisfies the coherence conditions of Definition 3 because
the functorial isomorphism X <(A® B) ~ (X <.A) <5 satisfies the coherence conditions
of the same definition. i

Proposition 6 Let E be a presentable monoidal category and let C be a presentable
category.

e Suppose that there exists a right action — < — of E on C and that for any A € E
and for any X € C, the functors X <—: E — C and — <1 A: C — C preserve
colimits. Then C is tensored-cotensored-enriched over E.

e Suppose that there exists a left coaction (—, —) of E on C and that there exists a
functor
—<a4— CxE—=C

together with a functorial isomorphism
homc(X <A, Y) ~homc (X, (A, Y)).
Suppose moreover that the functor (—, Y'): E°® — C sends colimits in E to limits.

Then C is tensored-cotensored-enriched over E.

Proof The first point is a direct consequence of Proposition 2. Let us prove the second
point. Since E left coacts on C, by the same arguments as in the proof of Proposition 5
we can show that the bifunctor — < — is a right action of E on C. Moreover, since the
functors (—, Y') preserve limits, any functor of the form X < — preserves colimits. The
result is then a direct consequence of the first point. a
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Definition 7 (homotopical enrichment) Let M be a model category and let E be a
model category with a monoidal structure. We say that M is homotopically enriched
over E if it is enriched over E and if for any cofibration f: X — X’ in M and any
fibration g: Y — Y’ in M, the morphism in E

(XY} > {X" Yy xx vy {X. Y}

is a fibration. Moreover, we require this morphism to be a weak equivalence whenever
f or g is a weak equivalence.

This definition implies in particular that the homotopy category Ho(M) is enriched
over the monoidal category Ho(E).

1.3 Coalgebras

Definition 8 (coalgebras) A coassociative coalgebra € = (C, A, €) is a chain com-
plex C equipped with a coassociative coproduct A: C — C ® C and a counit €: C - K
such that Ide = (Ide ® €)A = (e ® Id¢)A. The kernel of the map e is denoted by C.
The coalgebra ¥ is called cocommutative if A = tA, where

t(x®y)=(-HPyex.

A graded atom is a nonzero element 1 € C such that A1 =1® 1. In this context, let
us define the map A: C — C ®C by

Ax =Ax—1x—-x®1eC®C.

A graded atom 1 is called a dg atom if d1 =0. A conilpotent coalgebra ¢ =(C, A, €, 1)
is the data of a coassociative coalgebra (C, A, €) together with a graded atom such that,
for any x € C, there exists an integer 7 such that

A'x = 1d3" ' ®A)--- (Ide ® A)A(x) = 0.

A conilpotent cocommutative coalgebra ¢ is said to be a Hinich coalgebra if 1 is
a dg atom. We denote by uCog be the category of coassociative coalgebras and by
uCocom the category of cocommutative coalgebras. Let uNilCocom (resp. Hinich—cog)
be the category whose objects are conilpotent cocommutative coalgebras (resp. Hinich
coalgebras) and whose morphisms are morphisms of coalgebras.

Remark 9 The reader may be familiar with the notion of a coaugmented coalgebra.
This is actually exactly the data of a coassociative coalgebra together with a dg atom.
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Indeed, the data of a dg atom of a coalgebra € is equivalent to the data of a morphism
of dg coalgebras from K to %.

Any conilpotent coalgebra & has a canonical filtration, called the coradical filtration,
Fc:=K-1@{xeC|A"tlx =0},

which is not necessarily stable under the codifferential d .

Proposition 10 Let /' be a morphism of coalgebras between two conilpotent coalge-
bras ¢ = (C,A,e,1) and 2 = (D, N,€',1"). Then f(1) = 1"

Proof Let x € D be such that f(1) =1’ + x. Since Af(1) = (f ® f)A(1), then
Ax = x ® x. Since there exists an integer 7 such that A"(x) = x ® ---® x = 0, then
x =0. a

Proposition 11 The categories uCog, uCocom, uNilCocom and Hinich—cog are pre-
sentable. The forgetful functor from uCog to the category of chain complexes has a
right adjoint called the cofree counital coalgebra functor. The same statement holds
for the category uCocom. The functor € + C from the category Hinich—og to the
category of chain complexes has a right adjoint. The tensor product of the category of
chain complexes induces closed symmetric monoidal structures on the categories uCog
and uCocom.

Proof The results are proven in [2, Sections 2.1, 2.2 and 2.5] for the category uCog.
The methods used apply mutatis mutandis for the other categories. |

Theorem 12 [11] The full subcategory uCog=° of uCog made up of nonnegatively
graded coalgebras admits a model structure whose cofibrations are the monomorphisms
and whose weak equivalences are the quasi-isomorphisms.

The category Hinich—cog is related to the category of Lie-algebras by an adjunction,
described in [24], .
Hinich—cog <T_> Lie-alg.

Theorem 13 [16] Suppose the characteristic of the base field K is zero. Then there
exists a model structure on the category Hinich—cog whose cofibrations are monomor-
phisms and whose weak equivalences are morphisms whose image under the functor £
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is a quasi-isomorphism. The class of weak equivalences is contained in the class of
quasi-isomorphisms. Moreover, the adjunction £ - C is a Quillen equivalence when the
category of Lie algebras is equipped with its projective model structure whose fibrations
(resp. weak equivalences) are surjections (resp. quasi-isomorphisms) (see [15]).

Definition 14 (deformation problems) Let Artin—alg be the category of nonpositively
graded local finite-dimensional dg commutative algebras. A deformation problem is a
functor from the category Artin—alg to the category of simplicial sets.

Lurie showed in [20] that a suitable infinity-category of deformation problems (called
formal moduli problems) is equivalent to the infinity-category of Lie algebras if the
characteristic of the base field K is zero. Therefore, it is equivalent to the infinity-
category of Hinich coalgebras. In that perspective, any Hinich coalgebra % induces a
deformation problem as follows:

R — Mapyinichcoe (R*,€¢)  for R € Artin-alg.

—cog

Remark 15 We use Hinich’s definition of a deformation problem given in [16]. We
do not describe here the homotopy theory of such deformation problems nor a precise
link with the work of Lurie, who uses the framework of quasicategories (see [20]). In
the sequel, we will only use the fact that, for any morphism of deformation problems
f: X = Y,if f(R) is a weak equivalence of simplicial sets for any algebra R €
Artin—alg, then f is an equivalence of deformation problems.

1.4 Coalgebras and simplicial sets

In this subsection, we describe a Quillen adjunction between the category of sim-
plicial sets and the category of coassociative coalgebras. This adjunction is part of
the Dold—Kan correspondence. From a simplicial set X, one can produce a chain
complex DK(X), called the normalized Moore complex. In degree n, DK(X), is
the subvector space of K - X, which is the intersection of the kernels of the faces
do, ..., dy—1. The differential is (—1)"d,. Moreover, the Alexander—Whitney map
makes the functor DK comonoidal. Then the diagonal map X — X x X gives to
DK(X) a structure of coalgebras. Thus, we have a functor DK from simplicial sets
to the category uCog of coassociative coalgebras. This functor DK¢ admits a right
adjoint N defined by

NQC)n = homuCog(DKc (A[n)]), 0).
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Actually, we have the sequence of adjunctions

DK¢ in
sSet — uCog=® — uCog,
N tr

where in is the embedding of uCog=° into uCog and where tr is the truncation.

Proposition 16 The above adjunction between uCog=° and sSet is a Quillen adjunc-
tion.

Proof The functor DK€ carries monomorphisms to monomorphisms and weak homo-
topy equivalences to quasi-isomorphisms; see [13, 1I1.2]. a

1.5 The Sullivan algebras of polynomial forms on standard simplices

Definition 17 (Sullivan polynomial algebras [25]) For any integer n € N, the n’
algebra of polynomial forms is the differential graded unital commutative algebra

Qn:=Kltg, ..., .ty dtg, ..., dty]/(Zt; = 1),

where the degree of #; is zero and where dg,, (#;) = dt;. In particular, ) dt; = 0.

Any map of finite ordinals ¢: [n] — [m] defines a morphism of differential graded
unital commutative algebra

QP): QLn — Qn, i Z t.
d()=i
Therefore, the collection {2, },eN defines a simplicial differential graded commutative
algebra. Moreover, one can extend this construction to a contravariant functor €2, from
simplicial sets to differential graded unital commutative algebras such that Q2 A[,) = $25.
This functor is part of an adjunction

Qe
sSet = uCom — alg®®.

Proposition 18 [6, Chapter 8] When the characteristic of the field K is zero, the cat-
egory uCom—alg of differential graded unital commutative algebras admits a projective
model structure where fibrations (resp. weak equivalences) are degreewise surjections
(resp. quasi-isomorphisms). In that context, the adjunction between simplicial sets and
uCom-—alg is a Quillen adjunction.
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2 Operads, cooperads, algebras and coalgebras

The purpose of this section is to recall the definitions of operads, cooperads, algebras
over an operad and coalgebras over a cooperad that we will use in the sequel; we refer
the reader to [19]. Moreover, we prove that the category of coalgebras over a curved
cooperad is presentable.

2.1 Operads and cooperads

We recall here the definitions of operads and cooperads. We refer to [19; 17].

Definition 19 (symmetric modules) Let S be the groupoid whose objects are integers
n € N and whose morphisms are

homg(n,m) =< if n#m,

homg(n,n) =S, otherwise.
A graded S—module (resp. dg S—module) is a presheaf on S valued in the category
of graded K-modules (resp. chain complexes). The name S—module will refer both

to graded S—modules and dg S—modules. We say that a S—module V is reduced if
V(0) = {0}.

The category of S—modules has a monoidal structure which is as follows: for any
S—modules V and W, and for any n > 1,

VoW () := P Vik) ®Sk( P WEHX ;) ®---®W(#Xk)),

k>1 XU--uXe={1,...,n}

where #X; is the cardinal of the set X;. For n =0,

(VoW)(0) := V(0) ® (@ V(k) ®s, W(O0)®-® W(O))).

k=1

The monoidal unit is given by the S—module Z which is K in arity 1 and {0} in other
arities.

Notation e For any dg S—module V, we will denote by V&%¢ the underlying
graded S—module.

e Let f:V—>YV and g: W — W and h: W — W' be three morphisms of S—
modules. Then we denote by f o(g; /) the map from VoW to V' oW’ defined
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as follows:
fo(gih)y:= > [®s,®®h®g%).
i+j=n—1
In the case where g is the identity, we use the notation f o’ A:
fo h:= fo(d;h).
e For any two graded S—modules (resp. dg S—modules) ¥V and W, we denote by
[V, W] the graded K—module (resp. chain complex)

V. W := [ | homgys,j(V(K) 1. W(K); 41).

k=0
leN

In that context morphisms of chain complexes from X to [V, W] are in one-to-
one correspondence with morphisms of S—modules from the aritywise tensor
product X ® V to W.

Proposition 20 [19, Chapter 6] If the characteristic of the field K is zero, then the
operadic Kiinneth
HYoW)~HYV)o HW)

holds for any dg S—modules V and W, where H denotes the homology.
Definition 21 (operads) A graded operad & = (P, y, 1) (resp. dg operad) is a monoid

in the category of graded S—modules (resp. dg S—modules). We denote by Operad the
category of dg operads.

Example 22 For any graded K—module (resp. chain complex) V, Endy, is the graded
operad (resp. dg operad) defined by

Endy (n) := hom(V®", V).
The composition in the operad Endy is given by the composition of morphisms of
graded K-modules (resp. chain complexes).
A degree k derivation d on a graded operad & = (P, y, 1) is the data of degree k

maps d: P(n) — P(n) which commute with the action of S,, and such that

dy =y(dold+1do' d).
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Proposition 23 [19, Chapter 5] The forgetful functor from operads to S —modules
has a left adjoint called the free operad ftunctor and denoted by T . For any S -module V,
TV is the S—module made up of trees whose vertices are filled with elements of V
with coherent arity. The composition is given by the grafting of trees.

There is a one-to-one correspondence between the degree & derivation on the graded
free operad TV and the degree k maps from V to TV. Indeed, from such a map u
one can produce the derivation D, such that, for any tree 7" labeled by elements of V,

Dy(T):=) W@ Quv)®:®Id,
v
where the sum is taken over the vertices of the tree 7.

Definition 24 (cooperads) A cooperad ¢ = (C, A, €) is a comonoid in the category
of S—modules. We denote by C the kernel of the morphism € : C — Z. A cooperad ¢ is
said to be coaugmented if it is equipped with a morphism of cooperads Z — €. In this
case, we denote by 1 the image of the unit of K into C(1). A coaugmented cooperad ¢
is said to be conilpotent if the process of successive decomposition stabilizes in finite
time for any element. A precise definition is given in [19, Section 5.8.6].

The forgetful functor from conilpotent cooperads to S—modules which sends % to C
has a right adjoint sending V to the tree module T (V) with the decomposition given
by the degrafting of trees. We denote it by T¢(V). We also denote by §: € — T¢(C)
the counit of the adjunction. Any conilpotent cooperad is equipped with a filtration,
called the coradical filtration,

FC(m) := {p € C(m) | 8(p) € T="(C)(m)},
where the symbol T=" denotes the trees with at most n vertices. In particular,

dr
Fpde =1,

Notation Let C be coaugmented cooperad and m be an integer. We denote by A,

the composite map
Am: C-25CoC— T(C) - T™(C).

A degree k coderivation on a cooperad ¢ = (C, A, €) is a degree k map d of S—
modules from C to C such that

Ad = (dold+1do d)A.
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If the cooperad is coaugmented, we also require that d(1) = 0. Let T¢()V) be a
cofree conilpotent cooperad. There is a one-to-one correspondence between degree k
coderivations on T¢(V) and degree k maps from T (V) to V. Indeed, such a map u is
uniquely extended by the following coderivation D,,, defined on any tree 7" labeled by
elements of V as follows:

Du(T) := Z d® - Qu(T)®---®I1d,
T'CcT

where the sum is taken on the subtrees 7’ of 7.

Definition 25 (curved cooperads) A curved cooperad ¥ = (C,A,€,1,d,60) is a
coaugmented graded cooperad equipped with a degree —2 map of graded S—modules
0: C — T and a degree —1 coderivation d such that

d*=(0Q1d-1d® 0)A,, 6d =0.

A morphism of curved cooperads is a morphism of cooperads ¢: ¥ — 2 which
commutes with the coderivations and such that 6, = 64¢. We denote by cCoop the
category of curved conilpotent cooperads.

The coradical filtration of a conilpotent cooperad has the following property with
respect to the decomposition map:

Lemma 26 Let ¥ = (C, A, €, 1) be a conilpotent cooperad. Then

A(FMeyc Y (FRaey(k) ®s, (FRc®-- ® FRio).
po+-t+pr=n

Proof It suffices to prove the result for cofree cooperads. Indeed, any conilpotent
cooperad % is equipped with a map §: C — T¢(C) such that F9C = §~1(FRIT¢(C)).
O

Lemma 27 Let 4 = T¢(V) be a cofree conilpotent graded cooperad equipped with
a degree —2 map 0: T (V)(1) = V(1) - K. Let ¢: TV — V be a degree —1 map
and let Dy be the corresponding coderivation on €. Then the triple (TV, Dy, 0) is a
curved cooperad if and only if ¢ satisfies the equation

¢Dy = (0 @ my — 1y @ O) A3,

where my, is the projection T (V) — V.
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Proof If (T“V,Dy.0) is acurved cooperad, then ¢ Dy = nVqu; =(0Qmy—myRO)A,.
Conversely, suppose that ¢ Dy = (6 ® my — my ® 0)A,. For any tree T labeled by
elements of V), one can prove that

DI(T)= Y 1d® (#Dy(T") ®1d.
T'CcT

Actually, it is the sum over every arity 1 vertex v of

e +60()(T —v) if v is the bottom vertex or a top vertex;
e +(OW)(T —v)—0(w)(T —v)) =0 otherwise.

Hence, (TV, Dy, 0) is a curved cooperad. O

There exist notions of N—modules, nonsymmetric operads, nonsymmetric cooperads
and their morphisms, defined for instance in [19, Section 5.9]. We will speak about the
nonsymmetric context to refer to these ones. Notice that the operadic Kiinneth formula
holds in the nonsymmetric context without the assumption that the characteristic of the
field K is zero.

2.2 Modules and algebras over an operad

Definition 28 (algebras over an operad) Let &2 = (P, y, 1) be an operad. A &—
module o/ = (A, y.) is a left module in the category of S—module, that is, an S—
module A equipped with a map y,: P oA — A such that the following diagrams
commute:

Idoy,
PoPoA——PoA Lol y
l l IOAL)PO.A—ALA
yold Vot

Id
PoAd———s A
V224

A morphism of &-modules from & to % = (B, y%) is a morphism of S—modules
f: A— Bsuchthat yz(Ido f) = fyn. A P-algebraisa Z-module A concentrated
in arity 0. We denote by ?—alg the category of &?—algebras.

The forgetful functor from the category of 4?-modules to the category of S—modules
has a left adjoint given by
Vi PoV.

The images of this left adjoint functor are called the free &?—modules.
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Definition 29 (ideal) An ideal of a #?—module & is a sub-S—-module B C A such
that, for any p € P(n) and (x;)*_, € A(k;) withn>1,

i=1
V(P ®s, (X1 ® -+ ® xy)) € B(ky + - ky)

whenever one of the x; is in B (for n > 1). Then the quotient .A/B has an induced
structure of #2—module.

Definition 30 (derivation) Let & be a graded operad and let & be a 4?—module.
Suppose that the graded operad & is equipped with a degree k derivation d4. Then a
derivation of &/ is a degree k map d, from A to A such that

d .y Vo = Vot (dga old, +1d o dgy)

Let 2 be a graded operad equipped with a degree k derivation d 4. There is a one-to-
one correspondence between the derivations of a free &?—module &/ =P oV and the
degree k maps V — P o V. Indeed, any such map u: V — P oV is uniquely extended
by the derivation

Dy,=dpold+1do (i;u),

where 7 denotes the canonical inclusion map V — P o).

2.3 Comodules and coalgebras over a cooperad

Definition 31 (comodules and coalgebras over a cooperad) Let € = (C, A, €) be
a cooperad. A ¢—comodule 2 = (D, Ay) is a left ¥—comodule in the category of
S—modules, that is a S—module D together with a morphism Ag: D — C oD such
that the following diagrams commute:

Ag
D———CoD A
D eold
A@l lldoA@ D CoD D

CoD—=CoCoD \E/
Aold

A €—coalgebra is a ¥ —comodule concentrated in arity 0.

Remark 32 Our notion of ¥ —coalgebra actually recovers a notion sometimes called
in the literature conilpotent ¥’ —coalgebra; see [19, 5.4.8].
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Let € be a coaugmented cooperad. Then the forgetful functor from the category of
¢ —comodules to the category of S—modules has a right adjoint which sends V to € o V.
The images of the right adjoint are called the cofree ¥—comodules.

Definition 33 (coderivation) Let ¢ be a graded cooperad and let 2 = (D, Ay) be
a ¢—comodule. Suppose that ¢ is equipped with a degree k coderivation dy. A
coderivation on 7 is a degree k map dy from D to D such that

Agdy = (dyold+1d o dg)Ag.

Let ¥ be a cooperad equipped with a degree k coderivation and let V be a graded
K-module. Then there is a one-to-one correspondence between the coderivations on
the ¢ —coalgebra ¢ oV and the degree k maps ¢ o)V — V. Indeed, any such map u
induces the coderivation

Dy := (d¢ oldy) + (Ido (m; u))(Ag o ldy),
where m =€old: €0V — V.
Definition 34 (comodules and coalgebras over a curved cooperad) Let 4 be a curved
cooperad. A ¢ —comodule is a graded ¥2*4—comodule 2 = (D, Ay) together with a

coderivation dp such that
d2 = (B o Id)A .

Moreover, a ¥ —coalgebra is a ¥ —comodule concentrated in arity 0.

Proposition 35 Let ¥ = (C, A,€,1,d,0) be a conilpotent curved cooperad and let
V be a graded S—module. There is a one-to-one correspondence between the degree
—1 maps ¢: CoV — V such that

Dy 1= ¢(Ido (; $)) (A o Idy) + ¢ (de o Tdy) = 6 o Tdy

and the structures of € —comodule (where % is considered as a curved cooperad) on
the graded cofree comodule € o V.

Proof A structure of ¥—comodule on 2?4 o)) amounts to the data of a degree —1
coderivation Dy such that D; = (0 oIdy o Idy)(A¢ o Idy,). Given this equality,
¢ Dy = 6 oldy. Conversely, suppose that ¢ Dy = 6/ oId. We have

Dj = (dj oldc) + (Ido (3 ¢)) (A 0 1d) (dys 0 1dy) + (dec © (5 ¢)) (A 0 1d)
+ (Ido (m;¢))(Aold)(Ido (7; ¢)) (A o Id).
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On the one hand,

(Ido (7r; ¢))(Aocld)(Ido (7;¢))(Aold) + (Ido (;r; ¢)) (A o Id) (dy o Ide)

+ (dg o (r;¢))(A o 1d)
= (Ido (m;¢))(Id o’ Dy)(Aold)
= (Ido(m:¢9Dgy))(Acld)
= ((Ido (e;0))A) oId.

On the other hand,
(d2 o1d) = (0 o1d)A) o 1d + ((Z [d®s (® ®0® e®f)) A) old.

Hence, Dé = ((Aold)A) o Idy. a

Definition 36 (coradical filtration) Any % —coalgebra 2 = (D, Ay) over a conilpo-
tent cooperad % admits a filtration called the coradical filtration and defined as follows:

FHD = {x € D| Ay(x) € (FC) o D).

Proposition 37 Let ¥ be a conilpotent cooperad and let 9 be a ¥ —coalgebra. For
any integer n,

Ag(FDyC > (FMO(k) ®s, (FPD®--- ® F{D).
ig+iy+-+ix=n

Lemma 38 Let V and W be two graded K-modules equipped with filtrations
(FuV)pen and (FyW)pen, and let ¢:V — W be an injection such that F,V =
¢~ (F,W) for any integer n. Then there exists a map y¥: W — V such that ¥ ¢ = Id
and Y (F,W) = F,V forany n € N.

Proof For an integer n > —1, suppose that we have built a subgraded K—module 4,
of F,W such that F,, W = ¢(FnV) ® Un N F,, W) for any m < n. Let U, be a
subgraded K-module of F;41W that is an algebraic complement to ¢(£,1V) ®U,.
Then let Uy 41 := Uy @ U,,. Finally, let U := colimif,. We define ¥ by

. {«p—l on $(V),

0 on U. O

Proof of Proposition 37 The map Ay: D — C o D is actually a morphism of ¢—
coalgebras such that A_gl (FI9CoD) =F, ,rladD. By Lemma 38, there exists a map of
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graded K—modules V: C o D — D such that VAy = Idp and V(F,C o D) = F,D.
Then the following diagram is commutative:

p—2 ,cop

Jo e

CoD——CoCoD——CoD
oA I1doV

Id\_/d!

Id
By Lemma 26, we know that

(AoId)A(F™D) C Z FMC(k) ®s,, (FCoD @+ ® F{XCoD).

ig+-+ix=n

Moreover, we know that

(IdoV) (FRC (k) ®s, (FfCoD®- - -® Ff*Co)) € FiC(k)®s, (FID®- --® F{D).

So, we have

A(F™D) = (Ido V) (A o Id) A(FFD)
cY Y FMek) ®s, (FUD®--® FiD). O

k io+-+ix=n
2.4 Presentability

This subsection deals with the presentability of the category of algebras over an operad
and the presentability of the category of coalgebras over a conilpotent curved cooperad.

Theorem 39 [8, Lemma 5.2] Let & be a dg-operad. Then the category &—alg of
& —algebras is presentable.

The essence of the last theorem is that any £?—algebra is the colimit of a filtered
diagram of finitely presented £?—algebras.

Theorem 40 Let ¢ be a conilpotent curved cooperad. The category € —cog of € —
coalgebras is presentable.

The essence of this theorem is that any ¢ —coalgebra is the colimit of a filtered diagram
of finite-dimensional ¢ —coalgebras. Since the category of ¥ —coalgebras does not
seem to be comonadic over a known presentable category, we cannot use the same kind
of arguments as in the proof of [8, Lemma 5.2].

Algebraic & Geometric Topology, Volume 19 (2019)



Homotopy theory of unital algebras 1563

Lemma 41 The category ¢ —cog is cocomplete.

Proof The colimit of a diagram of ¥ —coalgebras is its colimit in the category of
graded K-modules, together with the obvious decomposition map and coderivation
map. o

Lemma 42 For any ¢ —coalgebra 9 = (D, A ») and any finite-dimensional subgraded
K -module V C C, there exists a finite-dimensional sub-¢ —coalgebra & of 9 which
contains V.

Proof Let us prove the result by induction on the coradical filtration of 2. Suppose
first that V C FoD. Then V + dV is a sub-%—coalgebra of 2. Then suppose that,
for any finite-dimensional subgraded K-module W € FRID, there exists a finite-
dimensional sub-%—coalgebra & of F:4% which contains W. Consider now a finite-
dimensional subgraded K—module V C Fj+1D. By Proposition 37, for any element
X € F:;le, Ag(x) —1® x € Co FRID, Since we are working with conilpotent
% —coalgebras, there exists a finite-dimensional subgraded K-module V(x) of FfID
such that Ag(x)—1®x € CoV(x). Let (e,-)f.‘=1 be a linearly free family of elements

of V such that V =V N FRID g EB§=1 K.e; . By the induction hypothesis, let £ be a
finite-dimensional sub-%"—coalgebra of 2 which contains

VNFMD@ Y V(e) + V(dpe)).

Then the sum
E+ Z(K.ei @ K.dpe;)

1
is a finite-dimensional sub-%—coalgebra of & which contains V. a

Finally, we show that a finite-dimensional ¥’ —coalgebra is a compact object.
Proposition 43 A finite-dimensional ¢ —coalgebra is a compact object.

We need the following technical lemma:

Lemma 44 Let D: I — ¢—og be a filtered diagram. Let x € D(i) for an object i

of I. If the image of x in colim D is zero, then there exists an object i’ of I and a
map ¢: i — i’ such that D(¢)(x) = 0.
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Proof The colimit of the diagram D is the cokernel of the map

g @ pGi)—» & D)
fij—=j ieOb(I)
such that for any morphism f: j — j’ of I, the morphism g sends x € D(j) to
x—D(f)(x). Let x € D(i) whose image in colim D is zero. Then there exists an
element y =3 yr of @y, ;_, ;» D(J) such that g(y) = x. Let i’ be a cocone in /
of the finite diagram made up of the morphisms f such that ys # 0. Then the image
in D(i") of }_ yr is the same as the image in D(i’) of > D(f)(yy). Hence, the
image of x in D(i’) is zero. O

Proof of Proposition 43 Let D: I — ¥—cog be a filtered diagram and let 2 =
(D, Ay) be a finite-dimensional 4’ —coalgebra. We have to show that the canonical
map

colim(thomy_cog(Z, D)) — homy_cog(Z, colim D)
is bijective.

e Letus first show that it is surjective. Let f: 2 — colim D be a map of ¢ —coalgebra
and let D’ be the image of f inside colim D which is also a sub-¢—coalgebra of
colim D. Let {e,}”_, be a basis of the graded K—module D". Since the diagram D is
filtered, there exists an object i of / and for each @ an element x, € D (i) whose image
in colim D is e,4. Let & be the smallest sub-¢ —coalgebra of D (i) which contains all
the x, and let & be the image of & in colim D. Notice that &’ contains D’ and that
the map & — & is surjective. By Lemma 44 and since & is finite-dimensional, there
exists an object i’ and a map ¢: i — i’ such that the map & := D(¢)(&) — &’ is
an isomorphism of ¢ —coalgebras. So let 2” be the sub-%—coalgebra of &” which
is the image of D’ through the inverse isomorphism & — &”. Hence, the map
9 — 9’ — colim D factors through the map 2 — 2’ ~ 9" — D(i’) and so the
canonical map colim(homy_cog(Z, D)) — homy_coe (2, colim D) is surjective.

e Let us show that it is injective. Let
J €homy_ s (2, D(i)) and g €homy_cog(Z, D(j))

be two maps whose images in homg_cog(Z, colim D) are the same; it is denoted
by &. Since the category [ is filtered, there exists an object k together with maps
¢:i —> k and ¥: j — k. Then D(¢) f(2) + D(¥)g(2) is a finite-dimensional
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sub-%—coalgebra of D (k) whose image in colim D is h(2). As in the previous point
(by Lemma 44), there exists a map {: k — k' in I such that the map

u: D)D) f(2) + D(¥)g(C) — h(2)

is an isomorphism. Since the dimension (as a graded K—-module) of D(¢)D(¢) f(2)
and the dimension of D(¢)D(y)g(2) are both greater than the dimension of /4(2),
we must have

D) (D(#) f(Z)+ D(¥)g(2)) = D(§)D(9) f(2) = D) D(¥)g(2).

In this context, we have

DE)D(@)f =u"th=DE)DW)g.

Hence, f and g represent the same element of colim(homy_cog(Z, D)). a

Proof of Theorem 40 The isomorphisms classes of finite-dimensional & —coalgebras
form a set. By Proposition 43, any finite-dimensional ¥ —coalgebra is a compact object
of the category ¢ —cog. Moreover, any % —coalgebra is the colimit of the diagram of its
finite-dimensional sub-% —coalgebras (with inclusions between them); this is a filtered
diagram (and even a directed set). Hence, the category ¢—cog is presentable. a

3 Enrichment

This section deals with several enrichments of the category of algebras of an operad and
of the category of coalgebras of a curved conilpotent cooperad. Specifically, we prove
that both the category of algebras over an operad and the category of coalgebras over a
curved conilpotent cooperad are tensored, cotensored and enriched over cocommutative
coalgebras and enriched over simplicial sets. In the nonsymmetric context, algebras over
an operad and coalgebras over a curved conilpotent cooperad are tensored, cotensored
and enriched over coassociative coalgebras.

3.1 Enrichment over coassociative coalgebras and cocommutative
coalgebras

We show in this subsection that the category of algebras over an operad and the category
of coalgebras over a curved conilpotent cooperad are tensored-cotensored-enriched
(see Definition 4) over the category uCocom of counital cocommutative coalgebras.
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Moreover, in the nonsymmetric context, they are tensored-cotensored-enriched over
the category uCog of coassociative coalgebras. We will use these enrichments in the
sequel to describe deformations of morphisms and mapping spaces, respectively.

3.1.1 Enrichment of &2-algebras over coalgebras Let & = (P,y,1) be a dg
operad. For any counital cocommutative coalgebra ¥ = (C, A¢, €) and any &?—algebra
o = (A, y), the chain complex [C, .A] has a canonical structure of &?—algebra as
follows.

e Forany p € P(n) (n>1),and for any fi,..., f4 €[C, Al and any x =C,

el (P ®s, ([1®® fi))(X) =vs(p @)1 ® & fu) AL (x)

e Forany p € P(0),
Yie.A1(p) = Yo (p)ec

The chain complex [C, A] together with its structure of 9?—algebra is denoted by [¢, <7].

Lemma 45 The assignment ¢, «/ — [¢, /] defines a left coaction (see Definition 3)
of the category uCocom of counital cocommutative coalgebras on the category %-alg
of & —algebras.

Proof The construction is functorial covariantly with respect to 4?—algebras and
contravariantly with respect to counital cocommutative coalgebras. Moreover, for
any counital cocommutative coalgebras ¢ and &, and any &?—algebra 7 there is an
isomorphism of chain complexes

pe,9,a° [C®D, A]—[C,[D, Al
such that py 9, (f)(x)(y) = f(x ® y). This is a morphism of #—algebras which is

functorial in ¥, 2 and 7, and it satisfies the coherence conditions of Definition 3. O

One can define a left adjoint to the functor [¢’, —] as follows. Let & <% be the quotient
of the free 4?2 —algebra P o (A ® C) by the ideal I generated by the relations

Ve (p®s, (1 ® - ®@p))®x ~ Y (1) Xi<i KOl p @, (31 ®x(1) @+ ® (ya ® X)),
va(p) ®x ~e(x)p forany peP(0),

with An_l(x) = ZX(l) QR X()-
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Theorem 46 The category of & —algebras is tensored-cotensored-enriched over the
category uCocom of counital cocommutative coalgebras. The right action is given by
the functor — < — and the left coaction is given by the functor [—, —]. We denote the
enrichment by {—, —}.

Proof Since the functor [—, —| defines a coaction of the category of counital cocom-
mutative coalgebras on the category of ?—algebras, since the functor [—, A] sends
colimits to limits and since the functor [¢, —] is left adjoint to the functor — <%, we
can conclude by Proposition 6. a

Let us describe {7, &7’} for two Z—algebras ./ and «7’. This is the maximal sub-
coalgebra of the cofree cocommutative coalgebra F([A, A’]) such that the following
diagram commutes:

(o o'} [A. A]

(e,Id,A,...)l l[m,ld]

[Tisole. '}®" /Sy — [1usolA. A1®" /Sy — [Po A, P oA’]m [PoA, A

where the map [],>[A4, A1%"/S, — [Po A, PoA]sends f1 Q-+ ® fn to

Id7>(n) ®s, (fl X fn)’

and where the map {.<7, &’} — [ A, A’] is the composition

(o "} > F(A A — [A AT.

3.1.2 Enrichment of ¥ —coalgebras over coalgebras Let ¥ = (C,A,¢,1,d,0) be
a curved conilpotent cooperad.

For any ¥ —coalgebra 2 = (D, Ay) and any counital cocommutative coalgebra & =
(€, Ag, €), the tensor product D ® £ has a structure of ¥’ —coalgebra given by

D, An@A"!
D& & ———— Pcm &8s, D) @ ¥ - ) ®s, (DR E)®™.
n n

Theorem 47 The category ¢ —cog of ¢ —coalgebras is tensored-cotensored-enriched
over the category of cocommutative counital coalgebras. The right action is given by
the construction — @ —. We denote the left coaction by (—, —) and the enrichment by

{_’ _}
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Proof The assignment 2, & +— 2® & defines a right action of the category of counital
cocommutative coalgebras on the category of ¥ —coalgebras. Moreover, the functor
2 ® — and the functor — ® & preserve colimits. We conclude by Proposition 6. 0O

If 2 and 2’ are two ¢ —coalgebras, then the cocommutative counital hom coalgebra
{2,9'} is the final subcoalgebra of the cofree counital cocommutative coalgebra
F([D, D']) over the chain complex [D, D’] such that the following diagram, built in a
similar way as its counterpart for algebras, commutes:

{2.7'} [D. D]

(e,Id,A,...)l l

[Th=0{2. 2'}®" /Sn — [1us0lD. D'1®" /Sy — [CoD,CoD'| — [D,Co D]

3.1.3 Morphisms are atoms

Proposition 48 For any two & —algebras </ and </’, the dg atoms of the cocommuta-
tive coalgebra {7, o/'} are the morphisms of & —algebras from </ to </'. Similarly,
for any two ¢ —coalgebras 9 and &', the dg atoms of the cocommutative coalgebra
{2, 9'} are the morphisms of € —coalgebras from 9 to &'

Proof We have
hOl'nuCocom (Ks {ﬂ, %/}) = hom@—alg(% <K, JZ{/) = hom%—alg(v‘y, ﬂ/) a

3.1.4 Nonsymmetric context In the nonsymmetric context, we can get rid of the
cocommutativity condition.

Proposition 49 e If & is a nonsymmetric operad, then the category of &—
algebras is tensored-cotensored-enriched over the category uCog of counital
coassociative coalgebras.

e If ¥ is a nonsymmetric conilpotent curved cooperad, then the category of ¢ —
coalgebras is tensored-cotensored-enriched over the category uCog of counital
coassociative coalgebras.

We denote by {—, —}" these two enrichments over counital coassociative coalgebras.

Proof The proof is similar to the proofs of Theorems 46 and 47. O
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The inclusion functor uCocom < uCog is a left adjoint (since it preserves colimits).
Let R be its right adjoint. It sends any counital coassociative coalgebra to its final
cocommutative subcoalgebra.

Proposition 50 For any & —algebras </ and /', the cocommutative coalgebra {7, o/}
is the final cocommutative subcoalgebra R({</, </'}*) of {a/,<'}". Similarly, for
any ¢ —coalgebras 9 and 7', the cocommutative coalgebra {2, 7'} is the final cocom-
mutative subcoalgebra R({2, 2'}") of {2, 9'}"™.

Proof For any cocommutative coalgebra &, we have
homuCocom (é", {%’ «Q/}) x~ homﬂ—alg(d < g)s W,) x~ homuCog(ég’ {ﬂa M,}HS)
~ homycocom (&, R({.e7, o7'}™)).

Since these isomorphisms are functorial, R({</, </’}") is isomorphic to {</, /'}. O

3.2 Simplicial enrichment

In this section, we recall the fact that the Sullivan polynomials forms algebras allow
one to enrich the category of algebras over an operad. See for instance [16].

3.2.1 General case Let A be a differential graded unital commutative K—algebra.
The category of dg A—modules is equipped with a tensor product

M®@4q4N =colim(M @ AQN = M QN),

where the two maps are given by the action of 4 on M and on N, respectively. The
functor A ® —: dgMod — dgMod,4 is strong symmetric monoidal. Hence, it induces
several functors:

e from operads to operads enriched in A—modules,
e from cooperads to cooperads enriched in A—modules,

e from Z7—algebras (in the category of K—modules) to 4 ® &—algebras (in the
category of A—-modules),

e from % —coalgebras (in the category of K—modules) to 4 ® ¥’ —coalgebras (in
the category of A—modules).

Applying this to the case of the Sullivan algebras of polynomial forms on standard
simplices leads us to the following proposition:
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Proposition 51 Let &7 be a dg operad and let € be a curved conilpotent cooperad. The
category of &2 —algebras and the category of ¢ —coalgebras are enriched in simplicial
sets as follows:

HOM(o/, &) := homy_aig (7, 2y ® /') >~ homg, @5 alg(Qn ® o, Qp ® '),
HOM(2, 2')n :=homg, g cog(n ® 7,2 ® 7).

Proof The only point that needs to be cleared up is the simplicial structure on
HOM(2, 2'). Let ¢: [m] — [n] be a map between finite ordinals. We want to define
¢*: HOM(2, 2'), - HOM(Z, Z') 15, . An element of HOM(2, '), is a morphism of
graded K—modules f from D to 2, Q®D’ such that fdp = (dg, ®1dp +1dg, ®dp’)
and such that the following diagram commutes:

D 4 QD

| Jves

CoD 3 Co (2 ®D) — 2 ® (CoD)

where the map Co (R, ® D') > 2, ® (CoD’) is the map

X ®s, (a1 ®x1) @+ ® (ar ® xx))

= (DD (i bl ) @ (x @, (x1 @ @ k).
Then ¢*(f) = (Q[p] R 1d) f where Q[¢]: 2, — R, is the structural map induced
by ¢. O

Proposition 52 For any simplicial set X which is the colimit of a finite diagram of
simplices A[n] and for any & —algebras </ and </', we have

homsSet(Xs HOM(%’ W/)) = homzf/’—alg(d7 QX X %l)'

Proof It suffices to notice that the functor from commutative algebras to RQ F—
algebras R+ R ® o/’ preserves finite limits. a

Remark 53 The enrichment of the category of £?—algebras and of the category of
& —coalgebras over simplicial sets that we described above is a part of a more general
enrichment over functors from the category of unital commutative algebras to simplicial
sets:

R~ (homyp_,g(, 2y @ R ® #))neN,

R (hOInQn®R®<g_COg(Qn ®R®2, 2 QR @/))neN-
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3.2.2 Nonsymmetric context In the nonsymmetric context, we can use some asso-
ciative algebras instead of the commutative Sullivan algebras to define a simplicial
mapping spaces. However, this does not define an enrichment any more. Let A, be
the linear dual of the Dold—Kan coalgebra over the standard simplex,

Ay :=DKE(A[n))*.
This defines a simplicial unital associative algebra.

Further, let &7 be a nonsymmetric dg operad. For any &?—algebra < = (A, y.y), and
for any associative algebra 4, 4 ® A has a canonical structure of a & —algebra.

Definition 54 (nonsymmetric simplicial mapping spaces of algebras over an operad)
For any two &—algebras &/ and %, let HOM™ (7, %) be the simplicial set

HOM"™ (o7, %), := homy_aig(, Ay ® B).

Let ¢ be a nonsymmetric curved conilpotent cooperad. For any associative algebra
A and for any two ¢ —coalgebras 2 = (D, Ay) and & = (£, Ag), we denote by
homy 4(2, &) the set of morphisms of graded K-modules f from D to A ® £ which
commute with the coderivations and such that the following diagram commutes:

D / ARE

Al lIdA(X’Ag

ConsD—>Cons(A®5)—>A®(Consg)

Definition 55 (nonsymmetric simplicial mapping spaces of coalgebras over a curved
cooperad) For any two ¢’—coalgebras 2 and 7/, let HOM™ (2, 2'),, be the simplicial
set

HOM"™(2, ')y :=homy, (2, 7').

These simplicial sets are related to the enrichments over coassociative coalgebras that
we described above.

Proposition 56 For any two & —algebras </ and 9 and for any two ¢ —coalgebras
9 and 9, we have isomorphisms

HOM™ (7, B) ~ N({</, B}™),
HOM™(2, ') ~ N({2, 7'}™).
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Proof The proof for &—algebras is straightforward. Let us prove the result for the -
coalgebras. A morphism of graded K—modules f from D to A, ®D’ is equivalent to a
morphism from D ® DK(A[n]) to D'. In that context, f belongs to homp, (2, 2')
if and only if the corresponding morphism from D ® DK¢(A[n]) to D’ is a morphism
of & —coalgebras. So

HOM™ (o7, B)n := homp, (2, 7') > homy_cog (2 ® DKE(A[n]), 2')
~ hom,cog(DK(A[n)), {7, 7"}")
~ homgset(Aln], N({Z, 2'}™)). O

Remark 57 Beware! The construction 7, 4 +— HOM™ (&7, %) does not define an
enrichment. This comes from the fact that the nerve functor N: uCog — sSet is not
monoidal.

4 Bar-cobar adjunctions

The usual bar—cobar adjunction relates nonunital algebras to noncounital conilpotent
coalgebras; see [19, Chapter 2]. It can be extended to nonunital operads and conilpotent
cooperads; see [12]. Further, as a direct consequence of work of Hirsh and Milles [17],
there exists an adjunction a la bar—cobar relating unital algebras with curved conilpotent
coalgebras. We extend it to operads and curved conilpotent cooperads.

The bar—cobar adjunction €2, - B, is a tool to compute resolutions of operads. But
it has other aspects: any morphism of operads from the cobar construction €2,% of a
curved conilpotent cooperad € to an operad 2 gives rise to a new adjunction a la bar
cobar between ¥ —coalgebras and & —algebras.

4.1 Operadic bar-cobar construction

The usual operadic bar—cobar adjunction (see [19, Chapter 6]) relates augmented
operads to differential graded conilpotent cooperads. The bar construction B£? of
an operad &2 does use the augmentation of & as it is the graded cofree cooperad on
the suspension of 2. If % is not augmented, one can try to add an element to &
whose boundary is the unit of &2 and try the same computation. This is the new
bar construction; its output is no longer a differential graded cooperad but a curved
cooperad.
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The new curved bar functor B, has also a left adjoint €2, whose formula looks like
the usual operadic cobar functor. Again, as in [19, Chapter 6], this adjunction is related
to a notion of twisting morphism.

Definition 58 (operadic bar construction) The operadic bar construction of a dg op-
erad 2 = (P, y», 1) is the curved conilpotent cooperad B, Z = (T“(sPdK-v), D, 6),
where sP is the suspension of the S—module P and where v is an arity 1, degree 2
element. It is equipped with the coderivation D which extends the following map from
TEPOK-v) to sPHK-v:
SX = —sdpx,
TGP®v) - TGP ®V) > sPBY, sxQ sy > (—l)lxlsyt@(x ® ),
v sl.

It has the curvature map

0: TCP®V) > sPOK-v—>K-v—>K, v 1.

Proposition 59 The map 0 is actually a curvature for the coderivation, that is, D> =
(ORId-1d®H)A,.

Proof Let 7 be the projection from B, % to sP. By Lemma 27, it suffices to prove
that 7D? = (0 ® m — 7 ® O)A,. This is a straightforward calculation. O

Definition 60 (operadic cobar construction) The operadic cobar construction of a
curved conilpotent cooperad ¢ = (C, A, €, 1, 0) is the dg operad 2,4 = (T s~le, D),
where D is the degree —1 derivation

sTIx > 0(x)1 —s ldx — Z(—l)"‘(”'s_lx(l) ® s_lx(z),

where Az(x) = le X Xx7.

Proposition 61 The derivation D squares to zero.

1

Proof It suffices to prove the result for any element of the form s~ x, which is a

straightforward calculation. a

Definition 62 (operadic twisting morphism) Let ¥ = (C, A,€,1,d, 6) be a curved
conilpotent cooperad and let & = (P, y», l ,d) be a dg operad. An operadic twisting
morphism from € to 22 is a degree —1 map of S—modules (or N-modules in the
nonsymmetric case)

a:C—P
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such that
o) +y(l@®@a)Ar =06,

where O(x) = 0(x)1 4 for any x € €. We denote by Tw(%, &2) the set of operadic
twisting morphisms from % to 2.

Proposition 63 We have the functorial isomorphisms

homoperad (24 €, Z) = Tw(€, &) =~ homccoop (€, Be 7).

Proof Proving the existence of the functorial isomorphism homoperad(24%, ¥) =~
Tw(%, &) is similar to the proof of [17, Theorem 3.4.1]. Let us show that we have
a functorial isomorphism Tw(%, &) >~ homccoop(?¢, B¢ #). Let a: € — & be an
operadic twisting morphism. We obtain a degree zero map from C to sP @K - v as
follows:

C—sPB®K-v, ¢ sa(x)+0gs(x).

This induces a morphism of graded cooperads fy: ¢ — B, = T¢(sP &K -v) such
that 04 = 0p,» fo. Since 0(a) + y»(a @ €)A, = O, the morphism f, commutes
with the coderivations and so is a morphism of curved cooperads. Conversely, from any
morphism of curved cooperads f from ¢ to B.Z, one obtains a twisting morphism
as follows:

¢ L BP —>s52 > 2.

The two constructions that we described are inverse one to another. O

Hence, the functors €2, and B, realize an adjunction between the category of dg
operads and the category of curved conilpotent cooperads,

Qy
cCoop —— Operad.
B,

4.2 Twisted products

Let a: € — & be an operadic twisting morphism.

Definition 64 (twisted £2—module) For any ¢ —comodule 2, let & oy 2 be the free
22 _module P o D equipped with the unique derivation which extends the map

D—PoD, xt>dp(x)—(axold)A(x).
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Definition 65 (twisted ¥—comodule) For any &-module 7, let € o, </ be the
cofree €2 —_comodule C o A equipped with a unique coderivation which extends the
map

CoAd— A, x> (dalegold)+ yy(aold))(x).

Proposition 66 The derivation of & o, 2 squares to zero. Hence, & oy 2 is a dg
& —-module. Similarly, the coderivation of € oy </ squares to (6 oId)A. Hence, € oy <7
is a € —comodule.

Proof To prove the first point, it suffices to show that 7.D? = 0, which is a straight-
forward calculation. To prove the second point, it suffices to show that 7 D? = (6 oId),
which is a straightforward calculation. O

Definition 67 (twisting morphism relative to an operadic twisting morphism) For
any ¥—comodule 2 = (D, Ay) and any &Z-module & = (A, y,) an a-twisting
morphism from & to & is a degree 0 map ¢: D — A such that

() + yal@op)Ac =0.

We denote by Twq (2, «7) the set of a—twisting morphisms from 2 to <.

Proposition 68 There are functorial isomorphisms
homy_mod (P 0 2, ) = TWe(Z, &) = homy_comod (Z, € 0a )

for any ¢ —comodule 2 and any & —module <.

Proof The proof is similar to [19, Proposition 11.3.2]. a

4.3 Bar-cobar adjunction for algebras over an operad and coalgebras
over a cooperad

Following [19, Chapter 11], we call the previous functors the bar construction for
& —algebras and the cobar construction for ¥’—coalgebras, respectively.

Definition 69 (bar construction and cobar construction relatives to an operadic twisting
morphism) Let a: € — £ be an operadic twisting morphism. The o—bar construction
is the functor from £?—algebras to ¢ —coalgebras defined by

Ba%:z%oa%.
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The o—cobar construction is the functor from % —coalgebras to &2 —algebras defined by
Q(x.@ = @ Ow .@

We already know, by Proposition 68, that €2, is left adjoint to B, . Moreover, this
adjunction is enriched over cocommutative coalgebras and simplicial sets.

Proposition 70 The functors 24 and B,, induce functorial isomorphisms of counital
cocommutative coalgebras and of simplicial sets

{Qu2, 9} ~{C, Bqo/}, HOM(Rq2, o) >~ HOM(Z, By <)
for any ¢ —coalgebra & and any & —algebra </ ;

Lemma 71 We have a functorial isomorphism
Two(2Q &, o) ~Twe(2,[&, o))

for any ¢ —coalgebra &, any & —algebra </ and any counital cocommutative coalge-
bra &.

Proof The set of morphisms of graded K—modules from D ® £ to A is in bijection
with the set of morphisms of graded K-modules from D to [€, A]. This bijection and
its inverse preserve o—twisting morphisms. |

Lemma 72 We have a functorial isomorphism
Twe (2, R® o) >~ homgrgy—cog(R® 7, RQ® By.)

for any € —coalgebra &, any & —algebra </ and any dg unital commutative algebra R.

Proof Let us first denote by 7 the map from R® (Co.A) to R ® A defined by the
formula
7 =1d® (eold).

As we have already seen, a morphism in homgg¢_cog (R® 7, R® By .o/) is equivalent
to the data of amap f: D — R ® (C o.A) which satisfies some conditions; see the
proof of Proposition 51. On the one hand, the following diagram commutes:

D 4 R® (CoA)

| Joes
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This implies that f is the composition

o 1d® (Idoeold
DA oD 0o (R®(CoA) — R® (CoCod) 21 po(Co).

Then, exchanging the action of € with the exchange between C and R, we see that f
is the composition

A Ido(z f)
D=>CoD——Co(R®A) > RQR(CoA).

On the other hand, d(f) = 0. Given the relation between f and mf just above, a
straightforward calculation shows that this is equivalent to the fact that  f is a twisting
morphism. a

Proof of Proposition 70 On the one hand, for any cocommutative coalgebra &, we

have
homuCocom (é", {Qa-@a JZf}) = hom,@—alg(Qa-@a [6}7 JZ{])

~ Twe(2,[8, 7)) ~ Twa (2 ® &, )
~ homy_cog (7 @ &, By)
~ homuCocom (57 {@7 Baﬂ})

On the other hand, by Lemma 72 and Proposition 68 we have functorial isomorphisms
homy_,14(Re 2, R® o) =~ Twe (7, R® /) >~ homRrgy—_cog(R® 7, RQ® By.o)

for any dg unital commutative algebra R. Taking R = €2, gives us a natural isomor-
phism of simplicial sets HOM (R4 2, /) ~ HOM(Z, By ). a

5 Homotopy theory of algebras over an operad

In this section, we recall a result of Hinich, stating that for any dg operad &, the
category of &?—algebras admits a projective model structure whose weak equivalences
are quasi-isomorphisms (see [15; 4]). Moreover, we show that the simplicial enrichment
of the category of &?—algebras that we described above gives models for the mapping
spaces. Finally, we show that the enrichment over cocommutative coalgebras introduced
in Section 3 encodes deformation of morphisms of £?—algebras.

5.1 Model structure on algebras over an operad

We recall here results about model structures on the category of algebras over an operad.
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Definition 73 (right induced model structures) Consider the adjunction

L

Cz—=D

R
Suppose that C admits a cofibrantly generated model structure. We say that D admits
a model structure right induced by the adjunction L = R if it admits a model structure
whose weak equivalences (resp. fibrations) are the morphisms f such that R(f) is a
weak equivalence (resp. a fibration) and whose generating cofibrations (resp. generating
acyclic cofibrations) are the images under L of the generating cofibrations (resp.
generating acyclic cofibrations) of C.

Definition 74 (admissible operad) An operad &2 is said to be admissible if the
category of £2—algebras admits a projective model structure, that is, a model structure
right induced by the adjunction

Po—
dgMod —/—— Z-alg

whose right adjoint is the forgetful functor.

Theorem 75 [15] Any nonsymmetric operad is admissible. When the characteristic
of the field K is zero, any operad is admissible.

5.2 Mapping spaces

The simplicial enrichments of the category of &7—algebras described above give us
models for the mapping spaces.

Proposition 76 Suppose that the characteristic of the field K is zero. Let & be a dg
operad. The assignment <7, o/’ — HOM(«/, </') defines a homotopical enrichment
of the category of &2 —algebras over the category of simplicial sets. Moreover, for any
cofibrant & —algebra </ and any & —algebra /', the simplicial set HOM(«/, /") is a
model of the mapping space Map(</, «").

Remark 77 The characteristic zero assumption is not necessary in the nonsymmetric
context.

Proof Let f: o — &' and g: % — %' be a cofibration and a fibration of -
algebras, respectively. Let #: X — Y be a monomorphism of simplicial sets which
is a generating cofibration or acyclic cofibration for the Kan—Quillen model structure.
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Then X and Y are colimits of finite diagrams made up of simplices A[n]. Consider a

square
X HOM(«', #)

| l

Y —— HOM(%’, @,) XHOM(yf,%’) HOM(W, e@)

By Proposition 52, it induces the square

A—— Qy %

| l

A,—>QY®'@,XQ)(®L@/ QX@%

which has a lifting whenever /', g or / is a weak equivalence; indeed, by Proposition 18,
the map Qy — Qyx is a fibration and it is an acyclic fibration whenever / is an acyclic
cofibration. Further, to prove that HOM(«, &/’) is a model of the mapping space
Map(«7, /"), it suffices to notice that {2, ® &' },cn is a Reedy fibrant resolution of
the constant simplicial &#?—algebra .o/’ a

5.3 Deformation theory of morphisms of algebras over an operad

We know that the category of 4?—algebras is enriched over the category uCocom of
cocommutative coalgebras. In this subsection, we show that for any Z?—algebras
o/ and 4, the cocommutative coalgebra {</, } encodes the deformation theory of
morphisms from < to %. We suppose in this subsection that the field K is algebraically
closed.

Any morphism of Z—algebras f: o — % defines a deformation problem Def( f).

Artin—alg — sSet,
R~ Map(e/, £ ® R) XYoo sz (S} = HOM(/, B & R) Xpom(wr.2) {f}-

The following theorem is a direct consequence of a result by Chuang, Lazarev and
Mannan [7, Theorem 2.9]. It is proven in the appendix.

Theorem 78 Suppose that the base field K is algebraically closed and that its charac-
teristic is zero. Let € = (C, A, €) be a dg cocommutative coalgebra and let A be its
set of graded atoms. There exists a unique decomposition ¢ >~ P ,c 4 €a, Where ¢, is
a subcoalgebra of ¢ which contains a and which belongs to the category uNilCocom.
Moreover, a morphism of dg cocommutative coalgebras [: @ ,c 4 €a — Bpep Zb is
the data of a function ¢: A — B and of a morphism fq: 64 — Yg(q) forany a € A.
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We know from Proposition 48 that a morphism f of Z?-algebras from & to % is
a dg atom of the cocommutative coalgebra {7, %}. Applying Theorem 78 to the
cocommutative coalgebra {</, Z}, we obtain the conilpotent cocommutative coalgebra
{7, B} . This is in particular a Hinich coalgebra which encodes a deformation problem
R — Map(R*,{</, %}r). We show in the next proposition that this deformation
problem is Def( f).

Theorem 79 Suppose that <7 is a cofibrant &7 —algebra. Then the deformation problem
induced by the conilpotent cocommutative coalgebra {.<7, B}y is Def( f).

Lemma 80 If </ is a cofibrant &2 —algebra, the simplicial Hinich coalgebra

is a Reedy fibrant replacement of the constant simplicial Hinich coalgebra {.</, %} .

Proof Let g: X — Y be a monomorphism of simplicial sets which are finite colimits
of standard simplices A[n]. Let h: 1 — %> be a monomorphism of Hinich coalgebras.
Consider the square

61 —>{427,S2y®<%’}f

l l{d,ﬁ[g]@%}

%2—){&27,Qx®¢%7}f

Any morphism of cocommutative coalgebras from a conilpotent cocommutative coalge-
bra ¢ to {</, %} such that the atom of ¢ targets the atom f of {7, %} is a morphism
from ¢ to {</, #}r. So, lifting the previous square amounts to lifting the square of
P —algebras

%] (€2, Qy ® H]

| |

g — [Cgls QY ®'@] X[‘nﬁ,Qx@ﬂ] [CgZ’QY ®‘@]

This is possible whenever, g or / is a weak equivalence, since any weak equivalence of
Hinich coalgebras is in particular a quasi-isomorphism. So, in particular, any face map
{, Q1 @ B} — {, Ly ® A} is an acyclic fibration of Hinich coalgebras and, for
any integer n € N, the morphism {.«7, Q, ® B} — {7, Qya[n ® A} is a fibration. O

Algebraic & Geometric Topology, Volume 19 (2019)



Homotopy theory of unital algebras 1581

Proof of Theorem 79 By Lemma 80, the deformation problem induced by the Hinich
coalgebra {7, %} is equivalent to the deformation problem

R € Artin—-alg — (homH;n;ch_cog(R*, {527, Q,® e@}f))neN

We have

homjinich-cog (R*, {7, Qn ® B}5)
~ homycocom (R, {47, Q1 ® B}) Xnomycocom K7, 2n®@2}) 1S}
= homfﬂfalg(% < R*, QR %) Xhomg,a|g(,pi,§2n®.%) {f}
i hom,@—alg(ﬂv R® Qn X %) Xh0m9,3|g(<d,911®<%) {f}

Since the simplicial sets

(hOmy_a|g(JZf, R® Qn ® %))nGN and (homﬂ—alg(d, Qn ® f%)))nGN

are Kan complexes and models of Map(«, R ® %) and Map(«/, %), respectively, and
since the map between them is a fibration, the simplicial set

(home@—alg(%7 R®QL,® %) Xhom‘@,ﬂg(bo{,Qn@t@) {f})nEN

is a model of the homotopy pullback Map(«/, R ® A) x’l\’/[apc .3 {f}. |

6 Model structures on coalgebras over a cooperad

In this section, we show that, for any operadic twisting morphism «: € — &, the
projective model structure on the category of £?—algebras can be transferred through
the cobar construction functor €2, to the category of ¢ —coalgebras. This result is in
the vein of similar results by Hinich [16], Lefevre and Hasegawa [18], Vallette [26] and
Positselski [23]. However, we use a new method for the proof that uses the presentability
of the category of algebras over an operad and of the category of coalgebras over a
curved conilpotent cooperad; specifically, we use a theorem proved by Bayeh, Hess,
Karpova, Kedziorek, Riehl and Shipley [3; 14].

6.1 Model structure induced by a twisting morphism

Definition 81 (left induced model structures) Consider the adjunction
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Suppose that D admits a model structure. We say that C admits a model structure left
induced by the adjunction L - R if it admits a model structure whose weak equivalences
(resp. cofibrations) are the morphisms f such that L(f) is a weak equivalence (resp.
a cofibration).

Here is the main theorem of the present article:

Theorem 82 Let &2 be a dg operad, let ¥ be a curved conilpotent cooperad and
let @ be an operadic twisting morphism between them. Suppose that the characteristic
of the base field K is zero. We know that the category of &?—algebras admits a
projective model structure. Then the category of ¢ —coalgebras admits a model structure
left induced by the adjunction Q4 - By. We call it the o —model structure. In the
nonsymmetric context, we can drop the assumption that the characteristic of the field K

is zero.
To prove this theorem, we will use the following result:

Theorem 83 [3, Theorem 2.23; 14, Theorem 2.2.1] Consider an adjunction

L
C——M
R

between presentable categories. Suppose that M is endowed with a cofibrantly gen-
erated model structure. Then there exists a left induced model structure on C if the
morphisms which have the right lifting property with respect to left induced cofibrations
are left induced weak equivalences. In particular, this is true if the category C has a
cofibrant replacement functor, and if any cofibrant object has a cylinder.

From now on, a weak equivalence (resp. cofibration) of ¢ —coalgebras is a morphism
whose image under 2 is a weak equivalence (resp. cofibration). An acyclic cofibration
is a morphism which is both a cofibration and a weak equivalence. A fibration is a
morphism which has the right lifting property with respect to all acyclic cofibrations
and an acyclic fibration is a morphism which is both a fibration and a weak equivalence.
Here is the proof.

Proof of Theorem 82 Proposition 84 ensures us that the cofibrations of the category
of € —coalgebras are the monomorphisms. Hence, any object is cofibrant. Then
Proposition 90 provides us with a cylinder for any object if the characteristic of K is
zero. In the nonsymmetric context, Proposition 93 provides us with a cylinder. We
conclude by Theorem 83. a
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6.2 Cofibrations

Proposition 84 The class of cofibrations of ¢ —coalgebras is the class of monomor-
phisms.

Lemma 85 Let f: 2 — & be a monomorphism of ¢ —coalgebras such that A(E) C
Co f(D). Then f is a cofibration.

Proof We can decompose the graded K-module £ as € =D @ F. The coderivation dg¢
dp ¢
0 dr

Po(s !F) —— Q4D

corresponds then to the matrix

Consider the diagram of &?-algebras

Po(s~!F@F)

where the horizontal map sends s~!x to ¢(x) + (« o Id)A(x). The fact that it
commutes with derivations is given by the fact that the derivation of 2,& squares
to zero. Moreover, s~ ' F @ F is endowed with the differential d(s~!x + y) =
—s~'dzrx +s7'y 4+ dry. The vertical map is a cofibration since it is the image under
the left Quillen functor P o (—) of a cofibration, and f is the pushout of this vertical
map along the horizontal map. Hence, f is a cofibration. |

Proof of Proposition 84 Let f: 2 — & be a cofibration. Then Q4 ( /) is a monomor-
phism. Since the following square is commutative, f* is a monomorphism:

Qa.@ —> Qaég

[

P —&

Conversely, if f* is a monomorphism, then, it can be decomposed into the transfinite
composition of the maps f, = 2+ F ,rl‘fll & — 9+ FR™¢. Since the maps f; satisfy
the conditions of Lemma 85, they are cofibrations. So f is a cofibration. a
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6.3 Filtered quasi-isomorphism

Definition 86 (filtered quasi-isomorphism) Let 2 and & be two ¥ —coalgebras. A
morphism of 4 —coalgebras f from 2 to & is said to be a filtered quasi-isomorphism
if the induced morphisms between the graded complexes relative to the coradical
filtrations are quasi-isomorphisms, that is, if for any integer #, the morphism from
G to GM¢ is a quasi-isomorphism.

Proposition 87 If the characteristic of K is zero, a filtered quasi-isomorphism is a
weak equivalence of € —coalgebras. The characteristic zero assumption is not necessary
in the nonsymmetric context.

We will use the following classical result:

Theorem 88 [21, Theorem XI.3.4] Let f: A — B be a map of filtered chain
complexes. Suppose that the filtrations are bounded below and exhaustive. If, for
any integer n, the map G,A — G, B is a quasi-isomorphism, then f is a quasi-
isomorphism.

Proof of Proposition 87 Consider the filtration on Q242 (resp. Q2¢&’)

FaQe?=PO)& Y  Pk)®s, (FLD® - ® FiD).

k=1
Pyttt p=n

It is clear that Q4 ( f) sends F,, Q242 to F, Q& for any integer n. Moreover, we have

GuQ?= Y Pk ®s, (GHD® - ®GD).
P1+'l":i}7k=n

Then, by the operadic Kiinneth formula, G, (R (f)): Gy 2 — G, Q& is a quasi-
isomorphism for any n € N. Hence, by Theorem 88, €2, ( /) is a quasi-isomorphism. O

Remark 89 The coradical filtration is not the only filtration whose notion of filtered
quasi-isomorphism gives us weak equivalences. An exhaustive filtration (F,D)eN i8S
called admissible if

A(F,D) C > FMC ®s, (FpD®-+-® Fp, D),
potpit-tpr=n
d(F,D) C F,D,

d*(F,D) C F,_iD.
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Using similar arguments as in the proof just above, we can prove that a filtered quasi-
isomorphism with respect to two admissible filtrations is a weak equivalence.

6.4 Cylinder object

Proposition 90 Let 9 = (D, Ay) be a ¢ —coalgebra. Let o7 = (A, y.;) be a cylinder
of Q¢ (2) such that the structural map p: o/ — Q4 (2) is an acyclic fibration. The
diagram

By
BoQ0 (7 ® 7) —— By(7) =225 ByQ4(2)

| [ ]

2®9 & 9

where & := By (/) X, (Q,2) 2 provides us with a cylinder & = (£, Ag) for the
€ —coalgebra 9.

Lemma 91 The pullback & is the final subgraded ¢4 —coalgebra of By« whose
image in ByQy 2 is in the image of the morphism 2 — By Q4.

Proof Let .# = (F,Az) be the final subgraded %#?—coalgebra of B,/ whose
image in By 24 2 is in the image of the morphism ¥ — B2, 2. Proving that % is
the underlying ¢ —coalgebra of & amounts to proving that F is stable under the
coderivation D of By.</. We prove it by induction on the coradical filtration of F.
First, by the maximality property of %, F(r)ad}' is stable under D. Then suppose that
FRAF is stable under D for an integer n > 0. Let x be an element of F,rffl]-'. On the
one hand, By(p)D(x) = D(By(p)(x)). Since By(p)(x) is in the image of 2 and
since this image is stable under the coderivation of ByQ, %, then By(p)D(x) is in

the image of Z. On the other hand, we have
A(D(x)) = (dcold +1d o’ D)A(x).

So, since A(x) — 1y ® x € Co (F9F), and since FMIF is stable under D by the
inductivity assumption,

A(D(x)) = 14 ® D(x) = (dc old +1d o’ D)(A(x) — 14 ® x) € € o (FF).

By these two points, F + K - D(x) is a subgraded €24 —coalgebra of By (<) whose
image in ByQy % is in the image of 2. By the maximality property of .%, then,
D(x) e F. So, F,r;fl]-' is stable under D. Hence, by induction F is stable under D. O
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To prove Proposition 90, we will show that the pullback map & — 2 is a filtered
quasi-isomorphism. Since 24 % is a cofibrant &?—algebra, there exists a right inverse
q: Qo9 — o to the acyclic fibration p: o — Q,%. Then let us decompose A as
A= Qq2 & K. The chain complex K is acyclic. So let #: K — K be a degree 1
map such that d(%) = Idg . It can be extended to a map

By > A—> K —> A, x> h(x).

The zero map is a coderivation on the graded cooperad %#%¢. Then let Dj, be the
degree 1 coderivation of (Bg.«7)2™ relative to the zero coderivation on 24 whose
projection on A is 4. In other words, Dy = Idy o' /.

Lemma 92 The sub-% —coalgebra & of By« is stable under Dy, .

Proof By Lemma 91, it suffices to prove that the final subgraded #2¢—coalgebra
of B,/ whose image in By 24 2 lies inside  is stable under Djy,. To that purpose, we
use the same arguments as in the proof of Lemma 91 and the fact that By (p) Dy =0. O

Proof of Proposition 90 Since the map 2 & 2 — & is a monomorphism and so a
cofibration, it suffices to show that the map & — Z is a weak equivalence. We show
that it is a filtered quasi-isomorphism. Let n € N ; let us show that the map G, — G, D
is a quasi-isomorphism. To that purpose, consider the filtration on By .o/

FyByot =Y C®s(K®¥ ® (Q2u2)®)).
i<k
This filtration is stable under the coderivations d and Dy and it induces a filtration
on G Tt is clear that the morphism G|GE — GR9D is an isomorphism. More-
over, for any integer k > 1, d(Dy) = k.Id on G,;G;adg. Since the characteristic
of K is zero, G,/( Gif‘dé’ is acyclic. By Theorem 88, the map G,& — G, D is a quasi-
isomorphism. a

Proposition 93 In the nonsymmetric context, 9 ® DK°(A[l]) provides us with a
cylinder for the € —coalgebra .

Proof Since G™(D ® DK(A[1])) = G™(D) ® DKC(A[1]) and since the map

DKC(A[1]) — K is a quasi-isomorphism, D ® DK°(A[1]) — D is a filtered quasi-
isomorphism and so a weak equivalence. a
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6.5 Enrichment in coalgebras the nonsymmetric context

Proposition 94 In the nonsymmetric context, the assignment 2, 9" + {2, 2'}"

defines a homotopical enrichment of the category of & —coalgebras together with its

o —model structure over the category of counital coassociative coalgebras.

Proof Let f: 2 — %’ be a cofibration of ¢ —coalgebras, let g: & — &’ be a fibration
of ¢ —coalgebras and let 4#: X — Y be a cofibration (ie a monomorphism) of counital

coassociative coalgebras. Consider the square

X — g, &

| l

Y —— {7, &'} x(9,6n 19, &}

It induces a square

| |

7Y — &'

The left vertical map is a monomorphism and so a cofibration.

If the morphism g: & — &’ is an acyclic fibration, then the square has a lifting.

Suppose that the morphism /4: X — Y is an acyclic cofibration. Then the
morphism Z® X — Z®Y is a filtered quasi-isomorphism and a cofibration, so
it is an acyclic cofibration. Hence, its pushout 2@ X - 2’ @ X Lygxy 2QY
is also an acyclic cofibration. Moreover, the map 2’ ® X — 2’ ®Y is a filtered
quasi-isomorphism and so a weak equivalence. So, by the 2-out-of-3 rule, the
morphism 2’ @ X Uyegx 2QY — 2’ ®Y is a weak equivalence. Since it is a
cofibration, it is an acyclic cofibration and the square has a lifting.

Suppose that the morphism f: 2 — &’ is an acyclic cofibration. Then the
morphism 2@ X — 2’ ® X is an acyclic cofibration. This is a consequence of the
fact that Qy (20 X) = (R 2)<X, and that for any fibration of & —algebras &/ —
</', the morphism [X, o/] — [X, &/’] is also a fibration. Then the same arguments
as in the previous point show us that the morphism 2’ X 4 x 2QY — 2'QY
is an acyclic cofibration and so the square has a lifting. a
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6.6 Changing operads and cooperads

In this subsection, we explore how the left induced model structure on coalgebras over
a curved conilpotent cooperad is modified when we change the underlying operadic
twisting morphism. This is inspired by [8], where a similar study is done in the context
of augmented dg operads and dg conilpotent cooperads.

Recall first that a morphism of dg operads f: & — 2 induces an adjunction between
their categories of algebras

fi
P-alg —— 9-alg
f*

whose right adjoint f* sends a 2-algebra </ to the same underlying chain complex.
This adjunction is a Quillen adjunction with respect to the projective model structures;
see [4]. Similar things happen for coalgebras over curved conilpotent cooperads.

Proposition 95 Let f: ¥ — 2 be a morphism of curved conilpotent cooperads. It
induces an adjunction between their categories of coalgebras,

S+
¢ —cog —— Z—cog,
f!

whose left adjoint fi sends a ¢ —coalgebra & to the same underlying graded K —
module.

Proof Let &= (&, A,d) be a ¥—coalgebra. It has a structure of Z—coalgebra defined
by the composite map
e voc LM goc.

This defines the functor fi. Since it preserves colimits and since the category of
¢ —coalgebras and the category of Z—coalgebras are presentable, fi has a right adjoint
by Proposition 2. O

Further, let us fix a dg operad &2. The canonical operadic twisting morphism 7: B, % —
& is universal in the sense that any operadic twisting morphism « from a curved
conilpotent cooperad % to £ is equivalent to a morphism of curved cooperads f from
% to B.2; then o« = m f . In that context, the cobar functor €, can be decomposed as
Qg = Qy f+, and the «—model structure on the category of ¢ —coalgebras is the model
structure left induced by the 7 —model structure on the category of B.&”—coalgebras.

On the other hand, let us fix a curved conilpotent cooperad . The canonical operadic
twisting morphism ¢: ¥ — 2,% is universal in the sense that any operadic twisting
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morphism «: ¢ — & is equivalent to the data of a morphism of operads f from ,%
to &; then a = fi. A direct consequence of the following proposition is that the
model structure on ¥ —coalgebras induced by the universal operadic twisting morphism
1. ¢ — Q,% is universal in the sense that any «—model structure is a left Bousfield
localization of this t(—model structure.

Proposition 96 Let a: € — &2 be an operadic twisting morphism and let f: & — 2
be a morphism of dg operads. The ( fa)-—model structure on the category of € —
coalgebras is the left Bousfield localization of the « —model structure with respect to
(fa)—weak equivalences. Moreover, if the Quillen adjunction fy 4 f™* is a Quillen
equivalence, the ( f«)—model structure coincides with the oo —model structure.

Proof The cofibrations of the @—model structure and the cofibrations of the ( fa)—
model structure are both the monomorphisms. Moreover, the functor f; is a left Quillen
adjoint functor. So, for any o—weak equivalence g, since 24(g) is a weak equivalence
between cofibrant objects, 2 rq)(g) = /1€24(g) is a weak equivalence. So the a—weak
equivalences are in particular ( fo)—weak equivalences. So is proven the fact that
the (fa)—model structure is a left Bousfield localization of the o—model structure.
Suppose now that the adjunction f; 4 f* is a Quillen equivalence. Then, for any
& —coalgebra &, the morphism

Qb — [*[iQab = [*Qfoé

is a quasi-isomorphism. Since the functor /™ is the identity on the underlying chain
complexes, the commutative square

. Qe (8)
S Q) ——— [*Qra)é’

| T

/
Qy& @ Q&

ensures that a morphism g: & — &’ of ¥ —coalgebras is a a—weak equivalence if and
only if it is an ( fa)—weak equivalence. a

7 The universal model structure

In the previous section, we studied model structures on categories of coalgebras over a
curved conilpotent cooperad which are induced by an operadic twisting morphism «.

Algebraic & Geometric Topology, Volume 19 (2019)



1590 Brice Le Grignou

In this section, we investigate the particular case where the operadic twisting morphism
is the universal twisting morphism ¢: ¢ — €2, % for any curved conilpotent cooperad €.
This model structure is universal in the sense that, for any operadic twisting morphism
o € — £, the a—model structure on the category of ¢ —coalgebras is obtained from
the (—model structure by Bousfield localization. We will show that the adjunction
@, - B, is a Quillen equivalence, that the fibrant ¥ —coalgebras in the (—model structure
are the images of the 2,% —algebras under the functor B,, and we will describe the
cofibrations, the weak equivalences and the fibrations between them. Moreover, we
will prove that the enrichment of ¥ —coalgebras over simplicial sets that we described
above computes the mapping spaces expected by the model structure.

We suppose here that the characteristic of the field K is zero. This assumption is not
necessary in the nonsymmetric context.

7.1 Quillen equivalence

Theorem 97 The adjunction 2, 4 B, relating ¢ —coalgebras to 2,4 —algebras is a
Quillen equivalence.

Proof Let us show that for any €2,%—algebra & = (A, y.y), the map Q,B, &/ =
Qu€ o, €0, o/ — o is a quasi-isomorphism. The coradical filtration of ¥ induces a
filtration on 2,,%,

FoQu% :=K.1,
P :=Kle Y  s'FC®--®s 'FYC forn>1.
ip4otig=n
k=1
It induces a filtration on 2,% o, ¢ and on $2,% o, € o, «,
Fa(Qu€0%) = Fye0)® Y Fip(Qu?)(k)®s(F/HC®---@FMC),
fgtFig=n
k=1
Fn (Qucgot%otd) = Fn(Qu(goL%)oA.
Then G(R2,% 0, %) = 2, (G€) oG, GF. By [19, Lemma 6.5.14], the map
Qu(G%) oG, GE — T

is a quasi-isomorphism. So, the map

G(Qu€¢0,¢0 A —>GA
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is a quasi-isomorphism (here G A is the graded complex corresponding to the constant
filtration F, A = A). Hence, by Theorem 88, the map €2,% o, € o, & — & is a
quasi-isomorphism. Since the model structure on ¥ —coalgebras is transferred from
the model structure on £2,% —algebras, then the fact that the counit Q, B« — & is a
weak equivalence for any algebra &/ ensures us that the Quillen adjunction 2, 4 B, is
a Quillen equivalence. a

7.2 Fibrant objects

The purpose of this subsection is to describe the fibrant objects of the (—model structure.

Definition 98 (quasicofree ¥ —coalgebras) A ¥ —coalgebra is said to be quasicofree
if its underlying %2 —coalgebra is cofree, that is, isomorphic to a coalgebra of the form
%246}, A morphism of quasicofree %' —coalgebras F: ¥ oV — % oW (together with
choices of cogenerators V and W) is said to be strict if there exists amap f: V — W
such that F =1do f.

Proposition 99 The functor B, is an embedding of the category of 2,¢ —algebras
into the category of ¢ —coalgebras whose essential image is spanned by quasicofree € —
coalgebras. Moreover, a morphism of ¢ —coalgebras B,.«/ = ¢ o,.«/ — B .o/’ =€ o, <’
is in the image of B, if and only if it is strict.

Proof It is straightforward to prove that the functor B, is faithful and conservative.
Moreover, it is clear that the images of the functor B, are in particular quasicofree
% —coalgebras and strict morphisms. Conversely, let Z := % o A be a quasicofree
% —coalgebra. Its coderivation extends the degree —1 map d4 @ y: AGCo A — A.
The map y gives us a degree —1 map from C to the operad End, that we denote
by «. The coderivation which extends d 4 @ y squares to (8 oId)A, so « is a twisting
morphism and so induces a morphism of operads from €2,% to End4, which is an
Q,% —algebra structure on A. Then 2 ~ B, A. Further, let F = Ido f be a strict
morphism from B« to B,%. Since F commutes with the coderivations, f is a
morphism of €2,% —algebras. a

Theorem 100 The fibrant ¢ —coalgebras in the t—model structure are the quasicofree
% —coalgebras (and so the objects in the essential image of the functor B,).
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Proof Let 2 be a fibrant object. Since the morphism 2 — B,2,2 is an acyclic
cofibration, the following square has a lifting:

Id
D —

9
B Q29— %
Hence, 2 is a retract of a quasicofree ¢ —coalgebra. By Lemma 101, it is a quasicofree

& —coalgebra. Conversely, a quasicofree 4 —coalgebra is fibrant since it is isomorphic
to the image under B, of an 2,% —algebra which is fibrant. a

Lemma 101 A retract of a cofree graded ¢4 —coalgebra is a cofree graded €#24 -
coalgebra.

Proof Let 2 = (D, Ay) be a graded 42 —coalgebra which is a retract of € o V.
On the one hand, the following diagram is a retract, that is, the compositions of the
horizontal maps give the identity on the bottom and on the top:

GHMD 5 GM(CoV) —————— GID

l l l

(GR9C) 0 FD —— (GC) 0 FF4(C o V) —— (G1C) o FD

Since the middle vertical map is an isomorphism, all the vertical maps are isomorphisms.
On the other hand, the map eold: CoV — V = F(r)adC oV gives us amap D — FyD
and hence a morphism of graded ¢ —coalgebras f: 2 — ¢ o FyD. Let us show that f
is an isomorphism. It is clear that the map FoD — Fy(C o FyD) is an isomorphism.
For any integer n > 1, the following diagram is commutative:

Gu(D) S N Gn(Co FyD)

s |

(GnC) o F()D T (GnC) o F()(C o F()D): (GnC) o F()D

Since the vertical maps are isomorphisms and since the bottom horizontal map is
an isomorphism, the top horizontal map is also an isomorphism. Hence, the map
Gf: GD — G(Co FyD) is an isomorphism. By Theorem 88, f is an isomorphism. O

Algebraic & Geometric Topology, Volume 19 (2019)



Homotopy theory of unital algebras 1593

7.3 Cofibrations, fibrations and weak equivalences between fibrant
objects

We show here that cofibrations, weak equivalences and fibrations between fibrant
% —coalgebras are easily characterized.

Proposition 102 Let o = (A, yy) and # = (B, yz) be two Q,% —algebras and
let F: B,of — B,% be a morphism between their bar constructions. We denote by
f: B« — B its projection f = ngF on B.
e The morphism F is a cofibration if and only if the restriction f'|4 is a monomor-
phism.
e The morphism F is a weak equivalence if and only f| 4 is a quasi-isomorphism.

e The morphism F is a fibration if and only if f'| 4 is an epimorphism.

Lemma 103 The morphism of chain complexes A — 2, B,.o# which is the restriction
to A of the canonical morphism B,/ — B,Q2, B, </ is a quasi-isomorphism.

Proof It is aright inverse of the canonical morphism of €2,% —algebras 2, B, o/ — <7,
which is a quasi-isomorphism. O

Proof of Proposition 102 Note first that |4 = F|4.

e Suppose that F is a cofibration, ie a monomorphism. Then its restriction F| 4 is
also a monomorphism. Conversely, suppose that the map f|4 is a monomorphism.
We can prove by induction that, for any integer n, the map F’ F;adBng% — F,rladBL%
is a monomorphism.

e By Lemma 103, the maps A — Q, B« and B — Q,B,% are quasi-isomorphisms.
Consider the diagram

QF
QB.o/ —— QB %

I

A—— B
fla

It ensures that f'| 4 is a quasi-isomorphism if and only if €, F is a quasi-isomorphism,
that is, if and only if F is a weak equivalence.

e Suppose that F is a fibration. Notice first that any chain complex can be considered
as a ¢ —coalgebra whose decomposition is given by the map with Ax = 14 ® x (it is
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a coalgebra since Ax(ly) ®x = 14 ® 1y ® x = 14 ® Ax; the commutation with the
derivations and the curvature condition are straightforward to check). Then any square
of & —coalgebras as follows has a lifting:

0—— B &/

L]

D" — B.#

This ensures that the map f'| 4 is an epimorphism. Conversely, suppose that f|4 is an
epimorphism. By Lemma 104, there exists an isomorphism G: B,«/’ — B,</ such
that FG is in the image of the functor B,. If we denote by g the map from A’ to A
which underlies G, then g is an isomorphism by Lemma 105. Then fg is a fibration
of Q,% —algebras and so FG = B,(fg) is a fibration. Since G is an isomorphism, F
is a fibration. a

Lemma 104 Let F: B« — B,% be a morphism of ¢ —coalgebras such that the
underlying morphism f: A — B is surjective. Then there exists an Q,¢ —algebra o/’
and an isomorphism of ¢ —coalgebras G: B,«/' — B,</ such that FG is a strict
morphism, that is, in the image of the functor B, .

Proof We build an isomorphism of graded %#?—coalgebras G: ¥ o0 A — ¢ o A
such that F'G is a strict morphism, that is, of the form Id4 o 4. To that purpose we
define inductively maps g: F,r,ad% oA — A such that g,_ is the restriction of g, to
F™ % o A and such that we have the equality between maps from F;% o A to A

(1) fen+ f(dogy_1)(Aold) = fra,

where 74 = e old is the projection of ¥ oA on A. First, let us choose g9 =1d 4. Then
suppose that we have built g, satisfying (1). The map f: A — B and the injection of
Fi4% 0 A into F;’fl‘f o A give us the square

homgned (F24, % 0 A, A) —— homgmod (FF, % 0 A, B)

| |

homgMod (Frrlad% [¢] .A, .A) —_— homgMod (Frrldd% o ./4, B)
The following map is surjective:
homgpod (F,r;fl% oA, A

— homguod (F 6 0 A, A) Xpom . (prato 4 ) hOMgnod (Fyt € 0 A, B).
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So there exists an element of homg,\,k,d(F;‘j‘Li (G oA, A) whose image under this map is
the pair (gn, f7m4— fur1(Ido gn)(A old)). We can choose this element to be g;41.
Thus, let g be the map from ¢ oA to .4 whose restriction to F,ﬁad%oA is g for any n.
Let G be the map of graded %2 —coalgebras which extends g. By Lemma 105, the
map G is an isomorphism. Let us transfer the coderivation of B,</ to ¢ o A along the
isomorphism G. This gives us a new £2,% —algebra structure on the chain complex A,
which we denote by .«’. Finally, the morphism FG is the image under the functor B,

of the morphism of 2,% —algebras fgo: &/ — %' O

Lemma 105 Let F: 9 = ¥ o0V — & = ¥ o)W be a morphism of quasicofree € —
coalgebras. Then F is an isomorphism if and only if its underlying map f:V — W is
an isomorphism.

Proof Suppose first that F' is an isomorphism with inverse G. Let us denote by
g: W — V the map underlying G. Then the map g is inverse to f and so f is
an isomorphism. Conversely, suppose that f is an isomorphism. A straightforward
induction shows that F is both injective and surjective. a

7.4 Mapping spaces and deformation theory

Proposition 106 For any cofibrant ¢ —coalgebra & and any fibrant ¢ —coalgebra &,
the simplicial set HOM(2, £) is a Kan complex and is a model for the mapping space
Map(C, D) expected by the 1—model structure.

Proof Any fibrant ¥ —coalgebra & is isomorphic to the image under B, of an 2,% -
algebra 7. So we have

HOM(2, &) ~HOM(Z2, B,«/) ~HOM(R2,2, o7) ~Map(2,2, o/ ) ~Map(2, B,<7).
Further, we know from Proposition 76 that HOM(2, 2, &) is a Kan complex. a
Corollary 107 Let o: € — £ be an operadic twisting morphism. Let us endow the
category of € —coalgebras with the o —model structure. For any cofibrant ¢ —coalgebra

2 and any fibrant ¢ —coalgebra &, the simplicial set HOM(2, &) is a Kan complex
and is a model for the mapping space Map(2, &).

Proof It suffices to notice that fibrations and acyclic fibrations in the o —model structure
are in particular fibrations and acyclic fibrations in the (—model structure. Then we can
conclude by Proposition 106. a
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Let f: 92 — B,</ be a morphism of ¢ —coalgebras. We know from Proposition 48
that it is a dg atom of the cocommutative coalgebra {2, B,«/}. Consider the Hinich
coalgebra {7, B,.</ ¢ that appears from the decomposition described in Theorem 78.

Proposition 108 The deformation problem induced by {7, B,/ | ¢ is equivalent to
the deformation problem

R € Artin-alg — (homrgQ, @¢—<og(R® 2 ® €, R® 2y ® B,.))yeN-
Proof This is a direct consequence of Proposition 70 and Theorem 79. a

7.5 Algebras of the operad ,%

We have shown above that the adjunction €2, 4 B, is a Quillen equivalence. Moreover,
in Proposition 99, we have shown that fibrant ¥—coalgebras are €2,% —algebras. So
switching from the model category of €2,% —algebras to the model category of € —
coalgebras amounts to add new morphisms between any two $2,% —algebras. The
weak equivalences and the fibrations of €2,% —algebras remain weak equivalences and
fibrations, respectively, under this embedding but, in the category of ¥ —coalgebras,
any monomorphism is a cofibration. In particular, any object is cofibrant. Subsequently,
% —coalgebras provide a convenient framework to study the homotopy theory of €2,% -
algebras. For instance, the following proposition provides a tool to decide whether or
not two $2,%—algebras are equivalent.

Proposition 109 Let </ and # be two 2, % —algebras. There exists a chain of weak
equivalences of $2,% —algebras between </ and %

A =y "> < >y <Ay =B

if and only if there exists a weak equivalence of ¢ —coalgebras between B,.«/ and B,%.

Proof Suppose that there exists a chain of weak equivalences from </ to %. Then
there exists a chain of weak equivalences between B,.«/ and B,%. Moreover, the
objects of this chain are fibrant and cofibrant. So any morphism of this chain has a
homotopical inverse. So there exists a weak equivalence from B, </ to B, %. Conversely,
consider a weak equivalence F from B, </ to B,%. Then the following chain of weak
equivalences of 2,% —algebras links </ to %:

o <= QB 2, 0 B# =~ B O
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7.6 Koszul morphisms

In this subsection, we study the operadic twisting morphisms «: ¥ — £ such that
the «—model structure on the category of ¥ —coalgebras coincides with the universal
t—model structure that we described above. Let o: 4 — & be an operadic twisting
morphism. We denote by ¢: Q,(%) — & the morphism of operads induced by «.

Theorem 110 The following assertions are equivalent:

(1) The adjunction
Qu(¢)—alg (L_:k> P-alg
is a Quillen equivalence. ’
(2) The morphism of operads ¢: 2,(¢) — 2 is a quasi-isomorphism.

(3) The a—model structure coincides with the 1—model structure and Qq = By is a
Quillen equivalence.

(4) For any & —algebra </, the map & oy € oy &/ — & is a quasi-isomorphism, and
for any ¢ —coalgebra 2, the morphism 9 — € oy & o4 9 is a t—equivalence (it
is the case if, for instance, it is a filtered quasi-isomorphism).

(5) The morphisms of S—modules 2,(€¢) o, € o, 2,(€¢) > & oy € oy & and
P oqC oy P — & are quasi-isomorphisms.

Lemma 111 Let f: V — V' be a morphism of dg S—modules. Suppose that, for any
chain complex W (that is, an S—module concentrated in arity zero), the morphism
VoW — V' oW is a quasi-isomorphism. Then f is a quasi-isomorphism.

Proof By the operadic Kiinneth formula, for any graded K—module W, the map
H(V)oW — H(V') oW is an isomorphism. So, for any integer n, the map

Ju: HY)() ®s, K" — H(OV)(n) ®s, K"
is an isomorphism. Let (e;)7_, be a basis of K". The map
PEHWV)) = p®(e1® - ®en) > fu(p) @ (e1® - ®en) > fu(p) € HV')(n)

is an isomorphism. So, the morphism H (V) — H (V') is an isomorphism. a

Algebraic & Geometric Topology, Volume 19 (2019)



1598 Brice Le Grignou

Proof of Theorem 110 ¢ Let us first prove the equivalence between (1) and (2).
Suppose (2). Let <7 be a cofibrant €2,% —algebra and let & be a &?—algebra. Consider
amap f: ¢(o/) — % and its adjoint map g: &/ — ¢*(%#). The following diagram of
2, % —algebras is commutative:

QLBL% — ¢*¢!QLBL4%

| l .,

g P p1 ¢+ %

g

The left vertical map is a quasi-isomorphism. Since a left Quillen functor preserves weak
equivalences between cofibrant objects and since ¢* preserves quasi-isomorphisms,
the right vertical map is a quasi-isomorphism. Further, ¢ €2, B,.«7 is actually Qq B, <.
Since the morphism ¢ is a quasi-isomorphism, the map Q,B, &/ — ¢*Qy B,/ is a
filtered quasi-isomorphism with respect to the filtrations

FnQLBL%:@QM%(k) ®Sn ( Z FlrladB[%®"'®FerdB[%),
k it =n

Fu¢p*Qq B/ = P Pk) ®s, ( Y FMBa®-® F;/gdgtﬂ).
k i1+ tig=n

Indeed, the resulting map on the graded object G(2, B, «) = Q,% o G(B, &) is
actually ¢ oIdg(p,.). So the map Q,B,&/ — ¢*Qq B,/ is a quasi-isomorphism.
So, by the 2-out-of-3 rule, the map &/ — ¢*¢p«/ is a quasi-isomorphism. Hence, f
is a quasi-isomorphism if and only if ¢*(f) is a quasi-isomorphism, if and only if
g is a quasi-isomorphism. So assertion (1) is true. Conversely, suppose (1). Then,
for any chain complex (considered as a ¥ —coalgebra) V, the map 2,V — Q4V is
a quasi-isomorphism. Since the coaction of ¢ on V is trivial, we have canonical
isomorphisms of chain complexes

QY =Qu€EoV, QgV=Pol.
We can thus apply Lemma 111 which shows that (2) is true.

¢ Suppose (1) and let us show (3). By Proposition 96, the & —model structure coincides
with the (—model structure. Moreover, since the adjunctions ¢, 4 ¢* and 2, 4 B,
are both Quillen equivalences, the adjunction ¢, 4 B,¢™, which is Qg 4 By, is a
Quillen equivalence.
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e Suppose (3) and let us show (4). Since Q4 = By is a Quillen equivalence,
QuByo/ — o is a quasi-isomorphism for any #—algebra & and ¥ — ByQy 2
is an o—weak equivalence for any ¥ —coalgebra 2. Since the a—model structure
coincides with the (—model structure, 2 — B, 2,2 is a t-—weak equivalence. So (4)
is true.

e Suppose (4) and let us show (5). For any £?-algebra <7, the morphism 2y By &/ —
&/ is a quasi-isomorphism. In particular, this is true for any free &?-algebras. So, for
any chain complex V), the map Qg By (P o0V) — P oV is a quasi-isomorphism. This
map is actually the morphism of chain complexes

(PoyC oy P)oV— Po).

Using Lemma 111, we conclude that the map Poy €0y & — &2 is a quasi-isomorphism.
Moreover, for any £?—algebra <7, the following diagram commutes:

Qu(@)o,C o, —— P oy € oq A
\EQ{

Since the composite map and the vertical map are quasi-isomorphisms (because 2, - B,
and Q4 - B, are Quillen equivalences), by the 2-out-of-3 rule the horizontal map is
a quasi-isomorphism. Applying this to free &?—algebras and using Lemma 111, we
conclude that the map 2,(%) o, € 0 & — P 04 € 0o & is a quasi-isomorphism.
Further, for any 4 —coalgebra & the following diagram commutes:

P ——C0,2,(€)o, 2

|

Coq PogD
By the 2-out-of-3 rule, the vertical map is a t—weak equivalence. So the map
Qu(6)o, €0, Qu(€)o, D — Qu(€) o, € oy Poy P

is a quasi-isomorphism. Applying this for ¥ —coalgebras which are just chain complexes
and using Lemma 111, we obtain that the map 2,,(%)0,% 0, 2,(%) = QLu(%€)0,C oy P
is a quasi-isomorphism.
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e Suppose (5) and let us show (2). Using the previous point in the case & = Q,%
gives us the fact that the map of dg S—modules

Qu(€) 0,6 0, Qu(€) > Qu(%)

is an aritywise quasi-isomorphism. Then the following square of S—modules is com-
mutative:
Qu(€) 0, €0, Ly () —— Qu(¥)

| |

PogCoqg P ——m— &

Since the left vertical map and the horizontal maps are quasi-isomorphisms, the right
vertical map is also a quasi-isomorphism. a

Definition 112 (Koszul morphisms) An operadic twisting morphism a: ¢ — &
satisfying the properties of Theorem 110 is called a Koszul morphism.

In the next section, we will explore Koszul duality, which is a method to produce
Koszul morphisms from a presentation of an operad.

8 Examples

The purpose of this section is to apply the general framework described in the previous
sections to the case of common nonaugmented operads like the operads #4s and uCom,
whose algebras are the unital associative algebras and the unital commutative algebras,
respectively. So, for any of these operads &2, one looks after a curved conilpotent
cooperad ¥ together with an operadic twisting morphism « from % to &2 such that
the induced morphism of operads from Q,% to & is a quasi-isomorphism; that is,
« is a Koszul morphism. One can use the universal twisting morphism B, — Z.
However, the bar construction is always very big. Instead, one usually tries to produce
a subcooperad of B.%? whose cobar construction will be a resolution of £2. The
Koszul duality theory is a way to produce such a subcooperad when the operad &2
has a quadratic presentation or a quadratic-linear presentation. This construction has
been extended to quadratic-linear-constant presentations by Hirsh and Milles in [17],
generalizing to operads the curved Koszul duality of algebras developed by Polishchuk
and Positselski [22].
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8.1 Koszul duality

Koszul duality is a way to build a cooperad i together with a canonical operadic
twisting morphism from £ to & out of an operad & which has a “nice enough”
presentation & = T (V)/(R). Here, we present the construction of Hirsh and Milles
in [17].

Let & be a graded operad equipped with a presentation &2 = T (V)/(R), where V
is a graded S—module and where (R) is the operadic ideal generated by a subgraded
S-module R of T=2(V) such that

RNZ V) ={0},
(R)NT=2(V) = R.

We denote by gR the projection of R C T=2(V) onto T?2(V) along Z @ V. Moreover,
let ¢ & be the operad

q2 :=TWV)/(@R).
This is a quadratic operad. The condition R N (Z & V) = {0} induces a function
¢ = (¢o0.41): qR>L®V.

Definition 113 (curved cooperad Koszul dual of an operad [17, Section 4.1]) The
Koszul dual cooperad £ of & associated to the presentation 22 = T (V)/(R) is the
following curved conilpotent cooperad. The underlying graded cooperad is the final
graded subcooperad of T¢(sV) such that the composition

P — TC(sV) —» T?(sV)/s*qR
is zero. It is equipped with the unique coderivation which extends the map
P s2qR — sV, sx@sy > (—D)¥lsg (x ® y).
Its curvature is the degree —2 map
0: 7' —> s qR > K, sx®sy> (—=1)¥lsgo(x ® »).

Moreover, the map
K: P—>»5sV >V P,

is an operadic twisting morphism which induces both a morphism of operads €2, 21 —
& and a morphism of curved conilpotent cooperads &1 — B, .
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Remark 114 The coherence of the above definition is proven in [17, Section 4.1].

Definition 115 (Koszul operad) The operad &2 (together with the presentation & =
T(V)/(R)) is said to be Koszul if the twisting morphism x: £ — £ is Koszul, that
is, if the map Q" — £ is a quasi-isomorphism.

The following theorem is a powerful tool to show that an operad is Koszul:

Theorem 116 [17, Theorem 4.3.1] Suppose that the canonical morphism
qPoxqP —1

is a quasi-isomorphism. Then & is Koszul.

8.2 Coalgebras over a Koszul dual

In this subsection, we describe the category of Z?i —coalgebras, where &1 is the Koszul
dual of the “quadratic-linear-homogeneous operad” & defined above. We will need
the following definition:

Definition 117 (precoradical filtration) Let WV be a graded S—module and let C be
a graded K-module equipped with a map A(D: ¢ — WoC. We define (F, ,gde)neN
to be the following (nonnecessarily exhaustive) filtration on C, called the precoradical
filtration:

FP™(C) = ker(AD),

RO =@ (voe Y Wk ss, (e s ) i 0z,

i tip =n—1
k=1

Lemma 118 Consider a cofree graded conilpotent cooperad T €(W). The category of
graded coalgebras over T (W) is equivalent to the category of graded K -modules C
equipped with a map AV ¢ —Wo( such that the precoradical filtration (F2™C)nen
is exhaustive. Moreover, under this equivalence, the coradical filtration coincides with
the precoradical filtration.

Proof Let C be a graded K—module with a map A"): ¢ — W o C such that the
precoradical filtration (F,I,)radC)neN is exhaustive. Then let us define A¢: C— T (W)oC
by induction as follows:
{Ac(x) =1®x if x e F™™c,
Ac(x):=1®x + (Ido Ac)AD(x) if x e FF™c.
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This defines a structure of T ¢ (W)—coalgebra on C. Conversely, let (C, A) be a graded
T¢(W)—coalgebra. We obtain a map A!): C — W o C by composing A with the
projection of T¢(W) onto W. Then the construction we just described recovers A
from A a

Theorem 119 Suppose that the characteristic of the field K is zero (this assumption
is not necessary in the nonsymmetric context). The category of &' —coalgebras is
equivalent to the category of graded T €(s))—coalgebras (that is graded K-modules C
equipped with a map AM: ¢ — sVoC such that the precoradical filtration (F; ,5’radC)neN
is exhaustive) such that the composite map

Ap=(1do’AD)AD

T2(sV)oC — (T?(sV)/s*qR) oC
is zero, together with a degree —1 map d¢: C — C such that

d2=(001d)Ay, AVde = (diold)A, + (Ido’ de) AD.

Proof Let C be a graded T ¢(s))—coalgebra together with a degree —1 map d¢: C —
C satisfying the conditions of Theorem 119. For any x € C, let C(x) be a finite-
dimensional sub-T ¢(s))—coalgebra of C which contains x. By Lemma 120, the map
Ac(x): C(x) — T(sV) o C(x) factorizes through a unique map C(x) — i oC(x).
Hence, C has a structure of graded (#1)2d_coalgebra. Moreover, we can prove by
induction on the coradical filtration of C that d. is a coderivation. m|

Lemma 120 Let C(x) be the graded T€(sV)-coalgebra defined in the proof of
Theorem 119. Then C(x) is a graded &' —coalgebra.

Proof Remember that C(x) is a finite-dimensional subgraded T ¢ (sV)—coalgebra of C.
Let (¢;)7L, be a basis of C(x). Then, for any i € {1,...,m}, let p;o € T (sV)(0),
and for any integer K > 1 and for any nondecreasing function s from {1,...,k} to

11,....m}, let pj s € T (sV)(k) be such that

o0
Ale)) =1®ei+ pio+ Y > Piks ®s; (€51) @+ ® eg(i).
k=0 s
For any nondecreasing function s from {1,...,k} to {l,...,m} and for any o € S,
let €(s, o) be the element of Z /27 such that the structural action of o on C®¥ sends
es(1) ® - ® eg(k) to (—1)E(s"’)esa—1(1) ® - ® ego—1(k)- Further, let Inv(s) be the
subgroup of Sy of permutations ¢ such that s = so~!. Then we can choose Dik,s
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such that p7, == (—1)€(s’a)p,-,k,s for any o € Inv(s). Indeed, if it is not the case, we
can replace p; i ¢ by

1 _1\€(s,0) .0
#Inv(s) Z =D Pik,s:

o€lnv(s)
Let 2 be the subgraded S—module of T (s))) generated by 1 and the elements p; x .
Since (A olId)A(e;) = (Ido A)A(e;) for any i, there exists an element of g; ;. €
(2 0 2)(k) such that
A(Pik.s) ®sy (€5(1) @+ ® €s(k)) = Gi ks Bsy (€5(1) @+ ® €5(k))-

Since p?, == (—l)e(s"’)p,-,k,s for any o € Inv(s),

1
A(pi,k’s)zm Z (—l)E(s,U)qi“’k’s.

o€lnv(s)

So, A(pik,s) € Z02. Hence, 7 is a subgraded cooperad of T¢(sV). Moreover, for
any i, (m oId)A(e;) = 0, where 7 is the projection of T (sV) onto T2(sV)/s%qR.
So, m(pjk,s) = 0 for any 3—tuple (i,k,s) and 7(p;) =0 for any i; so w|y = 0.
Hence, 2 C 2. o

8.3 Unital associative algebras up to homotopy

Notation Let V and W be two N-modules, and n, p, iy, ..., ip natural integers
such that iy +---+ i, = n. We will usually denote the image of an element

X@V1®--®yp €V(p) @W(i1) @ @WC(ip)
under the inclusion
V(p) @W(i) ® - @ W(ip) = (V ons W)(n)
by X Qus (V1 ®---® yp).
8.3.1 A presentation of the operad u4s Let uA4s be the nonsymmetric operad
defined by the presentation u4s:=T(K-u®K-£)/(R), where u is an arity 2 element

and £ is an arity 0 element. The nonsymmetric module R CZ@® T2(K - u @ K - £) is
made up of the relations

K®ns (§®1)—1,
M®n3(1®$)_1’
M®ns(ﬂ®1)_ﬂ®ns(l®“)'
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Remark 121 Here, the symbol ns stands for the composition product of nonsymmetric
modules.

Given this presentation, the Koszul dual ©#4s' is a nonsymmetric curved conilpotent co-
operad whose underlying graded cooperad is the final subcooperad of T¢(K-su @ K-£)
such that

s N T2(K - sp0) = K- (s ®ns (s ® 1) — 5t @ns (1 @ 512)).
The coderivation of #4s' is zero and the curvature is given by
O (s ®ns (s ® 1)) = 0(sp ®ns (1 ®58)) = —1.

Remark 122 The Koszul dual curved cooperad u4s' of the operad u4s is described
in detail in [17].

8.3.2 Coalgebras over uAs!

Proposition 123 The endofunctor of the category of graded K -modules V +— sV
induces an equivalence between the category of uAs' —coalgebras and the category of
noncounital curved conilpotent coassociative coalgebras.

Proof The proof relies on the same arguments as the proof of Proposition 129, which
will be detailed. |

Remark 124 The map V—> sV also induces an equivalence between graded (u.4s')&44—
coalgebras and graded noncounital conilpotent coassociative coalgebras ¢ equipped
with a degree —2 map ¥ — K. Moreover, this equivalence sends a cofree graded
(u4s")2d _coalgebra u4s' oV to the cofree conilpotent coalgebra T (V @K - v), where
|v| = 2 with the degree —2 map

TVeK-v) »K-v—>K, v 1.

Notation We denote the category of curved conilpotent coassociative coalgebras
by cCog. Moreover, we denote the operad Q,uds' by Uo7 .

8.3.3 The bar—cobar adjunction and # .« —algebras On the one hand, there exists
an adjunction relating u4s—algebras to uAs'—coalgebras which is induced by the
operadic twisting morphism «: u4s! — uA4s. On the other hand, the category of
uAs'—coalgebras is equivalent to the category cCog of curved conilpotent coalgebras.
Thus, we obtain a bar—cobar adjunction between unital associative algebras and curved
conilpotent coalgebras which is the restriction to arity 1 of the operadic bar—cobar
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adjunction described in Section 4.1 (with the exception that we can consider noncounital
coalgebras instead of coaugmented counital coalgebras). For this reason, we denote
this adjunction using the same symbols as in the operadic context, that is, €, - B..
So we have

Q¢ =T %), B :=T(so ®K-v)

for any curved conilpotent coalgebra % and for any unital algebra 7. The derivation
of Q,(%) and the coderivation of B.(&) are defined as in Section 4.1.

The adjunction €2, - B, is part of a larger picture,

Q, (]
cCog T— udpo—alg —— ufs—alg,
¢*

where the adjunction ¢y - ¢* is induced by the morphism of operads ¢: u.aoo — uAs
and where Q, = ¢, and B, = B,¢*. We know that a u.o/,—algebra o/ = (A, y)
is the data of a chain complex .4 together with a coderivation on the cofree graded
(14s")g_coalgebra uds' o A, so that it becomes a u4s—coalgebra. Equivalently, it
is the data of a chain complex together with a coderivation on the cofree conilpotent
coassociative coalgebra T (s A@K-v), so that it becomes a curved conilpotent coalgebra
whose curvature 6 is given by

TeA®K-v) »K-v—>K, ve 1.
By Lemma 27, this is equivalent to a degree —1 map
v TsA®K-v) — A,
such that, for any x1,--- ,x, € (sADK-v),
Y, Rty (G @@y (i @ © X)) ®- - xn)

0<i<j=n
_{ 0 if n#2,

0(x1)x, —0(x2)xy if n=2.
In particular, we have the following:

e A degree zero product
Y2 AQA— A.

e A degree 1 map
Y3 AQAR® A — A,

whose boundary is the associator of y,, that is,

(y3) = 12(Id® y2) — y2(y2 ®14d).
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e Anelement 1, defined by y(v) = s1,.

e Maps y;;: A— Aand y;,: A— A of degree 1 which make 1, a unit up to
homotopy, that is,

(y11) = y2(ly ®1d) —1d,
(y1,) =r(ld® 1) —1d.

8.3.4 The Koszul property and the infinity category of u.o7,,—algebras
Proposition 125 [17, Theorem 6.1.8] The operad uAs is Koszul.

Remark 126 The model structure on curved conilpotent coalgebras that we get by
transfer along the adjunction €, 4 B, is the model structure that Positselski described
in [23].

There are several ways to describe the infinity-category of uA4s—algebras:

e One can take the Dwyer—Kan simplicial localization of the category of uA4s—
algebras with respect to quasi-isomorphisms as described in [10; 9].

¢ One can take the simplicial category whose objects are cofibrant-fibrant #4s—
algebras and whose spaces of morphisms are

Map(/, B)y := HOM ,a,—oig (7, B).

¢ One can also take the simplicial category whose objects are all u4s—algebras
and whose spaces of morphisms are

Map(eZ, ) := HOM yg5—a1g(Q Be o/, ) ~ HOMcog (Beo , BcB).
8.4 Unital commutative algebras up to homotopy

In this section, we assume that the characteristic of the base field K is zero.

8.4.1 A presentation of the operad uCom Let uCom be the operad defined by the
presentation uCom :=T(K-u®K-£)/(R), where p is an arity 2 element such that
u12 = 4 and £ is an arity 0 element. The S—module R CZ® T2(K-pu @K -£) is
generated by the elements

s, (p®1)—u®s, 1®u), pnds,ER1)—1.
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Remark 127 ¢ Since the action of S, on u is trivial, we have

1®s, (1®u) = (U®s, (L 1)13.

e Theelement u®s, (L®1)—u®s, (1® ) is a generator of the S3—module R(3).
However, it is not a generator of R(3) as a K—module; one needs to add the
element ;1 ®s, (1 ® 1) — (1 ®s, (1 ® 1))

Given this presentation, the Koszul dual uCom' is a curved conilpotent cooperad whose
underlying graded cooperad is the final subcooperad of T¢(K -su @ K -£) such that
us'(3) N T2(K - 50)(3) = K[S3]- (st @, (st ® 1) — s ®s, (1 ® s)).

The coderivation of uCom' is zero and the curvature is given by

B(sp ®s, (s5 ® 1)) = 1.
Notation We denote by uComq, the operad 2, uCom'.

8.4.2 Coalgebras over uCom! We will show that the category of uComi—coalgebras
is equivalent to the category of curved conilpotent Lie coalgebras.

Definition 128 (curved Lie coalgebra) A curved Lie coalgebra € = (C,§,d, 0) is a
graded K-module C equipped with an antisymmetric map §: C — C ® C such that
(®Id)s=1d®6)5+ (Id® 7)(§ ® Id)4,

where 7 is the exchange map 7(x ® y) = (—1)*!I1y @ x. It is also equipped with a
degree —1 map d: C — C which is a coderivation, that is,

0d =(d®Id+1d® d)d,
and with a degree —2 map 0: C — K which is a curvature, that is,
d*=(0QId—IdQ 6)3.

A curved Lie coalgebra C is said to be conilpotent if for any x € C, there exists an
integer n such that the element

(d®---®6®---®Id)---8(x)

is zero whenever & appears n times. We denote by clLieCog the category of curved
conilpotent Lie coalgebras.
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Proposition 129 The endofunctor of the category of graded K—modules V +— sV
induces an equivalence between the category of uCom! —coalgebras and the category
cLieCog of curved conilpotent Lie coalgebras.

Lemma 130 The category of uComi —coalgebras is equivalent to the category whose
objects are graded K —modules C equipped with three maps:

e Adegree —1 map §: C — C ® C which is symmetric is the sense that 1§ = &',
which satisfy the equation

(6 ®Id)s(x) + ((6 ® 1d)5(x) Y + ((6 ® 1d)5(x) 1Y =0,
and such that for any x € C, there exists an integer n such that the element
M®-®§®---®Id)---(Id®§)d(x)

is zero whenever § appears at least n times.

e Adegree —1 map 0: C — K.

e Adegree —1 map d: C—C suchthat 6d =0, such that §d = —(d RTd+1d®d )5
and such that d*> = —(0 @ Id+1d ® 0)§ = —2(0 @ Id)§.

The morphisms of this category are the morphisms of graded K-modules which
commute with these structure maps.

Proof We apply Theorem 119. A graded uComi—coalgebra is a graded K-module C
equipped with maps

§:C— (K-sp) ®s, (CRC),

0: C—K-sé,

d:c—c,
such that the corresponding precoradical filtration is exhaustive, such that
) (Idgy, o' §)8'(C) C 5*R(3) ®s, C®°
and such that

§'d = (1do d")§,

0'd" =0,

d"? = (0, 0pmi 01d)(1d ' §')8'.
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These maps induce new maps

§: ¢ (K-sp) ®s, (C®C) > CRC,
0: ¢ L K-s8 > K,
d=d":c—c¢,
where the degree —1 map (K- su) ®s, (C®C) - C ®C sends sy ®s, (x ® y) to
%(x ® y+ (—=1)*!¥ly @ x). Then, for any x € C,
§'(x) = sp ®s, 8§(x).

We know from [19, Section 7.6.3] that the K—module T (s/¢)(3) has three generators
vy, v and vy, which are obtained from the composite sp ®s, (s ® 1) by applying
the permutations Id € S3, (2, 3) and (1, 3), respectively. Moreover, s2R(3) is spanned
by vi — vy and vp — vyyr. Further, K - (vi + vip + vpp) is a complementary sub-K[S3]-
module of s2R(3) in T (su)(3). Let us denote by  the projection of T (su)(3) onto
K- (vt + vip + vip) along s?R(3). Since the action of the group S, on su is trivial,
we have, for any x € C,

(Idgy o' 8')8' (x) = 211 ®s, ((8 ® Id)§(x)).
Then
(7 oId)(Idgy, o' 88 (x) = %(UI + v+ vm) ®s; ((6 ® 1d)5(x)).
The above condition (2) is equivalent to the fact that (v + vy + vi) ®s, ((§ ® 1d)8(x))
is zero, which is equivalent to
S @Id)8(x) + ( @ 1d)8(x)?? + ((6 @ 1d)§(x)) 1 = 0.
The other conditions are equivalent to
§d = —(d ®1d+1d® d)8,
0d =0,
d?>=—(0®Id+1dQ 6)s.

Conversely, from the maps &, 6 and d, one can reconstruct §’, 8’ and d’ in the obvious
way. |

Proof of Proposition 129 We show that the category described in Lemma 130 is
equivalent to the category of curved conilpotent Lie coalgebras. Let € = (C, §, 0, d) be
a curved conilpotent Lie coalgebra. Then we can define the maps (8",0’,d") on s~1C,
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where § is the composite
sTIC2KsT'®C—>K-sT'®K-s'@Cc®C~K- s '®C®K- s~ ®C,
sy s Tes 1 @68(x),

and where 6’(s7'x) = 6(x) and d’(s7!x) = —s~!dx for any x € C. It is straight-
forward to prove that these maps satisfy the conditions of Lemma 130. Conversely, from
a graded K—-module D and maps (8, 0, d) as in Lemma 130, one can build a structure
of curved conilpotent Lie coalgebra (§’, 6, d’) on sD, where § is the composite

SD>K-s@D—>K-s K- sDID>K-sDRK-5s Q D,
SRX > —s®s5 ®§(x),

and where 6’(sx) =60(x) and d’(sx) = —sdx for any x € D. It is again straightforward
to prove that these maps define actually a structure of curved conilpotent Lie coalgebra.
Moreover, these two constructions are inverse to one another. O

8.4.3 The bar—cobar adjunction If we compose the bar—cobar adjunction between
uCom—algebras and uCom'—coalgebras with the equivalence between uComi—coalgebras
and curved conilpotent Lie coalgebras, then we obtain an adjunction Q¢ - By between
unital commutative algebras and curved conilpotent Lie coalgebras, which is as follows.

Definition 131 (curved Lie bar construction) Let &/ = (A, Y./, 1) be a unital com-
mutative algebra. Its curved Lie bar construction By (/) is the following curved
conilpotent Lie coalgebra. The underlying graded Lie coalgebra of By (<) is

Br(A) := Lie€ o (sADK -v),

where Lie¢ denotes the Lie cooperad which is the linear dual of the Lie operad and

where |v| = 2. The coderivation of By (&) extends the map
sx Asy > (=)
Lie° (SADKV) > SAASADsSADKY — s A, v s,

SX — —sdx.

sya(x ® y),

The curvature is the map

Lie(SADK-v) »>K-v—>K, v~ 1.

Definition 132 (unital commutative cobar construction) Let ¥ = (C, 8, dc, 6) be a
curved Lie coalgebra. Its unital commutative cobar construction Q¢ (%) is the free
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unital commutative algebra

QcC:=S(s""0) == PG™'0)®" /S,
neN
whose coderivation extends the map

sTle—» Si7e), sTlx e 0(x)1 —s Vdex — Z(—l)lxlls_lxl ®s, s x2,
where > x1 A x; = 68(x).
Definition 133 (twisting morphisms) A twisting morphism from a curved conilpotent

Lie coalgebra ¢ to a unital commutative algebra <7 is a degree —1 map «: C — A
such that

0o+ Yo @)y = 0(—)1,.

We denote by Twy (¢, <) the set of twisting morphisms from ¢ to <.

Proposition 134 We have functorial isomorphisms
homuCom—alg(QC%7 M) x~ TWL (657 JZ{) =~ homcLieCog (cg, BL M)

for any unital commutative algebra </ and any curved conilpotent Lie coalgebra €.
Proof The proof uses the same arguments as the proof of Proposition 63. a
The adjunction Q¢ - By, is part of a larger picture,

Q ¥
cLieCog <:L> uComeo—alg Z—— uCom-alg,
B v

L

where the adjunction v, ¥ * is induced by the morphism of operads v: uComoo —>
uCom and where Q¢ = Y1, and By = B,y*. We know that a uComeo—algebra
o = (A, y) is the data of a chain complex A together with a degree —1 map

y: Lie°(SADK-v) > s A

such that the coderivation of the curved Lie coalgebra Lie€(s A®K-v) which extends y
squares to (0 ® Id)d, where 6 is given by

Lie“(SADK-v) »>K-v—>K, ve1.

In particular, we have the following:
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A degree zero symmetric product
Vi AQA— A.

e A degree 1 map
i AQARA— A

whose boundary is the associator of y,, that is,

Ay = 2(Id® y2) — y2(y2 ®1d).

e A degree 1 map
4RI ARARA— A

whose boundary is

I = Y2(1d® y2) — 2 (Id ® y2) (r ® 1d).
e Anelement 1, defined by y(v) = s1,.
e A degree 1 map y,: A— A which makes 1, a unit up to homotopy:

I(yu) = r2(ly ®1d) —1d.
8.4.4 The Koszul property and the infinity category of u(Com,—algebras
Theorem 135 The operad uCom is Koszul.

Proof We know from [17] that quCom! ~ Comi o (Z® K - s&). So, we have
quCom o quCom' ~ K -& & Como Com' o (ZH K - s§).

We can filter guComo, quCom! by the number of £ and s& appearing in the trees. Then
the induced graded complex have the form

G(quCom o, quCom’) ~K-& & (Com o, Com') o (Z B K - 5&).

We already know by [19, Theorems 7.4.6 and 13.1.7] that the canonical morphism
Com o, Com! — T is a weak equivalence. Then the map G(quCom o, quCom') — T
may be decomposed as follows:

G(quComoy, quCom') ~K-£ @ (Como, Com')o (ZDK -5§) > THK-EDK 56 > T.

All the maps of this composition are quasi-isomorphisms. So, by Theorem 88, the
canonical map quCom o, quCom! — T is a quasi-isomorphism. We conclude by
Theorem 116. a
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There are several ways to describe the infinity category of uCom—algebras:

e One can take the Dwyer—Kan simplicial localization of the category of uCom—
algebras with respect to quasi-isomorphisms as described in [10; 9].

¢ One can take the simplicial category whose objects are cofibrant-fibrant uCom—
algebras and whose spaces of morphisms are

Map(+/', B)n := HOM ycom—alg (/' , ).

¢ One can also take the simplicial category whose objects are all uCom—algebras
and whose spaces of morphisms are

Map(ng/, @) = HOMuCﬂm—alg(QCBLM» %) = HOMcLieCog(BLMa BL%)

Appendix

The purpose of this appendix is to describe the category of dg counital cocommutative
coalgebras over an algebraically closed field of characteristic zero in the vein of [7]. In
the sequel, dg counital cocommutative coalgebras are simply called cocommutative
coalgebras. We suppose that the base field K is algebraically closed field and of
characteristic zero.

Remark 136 The characteristic zero assumption is needed in [7, Theorem 2.9].

We know that the linear dual of a cocommutative coalgebra is a commutative alge-
bra. Moreover, for any cocommutative coalgebra %, the subcoalgebras of ¢ are in
correspondence with the ideals of €™*.

Definition 137 (orthogonal ideals and subcoalgebras) Let 2 = (D, A, €) be a sub-
coalgebra of ¥. The orthogonal of 2 is the subchain complex
9t ={fes*| f(x)=0 forall x e D,} C ¢*,

which is an ideal of €™*. Let I be an ideal of the commutative algebra ¢*. The
orthogonal of I is the subchain complex I+ :={x €€ | f(x) =0 forall fel}C%,
which is a subcoalgebra of .

Definition 138 (pseudocompact algebras) A pseudocompact algebra is a dg unital
commutative algebra </ together with a set {/,},cy of ideals of finite codimension,
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which is stable under finite intersections and such that
o ~lim« /1.

A morphism of pseudocompacts algebras from («, {I,},cv) to (B,{Jy}vey) is a
morphism of algebras f: & — % which is continuous with respect to the induced
topologies, and is such that for any v € V, there exists a u € U such that the composite
morphism &/ — Z — A/ J, factors through & — <7 /I,,. A pseudocompact algebra <
is called local if its underlying graded algebra is local.

Proposition 139 The linear dual of a cocommutative coalgebra is a pseudocompact
algebra. Moreover, the linear dual functor is an antiequivalence between the category
of cocommutative coalgebras and the category of pseudocompact algebras.

Proof It is clear that linear duality induces an antiequivalence between finite-dimen-
sional cocommutative coalgebras and finite-dimensional commutative algebras. The
rest is a consequence of the following Proposition 140. a

Proposition 140 [11] Let € be a cocommutative coalgebra and let x be an element
of €. There exists a finite-dimensional subcoalgebra of ¢ which contains x. Then ¢
is the colimit of the filtered diagram of its finite-dimensional subcoalgebras.

Chuang, Lazarev and Mannan showed that any pseudocompact algebra can be decom-
posed into a product of local pseudocompact algebras.

Theorem 141 [7, Theorem 2.9] Any pseudocompact algebra <7 is isomorphic to
the product of local pseudocompact algebras </ ~ [[;c; <% . Moreover, a morphism
of products of local pseudocompact algebras f: [[;c; % — ]_[je J #j is the data
of a function ¢: J — I and a morphism fj: <y — %; for any j € J, where
i f = fimg() (here 7j and g ;) denote the projection of ]_[jeJ #j onto H; and
the projection of [[;.; <% onto <}y, respectively).

We show that local pseudocompact algebras are linear duals of conilpotent cocommuta-
tive coalgebras.

Definition 142 (irreducible coalgebras) A nonzero graded cocommutative coalgebra
is said to be irreducible if any two nonzero subcoalgebras have a nonzero intersection.

Proposition 143 A graded cocommutative coalgebra is irreducible if and only if its
dual algebra is local.
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Proof Let 4 = (C, A, ¢€) be a graded cocommutative coalgebra. We first suppose
that it is irreducible. Let M; and M, be two maximal ideals of the commutative
algebra ¢*. Since ¥ is irreducible, the subcoalgebras M IJ- and MZJ- have a nonzero
intersection. So M + M, C (MIJ- N MZJ-)l is a proper ideal. Since M; and M, are
maximal ideals, M| = M| + M, = M,. So €* is local. Conversely, suppose that
¢* is local. We denote by M its maximal ideal. By Lemma 144, M is the kernel of
an augmentation 4* — K. By the antiequivalence between pseudocompact algebras
and cocommutative coalgebras, we obtain a morphism of coalgebras K — ¥, that
is, an atom a of %. For any nonzero subcoalgebra 2 of %, the orthogonal 2+ is
contained in M. Thus, K-a = M+ C (21)1 = 2. So any nonzero subcoalgebra of
% contains a. Subsequently, ¢ is irreducible. a

Lemma 144 Let o/ be a graded local pseudocompact algebra. Then the maximal
ideal M of </ is the kernel of an augmentation <7 — K.

Proof Since o = (A, v, 1) is the inverse limit of finite-dimensional algebras and
since M is maximal, M is the kernel of a surjection &/ — %, where & = (B, y5, 1) is
a finite-dimensional commutative algebra. Since M is maximal, any nonzero element
of B is invertible. Since the elements in nonzero degrees are nilpotent, B is concentrated
in degree zero. So B is a finite-dimensional field extension of K. Finally, B ~ K
because K is an algebraically closed field. |

Corollary 145 A graded cocommutative coalgebra is irreducible if and only if it
contains a single atom.

Proof It is a direct consequence of Proposition 143. a

Proposition 146 Irreducible graded cocommutative coalgebras are conilpotent graded
cocommutative coalgebras.

Proof Let ¥ = (C, A,€) be an irreducible graded cocommutative coalgebra. Let
x be an element of C and let 2 = (D, A, €) be a finite-dimensional subcoalgebra
of ¢ which contains x. The commutative algebra 2* is local; its maximal ideal is
M :=D*. Then 94 is also local with maximal ideal M. By Nakayama’s lemma, M
is nilpotent. So, M is nilpotent and so Z is a conilpotent cocommutative coalgebra. O

Corollary 147 The antiequivalence between the category of pseudocompact algebras
and the category uCocom of cocommutative coalgebras restricts to an antiequivalence
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between the category of local pseudocompact algebras and the category uNilCocom of
conilpotent cocommutative coalgebras.

Proof It is a direct consequence of Propositions 143 and 146. a

Theorem 78 Let € =(C, A, €) be a dg cocommutative coalgebra over an algebraically
closed field of characteristic zero and let A be its set of graded atoms. There exists
a unique decomposition ¢ ~ € ,c 4 6a. Where €, is a subcoalgebra of ¢ which
contains a and which belongs to the category uNilCocom. Moreover, a morphism
of dg cocommutative coalgebras f: € ,c 4 62 — Dpcp Db is the data of a function
¢: A — B and of a morphism f,: €4 — Pp(q) forany a € A.

Proof The only point that needs to be cleared up is that, in the decomposition ¢ =
;< ¢, the set I is isomorphic to the set of graded atoms of €. A graded atom of ¢
is a morphism of graded cocommutative coalgebras from K to %, that is, a morphism of
graded pseudocompact algebras from [[;; € to K. So it is the choice of an element
of I. a
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