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Homotopical intersection theory
III: Multirelative intersection problems

JOHN R KLEIN

BRUCE WILLIAMS

We extend some results of Hatcher and Quinn (1974) beyond the metastable range.
We give a bordism-theoretic obstruction �.f / to deforming a map f W P !N be-
tween manifolds simultaneously off of a collection of pairwise disjoint submanifolds
Q1; : : : ;Qj � N under the assumption that f can be deformed off of any proper
subcollection in a homotopy coherent way. In a certain range of dimensions, �.f / is
a complete obstruction to finding the desired deformation. We apply this machinery
to embedding problems and to the study of linking phenomena.
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1 Introduction

1.1 Intersection problems

In [16] we considered the problem of deforming a map f W P !N between compact
smooth manifolds off a compact smooth submanifold Q � N. This was called an
intersection problem. We obtained an obstruction �.f / residing in a normal bordism
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paper was completed. Bruce was a close friend and an inspiring mentor.
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1080 John R Klein and Bruce Williams

group �0.X I �/. The vanishing of the obstruction is necessary for finding such a
deformation. One of the main results of [16] was that in a certain metastable range of
dimensions, �.f / is a complete obstruction to finding a homotopy from f to a map
having disjoint image from Q . The goal of the current paper is to extend these ideas
to the multirelative setting.

Fix a positive integer j and let

Q1; : : : ;Qj �N

be a collection of pairwise disjoint, closed, smooth submanifolds of a compact, con-
nected, smooth manifold N. Given a map P !N, where P is a closed manifold, the
problem we consider is that of finding a deformation of f off of the Qi simultaneously.
We approach this inductively, by assuming that P can be deformed off of any proper
union of the Qi in such a way that the deformations line up in a certain homotopically
coherent fashion. We first explain what this precisely means.

Recall that a .kC1/–ad of spaces consists of a space X together with k distinguished
subspaces X1; : : : Xk �X. The notation for such data is .X IX1; : : : ; Xk/, but it will
often be convenient to simply write X when the subspaces are understood.

Example 1.1 (1) A space Z can be considered as a constant .kC1/–ad, that is,
.ZIZ; : : : ; Z/.

(2) The standard .k�1/–simplex �k�1 together with its codimension one faces is
a .kC1/–ad, ie .�k�1I d0�k�1; : : : ; dk�1�k�1/.

(3) If Z is a space and X is a .kC1/–ad, then the cartesian product Z �X is a
.kC1/–ad in the evident way.

A map of .kC1/–ads X! Y is a continuous map of underlying spaces which restricts
to maps Xi ! Yi for all i . We can topologize this as the subspace of the mapping
space of all maps from X to Y in the compact–open topology.

Consider N together with the subspaces N nQ1; : : : ; N nQj as a .jC1/–ad

.N IN nQ1; : : : ; N nQj /:

Then a multirelative intersection problem is defined to be a map of .jC1/–ads

f W P ��j�1!N:

Set QJ D Q1 t � � � tQj . We will consider N nQJ as a constant .jC1/–ad; it is
then a sub-ad of .N IN nQ1; : : : ; N nQj /. We define a solution to a multirelative

Algebraic & Geometric Topology, Volume 19 (2019)



Homotopical intersection theory, III 1081

intersection problem to be a homotopy (of maps of .jC1/–ads) ft from f D f0 to
an ad map f1W P ��j�1!N which factors as

P ��j�1!N nQJ
�
�!N

In particular, the image of f1 is disjoint from QJ .

In more modern language the problem can be reformulated as follows: Let J D
f1; : : : ; j g. For S � J, let

QS D
G
i2S

Qi :

Then a multirelative intersection problem is equivalent to specifying a map

(1) f W P ! holim
S¨J

.N nQS /;

where the target is the homotopy inverse limit of the spaces N nQS as S ranges
through the proper subsets of J. Explicitly, the displayed homotopy limit is given by
the space of maps of .jC1/–ads �j�1!N.

The deliberate ambiguity in our notation is for the sake of convenience: we use f to
denote the map (1) as well as for the map of ads P ��j�1!N, as this is not likely
to cause confusion (note these maps determine each other by an adjunction).

A solution then amounts to a map yf W P ! N nQJ , together with a commuting
homotopy ft W P ! holimS¨J .N nQS / with t 2 Œ0; 1�, for the diagram

(2)

N nQJ

��

P
f

//

yf
99

holim
S¨J

.N nQS /

Given a map of .jC1/–ads f W P ��j�1!N as above, we write

E.P;Q�/

for the iterated homotopy fiber product of P ��j�1 and each of the Qi over N. This
is just the homotopy pullback of the diagram

P ��j�1 �

jY
iD1

Qi !

jY
iD0

N �
 �N;

Algebraic & Geometric Topology, Volume 19 (2019)



1082 John R Klein and Bruce Williams

where � is the diagonal map and the left map is the product of f W P ��j�1!N

with the inclusions of the Qi .

Define a virtual bundle � over E.P;Q�/ as follows: Let �P be the tangent bundle
of P, �N the tangent bundle of N and �Qi

the tangent bundle of Qi ; each one of
these gives a bundle over E.P;Q�/ using the evident (projection) maps. To avoid
notational clutter, we use the same notation for these pullbacks. Then we set

� WD ��P C

jX
iD1

.�N � �Qi
/:

Suppose p D dimP, qi D dimQi and nD dimN. It will also be convenient to write

�Dmin
i
.n� qi � 2/ and †D

X
i

.n� qi � 2/:

In particular, the virtual rank of � is 2j �pC†. The following assumption will be
made throughout the paper:

Hypothesis 1.2 For 1� i � j , we have n� qi � 2.

We briefly review the definition of bordism with coefficients in a virtual bundle. Let
X be a space equipped with a finite-dimensional inner product bundle � of rank s .
Then one has the Thom space X� , which is the quotient space formed from the unit
disk bundle by collapsing the unit sphere bundle to a point. For the purposes of this
paper, we define �k.X I �/ to be the kth stable homotopy group �st

k
.X� /. By standard

transversality arguments, an element of this abelian group is represented by a compact
smooth submanifold V �RkCd , for some d � 0, together with a map gW V !X such
that the pullback of �˚�d along g is identified with the normal bundle of V (where �d

is the trivial bundle of rank d ; note that the dimension of V is necessarily k�s ). Then
bordism defines an equivalence relation on this collection and the set of equivalence
classes is canonically identified with �k.X I �/. With respect to this identification, note
that the operation of disjoint union of bordism classes corresponds to the addition of
stable homotopy classes. Now suppose that � is a virtual bundle. This means that �˚�j

comes equipped with an isomorphism to a finite-dimensional inner product bundle �
for some integer j � 0. In this instance, we define �k.X I �/ to be �kCj .X I �/. Our
indexing convention for the bordism group differs from that of [16], but is the same as
the one we used in [15].

Algebraic & Geometric Topology, Volume 19 (2019)



Homotopical intersection theory, III 1083

Theorem A Assume j � 1. Then there is an obstruction

�.f / 2
M
.j�1/Š

�2j�2.E.P;Q�/I �/

which vanishes if the intersection problem defined by f possesses a solution. Con-
versely, if

p � 1C�C†

then the vanishing of �.f / guarantees the existence of a solution.

Theorem A is proved using a fiberwise version of Poincaré duality together with some
general results about strongly cocartesian cubes.

Remark 1.3 The j D 1 case (“the metastable range”) of Theorem A was already
considered in [16]. That work gave a homotopy-theoretic approach to the main results
of the paper of Hatcher and Quinn [12] (when j D 1, Theorem D below amounts to
the vanishing obstruction case of [12, Theorem 2.2]).

Remark 1.4 The obstruction �.f / is defined in a homotopy-theoretic manner. Given
the identification between bordism theory and the homotopy groups of a Thom spectrum,
it is reasonable to ask what �.f / means geometrically. In the j D 1 case such an
interpretation was provided by the “index theorem” of [16, Theorem 12.1]. The j > 1
case is more subtle and involves iterated intersections of null-bordism data. We hope
to address this in detail in another paper. Meanwhile, to leave the reader with an
impression, we now sketch a geometric description of �.f / when j D 2.

Let j D 2 and let f W P ��1!N be an intersection problem. Let b be the barycenter
of �1 and let Di be the transversal intersection of f jP�bW P � b ! N with Qi .
By assumption, the evident maps Di ! E.P;Qi / are null-bordant. Let gi W Wi !
E.P;Qi / be a null-bordism. Compose this with the projection E.P;Qi /! P to
get maps hi W Wi ! P. Now take the transversal intersection of the product map
h1 � h2W W1 �W2 ! P �P with the diagonal of P. This produces a closed mani-
fold W12 of dimension p� 2�† equipped with a map W12! E.P;Q�/ which is
covered by the requisite bundle data. The associated bordism class coincides with the
obstruction �.f /.

Remark 1.5 (large codimension) If p�1C†, then the bordism group of Theorem A
is trivial. Consequently, f can be homotopy factorized through N nQJ in this case.

Algebraic & Geometric Topology, Volume 19 (2019)



1084 John R Klein and Bruce Williams

If j D 1, this conclusion also follows from transversality, and for j > 1 it follows from
the higher Blakers–Massey theorem applied to the j –cubical diagram fN nQSgS�J
(see Goodwillie [4, Theorem 2.5]).

1.1.1 Highly connected manifolds When the manifolds P and Qi are sufficiently
highly connected, the obstruction group of Theorem A admits a simpler description.
Suppose that P is a–connected and Qi is bi –connected. Choose basepoints in x 2P
and yi 2 Qi . Then x gives rise to a point x0 2 N using f . The homotopy fiber
product of E.x; y�/ is defined and comes equipped with a map E.x; y�/!E.P;Q�/.
Moreover, the pullback of � to E.x; y�/ is a trivial virtual bundle of rank 2j �pC†.
Hence, the bordism groups associated with this pullback are framed bordism groups
of E.x; y�/ shifted in degree by 2j �pC†.

It is also straightforward to check that the map

E.x; y�/!E.P;Q�/

is min.a; b1; : : : ; bj /–connected. It follows that the associated map of Thom spectra is
k–connected, where k Dmin.a; b1; : : : ; bj /C 2j �pC†. In particular, the induced
homomorphism of bordism groups is an isomorphism in degrees strictly less than k .

Note that E.x; y�/ is the space of j –tuples .�1; : : : ; �j / in which �i W Œ0; 1�!N is a
path from x0 to yi for 1� i � j . The j –fold cartesian product of loop spaces

Q
j �N

based at x0 acts on E.x; y�/ by path composition. After a basepoint for E.x; y�/ is
fixed, we obtain a homotopy equivalence E.x; y�/'

Q
j �N. Consequently, we have

shown:

Addendum B Assume p � 1C†Cmin.a; b1; : : : ; bj /. Then the obstruction group
appearing in Theorem A is isomorphic to the direct sum of framed bordism groupsM

.j�1/Š

�fr
p�2�†

�Y
j

�N

�
:

Example 1.6 Suppose P D Sp and Qi D Sqi are spheres. Then aDp�1 and bi D
qi�1. Consequently, the inequality appearing in Addendum B becomes p�†C��j .

Example 1.7 Suppose p D 2C† and a; bi � 1. Then the obstruction group of
Addendum B is isomorphic to

L
.j�1/ŠZŒ��

˝j , with � D �1.N /.

Algebraic & Geometric Topology, Volume 19 (2019)
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1.2 The solution space

The space of lifts solving the multirelative intersection problem (2) is defined by
converting the vertical map appearing in that diagram into a fibration and then taking
the space of sections of this fibration along P. The space of such lifts is called the
solution space and is denoted by L .f /.

For a spectrum E we let �1E be the associated infinite loop space.

Theorem C Assume that in the solution space L .f / is nonempty and is equipped
with a choice of basepoint. Then there is a .1�pC�C†/–connected map

L .f /!
Y
.j�1/Š

�1E.P;Q�/
�C.1�2j /�:

1.3 Families of embeddings

A variant of the multirelative intersection problem involves families of smooth embed-
dings. In this instance one is given a map of .jC1/–ads f W P ��j�1!N which is
also a .j�1/–parameter family of smooth embeddings from P to N. The solution
of the problem in this case is to find a deformation of ad-maps, this time through an
isotopy, to a .j�1/–parameter family of embeddings having image disjoint from QJ .

By combining Theorem A with Theorem E of Goodwillie and Klein [6], we obtain:

Theorem D (multiple disjunction) Assume

p; qi � n� 3 and p � 1Cmin.n�p� 2; �/C†:

Then �.f /D 0 if and only if the multirelative intersection problem of embeddings has
a solution.

1.4 The embedding tower

For a smooth manifold P of dimension p without boundary and a smooth manifold N
of dimension n, possibly with boundary, let E.P;N / denote the space of smooth
embeddings. When P is closed, Weiss [30] exhibits a tower of fibrations

� � � !E2.P;N /!E1.P;N /

and compatible maps E.P;N /! Ek.P;N /. Up to homotopy, the j th layer of the
tower is given by the space of compactly supported global sections of a certain fibration
over the configuration space

�
P
j

�
, the latter given by the space of subsets of P having

cardinality j . The space Ej .P;N / is in some sense the best approximation to E.P;N /

Algebraic & Geometric Topology, Volume 19 (2019)



1086 John R Klein and Bruce Williams

obtained from spaces of embeddings E.U;N / as U ranges throughout the open subsets
of P that are diffeomorphic to a disjoint union of at most j open balls. In what follows,
we assume that P is compact.

If p � n� 1, then E1.P;N / has the homotopy type of the space of immersions of P
in N. If p � n� 3, then the map

E.P;N /! lim
j!1

Ej .P;N /

is a homotopy equivalence; see Goodwillie and Weiss [8] and Goodwillie and Klein [6].
The above motivates the following question: given a point of some stage of the tower,
say Ej�1.P;N /, what are the obstructions to lifting the given point to the embedding
space? If j D 2, the work of Haefliger [10], Dax [2], Salomonsen [26] and Hatcher and
Quinn [12] provides answers to this question in the metastable range (for the discussion
of this case in the context of the tower, see [30, Section 4]).

It will be convenient to consider the following modification of this problem. Fix a
basepoint of E1.P;N /, ie an immersion. Let Ej .P;N / be the fiber of Ej .P;N /!
E1.P;N /. Then the tower

� � � !E2.P;N /!E1.P;N /D �

converges to E.P;N /D fiber.E.P;N /!E1.P;N //. Furthermore, the layers of this
tower for j > 1 coincide with the layers of the embedding tower.

Recall that J D f1; : : : ; j g. In Section 7 we construct a fiberwise spectrum with
†j –action CJ over the configuration space EJ .P / WDE.J; P /, which depends only
on the data P, N and j . Let � be the tangent bundle of EJ .P / (ie restriction of
the cartesian product of j copies of the tangent bundle of P ). Then we can twist CJ

by �� to obtain a fiberwise spectrum with †j –action ��CJ over EJ .P /. In particular,
one can speak about the equivariant homology of EJ .P / with coefficients in ��CJ .

We will define an invariant

�W �0.Ej�1.P;N //!H
†j

0 .EJ .P /I
��CJ /

which vanishes on the image of �0.Ej .P;N //.

Theorem E Assume j �2 and N is r –connected with r�n�2. Assume additionally

r � p� 1� .j � 1/.n�p� 2/:

If x 2Ej�1.P;N /, then �.x/D 0 implies that x lifts to Ej .P;N /.

Algebraic & Geometric Topology, Volume 19 (2019)
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If N is contractible then we can take r D n� 2. In this case the displayed inequality
r � p� 1� .j � 1/.n�p� 2/ is automatically satisfied:

Corollary F Assume j � 2 and that N is contractible. If �.x/ D 0, then x 2

Ej�1.P;N / lifts to Ej .P;N /.

Remark 1.8 By [8], the map E.P;N /! Ej .P;N / is ..jC1/.n�p�2/C3� n/–
connected. Consequently, in both Theorem E and Corollary F, if �.x/ D 0, then
x 2Ej�1.P;N / will lift to E.P;N / if in addition .j C 1/.n�p� 2/C 3�n� 0.

1.5 Link maps

Our main results can also be used to study higher-order linking phenomena. Given
connected closed manifolds P1; : : : ; Pj and a connected manifold N, a (j –component)
link map is a continuous function

f W P1 t � � � tPj !N

such that f .Pi /\f .Pk/D∅ for i ¤ k . The space of link maps will be denoted by
L .P ; N /.1 Fix an embedding J !N, where we recall again that J D f1; 2; : : : ; j g.
We will also identify J with its image in N.

We define the trivial link map to be the link map given by sending the component Pi
to i 2 J, ie the trivial link map factors as the composition P1 t � � � tPj ! J � N ,
where the first map is the canonical surjection from a space onto its set of components.
The trivial link map equips L .P ; N / with a basepoint. A link map is trivializable if it
admits a path to the trivial link map in the space of link maps.

Definition 1.9 The space of (homotopy coherent) Brunnian link maps

B.P ; N /

is the total homotopy fiber of the j –cube of based spaces

S 7!L S .P ; N /;

where L S .P ; N / is the space of maps f W P1 t � � � t Pj ! N such that for every
S � J the restriction

fS WD f jPS
W

G
i2S

Pi !N

is an jS j–component link map.

1The path components of L .P ; N / are called link homotopy classes. The latter is usually studied in
the special case when N DRn and the Pi are spheres; see Milnor [21], Massey [19] and Koschorke [18].

Algebraic & Geometric Topology, Volume 19 (2019)
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Since B.P ; N / is the homotopy fiber of the map

L J .P ; N /! holim
S¨J

L J .P ; N /;

a point of B.P ; N / determines a link map f 2L J .P ; N / with the property that any
proper sublink map is trivializable. In particular, f satisfies the classical Brunnian
condition; see Milnor [21] and Debrunner [3].

Restricting now to the case when N D Rn , we will construct in Section 8 a higher
stable linking number map2

(3) �W B.P ;Rn/!
.j�2/ŠY
iD1

F st
� jY
iD1

Pi ; S
.j�1/.n�2/C1

�
;

where for an unbased space X and a spectrum E, F st.X;E/ denotes the function
space of stable maps from X to E, ie the function space F.X;�1E/.

A result of Goodwillie and Munson in the case j D 2 [7, Theorem 1.1] suggests to us
the following:

Conjecture G The map � is .1C†0/–connected, where

†0 D

jX
iD1

.n� 2pi � 2/:

(For variant forms of this statement see Section 8.) We submit the following evidence
for Conjecture G:

Theorem H (realization of higher linking numbers) Assume that Pi embeds in Rn

and n�pi � 2 for 2� i � j . Then the higher stable linking number map � induces a
surjection on homotopy groups in degrees � 1� ypC†, where

yp WD max
2�i�j

pi and †D

jX
iD1

.n�pi � 2/:

In the above, we do not need to assume that the embeddings are pairwise disjoint. Since
1� ypC† � 1C†0, it follows that � induces a surjection on homotopy groups in
degrees � 1C†0. Hence, Theorem H gives evidence for the validity of Conjecture G.

2For link maps of circles in three-dimensional euclidean space, it seems likely that on path components,
our map coincides with Milnor’s �–invariants [21].
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Further evidence is contained in Section 8. Our results on link maps overlap with those
of Munson [22]. Our methods are homotopy-theoretical, whereas Munson relies on
bordism and transversality. It seems likely to us that Theorem H could also be extracted
from Munson’s approach, possibly at the expense of a dimension.

Outline Section 2 is a breezy exposition on the basic definitions as well as the
machinery used throughout the paper. Section 3 is about strongly cocartesian cubes of
spaces, and the main technical results of the paper are stated there. Section 4 recasts
the results of Section 3 in the setting of homotopical intersection theory to give a proof
of Theorems A and C modulo the proof of Theorem 3.12. In Section 5 we prove
Theorem 3.12, which is one of our main technical results. In Section 6 we combine
Theorem A with [6, Theorem E] to obtain a multiple disjunction result for smooth
embeddings. Section 7 contains the proof of Theorem E. In Section 8 we apply our
machinery to the study of spaces of link maps.
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2 Language

2.1 Spaces

Let T be the category of compactly generated spaces. Then T is a Quillen model
category in which the weak equivalences are the weak homotopy equivalences, the
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fibrations are the Serre fibrations and the cofibrations are the retracts of relative cell
complexes [25, Chapter 2, Section 3] (a relative cell complex is a pair of spaces .Y; A/
such that Y is obtained from A by attaching cells). A space X is r –connected if every
map Sk ! X for k � r is homotopic to a constant map; here Sk is the sphere of
dimension k . In particular, the empty space is .�2/–connected and every nonempty
space is (at least) .�1/–connected. A map f W X! Y is r –connected if its homotopy
fiber at any basepoint is .r�1/–connected. An 1–connected map is, by definition, a
weak equivalence.

A commutative square of spaces

(4)

A //

��

C

��

B // D

is r –cocartesian if the map

hocolim.B A! C/!D

is r –connected.

Dually, the square (4) is r –cartesian if the map

A! hocolim.B!D C/

is r –connected.

Definition 2.1 Let

(5) X ! Y !Z

be maps of spaces equipped with a homotopy to a constant z . One says that (5) is a
homotopy fiber sequence in degrees � s if the induced map from X to the homotopy
fiber of Y !Z is s–connected. If this condition holds for all integers s , then (5) is
called a homotopy fiber sequence.

Dually, if the induced map from the homotopy cofiber of X! Y to Z is s–connected,
then one says that (5) is a homotopy cofiber sequence in degrees � s and a homotopy
cofiber sequence if the condition holds for all s .

When the square (4) is 1–cocartesian and C is contractible, A ! B ! D is a
homotopy cofiber sequence once a contraction C � Œ0; 1�! C is specified. The dual
case is analogous.
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2.2 Fiberwise spaces

For an object X 2 T , we let T .X/ denote the category of spaces over X. This is the
category whose objects are pairs .Y; r/ such that r W Y ! X is a map. A morphism
.Y; r/! .Y 0; r 0/ is a map f W Y ! Y 0 such that r 0 ı f D r . We more often than not
suppress the structure map r W Y !X when specifying an object and write Y in place
of .Y; r/.

Similarly, let R.X/ denote the category of retractive spaces over X. This has objects
.Y; r; s/ where r W Y !X and sW X ! Y are maps such that r ı s is the identity map.
A morphism .Y; r; s/! .Y 0; r 0; s0/ is a map f W Y ! Y 0 such that r 0 ı f D r and
f ı s D s0. Again, the structure maps are usually supressed.

Note that the case R.�/ gives the category of based spaces. We sometimes regard
objects of R.X/ as objects of T .X/ by means of the forgetful functor. When X D �
we usually write T� in place of R.�/, ie the category of based spaces.

Both T .X/ and R.X/ have simplicial model category structures where a weak
equivalence (cofibration, fibration) in each case is a morphism whose underlying
map of spaces is a weak homotopy equivalence (cofibration, fibration) of spaces
[25, Chapter II, page 2.8, Proposition 6]. In particular, the set of (fiberwise) homotopy
classes ŒY;Z�T .X/ is defined for objects Y and Z of T .X/. Similarly, one can define
homotopy classes in R.X/. If Y 2 T .X/ is an object, let Y C 2R.X/ be the object
given by Y tX with evident structure maps. If Z 2R.X/ is an object, then we have
ŒY C; Z�R.X/ D ŒY;Z�T .X/ . As usual, when defining homotopy classes ŒY;Z�T .X/ ,
Y is replaced by a cofibrant approximation and Z is replaced by a fibrant approximation.

A morphism Y !Z in either T .X/ or R.X/ is said to be j –connected if and only
if its underlying map in T is j –connected. An object Y is said to be j –connected
if and only if the structure map Y !X is .jC1/–connected. A commutative square
in T .X/ or R.X/ is j –cocartesian (j –cartesian) if it is so when considered in T

(here j may be 1).

We say an object Y of T .X/ or R.X/ has dimension � s if it is built up from the
initial object by attaching cells of dimension at most s . In T .X/ this means that the
underlying space of Y is a cell complex of dimension at most s . In R.X/ it means
that the pair .Y;X/ is a relative cell complex of dimension at most s . In either case
we write dimY � s .

A sequence of maps A ! Y ! C in T .X/ forms a homotopy cofiber sequence
(respectively in degrees � r ) if it comes equipped with a homotopy from A! C to
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a composition of the form A!X ! C (where X is viewed as the terminal object)
such that the induced map from the homotopy cofiber of A! Y (ie the homotopy
colimit of X  A! Y ) to C is a weak equivalence (respectively r –connected). The
dual notion of homotopy fiber sequence (in degrees � r ) is defined analogously.

Lemma 2.2 Suppose that A! Y ! C is a homotopy cofiber sequence of T .X/.
Assume that A is r1–connected and C is r2–connected. Then A! Y ! C is a
homotopy fiber sequence in dimensions � r1C r2 .

Proof The square
A //

��

Y

��

X // C

has a preferred commuting homotopy making it 1–cocartesian. The result follows
from the Blakers–Massey theorem [11, Theorem 4.23; 4, page 309].

Corollary 2.3 Assume in addition that Z 2T .X/ is an object of dimension � r1Cr2 .
Then the sequence of sets

ŒZ;A�T .X/! ŒZ; Y �T .X/! ŒZ; C �T .X/

is exact.

(Explanation: The set ŒZ; C �T .X/ has a preferred basepoint given by Z!X 0! C.
Any element of ŒZ; Y �T .X/ which maps to the basepoint lifts back to ŒZ;A�T .X/ .)

2.3 Fiberwise suspension

The unreduced fiberwise suspension of an object Y 2 T .X/ is the object of R.X/

given by the double mapping cylinder

SXY WD .X � 0/[ .Y � Œ0; 1�/[ .X � 1/;

where the structure map SXY ! X is obvious and the structure map X ! SXY is
given by X � 0. This gives a functor SX W T .X/! R.X/. Similarly, R.X/ has a
reduced fiberwise suspension functor †X W R.X/!R.X/ defined as follows: given an
object Y 2R.X/, we take †XY to be the pushout of the diagram X SXX! SXY .
If Y is cofibrant, then the map SXY !†XY is a weak equivalence. The functor †X
has a right adjoint �X , called the fiberwise loop functor.
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Given objects Y;Z 2R.X/, define

fY;ZgR.X/ WD colim
k
Œ†kXY;†

k
XZ�:

This is the abelian group of fiberwise stable homotopy classes from Y to Z .

2.4 Fiberwise smash product

Given objects Y;Z 2 T .X/, we have the fiber product Y �X Z 2 T .X/, which is
defined as the limit of the diagram Y !X Z . If Y;Z 2R.X/, the fiberwise wedge
(or coproduct) Y _X Z is the object of R.X/ given by the pushout of the inclusions
Y � X � Z . The (internal fiberwise) smash product is the object Y ^X Z given by
the pushout of the diagram X  Y _X Z � Y �X Z . As is usual with most functors
in the model category-theoretic setting, this construction needs to be suitably derived
to have a meaningful homotopy type (in this instance Y and Z should be made fibrant
and cofibrant). To avoid notational clutter, we will be intentionally sloppy: we will
write the underived smash product but the reader should understand that it needs to be
derived to have a sensible homotopy-theoretic meaning.

2.5 Fiberwise Thom spaces

Given an object Y 2 T .X/ and an inner product bundle � over Y , the fiberwise Thom
space is the object of R.X/ given by

TX .�/DD.�/[S.�/X:

By collapsing X to a point we obtain the usual Thom space X� WDD.�/=S.�/, which
in the present notation appears as T�.�/.

Let � be an inner product bundle over another object Z 2T .X/. Let pW Y �X Z! Y

and qW Y �X Z!Z be the projections. Then the Whitney sum p��˚q�� is an inner
product bundle over Y �X Z . The following is just an unraveling of definitions (and is
well known when X is a point):

Lemma 2.4 There is a preferred isomorphism of R.X/,

TX .p
��˚ q��/Š TX .�/^X TX .�/:

2.6 Fiberwise spectra

Using †X also enables one to define spectra built from objects of R.X/. A fiberwise
spectrum E is a collection of objects En 2 R.X/ for n D 0; 1; : : : together with
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morphisms †XEn! EnC1 . Note that E comes equipped with a zero section, namely
the collection of structure maps X ! En for n� 0. A morphism of fiberwise spectra
is the evident thing.

If E is a fiberwise spectrum then the associated fiberwise infinite loop space �1X E is
an object of R.X/. Fiberwise spectra form a model category (see eg [27]; for a more
detailed treatment see [20]).

Here are two examples:

Example 2.5 (trivial fiberwise spectra) Start with an ordinary spectrum E given by
based spaces fEngn�0 and structure maps †En! EnC1 . Form En �X for n � 0.
These fit into a fiberwise spectrum E �X, where the structure map †X .En �X/!
EnC1 �X is given by noticing that †X .En �X/Š .†En/�X.

Example 2.6 (fiberwise suspension spectra) Start with any object Y 2 R.X/ and
form the iterates †nXY . These give a fiberwise spectrum †1X Y , using the identity maps
for the structure maps.

We remark that the zero section of E gives a morphism †1X X
C! E .

Given an object Z 2R.X/ and a fiberwise spectrum E , we define

fZ; E gR.X/ WD colim
n
ŒZ;�1X E �R.X/:

For example, if E D †1X Y is a fiberwise suspension spectrum, then fZ; E gR.X/ D
fZ; Y gR.X/ .

2.7 Homology and cohomology

Let E be a fiberwise spectrum over X (which we take to be fibrant). Then an object
Z 2 T .X/ (which we take to be cofibrant) with structure map pW Z!X gives rise
to a fiberwise spectrum over Z ,

p�E ;

whose kth space is the pullback of Ek!X along p . Let .p�E /[ denote the effect of
making p�E cofibrant. Then for each n� 0 we have a cofibration Z! .p�E /[n and
as n varies the quotient spaces .p�E /[n=Z form a spectrum, denoted by H�.ZI E /.
The homology groups of Z with coefficients in E are the homotopy groups of this
spectrum.
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To define cohomology we take, for each n, the space of sections of En!X along the
map Z! X (this is the same thing as the space of maps Z! En which commute
with the structure map to X ). As n varies, these spaces form a spectrum H �.ZI E /.
The cohomology groups of Z with coefficients in E are defined to be homotopy groups
of this spectrum, ie

H i .ZI E /D fZC; †iXE gR.X/:

2.8 Induction and restriction

Let f W X ! Y be a map of spaces. Then a fiberwise spectrum E over Y gives rise
to a fiberwise spectrum f �E over X by taking base change. This operation defines
a restriction functor from fiberwise spectra over Y to fiberwise spectra over X (the
construction is homotopy-invariant when E is fibrant). Using f to regard X as an
object of T .Y /, we obtain a tautological identification H �.X I E / D H �.X; f �E /,
where on the right side X is viewed as an object of R.X/ using the identity.

Suppose F is a fiberwise spectrum over X. Then we obtain a fiberwise pushforward
spectrum over Y , denoted f�F in which .f�F /k D .Fk/[f Y (the construction is
homotopy-invariant when F is cofibrant). The operation E 7! f�E is also called
induction. Note that H�.X IF /DH�.Y If�F / tautologically. Note also that .f�; f �/
is an adjoint pair.

2.9 Poincaré duality

Let � be a finite-dimensional vector bundle over X. Let S� denote the fiberwise
one-point compactification of � . Then S� is an object of R.X/. More generally, if �
is a virtual bundle, ie �C �j is identified with a finite-dimensional vector bundle � for
some j , then we define S� is this case to be a fiberwise spectrum over X given by
the j –fold desuspension of S� .

Given a fiberwise spectrum E over X, set

�E WD S� ^X E :

When � is a vector bundle, the definition of the right side is given by the fiberwise
smash products in each degree, ie S� ^X Ek . In the virtual bundle case one merely
fiberwise desuspends S� ^X E j times.

Theorem 2.7 (Poincaré duality [14; 15, Theorem 6.2; 20, Theorem 19.6.1]) Suppose
f W P ! X is a map in which P is a closed smooth manifold of dimension d . Let
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��P be the virtual stable normal bundle given by the negation of the tangent bundle
of P. Then, for any fiberwise spectrum E over X, there is a preferred weak equivalence
of spectra

H �.P I E /'H�.P I
��Pf �E /:

Remark 2.8 More generally, if P is an open manifold then there is a weak equivalence

H �cs.P I E /'H�.P I
��Pf �E /;

where the left side denotes cohomology with compact supports. The latter is defined by
taking the spectrum of sections of E which coincide with the zero section near infinity.

3 Strongly cocartesian cubes

3.1 Cubical diagrams

For a finite set J, we let 2J be the poset of consisting of the subsets of J partially
ordered by inclusion. A J –cube in a category C is a contravariant functor

A�W 2
J
! C ; S 7! AS :

(If J has cardinality j , we also say that A� is a j –cube.) Since A� is contravariant,
the initial vertex is AJ and the terminal vertex is A∅ . When J D fig we usually write
AS D Ai .

In what follows we will only consider J –cubes in which the target category C is either
T .X/ or R.X/ for some space X, and, often enough, we shall be interested in the
case when X is a point.

A weak equivalence of T –cubes A� ! B� is a natural transformation such that
AS ! BS is a weak equivalence for each S, ie an objectwise weak equivalence. Two
J –cubes are said to be weakly equivalent if there is a finite zigzag of weak equivalences
connecting them.

Definition 3.1 [4, Definition 1.3] A J –cube A� is r –cartesian if the map

(6) AJ ! holim
S¨J

AS

is r –connected. Similarly, A� is r –cocartesian if the map

(7) hocolim
S¤∅

AS ! A∅

is r –connected. In both cases r may be 1.
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We remark that when A� is a cube in which the maps AS!AT are based for jS j< j ,
the target of (6) inherits a basepoint. In this case, we will say that A� is almost based.

Definition 3.2 The total homotopy cofiber of A� is the homotopy cofiber of the map (7).
If A� is an almost based J –cube, then its total homotopy fiber is the homotopy fiber
of (7) taken at the preferred basepoint.

For fixed subsets U �W � J, one has a .W;U /–face of A� given by restricting A�
to those AS for which U � S � W . This is a .W nU/–cube and every face of A�
arises in this fashion. When jW nU j D k we also call this a k–face of A� .

Definition 3.3 [4, Definition 2.1] A J –cube A� is strongly cocartesian if each
2–face of A� is 1–cocartesian.

In Definition 3.3, it is enough to check the condition on each 2–face meeting the initial
vertex AJ (ie those .W;U /–faces in which jW nU j D 2 and W D J ; see loc. cit.).

Henceforth, we set
J WD f1; 2; : : : ; j g:

Example 3.4 (wedge cubes) Let X1; : : : ; Xj be cofibrant based spaces. For T � J,
let AT be the wedge

W
i2T Xi (by convention A∅ is a point). This defines a strongly

cocartesian j –cube A� whose maps are given by projections onto summands.

More generally, let X1; : : : ; Xj 2R.X/ be cofibrant. Let AT be the fiberwise wedge
of Xi as i varies in T . Then A� is strongly cocartesian.

Example 3.5 (backwards wedge cubes) With X1; : : : ; Xj 2R.X/ as above, let BT
be the fiberwise wedge of those Xi with i 2 J nT . The maps of this cube are inclusions
of summands. Then B� is strongly cocartesian.

Example 3.6 (suspension) Let A� be a strongly cocartesian j –cube of T .X/. Then
the j –cube SXA� given by T 7! SXAT is also strongly cocartesian. Similarly, if
A� is a strongly cocartesian j –cube of R.X/, then the cube of reduced fiberwise
suspensions †XA� is strongly cocartesian.

Lemma 3.7 Let A� be a strongly cocartesian j –cube of connected based spaces in
which A∅ is a point. Then the suspended j –cube †A� is weakly equivalent to a wedge
cube B� in which Bi D†Ai for i 2 J.
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Proof The following sketch was provided to us by Tom Goodwillie. Let BT be the
wedge of †Ai for all i 2 T , but write this as the wedge, over all i 2 J, of either

� †Ai if i 2 T , or

� � if i … T .

Define a map †AT ! BT as follows. First do a pinch to go from †AT to the wedge
of j copies of †AT indexed by i 2 J. Now map that to BT by sending the i th copy
of †AT to †Ai using the original map AT ! Ai if i 2 T , or the constant map to a
point if i … T .

The above recipe defines a map of j –cubes †A�! B� . By the Whitehead theorem,
it suffices to show that the map †AT ! BT is a homology isomorphism for all
T � J. Let CT be the homotopy cofiber of this map. Then T 7! CT is also a strongly
cocartesian j –cube. It is enough to show that CT has trivial reduced homology. If T
is a singleton, this is clear since the maps †Ai !Bi are homotopic to the identity. By
a straightforward induction argument, we can assume that CT has trivial homology
for jT j � j � 1. We are reduced to showing that CJ has trivial homology. But the
homology of CJ coincides with the homology of the total homotopy cofiber of the
cube C� with a degree shift by j . Since C� is strongly cocartesian, the total homotopy
cofiber is contractible. Hence, CJ has trivial homology.

Given a strongly cocartesian j –cube A� , let C.A�/ denote the homotopy colimit

(8) hocolim
�
A∅ AJ ! holim

S¤J
AS
�
:

Then C.A�/ is a retractive space over A∅ . In what follows we rename

X WD A∅:

Then C.A�/ 2R.X/ and one has a homotopy cofiber sequence of T .X/

(9) AJ ! holim
S¤J

AS ! C.A�/:

Notation 3.8 For a sequence of integers r1; : : : ; rj we write

†D
X
i

ri and �Dmin
i
ri :

If 1� i � j and T � J, set
Ti WD T n fig:
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Hypothesis 3.9 X is 0–connected. Furthermore, for 1� i � j , the map

AJ ! AJi

is .riC1/–connected, where ri � 0.

Note that AT ! ATi
is also .riC1/–connected for all T � S, since A� is strongly

cocartesian. We assume Hypothesis 3.9 holds throughout the rest of this section.

Proposition 3.10 Let Z 2 T .X/ be an object of dimension � 1C�C†. Then the
sequence

ŒZ;AJ �T .X/!
�
Z; holim

S¤∅
AS
�
T .X/

! ŒZ; C.A�/�T .X/

is exact.

Remark 3.11 The set ŒZ; C.A�/�T .X/ is pointed. As in Corollary 2.3, exactness
means that an element of ŒZ; holimS¤∅AS �T .X/ pushes forward to the basepoint if
and only if it lifts to an element of ŒZ;AJ �T .X/ .

Proof The object AJ 2 T .X/ is �–connected. The higher Blakers–Massey theorem
for cubical diagrams [4, Theorem 2.5] (or see [5, Theorem 2.3]) says that A� is .1C†/–
cartesian, Consequently, C.A�/2T .X/ is a .1C†/–connected object. The conclusion
now follows from Corollary 2.3.

3.2 Identification of C.A�/

In the remainder of this section we identify C.A�/ up through dimension 1C�C†.

Let

(10) Wj WD
W
.j�1/Š S

2�2j

be the wedge of .j � 1/Š copies of the .2�2j /–sphere spectrum.

Let
Wj DX �Wj

be the trivial fiberwise spectrum on Wj .

Theorem 3.12 With respect to the above assumptions, there is a preferred map

(11) C.A�/!�1
�
Wj ^X

V
X

i2J

SXAi

�
;

which is .2C�C†/–connected.
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The proof of Theorem 3.12 is deferred to Section 5. If we combine Theorem 3.12 with
Proposition 3.10, we obtain:

Corollary 3.13 Let Z 2 T .X/ be an object such that dimZ � 1C�C†. Then
there is an exact sequence

ŒZ;AJ �T .X/!
�
Z; holim

S¤∅
AS
�
T .X/

!

n
ZC;Wj ^X

V
X

i2J

SXAi

o
R.X/

:

Remark 3.14 Corollary 3.13 is a robust generalization of a result of Barratt and
Whitehead [1] and, independently, Toda [29].

3.3 The Euler class

Let f W Z! holimS¤J AS be a map of spaces. Then f is also a morphism of T .X/.
Using Theorem 3.12, we see that the composed map

ZC
f
�! holim

S¤J
AS ! C.A�/

gives rise to a fiberwise stable homotopy class

e.f / 2
n
ZC;Wj ^X

V
X

i2J

SXAi

o
R.X/

;

which we call the Euler class of f . Equivalently, e.f / resides in the cohomology
group

H 0
�
ZIWj ^X

V
X

i2J

SXAi

�
:

Then, from Corollary 3.13, we deduce:

Corollary 3.15 The Euler class e.f / vanishes when f admits a homotopy factoriza-
tion through AJ . Conversely, if dimZ � 1C�C† and e.f /D 0, then f admits a
homotopy factorization through AJ .

3.4 A special case

When X D A0 is a point, the above results can be expanded upon as follows: There is
a homotopy cofiber sequence of spaces

(12) AJ ! holim
S¤∅

AS ! C.A�/

and a .2C�C†/–connected map

(13) C.A�/!�1
�
Wj ^

V
i2J

SAi

�
:
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Furthermore, the space AJ is �–connected. If we choose a basepoint in AJ then
A� becomes a cube of based spaces. Let F.A�/ be its total homotopy fiber. By the
Blakers–Massey theorem applied to (12) and using the map (13), we infer:

Corollary 3.16 There is a .1C�C†/–connected map

F.A�/!�1
�
†j�1Wj ^

V
i2J

Ai

�
'

.j�1/ŠY
i

Q.†1�jA1 ^ � � � ^Aj /:

Remark 3.17 The proof we give of Theorem 3.12 implies that the map of Corollary
3.16 is natural with respect to morphisms of based cubes A�! B� .

4 Proof of Theorems A and C

In this section we give the proof of Theorems A and C modulo the proof of Theorem 3.12.
The proof of the latter result will appear in Section 5.

Returning to the situation of Section 1, we are given pairwise disjoint, connected, closed
submanifolds Q1; : : : ;Qj �N. Let N nQ� denote the j –cubical diagram of R.N /

defined by
S 7!N nQS ; S � J:

Note that N nQ� satisfies Hypothesis 3.9 since n� qi � 2.

Proof of Theorem A Recall that we are given a map

f W P ! holim
S¨J

.N nQS /

and we wish to identify the obstructions to deforming it into N nQJ . By transver-
sality, the map N nQJ ! N nQJ�fig is .n�qi�1/–connected for 1 � i � j . By
Corollary 3.15, we infer:

Proposition 4.1 If P ! holimS¨J N nQS admits a homotopy factorization through
N nQJ , then e.f / D 0. The converse is true provided p � 1 C � C †, where
†D

P
i .n� qi � 2/ and �i Dmini .n� qi � 2/.

Proof This follows from Corollary 3.15 since a closed manifold P of dimension p
admits the structure of a cell complex of dimension p .
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Let �i be the normal bundle of Qi in N. The tubular neighborhood theorem gives a
weak equivalence of R.N /,

SN .N nQ1/'D.�i /[S.�i /N DW TN .�i /;

where the right side is the fiberwise Thom space of �i over N.

Stably, we can identify �i with the virtual bundle �i WD f ��N � �Qi
, given by the

difference of tangent bundles. We write TN .�i / for the associated fiberwise Thom
spectrum. With these notational changes, e.f / can be regarded as residing in the
cohomology group

(14) H 0
�
P IWj ^N

V
N

i2J

TN .�i /
�
:

The remainder of the proof of Theorem A will involve application of Poincaré duality
(Theorem 2.7) to the cohomology group (14).

4.1 The Euler characteristic

By Poincaré duality (Theorem 2.7), e.f / corresponds to a homology class

�.f / 2H0

�
P I��Pf �

�
Wj ^N

V
N

i2J

TN .�i /
��
:

Using the induction isomorphism (Section 2.8), the group where �.f / resides can
alternatively be written as

H0

�
N If�

��Pf �
�
Wj ^N

V
N

i2J

TN .�i /
��
:

By definition, the latter is the stable homotopy group in degree zero of the spectrum�
Wj ^N TN .��P /^N

V
N

i2J

TN .�i /
�ı
N:

Using Lemma 2.4 in virtual form, we deduce that the fiberwise spectrum

Wj ^N TN .��P /^N
V
N

i2J

TN .�i /

can be rewritten up to homotopy as

Wj ^N TN .�/;

where � is the virtual bundle over E.P;Q�/ that was defined in Section 1.
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Recall that Wj is just the fiberwise wedge of .j � 1/Š copies of the fiberwise spectrum
N �S2�2j . From this we infer

.Wj ^N TN .�//=N '
W
.j�1/Š†

2�2jE.P;Q�/
� :

Since
�0.†

2�2jE.P;Q�/
�/Š�2j�2.E.P;Q�/I �/;

we have deduced that the obstruction �.f / resides in the abelian groupM
.j�1/Š

�2j�2.E.P;Q�/I �/:

By Proposition 4.1, �.f / vanishes whenever f W P ! holimS¨J .N nQS / admits a
homotopy factorization through N nQJ . Conversely, if p� 1C�C†, then �.f /D 0;
we have shown there is such a factorization of f .

Proof of Theorem C Given a multirelative intersection problem f , recall that the
solution space L .f / is the space of homotopy factorizations of f of the form

P !N nQJ ! holim
S¨J

N nQS ;

where we have suppressed the lifting homotopy. Consider the 1–cocartesian square
of spaces

(15)

N nQJ //

��

holimS¨J N nQS

��

N // C.N nQ�/

whose horizontal maps are .1C†/–connected (by the higher Blakers–Massey theorem
applied to the j –cube N nQ� [4, Theorem 2.5]) and whose vertical maps are .1C�/–
connected. By the Blakers–Massey theorem, the square is .1C�C†/–cartesian. Hence,
if F is defined as the homotopy pullback of the diagram given by deleting N nQJ
from the square, then the map N nQJ !F is .1C�C†/–connected.

Suppose that the given multirelative intersection problem comes equipped with a
preferred solution yf W P !N nQJ (where again the lifting homotopy is suppressed).
The solution gives a preferred null-homotopy of the composite

(16) P
f
�! holim

S¨T
N nQS ! C.N nQ�/

as a morphism of T .N /.
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In other words, we have a map

(17) L .f /!N .f /;

where L .f / is the solution space and N .f / is the space of null-homotopies of the
composite (16). With respect to the preferred basepoint of L .f /, this is a map of
based spaces.

Furthermore, N .f / can be interpreted as the moduli space of homotopy factorizations
of f of the form

P !F ! holim
S¨T

N nQS :

Since the map N nQJ ! F is .1C�C†/–connected, we infer by elementary ob-
struction theory that the map L .f /!N .f / is .1�pC�C†/–connected. The rest
of the proof involves identifying N .f /.

On the one hand, rather than considering null-homotopies in T .N /, we can equivalently
add a disjoint copy of N to P to get a null-homotopy in R.N / of the associated
morphism

(18) PC! C.N nQ�/:

Then N .f / can be equivalently defined as the mapping space of null-homotopies
of (18) in R.N /.

On the other hand, the (derived) mapping space

homR.N/.†NP
C; C.N nQ�//

acts on the space N .f / (this is the fiberwise analogue of the classical fact that for a
null-homotopic map of spaces X ! Y , the moduli space of null-homotopies, ie the
space of extensions of the map to the cone on X, is a torsor over the space of maps
†X ! Y ). The orbit of the basepoint of N .f / with respect to this action gives a
preferred weak equivalence

homR.N/.†NP
C; C.N nQ�//'N .f /:

Using the adjunction between †N and �N , we infer that for k WD 1� pC�C†
there is a preferred k–connected (weak) map

(19) L .f /! homR.N/.P
C; �NC.N nQ�//:
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By Theorem 3.12 we also have a .2C�C†/–connected map

C.N nQ�/!�1N .Wj ^N TN .�//:

Applying to the latter the fiberwise loop functor �N , then applying homR.N/.P
C;�/,

and composing with (19) we get a .1�pC�C†/–connected (weak) map

(20) L .f /! homR.N/

�
PC; �1C1N .Wj ^N TN .�//

�
:

By definition, the target of the map (20) is identified with the infinite loop space
associated with the cohomology spectrum

H �.P I†�1N Wj ^N TN .�//:

By the Poincaré duality argument appearing in the proof of Theorem A above, this
spectrum is weakly equivalent toW

.j�1/ŠE.P;Q�/
�C.1�2j /�:

Assembling, we have produced a .1�pC�C†/–connected (weak) map

L .f /!
Y
.j�1/Š

�1.E.P;Q�/
�C.1�2j /�/:

This completes the proof of Theorem C.

4.2 The euclidean case

When N D Rn , we have a corollary to Corollary 3.16. Consider an embedding
QJ �Rn , where now each Qi is a manifold admitting a handle decomposition with
handles having index at most qi , where n� qi � 3.

Consider the j –cubical diagram Rn nQ� . Choose a basepoint in Rn nQJ . Then the
j –cube is based and we consider its total homotopy fiber,

ˆ.Rn nQ�/:

For A�Rn let A� DRn nA denote its complement.

Corollary 4.2 There is a .1C�C†/–connected map

(21) ˆ.Rn nQ�/!
.j�1/ŠY
iD1

�1.†1�jQ�1 ^ � � � ^Q
�
j /;

where �Dmini .n� qi � 2/ and †D
P
i .n� qi � 2/.
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Remark 4.3 The target of the map (21) may also be identified with the infinite loop
space associated with the wedge of .j � 1/Š copies of the spectrum

†1�jnDC.Q1 � � � � �Qj /;

where DC.X/D F.XC; S0/ is the Spanier–Whitehead dual of XC .

5 Proof of Theorem 3.12

The proof of Theorem 3.12 relies on basic results arising in the calculus of the identity
functor which we now summarize. Let

IW T ! T

be the identity functor. By [5] one has a tower of natural transformations

� � � ! P2I! P1I! P0I D �

and compatible natural transformations I ! Pj I. Furthermore, the functor Pj I is
j –excisive in the sense that it transforms strongly cocartesian .jC1/–cubes into
1–cartesian ones. In what follows, we abbreviate notation by setting Pj WD Pj I.

If Y is r –connected, then the map Y ! PjY is .jrC1/–connected. In particular,
when r > 0, the map

Y ! lim
j!1

PjY

is a weak homotopy equivalence.

If Y is a based space, then the j th layer of the tower, that is, the homotopy fiber of
PjY !Pj�1Y , is isomorphic in the homotopy category of functors to the infinite loop
space valued functor

Y 7!�1DjY;

where Dj takes values in spectra.

The functor Dj is classified by a certain spectrum with †j –action, denoted by Lj ,
whose underlying homotopy type is that of a wedge of .j � 1/Š copies of the .1�j /–
sphere spectrum [13; 5, page 706]. Then

(22) DjY ' Lj ^h†j
Y Œj �;

where Y Œj � denotes the j –fold fiberwise smash product Y . This description of Dj
enables one to extend its domain of definition to the category of spectra, ie if A is a
spectrum then DjA is the spectrum Lj ^h†j

AŒj � .
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Remark 5.1 The maps of the tower PjY ! Pj�1Y are principal fibrations in the
sense that there is a homotopy fiber sequence

PjY ! Pj�1Y ! BDjY;

where BDjY is the delooping of DjY given by �1.†DjY / (see [5, page 653]).

We now consider the strongly cocartesian j –cube A� of R.X/. Assume for now
that X is contractible. Without loss in generality we can replace X by the one-point
space. The assignment S 7! PkAS defines a j –cube, denoted by PkA� . A choice of
basepoint in AJ equips A� with the structure of a based j –cube. Then DkA� is a
j –cube of infinite loop spaces. Let

fib.Dk.A�//

denote its total homotopy fiber.

Proposition 5.2 The total homotopy fiber of DkA� is .�C†/–connected if k�jC1.
Furthermore, when k D j there is a .1C�C†/–connected map

fib.Dj .A�//!�1.Lj ^A1 ^ � � � ^Aj /:

Proof Suppose first that A� is a wedge cube on the based spaces X1; : : : ; Xj . Then
Xi is ri –connected. Using (22), the total homotopy fiber of Dk.A�/ may be identified
with the infinite loop space associated with the total homotopy fiber of the j –cube of
spectra

(23) S 7! Lk ^h†k
X
Œk�
S ;

where XS is the wedge of the spaces Xi for i 2 S. Applying the binomial theorem to
expand X Œk�S , direct calculation shows that the total homotopy fiber of (23) decomposes
into a wedge of terms of the form

(24) Lk ^h†s�
.X

Œs1�
1 ^ � � � ^X

Œsj �

j /;

where

�
P
i s1 D k with si � 1 for all i ,

� †s� WD†s1 � � � � �†sj �†k .

If k � j C1 then there is always at least one term si � 2. It follows that the displayed
spectrum is at least .�C†/–connected. Hence, the total homotopy fiber fib.Dk.A�//
is also .�C†/–connected when k � j C 1.
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When kD j , we can ignore those terms in which si �2 since they are highly connected:
the projection away from those terms produces the .1C�C†/–connected map

fib.Dj .A�//!�1.Lj ^A1 ^ � � � ^Aj /:

This completes the proof in the case of wedge cubes.

Turning to the general case, we use the fact that Dk is defined on the category of spectra.
By Lemma 3.7, the j –cube of spectra †1A� is weakly equivalent to a wedge cube on
the spectra †1A1; : : : ; †1Aj . Replacing the spaces Xi of the previous case by the
spectra †1Ai and making the same kind of calculation, the conclusion follows.

Corollary 5.3 Assume that X is contractible and k � j C 1. Then the .jC1/–cube

PkA�! Pk�1A�

is .1C�C†/–cartesian.

Proposition 5.4 Assume that X is contractible. Then the .jC1/–cube

A�! PjA�

is .1C�C†/–cartesian.

Proof If ri � 1 for all i , the result follows easily from induction, Corollary 5.3 and
the convergence of the tower for the identity functor for 1–connected spaces. In the
general case one must proceed differently, using the higher Blakers–Massey theorem.
We are indebted to the referee for communicating the following argument.

We first recall how Y 7! PjY is defined in terms of an auxiliary functor Y 7! TjY as
in [5, Section 1]. The latter is given by taking the homotopy limit of the functor

U 7! Y �U;

where � means topological join and U ranges over the poset of nonempty subsets
of f1; : : : ; j C 1g. There is an evident natural transformation Y ! TjY and PjY is
defined to be the homotopy colimit of the diagram

Y ! TjY ! T 2j Y ! � � � :

For the rest of the proof we set k D f1; 2; : : : ; kg to avoid notational clutter.
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We first determine how cartesian the .jC1/–cube A�! TjA� is. This is the same as
asking the degree to which the .2jC1/–cube

.T; U / 7! AT �U

is cartesian, where T � j and U � j C 1 (note: by our conventions this functor is
contravariant in the first variable and covariant in the second).

For fixed T , the .jC1/–cube U 7! AT � U is strongly cocartesian. Similarly, for
fixed U, the j –cube T 7!AT �U is strongly cocartesian. Any pair .T; U / corresponds
to a subcube whose initial term is AT �U. It follows that this subcube will be 1–
cocartesian whenever jT j � 2 or jU j � 2. Consequently, there are three remaining
types of pairs .T; U / to consider:

(1) jT j D 1 and jU j D 0.

(2) jT j D 0 and jU j D 1.

(3) jT j D jU j D 1.

By inspection, one finds for a type (1) pair that the subcube is .riC1/–cocartesian.
Similarly, for a type (2) pair the subcube is .�C1/–cocartesian and for a type (3) pair
the subcube is .riC2/–cocartesian.

Given a partition of j t j C 1 consisting of sets of these types only, the sum of these
numbers indexed over the sets of the partition is given by

(25) †C j CDC .j C 1�D/.�C 1/;

where D is the number of times a set of type (3) occurs in the partition. To see this,
note that any such partition is determined by a choice of injections aW D ! j and
bW D! j , in which the complement of the image of a defines the type (1) singletons
of the partition and the complement of the image of b defines the singletons of type (2).
Hence, the sum of the numbers for such a partition is given byX

i…a.D/

.ri C 1/C
X

i…b.D/

.�i C 1/C
X

i2a.D/

.ri C 2/;

which clearly coincides with the expression (25).

Observe that (25) achieves a minimum when D is at its maximal value j . It follows
that the minimal value is 1C�C†C 2j . Since we are dealing with a .2jC1/–cube,
we subtract 2j to get 1C�C†, which is how cartesian the cube is by [4, Theorem 2.5].
Hence, the .jC1/–cube A�! TjA� is .1C�C†/–cartesian.
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The next step is to consider TjA�! T 2jC1A� . For each fixed nonempty U � j C 1,
the map of j –cubes

A� �U ! Tj .A� �U/

is of the kind we considered above with the number ri increased by 1 (so † is
increased by j ) and � increased by 1. Hence, the corresponding .jC1/–cube is
.1C.1C�/C.†Cj //–cartesian. Moreover, taking the homotopy limit over U yields
the map of j –cubes TjA� ! T 2j A� . In taking this homotopy limit the degree to
which the latter is cartesian is decreased by j . We infer that TjA� ! T 2j A� is
.2C�C†/–cartesian, which is one better than the estimate we obtained for A�!TjA� .
Repeating this argument, we infer that T kj A�! T kC1j A� is .kC1C�C†/–cartesian
for any k � 0. It follows that A�! PjA� is .1C�C†/–cartesian.

Proof of Theorem 3.12 The proof is a verification in two cases.

Case 1 (X is contractible) There is no loss in generality in assuming that X is a
point. Equip AJ with a basepoint. Then A� is a j –cube of 1–connected based spaces.

Consider the commutative diagram

PjAJ

b1

��

a1
// Pj�1AJ

b2 '

��

a2
// BDjAJ

b3

��

holim
S¨J

PjAS a3

// holim
S¨J

Pj�1AS a4

// holim
S¨J

BDjAS

in which the top and bottom rows form fibration sequences. The map b2 is a homotopy
equivalence since Pj�1 is .j�1/–excisive. The map b3 is equivalent to a principal
fibration in the following sense: it may be identified with the map of infinite loop
spaces arising from the map of spectra

†Dj .A�/! holim
S¨J

†Dj .AS /

associated with the j –cube †Dj .A�/.

Set Wj WD †1�jLj . By Proposition 5.2 there is a .2C�C†/–connected map of
spectra

(26) †fib.Dj .†1A�//!Wj ^SA1 ^ � � � ^SAj ;

where we have implicitly identified †.Lj ^A1 ^ � � � ^Aj /'Wj ^SA1 ^ � � � ^SAj
to avoid displaying the choice of basepoint. The infinite loop space associated with the
source of (26) is identified with the homotopy fiber of the map b3 .
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Consequently,

BDjAJ
b3
�! holim

S¨J
BDjAS !�1.†Wj ^SA1 ^ � � � ^SAj /

is a homotopy fiber sequence in degrees � 2C�C†.

Hence, by Lemma 5.5 below there is a homotopy fiber sequence in degrees � 1C�C†
of the form

(27) PjAJ
b1
�! holim

S¨J
PjAS !�1.Wj ^SA1 ^ � � � ^SAj /:

According to Proposition 5.4, the square

AJ //

��

PjAJ

b1

��

holim
S¨J

AS // holim
S¨J

PjAS

is .1C�C†/–cartesian. Let holimS¨J AS ! �1.Wj ^ SA1 ^ � � � ^ SAj / be the
composition of the bottom map of the square with the second map of (27). Then

(28) AJ ! holim
S¨J

AS !�1.Wj ^SA1 ^ � � � ^SAj /

is also a homotopy fiber sequence in degrees � 1C �C†. By the dual Blakers–
Massey theorem, we conclude that (28) is also a homotopy cofiber sequence in degrees
� 2C�C†.

Consequently, the induced map

C.A�/!�1.Wj ^SA1 ^ � � � ^SAj /

is .2C�C†/–connected.

Case 2 (X is general) Let zX !X be a universal principal bundle for X with topo-
logical structure group G. Then zX is contractible. Let zA� be the strongly cocartesian
j –cube of G–spaces given by the fiber product

zAS WD zX �X AS :

The terminal vertex of this cube is then contractible, and one checks that the argument
in Case 1 preserves equivariance. It follows that there is a .2C�C†/–connected map
of based G–spaces

(29) C. zA�/!�1.Wj ^S zA1 ^ � � � ^S zAj /:
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The result follows by applying the Borel construction � �G zX to (29) to obtain a
.2C�C†/–connected map of R.X/,

C.A�/!�1X .Wj ^X SXA1 ^ � � � ^X SXAj /:

The section ends with an elementary result about fibrations that was used in the proof
of Theorem 3.12. Let

F1 //

��

E1 //

'
��

B1

��

F2 // E2 // B2

be a commutative diagram of connected spaces in which the rows are fibration sequences
and the map E1!E2 is a homotopy equivalence. Here B1! B2 is a map of based
spaces and the fiber over the basepoint of Bi is Fi .

Lemma 5.5 Assume in addition that the map B1 ! B2 sits in a homotopy fiber
sequence B1! B2! B3 in degrees � s . Then the map F1! F2 sits in a homotopy
fiber sequence F1! F2!�B3 in degrees � s� 1.

Proof Equip B3 with the basepoint from B2 . The composition E1!E2!B2!B3

is null-homotopic. Hence, E2!B2!B3 is also null-homotopic. Let E2! PB3 be
adjoint to a null-homotopy, where PB3 is the based path space. Then the diagram

E1 //

��

E2 //

��

PB3

��

B1 // B2 // B3

commutes. The result follows by taking fibers vertically.

6 Multiple disjunction

Let P, Q1; : : : ;Qj and N be as in Section 1. Let

E.P;N /

denote the space of smooth embeddings from P to N. Then S 7! E.P;N nQS /

forms a j –cube of spaces, denoted by E.P;N nQ�/. The natural transformation from
embeddings to functions

(30) E.P;N nQ�/! F.P;N nQ�/

is a map of j –cubes. One of the main results of [6] is:
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Theorem 6.1 [6, Theorem E] Assume p; qi � n� 3. Then the .jC1/–cube (30) is
.n�2p�1C†/–cartesian.

Proof of Theorem D Let

f 2 holim
S¤J

emb.P;N nQS /

be any point. Then f is represented by a map of .jC1/–ads

�j�1!E.P;N /;

where the i th face of �j�1 is constrained to map into the subspace E.P;N nQiC1/
for i D 0; 1; : : : ; j � 1. Note that by forgetting information, we may also regard f
as a map P ! holimS¤J N nQS , and therefore we have an associated multirelative
intersection problem. Consequently, Theorem D follows by combining Theorem 6.1
with Theorem A.

Remark 6.2 Theorem D is a multirelative version of [12, Theorem 2.2].

7 The embedding tower

In [16, Section 13; 15], we described an invariant �.f / which was shown to be
a complete obstruction to regularly homotoping an immersion f W P ! N to an
embedding in the metastable range. The goal of this section is to generalize this result
beyond the metastable range when N is highly connected.

7.1 Construction of the embedding tower

Let P be a smooth manifold of dimension p without boundary and let N be a smooth
manifold of dimension n. We let E.P;N / denote the space of embeddings of P in N,
defined as the geometric realization of the simplicial set whose k–simplices are the
smooth families of embeddings from P to N that are parametrized by the standard
k–simplex.

Assume P is compact. Let Oj WD Oj .P / be the partially ordered set whose elements
are open subsets U � P such that U is diffeomorphic to Rp �T , where T is a set of
cardinality at most j . A morphism U ! V is given by an inclusion of subsets. The
j th stage of the Goodwillie–Weiss embedding tower is defined by

Ej .P;N / WD holim
U2Oj

E.U;N /:
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The inclusion Oj�1 ! Oj induces a map Ej .P;N / ! Ej�1.P;N /. The map
E.P;N /!Ej .P;N / is given by restricting embeddings to elements of Oj .

If p�n�1 then E1.P;N / is homotopy equivalent to I.P;N /, the space of immersions
from P to N (by a reformulation of Smale–Hirsch theory). Hence, a basepoint of
E1.P;N / amounts to selecting an immersion P ! N up to contractible choice. In
what follows, we fix such a basepoint and define

Ej .P;N / WD fiber.Ej .P;N /!E1.P;N //:

It follows that the square

(31)

Ej .P;N / //

��

Ej .P;N /

��

Ej�1.P;N / // Ej�1.P;N /

is homotopy cartesian. Furthermore, the tower fEj .P;N /g is the manifold calculus
tower associated with the functor U 7!E.U;N /, where U varies throughout the open
subsets of P. Call this the reduced embedding tower. Note that E1.P;N / is the
one-point space.

7.2 Configuration spaces

For a set J of cardinality j , set

EJ .N / WDE.J;N /:

If we equip J with a total ordering, then EJ .N / is the configuration space of finite
ordered subsets of N of cardinality j . A choice of embedding J !N equips EJ .N /
with a basepoint. To each T � U � J there is a projection map EU .N /!ET .N /.
These assemble into a j –cube of based spaces E�.N /.

Lemma 7.1 The j –cube E�.N / is ..j�1/.n�2/C1/–cartesian.

Proof The j –cube E�.N / can be written as a map of .j�1/–cubes

ES[1.N /!ES .N /;

where S � J1 WD f2; : : : ; j g. The displayed map is a fibration whose fiber at the
basepoint is the based space N nS. These form a strongly cocartesian .j�1/–cube N� ,
all of whose maps are .n�1/–connected. Then N� is ..j�1/.n�2/C1/–cartesian by
the higher Blakers–Massey theorem.
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7.3 The unstable obstruction

For j � 2 let
�
P
j

�
denote the configuration space of subsets S � P of cardinality j .

Over this space we consider two fibrations. The first fibration

E!
�
P
j

�
has fiber over S 2

�
P
j

�
given by the configuration space ES .N /.

The second fibration
D!

�
P
j

�
has fiber over S given by holimT¨S ET .N /.

Then one has an evident map of fibrations

(32) E!D:

A point x 2Ej�1.P;N / determines a section t D t .x/ of D!
�
P
j

�
. It also determines

a partial section s D s.x/ of E !
�
P
j

�
along an open collar of the boundary of a

compactification of
�
P
j

�
. The sections agree with respect to the map (32).

The following is essentially just a reformulation of Weiss’s description of the layers of
the embedding tower.

Lemma 7.2 Assume j � 2. The homotopy fiber of Ej .P;N /!Ej�2.P;N / taken
at x is homotopy equivalent to the space of sections of E!

�
P
j

�
which are compatible

with t and which coincide with s near infinity. In particular, x lifts to a point of
Ej .P;N / if and only if this section space is nonempty.

Remark 7.3 Another formulation of the lemma is that the square

Ej .P;N / //

��

�.E/

��

Ej�1.P;N / // �1.E/��1.D/ �.D/

is 1–cartesian, where � denotes the space of sections and �1 denotes the space of
germs of sections near infinity.
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Proof of Lemma 7.2 Given x , define a third fibration

F !
�
P
j

�
whose fiber at S is the total homotopy fiber of the cube T 7! ET .N / for T � S.
Denote this fiber by ˆS .N I x/. It is an unbased space. Note that ˆS .N I x/ is well
defined since when T ¨ S, each of the spaces E.T;N / is based using x .

Moreover, x gives a partial section of this fibration at infinity. Weiss shows that
the space of compactly supported sections of this fibration (ie the space of sections
agreeing with the partial section near infinity) coincides with the homotopy fiber of
Ej .P;N /!Ej�1.P;N / at x . The latter space is homotopy equivalent to the space
in the statement of the lemma.

7.4 A cohomological obstruction

If we suspend the fibers of D!
�
P
j

�
, then the obstruction to finding a compactly sup-

ported section lies in a spectrum cohomology group. If certain dimensional restrictions
are present, then nothing is lost in suspending.

When X is an unbased space, we define its suspension spectrum be the homotopy
fiber of the map of spectra †1XC! S0 that is induced by the map from X to the
one-point space. By slight abuse in notation, denote the homotopy fiber by †1X.

Definition 7.4 Let
D!

�
P
j

�
be the fiberwise spectrum whose fiber at S given by †1ˆS .N I x/. This comes
equipped with a section near infinity. Note that D depends on the choice of x .

The total obstruction e.x/ to finding a compactly supported section of D lies in ��1
in the spectrum of compactly supported sections, that is,

e.x/ 2H�1cs

��
P
j

�
ID
�
:

Lemma 7.5 If x 2Ej�1.P;N / lifts to Ej .P;N /, then e.x/ vanishes. The converse
is true provided that 2.j � 1/.n� 2/� jpC 1� 0.
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Proof The “if” part is clear. For the converse, one observes that the map ˆS .N I x/!
�1†1ˆS .N I x/ is .2.j�1/.n�2/C1/–connected using the Freudenthal suspen-
sion theorem and fact that ˆS .N I x/ is ..j�1/.n�2//–connected by Lemma 7.1. It
follows that the map of compactly supported section spaces is .2.j�1/.n�2/�jpC1/–
connected.

7.5 Highly connected manifolds

When N is highly connected, the obstruction to lifting simplifies considerably.

Definition 7.6 For S �
�
P
j

�
let

CS .N /

denote the mapping cone of the map

ES .N /! holim
T¨S

ET .N /:

Remark 7.7 In contrast with ˆS .N I x/, the space CS .N / doesn’t depend on x and
it has a preferred basepoint.

Lemma 7.8 Assume j � 2 and N is r –connected, where r � n�2. Then the square

ES .N / //

��

holimT¨S ET .N /

��

C // CS .N /

is ..j�1/.n�2/CrC1/–cartesian, where C is the cone on ES .N /.

Proof By definition, the square is 1–cocartesian. Furthermore, the map ES .N /!
holimT¨S ET .N / is ..j�1/.n�2/C1/–connected by Lemma 7.1.

Since N is r –connected and r � n�2, it follows that ES .N / is r –connected. Hence,
the left vertical map is .rC1/–connected. The conclusion now follows from the
Blakers–Massey theorem.

Let

(33) C !
�
P
j

�
be the fiberwise spectrum whose fiber at S is †1CS .N /. This fiberwise spectrum
doesn’t depend on x .
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The section t induces another section of (33); call it t 0. The latter section is homotopic
to the zero section near infinity. Then an obstruction to lifting x 2 Ej�1.P;N / to
Ej .P;N / is given by the associated compactly supported spectrum cohomology class
of t 0 :

e0.x/ 2H 0
cs

��
P
j

�
IC
�
:

Lemma 7.9 Assume j � 2 and N is r –connected with r � n � 2. If x lifts to
an element of Ej .P;N /, then e0.x/ vanishes. Furthermore, the converse holds if
r � p� 1� .j � 1/.n�p� 2/.

Proof The proof uses the commutative square

†ˆS .N I x/ //

��

CS .N /

��

�1†1ˆS .N I x/ // �1†1CS .N /

Since CS .N / and †ˆS .N I x/ are ..j�1/.n�2/C1/–connected (by Lemma 7.1),
the vertical maps are .2.j�1/.n�2/C3/–connected by the Freudenthal suspension
theorem.

By Lemma 7.8, the horizontal maps are ..j�1/.n�2/CrC2/–connected. Hence, the
composite

†ˆS .N I x/! CS .N /!�1†1CS .N /

is ..j�1/.n�2/CrC2/–connected. By elementary obstruction theory the obstructions
e0.x/ and e.x/ contain the same information when jp < .j � 1/.n� 2/C r C 2, that
is, when r � p� 1� .j � 1/.n�p� 2/.

Corollary 7.10 Assume j � 2. If N is contractible, then x lifts to an element of
Ej .P;N / if and only if e0.x/D 0.

Proof In this case we can take r D n�2. Then the inequality of Lemma 7.9 becomes
n�2�p�1�.j�1/.n�p�2/, which is automatically satisfied because p�n�3.

7.5.1 Equivariant reformulation Set J WDf1; : : : ; j g. Then the map EJ .P /!
�
P
j

�
which assigns to an embedding its image is a regular covering space with structure
group †j , where the latter acts on EJ .P / via the automorphisms of J.

Algebraic & Geometric Topology, Volume 19 (2019)



Homotopical intersection theory, III 1119

The pullback of C !
�
P
j

�
along EJ .P /!

�
P
j

�
coincides with the fiberwise spectrum

with †j –action

(34) EJ .P /�CJ !EJ .P /;

where CJ WD†
1CJ .N / is a spectrum with †j –action (recall that CJ .N / is the total

homotopy cofiber of the j –cube E�.N /; the action of †j arises from the evident
action of †j on the cube). Note that †j acts diagonally on EJ .P / � CJ . When
considered unequivariantly, (34) is a trivial fiberwise spectrum.

Then the obstruction e0.x/ may be interpreted as an element of the equivariant coho-
mology group

H 0
cs;†j

.EJ .P /ICJ /;

or, alternatively, as an element of the function space of compactly supported †j –
equivariant stable maps from EJ .P / to CJ .

7.5.2 The homological invariant By Poincaré duality, there is an equivalence of
spectra

H 0
cs;†j

.EJ .P /ICJ /ŠH
†j

0 .EJ .P /I
��CJ /;

where ��CJ is the twist of CJ by the inverse of the tangent bundle of EJ .P / (the
latter is just the restriction of the product of j copies of the tangent bundle of P ).

Definition 7.11 Let
�.x/ 2H

†j

0 .EJ .P /I
��CJ /

be the class that corresponds to e0.x/ via the Poincaré duality isomorphism.

Proof of Theorem E The procedure described above defines a function

�W �0.Ej�1.P;N //!H
†j

0 .EJ .P /I
��CJ /

such that �.x/D 0 when x lifts to �0.Ej .P;N // By Lemma 7.9 the converse is true
provided r � p� 1� .j � 1/.n�p� 2/.

8 Spaces of link maps

Given manifolds P1; : : : ; Pj of dimension dimPiDpi and a connected n–manifold N
without boundary, a link map is a continuous map

f W P1 t � � � tPj !N
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such that f .Pi /\f .Pk/D∅ for i ¤ k . We will typically assume that Pi is connected
and boundaryless. Set P WD hP1; : : : ; Pj i and write

L .P ; N /

for the space of link maps in the compact–open topology.

Recall that J D f1; 2; : : : ; j g. For a subset S � J, set

PS WD
G
i2S

Pi and P .S/ WD
Y
i2S

Pi :

Then, to each S � J, we have a space

L S .P ; N /

whose points are the maps

f W PJ !N

such that f .Pi /\ f .Pk/D ∅ for each pair of distinct elements i; k 2 S. Note that
L J .P ; N /DL .P ; N / is the space of link maps and if jS j � 1 then L S .P ; N /D

F.PJ ; N / is the function space of maps with no constraint. The assignment

S 7!L S .P ; N /

is contravariant and defines a j –cube of spaces, which we denote by

L �.P ; N /:

Remark 8.1 There is a related j –cube

L .P�; N /

whose value at S � J is the space of link maps f W PS !N. Then the evident map of
j –cubes

L �.P ; N /!L .P�; N /

is 1–cartesian because for each S we have a homotopy fiber sequence

F.P.JnS/; N /!L S .P ; N /!L .PS ; N /;

and the j –cube S 7! F.P.JnS/; N / is 1–cartesian if j > 1.
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8.1 Homotopy coherent Brunnian links

Henceforth, we fix an embedding
J �N

and identify J with its image. Let cW
F
i Pi ! N be the link map which sends Pi

to i . Call c the trivial link map. Then c equips L �.P ; N / with the structure of a
j –cube of based spaces. If n� 2, then the component of the basepoint is independent
of the choice of embedding J �N.

Remark 8.2 Milnor [21] considers the case of link maps f W
Fj
iD1 Pi ! N in eu-

clidean space N DR3 in which each Pi is a circle S1 . Milnor defines f to be “trivial”
if there is an extension of f to a link map

F
i D

2! R3 . Note that f is trivial in
Milnor’s sense if and only if f is homotopic through link maps to the trivial link
map c .

Definition 8.3 The space of homotopy coherent Brunnian link maps

B.P ; N /

is the total homotopy fiber of the j –cube of based spaces L �.P ; N /.

Remarks 8.4 By Remark 8.1, an equivalent definition up to homotopy of B.P ; N /

is given by taking the total homotopy fiber of the j –cube L .P�; N /.

A point of B.P ; N / is given by data consisting of a link map f W PJ !N together
with a homotopy coherent set of rules which to each S ¨ J associates a path from the
associated point of L S .P ; N / to the basepoint.

By contrast, Milnor [21, Section 5] defines a link map f W
Fj
iD1 S

1!R3 to be almost
trivial if every proper sublink map of f is trivial.3 If j � 4 then this notion of Brunnian
fails to be homotopy coherent. Thus, a homotopy coherent Brunnian link map gives an
almost trivial link map but not conversely.

Note that there is an evident map

B.P ; N /! fiber
�

L J .P ; N /!

jY
iD1

L Ji .P ; N /

�
;

3Subsequent authors call Milnor’s notion of almost trivial link map a Brunnian link map. The earliest
reference employing this language seems to be [3].
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where Ji D J n fig, P D hS1; : : : ; S1i and N DR3 . However, if j � 4, this map is
not a weak equivalence. Milnor’s almost trivial link maps are those link maps whose
components are in the image of the displayed homotopy fiber.

Terminology 8.5 As we only consider homotopy coherent Brunnian link maps in this
paper, we henceforth refer to B.P ; N / simply as the space of Brunnian link maps,
despite the different usage of this term in the literature.

8.2 The invariants

For each S � J, one has a map

(35) L S .P ; N /! F.P .J /; ES .N //;

where the target is the function space of maps P .J /!ES .N /. One defines (35) by
mapping a link map f to the map

.x1; : : : ; xj / 7!
Y
i2S

f .xi /:

Remark 8.6 When S D J, the map (35) is Koschorke’s �–invariant L .P ; N /!

F.P .J /; EJ .N //.

If we let S vary, (35) defines a map of j –cubes of based spaces

(36) L �.P ; N /! F.P .J /; E�.N //:

Remark 8.7 For S � J, let N J .S/ be the space of j –tuples x 2N J such that the
image of x under the projection N J !N S lies in the subspace ES .N /�N S (here
N S WD F.S;N /). In other words, there is a pullback diagram

N J .S/ //

��

N J

��

ES .N / // N S

The collection fN J .S/gS�J forms both a stratification of N J and a j –cube of based
spaces.

Algebraic & Geometric Topology, Volume 19 (2019)



Homotopical intersection theory, III 1123

The operation S 7! F.P .J /; N J .S// is a j –cube of based spaces, which we denote
by F.P .J /; N J . � //. Then we have a commutative diagram of j –cubes

(37)

L �.P ; N / //

��

F.P .J /; N J .�//

��

L .P�; N / // F.P .J /; E�.N //

in which the vertical maps form 1–cartesian .jC1/–cubes (even more is true if
N happens to be contractible: in this case the vertical maps are objectwise weak
equivalences of j –cubes). The map (36) is just the composition of the maps in
diagram (37).

The top horizontal map of diagram (37) can be viewed as a kind of coassembly map
which records the passage from global to local linking data. More precisely, set
J WD h1; 2; : : : ; j i, where we think of i 2 J as a manifold of dimension zero. Then,
by definition,

N J .S/DL S .J ; N /;

and the top horizontal map of (37) associates to f W
F
i Pi !N the map which sends

a j –tuple .x1; : : : ; xj / 2 P .J / to the composed map
F
i xi �

F
i Pi !N.

One has a similar description of the bottom horizontal map by reinterpreting the
configuration space ES .N / as the space of link maps L .S ; N /.

Definition 8.8 Let
ˆE�.N /

be the total homotopy fiber of the j –cube E�.N / taken with respect to the given
embedding J !N. (Alternatively, ˆE�.N / can be defined as the total homotopy fiber
of the .j�1/–cube N� appearing in the proof of Lemma 7.1.)

Then the map of j –cubes (36) induces a map of total homotopy fibers

(38) `W B.P ; N /! F.P .J /; ˆE�.N //;

called the higher unstable linking number map.

Remark 8.9 Let OP be the partially ordered set given by U D hU1; : : : ; Uj i, in
which Ui is an open set in Pi , and U � U 0 if and only if Ui � U 0i for all i . Then

U 7!B.U ; N /
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defines a contravariant functor OP !T� . Its multilinearization in the sense of Weiss’s
manifold calculus coincides up to homotopy with the higher unstable linking number
map ` (see [23; 22]).

Conjecture 8.10 The map ` (see (38)) is .1C†0/–connected, where

†0 D
X
i

.n� 2pi � 2/:

Remark 8.11 The j D 2 case of Conjecture 8.10 is known in the affirmative: it is
the main result of [7].

8.2.1 The euclidean case, stabilization Assume N DRn . Then ˆ.E�.Rn// coin-
cides with the total homotopy fiber of the based .j�1/–cube

S 7!Rn nS

for S � J1 (see the proof of Lemma 7.1). By this identification and Corollary 4.2
applied to Qi WD fig �Rn , we infer there is a .j.n�2/C1/–connected map

(39) ˆE�.R
n/!

.j�2/ŠY
iD1

�1S .j�1/.n�2/C1:

Applying the functor F.P .J /;�/ to (39), one obtains a map of function spaces

(40) F.P .J /; ˆE�.R
n//!

.j�2/ŠY
iD1

F st.P .J /; S .j�1/.n�2/C1/

which is .1C†/–connected, where †D
Pj
iD1.n�pi � 2/. The composition of (38)

with (40) defines the higher stable linking number map

(41) �W B.P ;Rn/!
.j�2/ŠY
iD1

F st.P .J /; S .j�1/.n�2/C1/:

A version of (41) also appears in the work of Munson [22]. Note that [22, Corollary 1.2]
gives a connectivity estimate one less than ours (see [22, Remark 3.6]).

Example 8.12 Let nD j D 3 and Pi D S1 for i D 1; 2; 3. Then the higher stable
linking number map � is of the form

B.P ;R3/! F st..S1/�3; S3/:
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Taking path components gives a function �0.B.S1� ;R
3//! Z. This can be described

as the rule which assigns to a three-component Brunnian link in R3 a certain Massey
product in the link complement [24].

Since 1C†� 1C†0, we infer that Conjecture 8.10 with N DRn is equivalent to the
following:

Conjecture 8.13 The higher stable linking number map � (see (41)) is .1C†0/–
connected.

8.3 Evidence for Conjecture 8.13

In this subsection we prove Theorem H, which we submit as evidence for Conjecture
8.13.

As above, P1; : : : ; Pj are closed manifolds, but now we suppose that each Pi embeds
in Rn . In what follows, we don’t require the Pi to be pairwise disjoint and we will
not need to assume that P1 is a submanifold of Rn .

Recall the fixed embedding J �Rn . Choose n–balls B.i/ containing i 2 J n 1 and
assume that the collection fB.i/g is pairwise disjoint. Choose an embedding Pi �B.i/
for i ¤ 1. Using the inclusions B.i/�Rn , we obtain an embedding

P2 t � � � tPj �Rn:

Consider the .j�1/–cube of function spaces

S 7! F.P1;R
n
nPS /; S � J1:

This is a based cube, where the basepoint of F.P1;Rn n PS / is the constant map
having value 1 2Rn nPS . Consequently, the total homotopy fiber of this cube is given
by

(42) F.P1; ˆ.R
n
nP�//;

where now the convention is that Rn nP� is the .j�1/–cube given by Rn nPS in
which S ranges through subsets of J1 .

For S � J1 , consider the commutative diagram

F.P1;Rn nPS / //

aS

��

L St1.P ;Rn/ //

bS

��

F.P .J /; ESt1.Rn//

cS

��

F.P1;Rn/ // L S .P ;Rn/ // F.P .J /; ES .Rn//
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As S varies, each of the vertical maps assembles to a morphism of .j�1/–cubes, ie
each gives a j –cube a� , b� and c� , respectively. The j –cube b� is just L �.P ;Rn/.
Similarly, c� is the j –cube F.P .J /; E�.Rn//. If we consider a� as a map of .j�1/–
cubes, then its target is the constant .j�1/–cube on the contractible space F.P1;Rn/;
in particular, the target of a� is 1–cartesian. Hence, the total homotopy fiber ˆ.a�/
is identified with the total homotopy fiber of the source of a� , and the latter coincides
with F.P1; ˆ.Rn n P�//, ie the source of the map (42). Consequently, taking the
total homotopy fibers of a� , b� and c� and composing with the map (40) results in a
commutative diagram

(43)

F.P1; ˆ.Rn nP�// // B.P ;Rn/
`

//

� ((

F.P .J /; ˆE�.Rn//

��

F st.P .J /; S .j�1/.n�2/C1/

such that the right vertical map is .1C†/–connected (see (40)).

Remark 8.14 In the above, we’ve neglected to mention that the map of cubes a�! b�

isn’t basepoint-preserving. This means that the map doesn’t define a map of total
homotopy fibers in an obvious way.

However, the map is easily seen to be basepoint-preserving up to a preferred path (the
path is defined by the radial deformation retraction of each ball B.i/ onto its center i ).
It is this preferred path that enables us to define the map from the total homotopy fiber
of a� to the total homotopy fiber of b� , which is the leftmost map in (43).

Claim 8.15 The horizontal composite

(44) F.P1; ˆ.R
n
nP�//! F.P .J /; ˆE�.R

n//

of diagram (43) is .1� ypC†/–connected.

The claim, proved below, gives evidence for the validity of Conjecture 8.13: it implies
that ` is a retraction on homotopy in degrees � 1� ypC† (the same is true for � since
the vertical map of (43) is .1C†/–connected). Furthermore, we have 1� ypC†�1C†0,
so � will be a retraction in degrees � 1C†0. Consequently, the proof of Theorem H
has been reduced to verification of the claim.
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Proof of Claim 8.15 For S � J1 , consider the pullback diagram

ES //

��

ESt1.Rn/

��

P .J1/ // ES .Rn/

where the right vertical map is given by projection and the bottom horizontal map is
the projection P .J1/ ! P .S/ followed by the inclusion P .S/ � ES .Rn/. Observe
that the fiber of ES ! P .J1/ at a point .x2; : : : ; xj / is given by Rn n fxigi2S .

The map P .J1/!ES .Rn/ factors through the contractible space B.J1/ WD
Q
i B.i/,

so the fibration ES ! P .J1/ is trivializable. Let �.ES / be the space of sections of
ES ! P .J1/ . Define a map

Rn nPS ! �.ES /

by sending a point z 2Rn nPS to the section given by .x2; : : : ; xj / 7! z . This makes
sense since z also lies in Rn n fxigi2S .

As S varies we obtain a map of J1–cubes

(45) Rn nP�! �.E�/;

and applying the functor F.P1;�/ to the induced map of total homotopy fibers of (45)
yields the map of the claim.

Hence, it suffices to prove that (45) is .1C�2C†2/–cartesian, where

(46) �2 WD min
2�i�j

.n�pi � 2/; †2 WD

jX
iD2

.n�pi � 2/;

since F.P1;�/ reduces connectivity by p1 and

1C�2C†2�p1 D 1� ypC†:

We will explain the proof when 2� j � 3. The remaining cases are analogous to the
case j D 3 and we will leave them for the reader to verify.

When j D 2, it is readily checked that the statement to be proved amounts to the
assertion that the map

Rn nP2! F.P2; S
n�1/

given by

z 7!

�
x 7!

x� z

jx� zj

�
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is .1C2.n�p2�2//–connected. This follows from the commutative diagram

Rn nP2 //

��

F.P2; S
n�1/

��

�1†1.Rn nP2/ // F st.P2; S
n�1/

where the left vertical map is .1C2.n�p2�2//–connected by the Freudenthal sus-
pension theorem, the right vertical map is .1�pC2.n�2//–connected, also by the
Freudenthal suspension theorem, and the lower horizontal map is a homotopy equiva-
lence by Spanier–Whitehead duality.

When j D 3 one proceeds as follows: We think of the square RnnPS for S �f2; 3g as
defining an isotopy functor �W OP2

�OP3
! T� which assigns to an open set U � P2

and an open set V � P3 the total homotopy fiber of the square

U �\V � //

��

V �

��

U � // Rn

where A� denotes the complement of A�Rn . Similarly, one has an isotopy functor
�]W OP2

�OP3
!T� associated with the total homotopy fiber of the square S 7!�.ES /.

In fact, the latter is easy to identify: it is given by

.U; V / 7! F.U �V; Sn�1 [ Sn�1/;

where Sn�1 [ Sn�1 is the total homotopy fiber of the wedge square on Sn�1 . The
natural map

(47) �.U; V /! �].U; V /

is a kind of bilinearization (or coassembly) in the sense that

� its value when U and V are open balls is a homotopy equivalence;

� �].U; V / is linear in each variable in the sense of isotopy calculus.

Furthermore, (47) is initial with respect to these properties. On the other hand,
Corollary 3.16 (see Corollary 4.2 and Remark 3.17) defines a natural transformation

(48) �.U; V /!�1†1.S�1 ^U � ^V �/

whose connectivity can be described as follows: If U is a tubular neighborhood of a
closed manifold of dimension k1 and V is a tubular neighborhood of a closed manifold
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of dimension k2 , then (48) is
�
1Cmin .n�k1�2; n�k2�2/C

P
.n�ki�2/

�
–connected.

In particular, it is .3n�5/–connected when U and V are balls.

The functor .U; V / 7! �1.S�1 ^ U � ^ V �/ is also bilinear. In fact, by Spanier–
Whitehead duality it is naturally equivalent to the functor  given by

.U; V / 7! F.U �V;�1†1.S2n�3//:

As �! �] is initial in the homotopy category of functors, there is a natural transfor-
mation

(49) �]!  

that yields a factorization � ! �] !  . Clearly, (49) is induced by a map of
spaces Sn�1 [ Sn�1! �1†1.S2n�3/. Furthermore, it is automatic that the map
�].U; V /!  .U; V / is .3n�5/–connected when U and V are balls.

It follows that the map �].P2; P3/!  .P2; P3/ is .3n�5�p2�p3/–connected. As
3n�5�p2�p3 is strictly larger than 1C�2C†2 , it follows that the map �.P2; P3/!
�].P2; P3/ is .1C�2C†2/–connected, as was to be shown.

Example 8.16 Let P D hS1; : : : ; S1i be an ordered j –tuple of circles and let nD 3.
By Theorem H,

�0.�/W �0.B.P ;R
3//!

.j�2/ŠY
iD1

Z

is surjective. We conjecture that �0.�/ coincides with Milnor’s �–invariants [21,
Section 5] on the set of (classical) Brunnian link maps.

8.4 Postscript: the two-component case

When j D 2 there is some additional evidence for Conjecture 8.13 with the numerical
improvements suggested by Theorem H. Let P D hP;Qi, with p WD dimP and
q WD dimQ . In this situation, � is the classical stable linking pairing

(50) L .hP;Qi;Rn/! F st.P �Q;Sn�1/;

which associates to a link map f tgW P tQ!Rn the map

.x; y/ 7!
f .x/�g.y/

jf .x/�g.y/j
:
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On path components the above gives a function of pointed sets

(51) ˛W �0.L .hP;Qi;Rn//! fPC ^QC; S
n�1
g;

where we have identified the set of path components of F st.P �Q;Sn�1/ with the
abelian group of stable homotopy classes of based maps PC ^QC! Sn�1 .

Suppose A and B are pointed sets. We denote the basepoint in each case by �. A
basepoint-preserving map hW A ! B is said to be weakly injective if there are no
nontrivial solutions to the equation h.x/D�. If h is a homomorphism of groups, then
weak injectivity implies injectivity (compare [9, Lemma 1.1]).

Proposition 8.17 Assume that Q �Rn is a submanifold of codimension � 3. Then
the function ˛ is a surjection on path components if 2n�2q�p�3� 0. Furthermore,
if 2n� 2q�p� 3 > 0 then ˛ is weakly injective.

Remarks 8.18 (1) Proposition 8.17 gives a better estimate than [7], but at the
expense of an additional hypothesis on Q .

(2) The number 2n� 2q �p � 3 may be rewritten in the form 1� qC†, where
†D .n�p� 2/C .n� q� 2/. This is the number of Theorem H when j D 2.
Hence, only weak injectivity needs to be verified.

(3) Proposition 8.17 suggests that the connectivity estimate of Conjecture 8.13 might
be improved to 1� ypC† under the additional assumption that P2; : : : ; Pj �Rn

are submanifolds of codimension � 3.

(4) Proposition 8.17 delivers more information in the spherical case P D Sp and
Q D Sq with q � n � 3. Then �0.L .hSp; Sqi;Rn// possesses a group
structure (see [28; 17, page 765]) and the function ˛ becomes a homomor-
phism. Consequently, weak injectivity implies injectivity and we recover [28,
page 190]. We infer that Proposition 8.17 implies that ˛ is an isomorphism
when 2n�2q�p�3 > 0. According to [9, Theorem 1.1], in the spherical case
˛ is actually an isomorphism if 3n� 2q� 2p� 4 > 0 and p; q � 1.

Proof of Proposition 8.17 As pointed out above, we only need to verify the last part
of the statement. Let

x WD f tg 2L .hP;Qi;Rn/

be any point. We can assume without loss in generality that f W P !Rn is a smooth
map. We first show how to find a path in L .hP;Qi;Rn/ from x to x0 D .f; h/ in
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which h is a smooth embedding. It then suffices to prove that if the stable linking
number of x0 is trivial then the map f W P !Rn n h.Q/ is null-homotopic.

Consider the commutative square

E.Q;Rn nf .P // //

��

F.Q;Rn nf .P //

��

E.Q;Rn/ // F.Q;Rn/

in which E.�;�/ denotes the space of embeddings. By Lemma 8.19 below, the
square is .2n�2q�p�3/–cartesian. If particular, if we use the preferred basepoint
of E.Q;Rn/, it follows that, when 2n � 2q � p � 3 � 0, we can find an isotopy
of the submanifold Q � Rn to an embedding hW Q ! Rn n f .P / such that the
underlying map of this embedding is homotopic to the map gW Q!Rn nf .P /. Then
x0 D .f; h/ 2L .hP;Qi;Rn/ is in the same path component as x .

But, as we’ve seen above, the composition

F.P;Rn n h.Q//!L .hP;Qi;Rn/! F st.P �Q;Sn�1/

is .2n�2q�p�3/–connected. In particular, if 2n�2q�p�3> 0 then the triviality of
the stable linking number of x0 implies that the map P !Rnnh.Q/ is null-homotopic.

The following result was used in the proof of Proposition 8.17:

Lemma 8.19 Assume N is a connected smooth n–manifold, and let P and Q be
closed smooth manifolds of dimensions p and q . Assume q � n� 3. Let f W P !N

be a smooth map. Then the square

E.Q;N nf .P // //

��

F.Q;N nf .P //

��

E.Q;N/ // F.Q;N /

is .2n�2q�p�3/–cartesian.

Remark 8.20 When f is an embedding, this amounts to the j D 2 case of [6,
Theorem E].
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Proof sketch The argument was communicated to us by Tom Goodwillie. If we
replace embeddings with immersions, then the analogous diagram is 1–cartesian by
Smale–Hirsch theory (in this instance we only need to assume q � n� 1). Hence, it
suffices to show that the square

E.Q;N nf .P // //

��

I.Q;N nf .P //

��

E.Q;N/ // I.Q;N /

is .2n�2q�p�3/–cartesian, where I.�;�/ denotes the space of immersions.

The proof then proceeds by comparing the homotopy fibers of the horizontal maps
of the square. The map N n f .P /!N is .n�p�1/–connected by transversality. If
q � n� 3, then the Goodwillie–Weiss embedding calculus applied to the embedding
spaces E.Q;N n f .P // and E.Q;N/ gives towers for these homotopy fibers, where
the first nontrivial layer is in degree j � 2. The homotopy-theoretic model for these
layers provided by [30] implies that the map of the j th layers is .2n�2q�p�3/–
connected for all j . The conclusion then follows from the five lemma.
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Rips filtrations for quasimetric spaces and
asymmetric functions with stability results

KATHARINE TURNER

The Rips filtration over a finite metric space and its corresponding persistent homology
are prominent methods in topological data analysis to summarise the “shape” of data.
Crucial to their use is the stability result that says if X and Y are finite metric spaces
then the (bottleneck) distance between the persistence diagrams constructed via the Rips
filtration is bounded by 2dGH.X; Y / (where dGH is the Gromov–Hausdorff distance).
A generalisation of the Rips filtration to any symmetric function f W X � X ! R
was defined by Chazal, de Silva and Oudot (Geom. Dedicata 173 (2014) 193–214),
where they showed it was stable with respect to the correspondence distortion distance.
Allowing asymmetry, we consider four different persistence modules, definable for
pairs .X; f / where f W X �X ! R is any real valued function. These generalise
the persistent homology of the symmetric Rips filtration in different ways. The first
method is through symmetrisation. For each a 2 Œ0; 1� we can construct a symmetric
function syma.f /.x; y/D aminfd.x; y/; d.y; x/gC .1� a/maxfd.x; y/; d.y; x/g .
We can then apply the standard theory for symmetric functions and get stability as a
corollary. The second method is to construct a filtration fRdir.X/tg of ordered tuple
complexes where .x0; x2; : : : ; xp/ 2Rdir.X/t if d.xi ; xj /� t for all i � j . Both our
first two methods have the same persistent homology as the standard Rips filtration
when applied to a metric space, or more generally to a symmetric function. We then
consider two constructions using an associated filtration of directed graphs or preorders.
For each t we can define a directed graph fD.X/tg where directed edges x! y are
included in D.X/t whenever maxff .x; y/; f .x; x/; f .y; y/g � t (note this is when
d.x; y/� t for f D d a quasimetric). From this we construct a preorder where x � y
if there is a path from x to y in D.X/t . We build persistence modules using the
strongly connected components of the graphs D.X/t , which are also the equivalence
classes of the associated preorders. We also consider persistence modules using a
generalisation of poset topology to preorders.

The Gromov–Hausdorff distance, when expressed via correspondence distortions,
can be naturally extended as a correspondence distortion distance to set–function
pairs .X; f / . We prove that all these new constructions enjoy the same stability as
persistence modules built via the original persistent homology for symmetric functions.
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1 Introduction

The Rips filtration over a finite metric space .X; d/ is a filtration of simplicial complexes
fR.X; d/tgt2Œ0;1/ , where R.X; d/t is the clique complex over the graph whose vertex
set is X and edge set fŒx; y�W d.x; y/� tg. It adds topological structure to an otherwise
disconnected set of points. The persistent homology of the Rips filtration is widely used
in topological data analysis because it encodes useful information about the geometry
and topology of the underlying metric space; see Chazal, Cohen-Steiner. Guibas,
Mémoli and Oudot [4], Ghrist [10], Lee, Chung, Kang, Kim and Lee [14] and Xia
and Wei [20]. There are many potential applications for studying data whose structure
is a quasimetric space. Examples include the web hyperlink quasimetric space, road
networks, and quasimetrics induced from weighted directed graphs found throughout
science (for example biological interaction graphs — see Klamt and von Kamp [12] —
or the connections in neural systems; see Kaiser [11] and Reimann, Nolte, Scolamiero,
Turner, Perin, Chindemi, Dłotko, Levi, Hess and Markram [18]). More generally
we wish to define and show stability of Rips filtrations for sublevel sets of any (not
necessarily symmetric) function f W X �X !R.

Historically the Rips filtration was defined as a special increasing family of simplicial
complexes built from a finite metric space. A metric space is a set X equipped with a
distance function d W X �X !R that satisfies the following properties:

(i) Nonnegativity d.x; y/� 0 for all x 2X.

(ii) Symmetry d.x; y/D d.y; x/ for all x; y 2X.

(iii) Triangle inequality d.x; z/� d.x; y/C d.y; z/.

(iv) Identity of indiscernibles d.x; y/D 0D d.y; x/ if and only if x D y .

For any r � 0 we define the Rips complex of X at length scale r , denoted by
R.X; d/r , as the abstract simplicial complex where Œx0; x1; : : : ; xk�2R.X; d/r when-
ever d.xi ; xj /� r for all i and j . We can think of R.X; d/r as adding a topological
structure of length scale r . It is easy to check that if r � s then R.X; d/r �R.X; d/s .
We thus can define the Rips filtration of X as the increasing family of simplicial
complexes fR.X; d/rgr2Œ0;1/ .

Two classic types of examples of Rips filtrations are examples that come from finite
point clouds sitting inside some larger space (such as Euclidean space) and examples
built from graphs. If X � Rd is a set of points then it inherits a finite metric space
structure from that of Rd ; the distance function is just the restriction of the Euclidean
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distance function to the set X. Given a graph G (with or without lengths on the edges)
we can let the vertices of the graph be the finite set X and then construct a distance
function on X by defining d.x; y/ as the shortest path length of all the paths from x

to y in G.

From the Rips filtration we can produce a persistence module which describes its
persistent homology. A persistence module is a family of vector spaces fVt W t 2Rg

equipped with linear maps �ts W Vs! Vt for each pair s� t such that �tt D id and �ts D
�rs ı�

t
r whenever s � r � t . The persistence module we construct from the persistent

homology of a Rips filtration over .X; d/ has vector spaces fH�.R.X; d/t /gt2Œ0;1/
along with maps on homology induced by inclusions, �ts D ��W H�.R.X; d/s/ !
H�.R.X; d/t / when s � t .

Arguably the most important theoretical results in topological data analysis are the
stability theorems. These stability results come in a variety of forms but generally say
that if two sets of input data are close then various persistence modules computed from
them are also close. To be specific we need to quantify what is meant by “close” for
these different kinds of objects.

We can measure how close persistence modules are via whether there exist suitable
families of interleaving maps. This distance is closely related to the bottleneck distance
between the corresponding persistence diagrams or barcodes. Two persistence modules,
.fVtg; f�

t
sg/ and .fUtg; f tsg/, are called �–interleaved when there exist families of

linear maps f˛t W Vt ! UtC�g and fˇt W Ut ! VtC�g satisfying natural commuting
conditions. There is a pseudometric on the space of persistence modules called the
interleaving distance, dint , which is the infimum of the set of � > 0 such that there
exists an �–interleaving. More details about the interleaving distance are provided
in Section 3. In this paper we will be considering a variety of different persistence
modules, but we will always use the interleaving distance to quantify “closeness”.

Gromov–Hausdorff distance is a classical distance between metric spaces. There are
many equivalent formulations of Gromov–Hausdorff distance but for the purposes
of this paper we will focus on that using correspondences. The set M � X � Y

is a correspondence between X and Y if for all x 2 X there exists some y 2 Y
with .x; y/ 2M and for all y 2 Y there is some x 2 X with .x; y/ 2M. Using
correspondences we can define the Gromov–Hausdorff distance between X and Y as

(1-1) dGH.X; Y /D
1
2

inf
fcorrespondences Mg

sup
.x1;y1/;.x2;y2/2M

jdX .x1; x2/� dY .y1; y2/j:
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Here sup.x1;y1/;.x2;y2/2M jdX .x1; x2/�dY .y1; y2/j is the distortion of the correspon-
dence M. We can define the correspondence distortion distance between set–function
pairs .X; f W X �X !R/ and .Y; gW Y �Y !R/ by

dCD..X; f /; .Y; g//

D
1
2

inf
M correspondence betweenX and Y

sup
.x1;y1/;.x2;y2/2M

jf .x1; x2/�g.y1; y2/j:

This agrees with the standard definition for the Gromov–Hausdorff distance when
.X; dX / and .Y; dY / are metric spaces. More background and details about the corre-
spondence distortion distance are presented in Section 2.

Useful as the Rips filtration for finite metric spaces is, there are scenarios where the
input is not a finite metric space. For example, it is common in data analysis to considers
data sets X equipped with a dissimilarity measure. A dissimilarity measure is a map
dX W X�X!R that satisfies dX .x; x/D 0 and dX .x; y/D dX .y; x/ for all x; y 2X,
but is not required to satisfy any of the other metric space axioms. In [5], Chazal, de Silva
and Oudot generalised the notion of a Rips filtration to cover dissimilarity measures
and more generally for any symmetric function f W X �X !R. Just as in the finite
metric space case, the Rips complex of X with parameter r , denoted by R.X; f /r , is
defined as the abstract simplicial complex where Œx0; x1; : : : ; xk�2R.X; f /r whenever
f .xi ; xj /� r for all i and j (including i D j ).

Persistent homology can be applied to any increasing family of topological spaces, so
it is then natural to define persistence modules from the persistent homology of Rips
filtrations built from any symmetric function. This was shown to be stable in [5].

Theorem Let f W X�X!R and gW Y�Y!R be symmetric functions and R.X; f /
and R.Y; g/ their corresponding Rips filtrations. If dCD..X; f /; .Y; g// is finite then
for all � > dCD..X; f /; .Y; g//, the kth homology persistence modules of R.X; f /
and R.Y; g/ are �–interleaved. In particular, when .X; dX / and .Y; dY / are compact
metric spaces, R.X; dX / and R.Y; dY / are �–interleaved for all � > 2dGH.X; Y /.

The proofs of the interleaving results in [5] didn’t have any requirement on the function
f W X �X ! R except that it had to be symmetric. The purpose of this paper is to
complete this generalisation procedure to lose that symmetry requirement. However,
there are multiple ways to use asymmetry information, and so we have explored a
variety of different constructions.

One method is to study related symmetric functions. We can take our original function f
and construct a parametric family of related symmetric functions syma.f / where
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a 2 Œ0; 1� and

syma.f /.x; y/D aminff .x; y/; f .y; x/gC .1� a/maxff .x; y/; f .y; x/g:

We can then construct the Rips filtration as in [5] for the set–function pair .X; syma.f //.
Notably, if f is a symmetric function to begin with then syma.f /Df for all a2 Œ0; 1�
and hence this symmetrisation process does give a generalisation of Rips filtrations to
any set–function pair. We can show that the correspondence distortion distance between
.X; syma.f // and .Y; syma.g// is bounded by that between .X; f / and .Y; g/. We
gain stability for these persistence modules constructed through this symmetrisation
process as a corollary.

A limitation with using a filtration of simplicial complexes is that a simplex is an
inherently symmetric object. An alternative is to use ordered tuple complexes (shortened
to OT complexes). An OT complex K is a sets of ordered tuples .v0; v1; : : : ; vp/ such
that if .v0; v1; : : : ; vp/ 2 K then .v0; v1; : : : ; yvi ; : : : ; vp/ 2 K for all i . Note that
repetitions of the vj are allowed. Chain complexes, boundary maps, homology and
persistent homology can analogously be defined for OT complexes. We will define
the directed Rips filtration of OT complexes for f W X � X ! R, as the filtration
fRdir.X; f /tg of ordered tuple complexes where .x0; x2; : : : ; xp/ 2 Rdir.X; f /t if
f .xi ; xj / � t for all i � j . We call the persistence module produced using the OT
homology of the directed Rips filtration the directed Rips persistence module.

For each simplicial complex there is a canonical OT complex with isomorphic homology
group. Furthermore, since these homology isomorphisms commute with the maps
induced by inclusion, the persistence modules of these corresponding complexes are
also isomorphic. This implies that these directed Rips filtrations are truly generalisa-
tions of the Rips filtration built from a symmetric function. We will prove that the
persistence modules constructed from these Rips filtrations are stable with respect to
the correspondence distortion distance.

The third generalisation considers connected components. The standard dimension 0
homology can be viewed as the vector space whose elements are linear combinations of
connected components in the 1–skeleton (ie the graph containing the 0– and 1–cells).
When working with directed graphs there are two notions of connected components:
weakly and strongly connected. Completely analogous to the traditional connected
components story, we can consider vector space whose elements are formal linear
combinations the equivalence classes of strongly connected components in the directed
graph which is the 1–skeleton of the directed Rips filtration.
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Given a function f W X �X ! R, for each real number t we can create a directed
graph Dt related to the sublevel set f �1.�1; t �. The graph Dt should have vertex set
fx2X jf .x;x/� tg and directed edge set fx!y jmaxff .x;x/;f .x;y/;f .y;y/g� tg.
We can not include a directed edge x ! y just when f .x; y/ � t because of the
closure conditions a directed graph has to satisfy. For each t 2 R we have a vector
space Vt of the formal linear combinations the equivalence classes of strongly connected
components (SCCs) of Dt . Whenever s � t we have an inclusion map Ds �Dt which
induces a linear map from Vs to Vt . This process directly constructs a persistence
module, which we call the strongly connected components persistence module. We
prove that these persistence modules are stable with respect to the correspondence
distortion distance. We also provide some pseudocode on how to compute the barcode
decomposition of the strongly connected components persistence module using a
modification of the union-find algorithm.

We also note that the persistence modules generated from formal linear combinations
of the weakly connected components have already been covered as the dimension 0
persistent homology of the filtration by sublevel sets of sym1.f /.

Our fourth method uses the directed graphs described above to create a filtration of
preorders. Given a directed graph D over vertices X we say x � y if there is a path
from x to y . From a filtration of directed graphs we obtain a filtration of preorders. We
then can construct persistence modules using poset topology (which can be generalised
for all preorders, not just posets, discussed in the appendix). We will call these preorder
persistence modules. We prove that these preorder persistence modules are stable with
respect to the correspondence distortion distance. If f W X �X !R is a symmetric
function, then the dimension 0 preorder persistence module is the same as that of the
persistent homology of the standard Rips filtration R.X; f / and its higher-dimensional
preorder persistence modules are always trivial. This implies that preorder persistence
modules are describing asymmetry information.

1.1 Related other works

Other related work involves approaches in topological data analysis for incorporating
asymmetry information. Ordered set homology is used in [18] in order to study the
topology of brain networks. There has been a series of papers by Chowdhury and
Mémoli [6; 8; 7] about other constructions of persistence modules which incorporate
asymmetry information.
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2 Directed graphs, quasi- and pseudometric spaces and the
correspondence distortion distance

The original stability result in topological data analysis for Rips filtrations was for
filtrations of simplicial complexes built from metric spaces and the bound between
persistence modules in terms of the Gromov–Hausdorff distance. This was generalised
in [5] to consider symmetric functions and the bound between the functions was the
correspondence distance. However, there are many applications where asymmetry
naturally arises, of which important examples are quasimetric spaces, such as those
constructed as the path metric of some directed graph (with or without weights on the
directed edges).

Definition 1 A directed graph is an ordered pair D D .V; A/ where V is a set whose
elements are called vertices and A is a set of ordered pairs of vertices called directed
edges or arrows. A weighted directed graph is a directed graph where each arrow is
given a nonnegative weight.

Note that a graph can be thought of as a directed graph such that whenever a directed
edge v! w is in A its opposite direction w! v must also be in A.

Definition 2 Let X be a nonempty set and d W X �X !R. Consider the following
potential properties of d :

(1) d.x; x0/� 0 for all x; x0 2X.

(2) d.x; x0/D d.x0; x/ for all x; x0 2X.

(3) For all x; x0 2X, x D x0 if and only if d.x; x0/D 0 and d.x0; x/D 0.

(4) d.x; x00/� d.x; x0/C d.x0; x00/ for all x; x0; x00 2X.

If .X; d/ satisfies (1), (2), (3) and (4), it is called a metric space. If .X; d/ satisfies
(1), (3) and (4), it is called a quasimetric space and we can call d a quasimetric. If
.X; d/ satisfies (1), (2) and (4), it is called a pseudometric space and we can call d a
pseudometric. If .X; d/ satisfies (1) and (4), it is called a pseudoquasimetric space
and we can call d a pseudoquasimetric.

We can build examples of these different types of spaces using weighted directed
graphs. Given a weighted directed graph D D .V; A/ and two vertices x; y 2 V , we
call x D v0; v1; v2; : : : ; vmD y a path from x to y if all of the arrows vi ! viC1 are
in A. The length of that path .x D v0; v1; v2; : : : ; vm D y/ is the sum of the weights
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Pm�1
iD0 w.vi ! viC1/. Construct d W V �V !R by setting d.x; y/ to be the length

of the shortest path from x to y (and 1 if no path exists). Since each arrow has
nonnegative weight, the function d automatically satisfies (1) in Definition 2. By
considering the concatenation of paths, we can easily see that d also automatically
satisfies (4) in Definition 2. Thus, .V; d/ must always be a quasipseudometric space.

More generally, we can consider any function f W X�X!R not necessarily satisfying
any of the properties (1)–(4). It is in this most general setting that we will prove stability
theorems.

The Gromov–Hausdorff distance between metric spaces .X; dX / and .Y; dY / is often
defined by

dGH.X; Y /D inf
Z;f WX!Z;gWY!Z

dH;Z.f .X/; g.Y //;

where the infimum is taken over all metric spaces Z and isometric embeddings f
and g to Z from X and Y , respectively, and dH;Z is the Hausdorff distance between
subsets of Z . It is a standard result that the Gromov–Hausdorff distance is a metric on
the space of compact metric spaces.

A useful alternative, but equivalent, formula for the Gromov–Hausdorff distance can
be given through correspondences. The set M�X �Y is a correspondence between
X and Y if for all x 2X there exists some y 2 Y with .x; y/ 2M and for all y 2 Y
there is some x 2X with .x; y/ 2M. Using correspondences we can write

dGH.X; Y /

D
1
2

inf
M correspondence betweenX and Y

sup
.x1;y1/;.x2;y2/2M

jdX .x1; x2/� dY .y1; y2/j:

More generally, given functions f W X � X ! R and gW Y � Y ! R we can call
dis.X;f /;.Y;g/.M/D sup.x1;y1/;.x2;y2/2M jf .x1; x2/�g.y1; y2/j the distortion of the
correspondence M. We can then define the correspondence distortion distance by
minimising this correspondence distortion.

Definition 3 For set–function pairs .X; f W X �X!R/ and .Y; gW Y �Y !R/ the
correspondence distance between them can be defined as

dCD..X; f /; .Y; g//

D
1
2

inf
M correspondence betweenX and Y

dis.X;f /;.Y;g/.M/

D
1
2

inf
M correspondence betweenX and Y

sup
.x1;y1/;.x2;y2/2M

jf .x1; x2/�g.y1; y2/j:
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This agrees with the standard definition for the Gromov–Hausdorff distance when
.X; dX / and .Y; dY / are metric spaces. It is straightforward to verify that dCD is a
pseudometric on the space of all set–function pairs and a metric on the space of finite
quasimetric spaces. The proofs are analogous to that for metric spaces discussed in [1].

3 Background: persistence modules

In this section we will cover some background theory on persistence modules and
the interleaving distance between persistence modules. This is important because
the interleaving distance between persistence modules bounds the bottleneck distance
between their corresponding persistence diagrams. To introduce and motivate the
concepts we will provide a brief summary of the theory of persistent homology. We
will omit most of the details as we will be phrasing all results in later sections in terms
of persistence modules. For more details about the history and applications of persistent
homology we refer the reader to [19; 10; 9; 2].

Persistent homology describes how the homology groups evolve over an increasing
family of topological spaces. Throughout this section let K D fKtg denote a fam-
ily of reasonable topological spaces such that Ks � Kt whenever s � t . Given
s � t the kth –dimensional persistent homology group for K from s to t consists
of the kth –dimensional homology classes in Ks that “persist” until Kt , that is,
Zk.Ks/=.Zk.Kt /[Bk.Ks//. This is isomorphic to the image of the induced map on
homology ��W Hk.Ks/!Hk.Kt / from the inclusion Ks �Kt .

Barcodes and persistence diagrams were introduced as discrete summaries of persistent
homology information. Each barcode consists of a multiset of real intervals called
bars. The barcode corresponding to the kth –dimensional persistent homology of K
is fI1; I2; : : : ; Ing if, for all s � t , the dimension of im.��W Hk.Ks/ ! Hk.Kt //

equals the number of bars in fI1; I2; : : : ; Ing that contain Œs; t/. The corresponding
persistence diagram is the multiset f.ai ; bi /g of points in R2 , where ai and bi are
the endpoints of the bar Ii , alongside infinitely many copies of every point along the
diagonal (these diagonal points are acting the role of empty intervals).

Barcodes and persistence diagrams have played a prominent role in applied topology as
topological summaries of data. In particular, they can provide insight into the “shape”
of point cloud data through the persistent homology of the Rips filtration over that point
cloud. Much of the power behind the use of barcodes and persistence diagrams comes
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from stability theorems, such as the stability theorem for the persistent homology of
the Rips filtration over a finite metric space.

Persistence, such as persistent homology of a filtration of simplicial complexes, can be
defined directly at an algebraic level. In [21], Zomorodian and Carlsson introduced the
concept of a persistence module and proved that barcodes (and equivalently persistence
diagrams) can be defined for persistence modules satisfying reasonable finiteness
conditions. It was shown in [3] that we can define a distance between persistence
modules (called the interleaving distance) and that the interleaving distance between
persistence modules is a bound on the bottleneck distance of their corresponding
persistence diagrams. Throughout this paper we will work directly with persistence
modules.

Definition 4 Let R be a commutative ring with unity. A persistence module over
A�R is a family fPtgt2A of R–modules indexed by real numbers, together with a
family of homomorphism f�st W Pt ! Psg such that �rt D �

r
s ı �

s
t for all t � s � r and

�tt D idPt .

If R is a field then the Pt are all vector fields and the �st are linear maps. As is standard
in topological data analysis, we will assume throughout that R is the fixed field F
(usually taken to be F2 for computational reasons). In the theory of persistence modules
there are technical requirements about tameness. We say P is tame if rank �st is always
finite for any s < t . A sufficient condition for tameness is that X is finite, which is
almost always true in any application. It is less straightforward in the constructions
involving asymmetry to provide other nice sufficient conditions which would ensure the
resulting persistence modules are tame (see the future directions). When the persistence
modules are tame, the interleaving results will immediately imply a stability theorem
for the persistence diagrams/barcodes.

The space of persistence modules is a pseudometric space under the interleaving distance
function. Here we will define the interleaving distance between two persistence modules
as the infimum of � > 0 such that they are �–interleaved. In this we slightly differ
from [3], where they define both strongly and weakly �–interleaved, both of which
are weaker than our notion of interleaving. More details about the pseudometric space
structure of persistence modules and how the interleaving distance between persistence
modules relates to the distances between corresponding persistence diagrams can be
found in [3; 10; 21].
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Definition 5 Two persistence modules PX and PY are �–interleaved if there exist
families of homomorphisms f˛t W PXt ! P YtC�gt2R and fˇt W P Yt ! PXtC�gt2R such
that the following diagrams commute:

PXt
˛t

!!

� // PXt 0
˛0t

""
P YtC� �

// P Yt 0C�

PXtC�
� // PXt 0C�

P Yt �
//

ˇt
==

P Yt 0C�

ˇ 0t
<<

(3-1)

PXt
˛t

!!

� // PXtC2�

P YtC�

ˇtC�
<<

PXtC�
˛tC�

""
P Yt �

//

ˇt
==

P YtC2�

(3-2)

Definition 6 Two persistence modules PX and PY are isomorphic if they are 0–
interleaved.

The diagrams in (3-1) and (3-2) are slightly different from those given in [3] but the
diagrams here commuting will imply that theirs also commute.

If PX and PY are �1–interleaved and PY and PZ are �2–interleaved then composing
homomorphisms shows that PX and PZ are .�1C�2/–interleaved. We can define a
pseudodistance on the space of persistence modules, called the interleaving distance,
where the interleaving distance between PX and PY is the infimum of the set of � > 0
such that PX and PY are �–interleaved. It is worth noting that two persistence
modules might have interleaving distance 0 and yet not be 0–interleaved (and thus not
isomorphic).

4 Existing stability results and Rips filtrations constructed
from related symmetric functions

In this section we will recall the definition for the Rips filtration of a metric space
and more generally for sublevel sets of a symmetric function f W X �X ! R. We
will also recall the existing stability results for their persistent homology. Given
a function f W X � X ! R we construct a family of related symmetric functions
syma.f / (for a 2 Œ0; 1�). We show that the persistent homology constructed from the
syma.f / is stable as a corollary of the stability results for symmetric functions under
the correspondence distortion distance.
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Definition 7 Given a set X and a symmetric function f W X �X!R, the Rips filtra-
tion of .X; f / is a family of finite simplicial complexes R.X; f /D fR.X; f /tgt�0
with R.X; f /t the clique complex on the graph with vertices XtDfx2X Wf .x; x/� tg
and edges fŒx1; x2� 2Xt �Xt W f .x1; x2/� tg.1

Theorem 8 Let f W X �X ! R and gW Y � Y ! R be symmetric functions and
R.X; f / and R.Y; g/ their corresponding Rips filtrations. If dCD..X; f /; .Y; g//

is finite then for all � > dCD..X; f /; .Y; g//, the kth homology persistence mod-
ules of R.X; f / and R.Y; g/ are �–interleaved. In particular, when .X; dX / and
.Y; dY / are compact metric spaces, R.X; dX / and R.Y; dY / are �–interleaved for all
� > 2dGH.X; Y /.

Since the only condition required is symmetry of the filtration function, one approach
for analysing general functions f W X � X ! R is to construct related symmetric
functions. We will consider a one-parameter family of possible symmetric filtrations.
We then prove stability for the Rips filtrations of these symmetric constructions in
terms of the correspondence distortion distance between the original set–function pairs.

Definition 9 Let .X; f / be a finite set X D fx1; : : : ; xN g equipped with function
f W X �X !R. For any a 2 Œ0; 1� we can define a symmetric function

syma.f /W X �X !R;

.x; y/ 7! aminff .x; y/; f .y; x/gC .1� a/maxff .x; y/; f .y; x/g:

Since syma.f / is symmetric we can construct its Rips filtration fR.X; syma.f //tg,
where R.X; syma.f //t is the simplicial complex containing Œx0; x1; : : : ; xp� whenever
syma.f /.xi ; xj / � t for all i and j . We call this the Rips filtration under syma . If
f is a symmetric function then syma.f /D f for all a , which implies that the Rips
filtration under syma generalises the symmetric Rips filtration.

As a corollary of the stability for symmetric functions we have stability for the sym-
metrised functions.

Corollary 10 Fix a 2 Œ0; 1� and a homology dimension k . Let .X; f / and .Y; g/
be set–function pairs such that dCD..X; f /; .Y; g// is finite. Let PX and P Y be

1Readers need to be warned that sometimes the Rips filtration is defined by adding the edge Œx1; x2�
when dX .x1; x2/ �

1
2 t instead of dX .x1; x2/ � t , so sometimes results may differ from here by a

corresponding factor of 2 .
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the corresponding kth –dimensional homology persistence modules constructed from
the corresponding Rips filtrations under syma (R.X; syma.f // and R.Y; syma.g//,
respectively). Then dint.P

X ; P Y /� 2dCD
�
.X; syma.f //; .Y; syma.g//

�
.

Unfortunately this method of constructing Rips filtrations is somewhat crude. We can
show that in the process of symmetrising we dampen dissimilarities. This is not surpris-
ing as the space of symmetric functions is much smaller than that of functions generally.
In particular, we will show in Theorem 12 that dCD

�
.X; syma.f //; .Y; syma.g//

�
�

2dCD..X; f /; .Y; g// for all a 2 Œ0; 1�. There are many examples where this inequality
is strict. For asymmetric functions, dCD

�
.X; syma.f //; .Y; syma.g//

�
is often signif-

icantly smaller than 2dCD..X; f /; .Y; g//. Suppose X D Y , f W X �X ! R is an
antisymmetric function and gD�f . Then, by construction, syma.f /D syma.g/ for
all a but for nonzero f , we generally have dCD..X; f /; .X;�f // > 0.

The dampening process through symmetrisation is encapsulated in the following lemma:

Lemma 11 Let w; yw; z; yz 2R. Then

(i) jmaxfw; ywg�maxfz; yzgj �maxfjw� zj; j yw�yzjg,

(ii) jminfw; ywg�minfz; yzgj �maxfjw� zj; j yw�yzjg.

Proof We can prove (i) through a series of cases. If w � yw and z � yz then
jmaxfw; ywg�maxfz; yzgjDj yw�yzj. If w� yw and z�yz then jmaxfw; ywg�maxfz; yzgjD
jw� zj.

If w � yw and z � yz , then

jmaxfw; ywg�maxfz; yzgj D j yw� zj �
�
j yw�yzj if yz � w;
jw� zj if yz � w

�maxfjw� zj; j yw�yzjg:

Reversing the roles of the letters, we also see that

jmaxfw; ywg�maxfz; yzgj �maxfjw� zj; j yw�yzjg

whenever w � yw and z � yz

We can infer (ii) from (i) by replacing each of w , yw , z and yz by their negatives.

Theorem 12 Fix a 2 Œ0; 1� and a homology dimension k . Let .X; f / and .Y; g/ be
set–function pairs. Then dCD

�
.X; syma.f //; .Y; syma.g//

�
� 2dCD..X; f /; .Y; g//.

Proof It is sufficient to show that dis.X;syma.f //;.Y;syma.g//.M/� dis.X;f /;.Y;g/.M/

for every correspondence M.
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Fix some correspondence M�X�Y and let .x1; y1/; .x2; y2/2M. From Lemma 11
(using w D f .x1; x2/, yw D f .x2; x1/, z D g.y1; y2/ and yz D g.y2; y1/) we know
that both

jminff .x1; x2/; f .x2; x1/g�minfg.y1; y2/; g.y2; y1/gj

�maxfjf .x1; x2/�g.y1; y2/j; jf .x2; x1/�g.y2; y1/jg

and

jmaxff .x1; x2/; f .x2; x1/g�maxfg.y1; y2/; g.y2; y1/gj

�maxfjf .x1; x2/�g.y1; y2/j; jf .x2; x1/�g.y2; y1/jg:

Taking a convex combination of these equations tells us that

(4-1) jsyma.f /.x; yx/� syma.g/.y; yy/j

�maxfjf .x; yx/�g.y; yy/j; jf .yx; x/�g.yy; y/jg:

By taking the supremum on both sides over all pairs f.x; y/; .yx; yy/g 2M we see that

dis.X;syma.f //;.Y;syma.g//.M/� dis.X;f /;.Y;g/.M/:

5 Persistent homology of OT complexes

Ordered tuple complexes are an alternative to simplicial complexes. We will find them
useful as they have more flexibility with regard to order; we can have asymmetric roles
within the same tuple.

Definition 13 An ordered tuple is a sequence of .v0; v1; v2; : : : ; vn/, potentially
including repeats. A ordered tuple complex (shortened to OT complex) is a collection K
of ordered tuples such that if .v0; v1; v2; : : : ; vn/ 2K then .v0; : : : ; yvi ; : : : ; vn/ 2K
for all i (where .v0; : : : ; yvi ; : : : ; vn/ is the ordered tuple with vi removed).

It is worth emphasising that each ordered tuple is determined by the ordered sequence
and not just the underlying vertices; .v1; v2; v3/ and .v3; v1; v2/ are distinct and not
even linearly related.

The ideas of homology and persistent homology naturally extend to OT complexes.
Throughout F will be a fixed field.

Definition 14 Given an OT complex K we can build a chain complex C�.K/ where
Cp.K/ is the set of all the F –linear combinations of the ordered tuples in K with
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length pC 1. This is an F –vector space whose basis vectors are the ordered tuples
in K of length pC 1. We define a boundary map @pW Cp.K/! Cp�1.K/ by

@p..v0; v1; v2; : : : ; vp//D

kX
iD0

.�1/i .v0; : : : ; yvi ; : : : ; vp/

and extending linearly. We define the kth homology group of the OT complex K as
Hk.K/D ker.@k�1/=im.@k/.

When K1 �K2 are both OT complexes, the inclusion of chains induces a map on their
homology groups, ��W H�.K1/!H�.K2/.

Definition 15 We say KD fKtg is filtration of OT complexes if Kt �Kr whenever
t � r . We define the kth –dimensional ordered tuple persistence module corresponding
to K as follows:

� For each t set the vector space Vt DHk.K/ computed over F .

� For each pair s � t we have a linear map induced from inclusion,

�t!sW H�.Ks/!H�.Kt /:

It is easy to check that this does satisfy the requirements of a persistence module.

We can define the directed Rips filtration as a filtration of OT complexes where the
condition for when an ordered tuple is included is dependent on the order in which
the points in the tuple appear. From this filtration of OT complexes we can construct
directed Rips persistence modules.

Definition 16 Let .X; f / be a set–function pair. Set fRdir.X; f /tg to be the filtration
of OT complexes where .v0; v1; : : : ; vp/ 2 Rdir.X; f /t when f .vi ; vj / � t for all
i � j . We call fRdir.X; f /tg the directed Rips filtration of .X; f /. For each dimen-
sion k , we will define the kth –dimensional directed Rips persistence module as the
kth –dimensional ordered tuple persistence module of fRdir.X; f /tg.

We claim that these directed Rips persistence modules are a generalisation of the
Rips persistence modules constructed from symmetric functions. To do this we need
to recall some classical relationships between the homology of OT complexes and
simplicial complexes. Indeed, a common first example of an OT complex is via a
simplicial complex. For a simplicial complex K there is an OT complex KOT where
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.v0; v1; : : : ; vp/ 2 K
OT whenever Œv0; v1 : : : ; vp�, after removing any repeats, is a

simplex in K . In [17], Munkres calls the chain complex C�.KOT/ the ordered chain
complex of K , and shows that the simplicial homology of K and the OT complex
homology of KOT are isomorphic. This isomorphism result holds also for persistence
modules of filtrations of simplicial complexes as the isomorphisms on homology
groups commute with the induced maps on homology by inclusions. This implies that
if f W X �X ! R is a symmetric function then the kth –dimensional ordered tuple
persistence module of fRdir.X; f /tg is isomorphic to the kth –dimensional persistence
module of fR.X; f /tg.

5.1 Stability of the directed Rips persistence modules

We will want to prove that the directed Rips persistence modules enjoy stability with
respect to the correspondence distortion distance. To do this we will compare set–
function pairs over different sets via their induced set–function pairs over a common
set constructed via a fixed correspondence.

Given functions f W X �X ! R and gW Y � Y ! R along with a correspondence
M�X �Y , we can pull back the functions f and g to corresponding functions on
M�M via the projection maps

fM
WM�M!R; .x1; y1/� .x2; y2/ 7! f .x1; x2/;

gMWM�M!R; .x1; y1/� .x2; y2/ 7! g.y1; y2/:

The proof of the following lemma follows directly from the definitions of fM and gM .

Lemma 17 Let .X; f / and .Y; g/ be set–function pairs and M�X �Y a correspon-
dence. Then

kfM
�gMk1 D 2 dis.X;f /;.Y;g/.M/:

We will also need to prove that the directed Rips persistence modules over .X; f / and
.M; fM/ are isomorphic. To do this we will introduce the notion of the expansion of
an OT complex.

Definition 18 Let K be an OT complex. We say that K is closed under adjacent
repeats if whenever .v0; v1; : : : ; vp/2Cp.K/ then .v0; : : : ; vi ; vi ; : : : ; vp/2CpC1.K/
for all i D 0; 1; : : : ; p .

It is worth observing that, by construction, fRdir.X; f /tg is closed under adjacent
repeats for any set–function pair .X; f /.
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Definition 19 Let K and zK be OT complexes, both closed under adjacent repeats,
over vertex sets V and zV , respectively. We say that zK is an expansion of K if there
exists a surjective map � W zV !V and an injective map �W V ! zV such that � ı�D idV
and .v0; v1; : : : ; vp/ 2 zK if and only if .�.v0/; �.v1/; : : : ; �.vp// 2K .

Let KD fKtg and zKD f zKtg be filtrations of OT complexes over vertex sets V and zV ,
respectively. We say that zK is an expansion of K if there exists a surjective map
� W zV ! V and an injective map �W V ! zV such that � ı � D idV and, for all t ,
.v0; v1; : : : ; vp/ 2 zKt if and only if .�.v0/; �.v1/; : : : ; �.vp// 2Kt .

Proposition 20 If KD fKtg and zKD f zKtg are filtrations of OT complexes such that
zK is an expansion of K then the OT persistence modules of K and zK are isomorphic.

Proof Without loss of generality we can relabel the points in V to consider it as a
subset of zV (relabelling v 2 V as �.v/ 2 zV ). In this case � is the inclusion map and �
is a projection map.

Both � W zKt !Kt and �W Kt ! zKt induce chain maps, �#W C�. zKt /! C�.Kt / and
�#W C�.Kt /! C�. zKt /. Observe that �# ı �# D idW C�.Kt /! C�.Kt /, so �� ı �� D
idW H�.Kt /!H�.Kt / for all t .

Suppose .v0; v1; : : : ; vi ; : : : ; vp/ 2 Cp. zKt /. To construct a prism operator later we
want to show that

.v0; v1; : : : ; vi ; �.vi /; : : : ; �.vp// 2 CpC1. zKt /:

To do this we use that zKt is closed under adjacent repeats, the definition of expansions
(twice) and the property that � is a projection (so �.�.vj //D �.vj //:

.v0; v1; : : : ; vi ; : : : ; vp/ 2 Cp. zKt /

D) .v0; v1; : : : ; vi ; vi ; : : : ; vp/ 2 CpC1. zK/

D) .�.v0/; �.v1/; : : : ; �.vi /; �.vi /; : : : ; �.vp// 2 CpC1.Kt /

D)
�
�.v0/; �.v1/; : : : ; �.vi /; �.�.vi //; : : : ; �.�.vp//

�
2 CpC1.Kt /

D) .v0; v1; : : : ; vi ; �.vi /; : : : ; �.vp// 2 CpC1. zKt /:

Consider the prism operator

P..v0; v1; : : : ; vp//D

pX
iD0

.�1/i ..v0; v1; : : : ; vi ; �.vi /; �.viC1/; : : : ; �.vp//:
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Routine algebra shows that @P CP@D i# ı�#� id and thus i# ı�# is chain homotopic
to the identity. This implies i� ı��W H�. zKt /!H�. zKt / is the identity function.

The chain maps �# and i# commute with the inclusion maps for the filtrations of OT
complexes and hence the following diagrams commute:

H�. zKs/

��

��

�� // H�. zKt /

��

��
H�.Ks/

�� // H�.Kt /

H�.Ks/

i�
��

�� // H�.Kt /

i�
��

H�. zKs/
�� // H�. zKt /

Since i� ı �� D idW H�. zKt /! H�. zKt / and �� ı i� D idW H�.Kt /! H�.Kt / for
all t we see that K and zK are isomorphic.

Theorem 21 Let .X;f / and .Y; g/ be set–function pairs such that dCD..X;f /; .Y; g//

is finite. Let PX and P Y be the corresponding kth –dimensional homology persistence
modules constructed from the corresponding directed Rips filtrations fRdir.X; f /tg

and fRdir.Y; g/tg. Then dint.P
X ; P Y /� 2dCD..X; f /; .Y; g//.

Proof Since dCD..X; f /; .Y; g// is finite, there exists some correspondence M �
X � Y with dis.X;f /;.Y;g/.M/ finite. Fix a correspondence M � X � Y with
dis.X;f /;.Y;g/.M/ finite. From this correspondence construct directed Rips filtrations
fRdir.M; fM/tg and fRdir.M; gM/tg with corresponding kth –dimensional persis-
tence modules P .X;M/ and P .Y;M/ .

By construction fRdir.M; fM/tg is an expansion of fRdir.X; f /tg and thus by
Proposition 20 we know that the persistence modules PX and P .X;M/ are isomorphic.
Similarly, we can also show that P Y and P .Y;M/ are isomorphic.

By Lemma 17 we know kfM�gMk1 � 2 dis.X;f /;.Y;g/.M/. There is an inclusion

Rdir.M; fM/t �Rdir.M; gM/tC2 dis.X;f /;.Y;g/.M/

for all t as

.v0; v1; : : : ; vn/ 2Rdir.M; fM/t

D) fM.vi ; vj /� t for all i � j

D) gM.vi ; vj /� t C dis.X;f /;.Y;g/.M/ for all i � j

D) .v0; v1; : : : ; vn/ 2Rdir.M; gM/tC2 dis.X;f /;.Y;g/.M/:
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Symmetrically, there are also inclusions

Rdir.M; gM/t �Rdir.M; fM/tC2 dis.X;f /;.Y;g/.M/

for all t . These inclusion maps induce a 2 dis.X;f /;.Y;g/.M/ interleaving between
P .X;M/ and P .Y;M/ . This implies that PX and P Y are 2 dis.X;f /;.Y;g/.M/–inter-
leaved.

By considering the infimum of the interleavings constructed by correspondences we
see that dint.P

X ; P Y / is at most 2dCD..X; f /; .Y; g//.

5.2 Comparison to ordered-set persistent homology

It is possible to construct homology groups and persistence modules using ordered sets
instead of ordered tuples. As a preemptive attempt to reduce confusion, this section
will compare this ordered-tuple persistent homology to ordered-set persistent homology.
In ordered-set homology we effectively restrict our chains to only contain ordered
tuples where there are no repeats. We can still define homology, persistent homology
and persistence modules. Furthermore, in some applications this may better reflect
the connectivity structure (such as in the analysis of the blue brain project in [18]) but
there are two important reasons why we are not considering ordered-set persistence
modules as a generalisation of the Rips persistence modules. The first reason is that
when we restrict to symmetric functions we do not get persistence modules isomorphic
to the standard Rips persistence modules. The second reason is that these persistence
modules are not stable with respect to the correspondence distortion distance.

For example, consider the set X D fx; yg with the f the zero function. For t < 0,
then, the corresponding ordered sets complexes are empty with trivial homology. The
ordered tuple complexes and Rips simplicial complexes are also empty and have trivial
homology. For t � 0, the corresponding ordered set complex consists of the ordered
sets .x/, .y/, .x; y/ and .y; x/. It has nontrivial 1–dimensional homology. To see
this first observe that .x; y/C .y; x/ is a cycle but the space of 2–chains is trivial,
so there are no nontrivial 1–chain boundaries. In comparison, the Rips simplicial
complex is Œx; y�, which has no nontrivial 1–cycles. The ordered-tuple complex is
more complicated but everything ends up cancelling each other. For example, this cycle
of concern in the ordered-set homology, .x; y/C .y; x/, is a boundary in the setting of
OT homology: .x; y/C .y; x/D @..x; y; x/C .x; x; x//.

To see that the ordered-set persistence modules are not stable with respect to the
correspondence distortion distance, compare .X; f / in the example in the paragraph
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above to the single-point space ZD fzg with function g.z/D 0. The first-dimensional
ordered set homology for Z is also trivial and so its first-dimensional persistence
module is also trivial. The correspondence f.x; z/; .y; z/g �X �Z has zero distortion
but the ordered-set persistence modules are not �–interleaved for any � .

6 Persistence modules via strongly connected components
and preorder homology

In this section we will consider constructions using an associated filtration of directed
graphs or preorders. For each t we can define a directed graph fD.X/tg where x! y

is included in D.X/t when maxff .x; y/; f .x; x/; f .y; y/g � t . From a directed
graph we can induce a natural preorder via the existence of paths. That is a preorder
where x � y if there is a path from x to y in D.X/t . We will construct persistence
modules using the strongly connected components of the graphs D.X/t , which are
also the equivalence classes of the associated preorders. We also consider persistence
modules using ordered-tuple complexes constructed over preorders.

Let us first introduce the construction of directed graphs and preorders from set–function
pairs.

Definition 22 Let X be a set with a binary relationship �. Consider the following
potential properties of .X;�/:

(i) Reflexive x � x for all x 2X.

(ii) Antisymmetric For all x; y 2X, if x � y and y � x then x D y .

(iii) Transitive For all x; y; z 2X, if x � y and y � z then x � z .

We say that .X;�/ is a poset is it satisfies (i), (ii) and (iii). We say .X;�/ is a preorder
if it satisfies (i) and (iii).

There is a natural equivalence relation on X where x � y when x � y and y � x . If
we quotient a preorder by this equivalence relation we are left with a poset.

One way to construct preorders is via directed graphs. Given a directed graph G D
.V;E/ and vertices x; y 2 V , we say there is a path from x to y when there is a finite
sequence of vertices x D x0; x1; : : : ; xn D y such that .xi ; xiC1/ is a directed edge.
To create a preorder on V we declare that x � y whenever there is a path from x to y .
The strongly connected components of a directed graph are the equivalence classes of
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points where v � w when there exists both a path from v to w and a path from w

to v . Thus, we see that the equivalence classes of this poset are precisely the strongly
connected components of the directed graph it was built from. Suppose we start with a
directed graph and we consider the preorder defined by the existence of paths. If we
quotient by the equivalence relation to get a poset, then on the directed graph level we
are collecting the vertices into the strongly connected components and then we have
directed edges between these strongly connected components if there is a path between
them. This will create an acyclic directed graph.

We will first need to construct directed graphs from the sublevel sets of a set–function
pair. From this we can consider filtrations of directed graphs and of preorders.

Definition 23 Given a set–function pair .X; f / there is a natural filtration of directed
graphs fD.X/t W t 2 Œ0;1/g associated to X by setting D.X; f /t to the directed
graph with vertices fx 2 X W f .x; x/ � tg and including the directed edge x ! y

whenever maxff .x; x/; f .y; y/; f .x; y/g� t . We will call this the associated filtration
of directed graphs of .X; f /.

It is necessary for the inclusion rule for the directed edges to occur at the maximum
of ff .x; x/; f .y; y/; f .x; y/g (rather than at f .x; y/, which may occur earlier) to
ensure that D.X; f /t will satisfy the closure conditions for a directed graph. In the
case where f D d is a quasimetric, d.x; x/D 0D d.y; y/ and d.x; y/ � 0 and so
the edge from x to y is included at t D d.x; y/.

We define a filtration of preorders to be a parametrised family of preorders

f.Xt ;�t / W t 2Rg

such that for all s � t we have Xs � Xt and if x; y 2 Xs with x �s y then x �t y .
From a filtration of associated graphs for a set–function pair we can construct a natural
filtration of preordered spaces as follows:

Definition 24 Let .X; f / be a set–function pair and let fD.X; f /tg be its associated
filtration of directed graphs. For each t � 0 construct a preordered space .Xt ;�t / with
Xt the set of points in D.X; f /t and x �t y when there exists a path in D.X; f /t
from x to y . We call this the associated filtration of preorders.

The following is a useful lemma for proving the interleaving results for the persistence
modules constructed with strongly connected components or with preorder homology:
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Lemma 25 Let X and Y be sets and .X; f / and .Y; g/ be set–function pairs with
dCD..X; f /; .Y; g// finite. Let D.X; f /D fD.X; f /tg and D.Y; g/D fD.Y; g/tg be
the associated filtrations of directed graphs. Let M�X �Y be a correspondence with
dis.X;f /;.Y;g/.M/ finite.

(i) If .x; y/ 2M and x 2D.X; f /t then y 2D.Y; g/tCdis.M/ .

(ii) If .x1; x2/; .y1; y2/ 2M and there exists a directed path from x1 to x2 in
D.X; f /t then there exists a directed path from y1 to y2 in D.Y; g/tCdis.M/ .

Proof (i) If x 2D.X; f /t then f .x; x/� t . Since .x; y/2M, we know g.y; y/�

t C dis.M/ and hence y 2D.Y; g/tCdis.M/ .

(ii) Suppose that there is a path from x1 to x2 in D.X; f /t . This means that there
exists a sequence of points .x1D a1; a2; : : : ; ak D x2/ in X such that f .ai ; aiC1/� t .
There exists a sequence of points in Y , y1D b1; b2; : : : ; bk D y2 , where .ai ; bi / 2M.
By (i) we know each of the bi lie in D.Y; g/tCdis.X;f /;.Y;g/.M/ . Since each .ai ; bi /2M,
we have

jf .ai ; aiC1/�g.bi ; biC1/j � dis.X;f /;.Y;g/.M/

for each i and hence .y1Db1; b2; : : : ; bkDy2/ is a path in D.Y; g/tCdis.X;f /;.Y;g/.M/ .

The lemma can be rewritten in terms of preorders; for .x1; y1/; .x2; y2/ 2 M, if
x1 �

f
t x2 then y1 �

g

tCdis.X;f /;.Y;g/.M/
y2 .

6.1 Strongly connected components persistence

Dimension 0 persistent homology is all about tracking the evolution of connected
components. For directed graphs, unlike graphs, there is choice in how to interpret what
a connected component is, with each interpretation providing their own corresponding
persistence module. Here we will consider the persistence of weakly and strongly
connected components.

Weakly connected components are the components of the graph when the directions are
forgotten. Given a filtration of a directed graph by edge weights, the weakly connected
persistence would be the same as the dimension 0 persistent homology of the Rips
filtration under sym1 in Section 4, and to the dimension 0 directed Rips persistence
module in Section 5.
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Studying strongly connected components will provide new information. Recall the
strongly connected components of a directed graph are the equivalence classes of points
where v�w when there exists both a path from v to w and a path from w to v . Given
a filtration of directed graphs we can construct a persistence module based on linear
combinations of strongly connected components (analogous to dimension 0 homology
being interpreted as the space of formal linear combinations of connected components).

Definition 26 We call DDfDt W t 2Rg a filtration of directed graphs if Dt is directed
graph for all t such that if s� t then Ds is a directed subgraph of Dt . Given a filtration
of directed graphs DD fDtg, let Œv�t denote the strongly connected component of Dt
containing v . We define the strongly connected persistence module corresponding to D
as follows:

� For each t 2 R set the vector space Vt to be the vector space of finite linear
combinations of strongly connected components

�
that is, elements are of the

form
Pk
iD1 �i Œvi �t with �i 2 F

�
.

� For each pair t � s we have a linear map induced from inclusion,

�t!s

� kX
iD1

�i Œvi �t

�
D

kX
iD1

�i Œvi �s:

We will now check that the strongly connected component persistence module does
satisfy the requirements of a persistence module. Whenever we have an inclusion
of directed graphs Dt � Ds , whenever there is a path from v to w in Dt , there is
also a path from v to w in Ds . This implies that the maps �t!s are well defined.
Furthermore, for u � t � s we have �t!s

�
�u!t

�Pk
iD1 �i Œvi �u

��
D
Pk
iD1 �i Œvi �s D

�u!s
�Pk

iD1 �i Œvi �u
�
. Whenever the directed graphs Dt are all finite (which is true in

almost any application) we automatically know that the Vt are all finite-dimensional
and hence the strongly connected persistence module is tame.

We can create strongly connected persistence modules from set–function pairs via its
associated filtration of directed graphs.

Theorem 27 Let X and Y be sets and .X; f / and .Y; g/ be set–function pairs with
dCD..X; f /; .Y; g// finite. Let D.X; f /D fD.X; f /tg and D.Y; g/D fD.Y; g/tg be
the associated filtrations of directed graphs. Let PX and PY be the strongly connected
component persistence modules for D.X; f / and D.Y; g/. Then dint.PX ;PY / �
dCD..X; f /; .Y; g//.
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Proof Fix a correspondence M�X �Y with dis.X;f /;.Y;g/.M/ finite.

Construct a map ˛W X ! Y where for each x we arbitrarily fix a representative from
fy 2 Y W .x; y/ 2Mg, and construct a map ˇW Y !X where for each y we arbitrarily
fix a representative from fx 2X W .x; y/ 2Mg.

If Œx1�t D Œx2�t then there exist paths in D.X; f /t from x1 to x2 and from x2 to x1 .
By Lemma 25 there exist paths in D.Y; g/tCdis.X;f /;.Y;g/.M/ from ˛.x1/ to ˛.x2/ and
from ˛.x2/ to ˛.x1/. This means that ˛ induces a well-defined linear map

˛�W P
X
t ! P YtCdis.X;f /;.Y;g/.M/; Œx�t 7! Œ˛.x/�tC2 dis.X;f /;.Y;g/.M/:

Similarly, ˇ induces a linear map ˇ�W P
Y
t ! PX

tC2 dis.X;f /;.Y;g/.M/
where Œy�t 7!

Œˇ.y/�tC2 dis.X;f /;.Y;g/.M/ .

It only remains to show that ˛� and ˇ� satisfy an 2 dis.X;f /;.Y;g/.M/ interleaving.
That (3-1) commutes follows directly from the construction of ˛ and ˇ .

Let f .x; x/D t , whence x 2D.X; f /t . From our construction of ˛ and ˇ we know
that .x; ˛.x// and .ˇ.˛.x//; ˛.x// are both in M. By Lemma 25 this implies that
there are directed paths in both directions between ˇ.˛.x// and x in the directed
graph D.X; f /tC2 dis.X;f /;.Y;g/.M/ , and hence they lie in the same strongly connected
component.

Similarly, for every y 2 Y with g.y; y/D t , we know that ˛.ˇ.y// and y lie in the
same strongly connected component in D.Y; g/tC2 dis.X;f /;.Y;g/.M/ . This ensures that
we satisfy (3-2).

By taking the infimum over all correspondences we see that the interleaving distance
between PX and P Y is bounded above by 2dCD..X; f /; .Y; g//.

We provide some pseudocode (the algorithm in the appendix) for an algorithm that
computes the interval decomposition of the strongly connected component persistence
module from a filtration of directed graphs. It is a modification of the union-find
algorithm used to compute the standard dimension 0 persistent homology. In the
union-find algorithm each connected component is represented by a root vertex with an
additional data of its birth time. The main difference for strongly connected components
is that we have to also keep track of when directed paths exist between the various
strongly connected components. These are stored as a list of the root vertices of “in”
and “out” connected components. Here “in” means a connected component that has
a path pointing into the current component and “out” means there is a path pointing
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out of the current component. Note that for any root vertex these in and out sets are
disjoint, as being in both would imply they are the same strongly connected component.
The main challenge in this modification is to ensure that at each stage the list of in and
out strongly connected components listed by the root vertices are referred to by their
root vertex.

6.2 OT complexes constructed using the preorder structure

In the theory of partially ordered sets (“posets”), the order complex of a poset is the
set of all finite chains. Its homology contains important information about the poset.
Preorders are a generalisation of posets where we drop the antisymmetry condition.
Poset homology naturally extends to preorders, where we will call it preorder homology.
It is easier and more flexible to construct filtrations of preorders than of posets.

From the associated filtration of directed graphs of a set–function pair we can create a
filtration of preorders which we will call the preorder Rips filtration. From the filtration
of preorders we can construct persistence modules using preorder homology to generate
preorder Rips persistence modules. These persistence modules enjoys stability with
respect to the correspondence distortion distance. The homology dimension 0 preorder
Rips persistence module is isomorphic to that of its weakly connected components,
its directed Rips persistence module and the standard Rips persistence module under
sym1 . If the input is a symmetric function then its higher-dimensional preorder Rips
persistence modules are all trivial, showing that preorder Rips persistence module
describes asymmetry information.

In this paper we will generalise to preorders some constructions normally defined for
posets. The homology of a poset has been defined and studied via its corresponding
Alexandrov topology. Preorders are in bijective correspondence with Alexandrov
topologies, with the antisymmetry condition (which is the axiom that makes a preorder
a poset) translating to those topologies that are T0 . For each preorder there is a canonical
poset over its equivalence classes, and this poset corresponds to the Kolmogorov quotient
of the Alexandrov topology of that original preorder. Because these quotient spaces
are weakly homotopy equivalent, standard references for Alexandrov topology often
state they will restrict their analysis to T0 spaces/posets (eg [16; 15]). It is for this
reason that definitions are usually only stated for posets and not more generally for
preorders. In the appendix we will go into more detail into this background material
and justify why the definitions given in this section are the natural generalisation of
those traditionally given for posets.
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Let us now construct an OT complex from a preorder.

Definition 28 Given a preorder .X;�/, let O.X;�/ be the OT complex containing
.x0; x1; : : : ; xp/ when x0 � x1 � � � � � xp . We call O.X;�/ the preorder OT complex
of .X;�/.

Definition 29 Given a preorder .X;�/, its associated order complex �.X;�/ is an
abstract simplicial complex whose vertices are the elements of X and whose faces are
the chains (subsets where each pair is comparable) of .X;�/.

From a filtration of preorders we can construct a filtration of OT complexes. From this,
persistence modules can be constructed as standard with OT homology classes as the
vector spaces and induced maps from inclusions as the transition maps.

Definition 30 Let O.X; f / D fO.X; f /tg be the filtration of OT complexes corre-
sponding to the filtration of posets f.Xt ;�t /g. We call O.X; f / the preorder filtration
of .X; f /.

In the appendix we see that the simplicial homology of the order complex �.X;�/ is
naturally isomorphic to the homology of the preorder OT complex O.X;�/. More-
over, isomorphisms between the simplicial homology of the order complexes and the
homology of the preorder OT complexes will extend to persistent homology as they
commute with the maps on homology induced by inclusions.

Definition 31 We define the kth –dimensional preorder persistence module correspond-
ing to the filtration of preorders X D f.Xt ;�t /g as the dimension k OT homology
persistence module for the filtration of OT complexes fO.X;�t /gt2R .

Just as in the previous constructions in this paper we can prove that the corresponding
persistence modules built from functions f W X�X!R and gW Y �Y !R are stable
with respect to the correspondence distortion distance.

Theorem 32 Let .X;f / and .Y; g/ be set–function pairs with preorder Rips filtrations
O.X; f / and O.Y; g/. Let PX and PY be the kth –dimensional persistence modules
for O.X; f / and O.Y; g/, respectively. Then dint.PX ;PY /� 2dCD..X; f /; .Y; g//.
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Proof Since dCD..X; f /; .Y; g// is finite, there exists some correspondence M �
X � Y with dis.X;f /;.Y;g/.M/ finite. Fix a correspondence M � X � Y with
dis.X;f /;.Y;g/.M/ finite. From this correspondence construct preorder Rips filtrations
fO.M; fM/tg and fO.M; gM/tg with corresponding kth –dimensional persistence
modules P .X;M/ and P .Y;M/ .

By construction, fO.M; fM/tg is an expansion of fO.X; f /tg and thus by Proposition
20 we know that the persistence modules PX and P .X;M/ are isomorphic. Similarly
we can also show that P Y and P .Y;M/ are isomorphic.

If ..x0; y0/; .x1; y1/; : : : ; .xn; yn//2O.M; fM/t then x0; : : : ; xn2D.X/t and there
exist directed paths from xi to xj in D.X; f /t for all i � j . By Lemma 25 there
must exist a directed path from yi to yj in D.Y; g/tCdis.X;f /;.Y;g/.M/ for all i � j .
This implies that O.M; fM/t � O.M; gM/tCdis.X;f /;.Y;g/.M/ for all t . Similarly,
O.M; gM/t �O.M; fM/tCdis.X;f /;.Y;g/.M/ .

These inclusion maps induce a dis.X;f /;.Y;g/.M/ interleaving between P .X;M/ and
P .Y;M/ . This implies that PX and P Y are dis.X;f /;.Y;g/.M/–interleaved.

By considering the infimum of the interleavings constructed by correspondences
we see that the interleaving distance between PX and P Y is bounded above by
2dCD..X; f /; .Y; g//.

As shown in Theorem 36 (in the appendix), the simplicial homology of the order
complex is naturally isomorphic to the OT homology of O.X;�/. Furthermore, this
isomorphism result holds also for persistence modules of filtrations of simplicial
complexes as the isomorphisms on homology groups commute with the induced maps
on homology by inclusions. This implies that interval decomposition of the kth preorder
persistence modules can be computed via the simplicial persistent homology over the
filtration of simplicial complexes f�.Xt ;�

f
t /g.

7 Future directions

There are many future directions related to the research in this paper. Examples include:

� Applying the constructions in this paper to quasimetric spaces to see what they
reveal about their quasimetric structure, or to use as a method of getting a lower bound
on the correspondence distortion distance between different quasimetric spaces.
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� Adapting these methods to construct persistence modules for sublevel set filtrations
of special functions on quasimetric spaces and proving related stability results. For
example, we conjecture that all four constructions built from a suitably defined sublevel
set of the extremity function of a quasimetric space (analogous to constructions in [4])
could have correspondence distortion distance stability with respect to the original
quasimetric distance functions. This would provide another way of capturing the “shape”
of a quasimetric space.

� Finding nice sufficient conditions on functions f W X �X !R, with jX j infinite,
as to when these various Rips constructions create tame persistence modules. Even
when restricting to the case of quasimetric spaces it is not even clear how we should
define an �–sampling or compactness. In the symmetric case, definitions have been
used to describe sufficient conditions for metric spaces that result in tame persistence
modules (such as in [5]).

� Algorithmic techniques for computing OT persistent homology efficiently. In
particular, is there a related filtration of simplicial complexes that have isomorphic OT
persistent homology, at least in low homology dimensions?

Appendix

A.1 Algorithm to compute interval decomposition of the strongly
connected persistence module

INPUT: List L of vertices V D fv1; v2; : : : ; vng and directed edges

f.vi1 ! vj1/; : : : ; .vim ! vjm/g;

each with a real-valued height such that h.vi ! vj /�maxfh.vi /; h.vj /g. These
vertices and directed edges are ordered in a combined list L by increasing height
values. All the vertices at a height value occur before the edges at that same height.

OUTPUT: Interval decomposition of the strongly connected component persistence
module from filtration of sublevel sets of the height function

1: function FIND(x )
2: while root.x/ ŠD x do
3: x D root.x/
4: end while
5: return x
6: end function
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7: procedure UNION(vtail , vhead , height)
8: W D vtail:in\ vhead:out
9: yw WD earliest w 2W to appear in list L
10: for w 2W , w ¤ yw do
11: root.w/D yw
12: if h.w/ < height then
13: append Œh.w/; height/ to BARCODE
14: end if
15: yw:inD fFIND(x ) for x 2 vtail:ing F An SCC has a path to yw if and only

if it has a path to vtail .
16: yw:outDfFIND(x ) for x 2 vhead:outg F An SCC has a path from yw if and

only if it has a path from vhead .
17: for x 2 yw:in do
18: x:outD fFIND(y) for y 2 x:out[ yw:outg
19: end for
20: for x 2 yw:out do
21: x:inD fFIND(y) for y 2 x:in[ yw:ing
22: end for
23: end for
24: end procedure
25:

26: procedure UPDATEINOUT(vtail , vhead , height)
27: for x 2 vtail:in do
28: x:outD fFIND(y) for y 2 vhead:out[ x:outg
29: end for
30: for y 2 vhead:out do
31: y:inD fFIND(x) for x 2 vtail:in[y:ing
32: end for
33: end procedure
34:

35: for i D 1 to length.L/ do
36: if L.i/ is a vertex vk then
37: Add a vertex to A. Label it with (heightD h.L.i//, rootD vk , inD fvkg,

outD fvkg).
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38: if L.i/ is a directed edge vj ! vk then
39: vtail WD FIND.vj /, vhead WD FIND.vk/

40: if vhead … vtail:out then
41: if vhead…vtail:in then FWe need to update the paths between SCCs.

42: UPDATEINOUT(vtail , vhead )

43: end if
44: if vhead 2 vtail:in then F This is when various SCCs merge.

45: UNION(vtail , vhead , h.L.i//)

46: end if
47: end if
48: end if
49: end if
50: end for
51: RemainingComponents WD fFIND.x/ for x 2 V g F Final set of strongly con-

nected components.

52: for x 2 RemainingComponents do
53: Append Œh.x/;1/ to BARCODE

54: end for

A.2 Homology of a poset

There are multiple ways to compute the homology of a poset, including via Alexan-
drov topological spaces and order simplicial complexes. For each preorder there is a
canonical poset we call its equivalence class poset. In this subsection we show that the
definitions of homology of a poset can naturally be extended to preorders. Furthermore,
the resulting homology of a preorder is naturally isomorphic to the homology of its
equivalence class poset. This justifies the constructions in Section 6.2.

An Alexandrov topology is a topology in which the intersection of any family of open
sets is open. It is an axiom of topology that the intersection of any finite family of
open sets is open; in Alexandrov topologies the finiteness restriction is dropped. Given
an Alexandrov topology we can construct a special preorder, called its specialisation
preorder.

Definition 33 Let X D .X; �/ be an Alexandrov space. The specialisation preorder
on X is the preorder where x � y if and only if x is in the closure of fyg.
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In the other direction, given a preorder .X;�/ there is a unique Alexandrov topology
whose specialisation preorder is .X;�/. To construct this, let the open sets � on X be
the upper sets,

� D fU �X W 8x; y 2X if x � y and x 2 U then y 2 U g:

The corresponding closed sets for � are the lower sets,

fS �X W 8x; y 2X if x 2 S and y � x then y 2 Sg:

The topology � is generated by the sets Ux D fy W x � yg.

A topological space X is a T0 space if for any pair of points in X there exists an open
set containing one and only one of them. It is an exercise to see how the antisymmetry
condition of posets directly corresponds to the Alexandrov topologies that are T0 .

We can construct T0 spaces by taking Kolmogorov quotients. The Kolmogorov quotient
of a topological space is defined as its quotient by the equivalence relation of topological
indistinguishability, equipped with the quotient topology.

There is a natural way of constructing a poset from a preorder by using quotients. For
.X;�/ a preorder, define an equivalence relation x � y when x � y and y � x . Let
zX DX=� be the quotient space on these equivalence classes. It is easy to check that

the binary relation � is now well defined on zX and that . zX;�/ is a poset. We will
call . zX;�/ the equivalence class poset of .X;�/. The following lemma states the
relationship between a preorder and its equivalence class poset is analogous to taking
the Kolmogorov quotient of its Alexandrov topology. The proof for finite spaces is
Lemmas 8 and 9 in [16], and the extension to infinite spaces can be proved similarly
(see [13]).

Lemma 34 Let .X;�/ be a finite preorder with equivalence class poset . zX;�/.
The Alexandrov topology of . zX;�/ is the Kolmogorov quotient of the Alexandrov
topology of .X;�/. Furthermore, the Alexandrov topologies of .X;�/ and . zX;�/

are homotopy equivalent.

Since homology is defined up to weak homotopy equivalence, often in analysis re-
searchers restrict their analysis from general topological spaces to T0 spaces as they do
not lose any homological information by taking the Kolmogorov quotient. Thus, many
definitions are stated as for posets even though they could be defined for all preorders.
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One definition of the homology of a poset is the singular homology of the Alexandrov
topology which has that poset as its specialisation order. Since the specialisation orders
of Alexandrov topologies provide a one-to-one correspondence between Alexandrov
topologies and preorders, we can generalise this to define the homology of a preorder
as the singular homology of the Alexandrov topology which has that preorder as its
specialisation order.

A chain in a poset is defined as a subset of elements which are all pairwise comparable.
Note that there is no order of the elements given as part of the information of the chain
but that the transitivity of a preorder will ensure that there exists a total ordering of
any chain. In a poset the antisymmetry condition ensures that this order is unique. In a
general preorder multiple possible orders might be possible.

In a poset, the unique ordering of elements in a chain means we can define chain
complexes and homology groups for a poset directly via chains. We thus say that an
m–chain of a poset P is a totally ordered subset cD .x0<x1< � � �<xm/ of P written
in order. We can construct a chain complex by setting Cj .P;R/ to be the R–module
freely generated by j –chains, and defining boundary maps @j W Cj .P /! Cj�1.P /

by @j .x0 < x1 < � � � < xm/D
Pm
iD0.�1/

i .x0 < x1 < � � � yxi � � � < xm/ and extending
linearly.

We can observe that this chain complex is exactly that for ordered sets (see Section 5.2).
If we specify the order of each chain, we can extend this definition to preorders as the
OS homology. Generally the OS homology and the OT homology are not isomorphic
(see Section 5.2). However, in the special case of posets they do define isomorphic
homology groups, as proved below in Theorem 35.

An alternative definition for the homology of a poset is via the construction of its
associated order simplex. The associated order complex �.X;�/ for the poset .X;�/
is the abstract simplicial complex whose vertices are the elements of X and whose
faces are the chains (subsets where each pair is comparable) of .X;�/. The definition
of the associated order complex of a preorder given in Section 6.2 restricts to the
standard definition for posets.

The following theorem presents some relationships between these different homology
constructions:

Theorem 35 Let . zX;�/ be a poset. The following homology groups are isomorphic:

(i) OS homology of the finite chains of . zX;�/.
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(ii) OT homology of the preorder OT complex O. zX;�/.

(iii) Simplicial homology of the order complex �. zX;�/.

(iv) Singular homology of the Alexandrov topology with specialisation order . zX;�/.

Proof The proof that (ii) and (iv) are isomorphic is in [16, Theorem 2]. The isomor-
phism between (i) and (iii) is via the unique total orderings of each simplex in the order
complex. It is the induced map on homology of .x0<x1< � � �<xk/ 7! Œx0; x1; : : : ; xk�.

We will now prove that (i) is isomorphic to (ii). The set of ordered tuples forms
a basis B for OT. zX;�/. Define ˆW B ! fsubcomplexes of OT. zX;�/g by setting
ˆ.�/ to be the subcomplex of OT. zX;�/ containing only ordered tuples with elements
within � . Since � is an ordered tuple, it has a smallest element x and for any ˛ 2ˆ.�/
the ordered tuple concatenating x in front of ˛ (which we will denote by .x˛/) is also
an element in ˆ.�/. Given a boundary ˛ , we can see that @.x˛/D ˛� .x@.˛//D ˛ .
This implies that ˆ is an acyclic carrier.

Set f W OT. zX;�/! OT. zX;�/ by f .�/ the identity when � does not contain repeats
(ie lives in OS. zX;�/ and f .�/D0 if � contains a repeat). Then f commutes with the
boundary map because all repeats of a particular element in a tuple must be consecutive
when working with posets. It is this claim that does not hold more generally between
OT complexes and OS complexes. Since both f and the identity map are both carried
by ˆ, the acyclic carrier theorem (see [17]) ensures that f and the identity map are
chain homotopic and hence the OS homology of the finite chains of . zX;�/ and the
OT homology of preorder OT complex O. zX;�/ are isomorphic.

Each of these four different constructions of homology groups for posets can be
generalised to preorders. Three of these generalise in a way that the homology groups
are invariant under taking equivalence class posets (or equivalently under taking Kol-
mogorov quotients). The OS homology of chains is the odd one out in this respect. A
counterexample is the preorder X D fx; yg with x � y and y � x . It has nontrivial
OS homology in dimension one but its equivalence class poset zX D fŒx�g has trivial
OS homology in dimension one.

Theorem 36 Let .X;�/ be a preorder with equivalence class poset . zX;�/. Then:

(a) The preorder OT complex O.X;�/ is an expansion of O. zX;�/ and hence has
the same OT homology.
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(b) There is a natural projection map from �.X;�/ to �. zX;�/. This projection
map induces an isomorphism on their simplicial homology groups.

(c) The singular homology of the Alexandrov topology with specialisation order
.X;�/ is isomorphic to the singular homology of the Alexandrov topology with
specialisation order . zX;�/.

Proof (a) The OT complexes O.X;�/ and O. zX;�/ are closed under adjacent
repeats by construction. The quotient map sending X to its equivalence class poset zX
shows that O.X;�/ is an expansion of O. zX;�/. We conclude that they are isomorphic
by applying Proposition 20.

(b) Construct a map f W zX!X by fixing a representative x 2X for each equivalence
class Œx� 2 zX. We can embed �. zX;�/ into �.X;�/ via the induced map of f . A
straight line homotopy provides a deformation from �.X;�/ to f .�. zX;�//. The
result then follows because deformation retractions induce isomorphisms on homology
classes.

(c) The proof follows from Lemma 34 as homotopic topological spaces have isomor-
phic singular homology groups.

Combining these theorems we conclude that the OT homology of preorder OT com-
plexes, simplicial homology of the associated order complex of a preorder and the
singular homology of the Alexandrov topology of a preorder are all isomorphic. These
isomorphisms extend to persistent homology as they commute with the maps on
homology induced by inclusions.
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C �–algebraic drawings of dendroidal sets

SNIGDHAYAN MAHANTA

In recent years the theory of dendroidal sets has emerged as an important framework
for higher algebra. We introduce the concept of a C �–algebraic drawing of a
dendroidal set. It depicts a dendroidal set as an object in the category of presheaves
on C �–algebras. We show that the construction is functorial and, in fact, it is the
left adjoint of a Quillen adjunction between combinatorial model categories. We
use this construction to produce a bridge between the two prominent paradigms of
noncommutative geometry via adjunctions of presentable 1–categories, which is
the primary motivation behind this article. As a consequence we obtain a single
mechanism to construct bivariant homology theories in both paradigms. We propose
a (conjectural) roadmap to harmonize algebraic and analytic (or topological) bivariant
K–theory. Finally, a method to analyze graph algebras in terms of trees is sketched.
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0 Introduction

Dendroidal sets provide a convenient model for 1–operads (see Heuts, Hinich and
Moerdijk [21] for a comparison with Lurie’s model [31] for 1–operads without
constants). The category of dendroidal sets dSet was introduced by Moerdijk and
Weiss [44; 45] so that (inter alia) it can serve as a receptacle for the nerve functor on
the category of operads Operad. The following commutative diagram is explanatory:

Cat //

N
��

Operad

Nd
��

sSet // dSet
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where the vertical arrow N (resp. Nd ) denotes the nerve (resp. dendroidal nerve) functor.
Cisinski and Moerdijk [10] constructed a cofibrantly generated model structure on dSet
such that the fibrant objects are precisely the 1–operads [31]. Over the last decade
the theory of dendroidal sets has reached an advanced stage, subsuming several aspects
of the theory of operads and that of simplicial sets; see Cisinski and Moerdijk [11; 12].

For a small category C let P.C/ denote the category of Set–valued presheaves on C.
Let SC�un denote the category of nonzero separable unital C �–algebras equipped with
unit-preserving �–homomorphisms. The Gelfand–Naı̆mark duality implies that SC�un

op

can be regarded as the category of nonempty compact second countable noncommutative
spaces with continuous maps. Let � denote the small category of trees, so that
dSet WD P.�/ is the category of dendroidal sets. In this article we prove the following
results:

(1) We construct a noncommutative dendrices functor DW �! SC�un
op .

(2) We construct an operadic model structure on P.SC�un
op
/, an instance of Cisinksi’s

model structure on presheaves.

(3) We observe that the canonical adjoint pair induced by the noncommutative
dendrices functor via left Kan extension

drW dSet� P.SC�un
op
/ Wdd

is a Quillen pair between combinatorial model categories.

We call the image of a dendroidal set under the left adjoint functor drW dSet!P.SC�un
op/

the C �–algebraic drawing of the dendroidal set.

These results constitute the first steps towards a bigger objective, which we briefly
explain below. There are two prevalent perspectives on noncommutative geometry:
analytic and algebraic. The analytic approach was pioneered by Connes [13] — see
also Connes and Marcolli [14] — whereas the algebraic approach builds upon work of
Drinfeld, Keller, Kontsevich, Lurie, Manin, Mahanta, Tabuada, Toën and several others
[39; 25; 27; 31; 50; 34]. Table 1 compares the two approaches as of now.

The space X above in each case must satisfy some reasonable hypotheses. The 1–
category Perf1.X / is stable and in some contexts stability is included in the definition.
This article is primarily motivated by the author’s desire to reconcile the two viewpoints.
In view of the disparate nature of the basic ingredients of the two paradigms, a bridge
between the basic objects of the two worlds in the form (a zigzag of) 1–categorical
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Analytic Algebraic

objects C �–algebras 1–categories
morphisms �–homomorphisms 1–functors

how to subsume traditional spaces X 7! C.X / X 7! Perf1.X /

Table 1: Comparison between the analytic and algebraic approaches

adjunctions subject to a reasonable requirement (explained below) seems to be a sensible
target. While constructing the bridge we have resorted to 1–categories, which reflects
the state of the art.

Let NS denote the compactly generated 1–category of (unpointed) noncommutative
spaces, whose construction is presented in Section 3.1. The following diagram of
adjunctions between presentable 1–categories summarizes our list of results and puts
them in the broader context (see also Remark 3.6):

(1)

N.P.SC�un
op
/ı/

Rddqq
!!

N.dSetı/

Ldr 22

NS

aa

Here N.Mı/ denotes the underlying 1–category of a model category M. The 1–
categorical adjunction LdrW N.dSetı/ � N.P.SC�un

op
/ı/ WRdd is induced by the

Quillen adjunction drW dSet�P.SC�un
op
/ Wdd between combinatorial model categories

mentioned earlier (see also Remark 3.4). However, the dashed pair between NS and
N.P.SC�un

op
/ı/ is merely a zigzag of adjunctions that is constructed at the level of

1–categories. This construction actually passes through a mixed model structure,
denoted by P.SC�un

op
/mix , on P.SC�un

op
/ which is a left Bousfield localization of the

operadic model structure (see Definition 3.12). Diagram (1) is our proposed bridge
between the two paradigms of noncommutative geometry.

0.1 Bivariant homology theories

Given any stable presentable 1–category C, a colimit-preserving functor

BCW N.P.SC�un
op
/ı/! C

can be viewed as a C–valued bivariant homology theory on N.P.SC�un
op
/ı/. For a

presentable 1–category D, let Sp.D/ denote its stabilization. The functor BC factors
as N.P.SC�un

op
/ı/! Sp

�
N.P.SC�un

op
/ı/
�
! C.
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There must be a unified framework for bivariant homology theories in the two paradigms
of noncommutative geometry. In order to realize this objective one must construct a
functor BC that passes the following two acid tests:

(i) the composite functor N.dSetı/! N.P.SC�un
op
/ı/

BC
�! C should lead to the

(nonconnective version of) algebraic K–theory of1–operads as in Nikolaus [46],
and

(ii) the composite functor NS!N.P.SC�un
op
/ı/

BC
�!C should recover the opposite of

the bivariant K–theory of (pointed) noncommutative spaces as in Mahanta [36]
after stabilization.

Let us provide a pictorial description of our vision:

(2)

N.dSetı/

F1 ((

algebraic K–theory

))N.P.SC�un
op
/ı/

BC
// C

NS

F2
66

KK1op–theory

55

Here the functors F1 and F2 are furnished by those of diagram (1), so that F1 D Ldr.
For any X 2N.dSetı/ we require C.BC ıF1.1/;BC ıF1.X // to be the (nonconnective
version of) algebraic K–theory of X, where 1 is a unit object. Moreover, for any pair
A;B 2 NS we require the equivalence of spectra

C
�
Sp.BC/ıSp.F2/.†

1
C .A//; Sp.BC/ıSp.F2/.†

1
C .B//

�
'KK1op.kCop.A/; kCop.B//;

where kCop is the composite functor NS! NS�
kop
�! KK1op [36]. Varying BC , one

can construct new bivariant homology theories using the above mechanism in both
paradigms. For more generalities on bivariant homology theories of noncommutative
spaces in the setting of 1–categories and model categories, the reader may refer to
Mahanta [38] or Barnea, Joachim and Mahanta [2]. One possible application of this
vision is outlined in Remark 4.9.

Remark A knowledgeable reader might contend that spectral triples constitute the
notion of a space in noncommutative geometry à la Connes. Let us clarify that by
a space we really mean a topological space. A spectral triple .A;H;D/ should
be regarded as a noncommutative manifold, whose underlying topological space is
determined by the C �–algebra A. Therefore, our proposed bridge (1) exists in the
realm of noncommutative topology.
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Remark There is also a Quillen adjunction i!W sSet� dSet Wi� that connects the
theory of 1–categories with that of 1–operads. In this case the relevant model
structure on sSet is the Joyal model structure, whose fibrant objects are 1–categories.
Via the Yoneda embedding SC�un

op
,! P.SC�un

op
/ the category SC�un

op acquires a new
class of weak equivalences from the operadic model structure on P.SC�un

op
/ as in

Theorem A.11. We call these weak equivalences on SC�un
op the weak operadic equiva-

lences. The associated homotopy theory is different from (the opposite of) the standard
homotopy theory of C �–algebras endowed with the C �–homotopy equivalences. The
exact difference between the two homotopy theories is not clear to the author (see
Remark 3.5).

Remark The technology developed in this article works for all dendroidal sets. But
from the viewpoint of topology it is preferable to restrict one’s attention to open
dendroidal sets, which model 1–operads without constants (see Remark 3.6).

Notation and conventions Unless otherwise stated, a graph means a finite directed
graph and a presheaf is considered to be Set–valued. For the sake of definiteness
we adopt the quasicategorical model for 1–categories. An operad always means a
coloured operad. We are mostly going to deal with the category of nonzero unital
separable C �–algebras SC�un with unit-preserving �–homomorphisms (except for in
Section 3.1). Including the zero C �–algebra from the viewpoint of trees and operads
does not seem appropriate.
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1 Dendroidal sets

We are going to assume familiarity with the theory of (coloured) operads and simplicial
sets. For the uninitiated we recommend the following good sources of knowledge:
[41; 8; 40; 29; 19; 6], a list that is obviously nonexhaustive. Since the article is written
for topologists as well as operator algebraists, we review the theory of dendroidal sets
from [51; 44; 45; 10], which is a simultaneous generalization of both operads and
simplicial sets. The exposition is quite brief and necessarily not entirely self-contained.

Trees have played an important role in the theory of operads ever since its inception. We
provide an informal and very concise introduction to trees. We follow the nomenclature
and presentation in [44; 43]. A tree is a finite directed graph whose underlying
undirected graph is connected and acyclic. The vertices will be marked by � as shown
below:

(3)

l1 l2
�

e1

u

l3

�

e4

y

�

e2

v �

e3

w

�

r

x

An edge that is connected to two vertices is called an inner edge; the rest are called
outer edges. Amongst the outer edges, ie those that are attached to only one vertex,
there is a distinguished one called the root; the other outer edges are called leaves.
A nonplanar rooted tree is a nonempty tree with both inner and outer edges with the
choice of one distinguished outer edge as the root. Henceforth, unless otherwise stated,
by a tree we shall mean a nonplanar rooted tree. Such a tree will be drawn with the
root at the bottom and all arrows directed from top to bottom (with arrowheads deleted)
as shown above. For instance, in the above tree there are three leaves l1 , l2 and l3 ,
four inner edges e1 , e2 , e3 and e4 , and the root is r . Note that the number of inner
edges as well as leaves in a tree could be zero. The simplest possible tree is

which is called the unit tree.
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The category of simplicial sets, denoted by sSet, is the category of Set–valued
presheaves on the category of simplices �, ie Fun.�op; Set/. The notion of a
morphism between trees is described in Section 1.1, and this allows us to define
a category � of trees. Then, in analogy with simplicial sets, we define dendroidal
sets to be dSet D Fun.�op; Set/, the category of Set–valued presheaves on �. It
will be clear from the definition of the objects and the morphisms of � that it can be
viewed as a full subcategory of the category of symmetric coloured operads. There is a
fully faithful functor i W � ,!�, leading to an adjunction i!W sSet� dSet Wi�. The
functor i! is fully faithful and hence the category of dendroidal sets is a generalization
of that of simplicial sets. Since dSet D Fun.�op; Set/, it suffices to describe the
category �. The objects of � are nonplanar rooted trees as described above. Note
that in a planar rooted tree the incoming edges at each vertex have a prescribed linear
ordering, which does not exist in a nonplanar rooted tree. Hence, each such planar
(resp. nonplanar) rooted tree generates a nonsymmetric (resp. symmetric) coloured
operad �ŒT �. The set of morphisms �.S;T / between two nonplanar rooted trees S

and T is by definition the set of coloured operad maps between �ŒS � to �ŒT �. Thus, by
construction, � is the full subcategory of the category of symmetric coloured operads
spanned by the objects of the form �ŒT �. The colours of the operad �ŒT � correspond
to the edges of T and a morphism between such operads is completely determined by
its effect on colours. Each vertex v of a tree T with outgoing edge e and a labelling of
the incoming edges e1; : : : ; en defines an operation v 2�ŒT �.e1; : : : ; enI e/. Consider
the nonplanar rooted tree T :

(4)

l1 l2

�

e1

v �

e2

w

�

r

x

The operad �ŒT � that it generates has five colours, l1 , l2 , e1 , e2 and r . The generating
operations are v 2 �ŒT �.I e1/, w 2 �ŒT �.l1; l2I e2/ and x 2 �ŒT �.e1; e2I r/. There
are also operations that arise from the action of the symmetric group in the nonplanar
case. For instance, if � 2 †2 , then w ı � 2 �ŒT �.l2; l1I e2/ is another operation.
There are also the unit operations 1l1

, 1l2
, 1e1

, 1e2
and 1r and compositions like

x ı2 w 2 �ŒT �.e1; l1; l2I r/. We refrain from documenting a complete list of all
operations and the relations they satisfy, which the reader can herself/himself reproduce
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from the above diagram. Instead, we turn towards a more concrete (and pictorial)
description of the morphisms in � that will be needed later.

1.1 Face and degeneracy maps

We illustrate the face and degeneracy maps in � by examples that are taken directly
from [44], where one can find a more elaborate discussion. These maps provide an
explicit description of all morphisms in the category �, as we shall see at the end of
this subsection.

(1) If e is an inner edge in T , then one obtains an inner face map @eW T=e ! T ,
where T=e is constructed by contracting the edge e as shown below:

a

b c

w �

d

u
�

f

@e
�!

a b
v �

e

c

w �

d
�

f

r

(2) If a vertex v in T has exactly one inner edge attached to it, one obtains the outer
face map @vW T=v ! T , where T=v is constructed by deleting v and all the outer
edges attached to it as shown below:

b
c

w�

d
r �

a

@v
�!

e f
v �

b

c

w �

d
�

a

r

It is also possible to remove the root and the vertex that it is attached to by this process,
as shown below:

e

f c

w �

d

u
�

a

@w
�!

e

f c

w �

d

u
�

a

w
�

r
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(3) If a vertex v 2 T has exactly one incoming edge, there is a tree T nv , obtained
from T by deleting the vertex v and merging the two edges e1 and e2 on either side
of v into one new edge e . This defines the degeneracy map �vW T ! T nv as shown
below:

�

e1

�

e2

v �

�

�v
�!

�

e �

�

The following lemma explains the importance of these maps:

Lemma 1.1 [44, Lemma 3.1] Any arrow f W S ! T in � decomposes as

S
f
//

�
��

T

S 0
'
// T 0

ı

OO

where � W S!S 0 is a composition of degeneracy maps, 'W S 0!T 0 is an isomorphism
and ıW T 0! T is a composition of face maps.

Remark 1.2 We have quoted the statement of Lemma 1.1 from the original source.
If one carefully inspects its proof (see Lemma 2.3.2 of [43]) one notices immediately
that the factorization f D ı ı ' ı � is unique. Hence, the degeneracy maps and the
face maps of � actually constitute a factorization system.

1.2 Face and degeneracy identities

These face and degeneracy maps satisfy numerous identities. We illustrate them in
terms of various commuting diagrams in � (with the existence of certain nonobvious
arrows as assertions). The interested reader is referred to [44; 43] for further details and
also the discussion of a couple of special cases that we have left out (see Remark 1.3).
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(I) If e and f are distinct inner edges, then .T=e/=f D .T=f /=e and the following
diagram commutes:

.T=e/=f
@f
//

@e

��

T=e

@e

��

T=f
@f

// T

(II) Assume T has at least three vertices and let @v and @w be distinct outer face
maps. Then .T=v/=w D .T=w/=v and the following diagram commutes:

.T=v/=w
@w
//

@v

��

T=v

@v

��

T=w
@w

// T

(III) If e is an inner edge that is not adjacent to a vertex v , then .T=e/=v D .T=v/=e
and the following diagram commutes:

.T=v/=e
@e
//

@v

��

T=v

@v

��

T=e
@e

// T

(IV) Let e be an inner edge that is adjacent to a vertex v and let w be the other
adjacent vertex. In T=e the two vertices combine to contribute a vertex z (expressing
the composition of v and w in some order). Then the outer face @z W .T=e/=z! T=e

exists if and only if the outer face @wW .T=v/=w ! T=v exists, and in this case
.T=e/=z D .T=v/=w . Summarizing the setup, the following diagram commutes:

.T=v/=w

@w

��

.T=e/=z
@z
// T=e

@e

��

T=v
@v

// T

(V) If �v and �w are two degeneracies of T , then .T nv/nw D .T nw/nv and the
following diagram commutes:

T
�v

//

�w

��

T nv

�w

��

T nw
�v
// .T nv/nw
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(VI) Let �vW T ! T nv be a degeneracy and @W T 0! T be any face map such that
T 0 still contains v and its two adjacent edges as a subtree. Then the following diagram
commutes:

T
�v
// T nv

T 0

@

OO

�v
// T 0nv

@

OO

(VII) Let �vW T ! T nv be a degeneracy map and @W T 0! T be a face map induced
by one of the adjacent edges to v or the removal of v (if that is possible). Then
T 0 D T nv and the following diagram commutes:

T nv

@ !!

idT nv
// T nv

T

�v

==

Remark 1.3 We have left out the following special cases of dendroidal identities:

� Outer face identities when T has fewer than three vertices.

� Predictable identities expressing the compatibility of the face and degeneracy
maps with isomorphisms (see for instance Section 2.3.1 of [43]).

1.3 The model structure on dSet

The formalism of model categories was introduced by Quillen [48] as an abstract
framework for homotopy theory. For a modern treatment the reader may refer to [24; 23].
We review the model structure on dSet constructed by Cisinski and Moerdijk [10] that
generalizes the Joyal model structure on sSet.

The construction of the model structure on dSet exploits the Cisinski model structure
on any category of presheaves [9] (see the appendix) and also a transfer principle.
Typically one begins with certain desired features on the model structure based on
intended applications. Keeping in mind the Joyal model structure on sSet, it is natural
to expect that in the would-be model structure on dSet (certain) monomorphisms
should be cofibrations, some class of objects (generalizing 1–categories) should be
fibrant, and certain morphisms (generalizing categorical equivalences) should be weak
equivalences.

A monomorphism of dendroidal sets X ! Y is normal if for any T 2�, the action
of Aut.T / on Y .T / nX.T / is free. If e is an inner edge of a tree T , then one obtains
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an inner horn inclusion ƒe ŒT �!�ŒT �, where ƒe ŒT � is obtained as the union of the
images of all the elementary face maps apart from @eW T=e! T . A map of dendroidal
sets is called an inner anodyne extension if it belongs to the smallest class of maps which
is stable under pushouts, transfinite compositions and retracts, and which contains the
inner horn inclusions. There is an adjunction �dW dSet� Operad WNd , where �d is
called the operadic realization functor. The model structure on dSet can be described
as (see Theorem 2.4 of [10]):

� the cofibrations are the normal monomorphisms;

� the fibrant objects are the 1–operads;

� the fibrations between fibrant objects are the inner Kan fibrations (see [45; 10,
Section 2.1]), whose image under �d is an operadic fibration, ie a fibration in
the canonical model structure on operads;

� the class of weak equivalences is the smallest class W of maps in dSet satisfying

(a) the 2-out-of-3 property;

(b) that inner anodyne extensions are in W;

(c) that trivial fibrations between 1–operads are in W.

We omit further details but explain an additional property of this model category that
is relevant for our purposes. Let � be regular cardinal. A category A is said to be �–
accessible if there is a small category C such that AŠ Ind�.C/. A locally �–presentable
category is a �–accessible category that, in addition, possesses all small colimits. A
category is locally presentable if it is locally �–presentable for some regular cardinal � .
If C is a small category, the category of presheaves on C (eg dSetD Fun.�op; Set/)
is locally !–presentable (see for instance [1]). Recall that a model category is said to
be combinatorial if it is cofibrantly generated and its underlying category is locally
presentable. It is also shown in Proposition 2.6 of [10] that the model category dSet is
combinatorial. The set of generating cofibrations I consists of the boundary inclusions
of trees, ie I D f@�ŒT �!�ŒT � j T 2�g.

2 C �–algebras associated with trees: noncommutative
dendrices

The description of a tree presented in the previous section differs slightly from the
one that one might encounter in graph theory. For instance, in the graph algebra
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literature a directed graph G D .E0;E1; r; s/ consists of two (countable) sets E0

and E1 and functions r; sW E1!E0 . The elements of E0 are called the vertices and
those of E1 are called the edges of G. For an edge e , the vertex s.e/ is its source
and the vertex r.e/ is its range. Thus, in a directed graph one does not have edges
attached only to one vertex like the leaves or the root that we considered in the previous
section. In a graph a path of length n is a sequence �D e1e2 � � � en of edges such that
s.ei/D r.eiC1/ for all i 6 i 6 n� 1. For such a path �D e1e2 � � � en we denote by
edge.�/D fe1; e2; : : : ; eng the set of all edges traversed by it.

The C �–algebra associated with a tree that we are going to describe shortly is to
some extent inspired by the construction of noncommutative simplicial complexes
in [16]. However, we design the C �–algebra from the edges of the tree, since from the
categorical (or operadic) viewpoint the edges are more fundamental than the vertices.

Definition 2.1 Given a set G of generators and a set R of relations, the universal
C �–algebra, denoted by C �.G;R/, is a C �–algebra equipped with a set map �W G!
C �.G;R/ that satisfies the following universal property: for every C �–algebra A and
set map �AW G!A such that the relations R are fulfilled inside A, there is a unique
�–homomorphism � W C �.G;R/!A satisfying � ı �D �A .

This is a subtle concept; for instance, if G D fxg and R D ∅, then the universal
C �–algebra C �.G;R/ does not exist. In other words, free (or relation-free) objects
do not exist in the category of C �–algebras. It follows from two simple facts:

(1) Every element in a C �–algebra has a finite norm k � k, ie a real number.

(2) Every �–homomorphism is norm-decreasing, ie �WA!B implies k�.a/k6kak.

If C �.G D fxg;R D ∅/ were to exist, then the generator x would have a finite
norm kxk. Now choose any C �–algebra A and an element a 2 A with kak > kxk,
which can evidently be done. Then it is manifestly clear that one cannot find the
desired �–homomorphism �W C �.G D fxg;RD∅/!A with �.x/D a that satisfies
requirement (2) above. If the relations R put a nonstrict bound on the norm of each
generator, then typically one obtains an interesting nontrivial universal C �–algebra
(although it can be trivial in certain cases).

Definition 2.2 Given any tree T D .E0;E1/ (viewed as a graph as described above)
we define its associated C �–algebra as the universal unital C �–algebra generated by
fqe j e 2E1g satisfying
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(1) qe > 0 for all e 2E1 ,

(2)
P

e2E1 qe D 1, and

(3) qe1
qe2
� � � qen

D 0 unless there is a path � with fe1; e2; : : : ; eng � edge.�/
(inclusion of sets disregarding order).

Remark 2.3 Let us briefly clarify the motivation behind the relations.

� The relations (1) and (2) clearly put a bound on the norm of each generator and
hence the existence of the universal C �–algebra is clear.

� Relation (3) encodes the compositional nature of trees. It retains those terms that
lie in a path (and hence bound a simplex). However, it also retains reorderings and
repetitions of edges within the path because we want the canonical abelianization
map to be surjective (see Remark 2.5 and Example 2.7).

Example 2.4 Note that repetitions are allowed amongst the ei in relation (3) above.
For instance, if T is

�

l1

y �

l2

z

�

e1

v �

e2

w

�

r

x

�

then ql2
qe1

qe2
D ql1

ql2
D qe2

qe1
ql2
D 0, whereas qr qe1

ql1
¤ 0 and qe1

ql2
qe1
¤ 0.

Given any nonplanar rooted tree T we construct its associated C �–algebra D.T / as
follows:

(a) insert a vertex at each of the top tips of the leaves (if any) and the bottom tip of
the root;

(b) construct the universal C �–algebra of the modified tree as explained above.

For instance, given the tree

(5)

l1 l2
�

e1

v �

e2

w

�

r

x
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then according to procedure (a) we modify the tree as

(6)

�

l1

y �

l2

z

�

e1

v �

e2

w

�

r

x

�

and then construct its universal C �–algebra.

Remark 2.5 In the above construction we can add the relation that the generators com-
mute, ie qeqf D qf qe for all e; f 2E1 to obtain a commutative C �–algebra Dab.T /.

Definition 2.6 The C �–algebra D.T / associated with a nonplanar rooted tree T is
called a noncommutative dendrex. Note that if X 2 dSet and T 2�, then X.T / is
viewed as the set of T –shaped dendrices in X.

Example 2.7 An object Œn� 2� can be viewed as a linear tree Ln as

 �1 � � �  �n 

(drawn horizontally instead of vertically with arrowheads inserted to indicated the
direction). This association Œn� 7! Ln defines a fully faithful functor � ,! � that
produces the adjunction sSet� dSet. After modification Ln produces the tree

�0 �1 � � �  �nC1;

whose associated C �–algebra is the universal unital C �–algebra generated by nC 1

positive generators fq1; : : : ; qnC1g such that
Pn

iD1 qi D 1. Its associated commutative
C �–algebra (see Remark 2.5) is isomorphic to C.�n/, where �n is the standard n–
simplex (see Proposition 2.1 of [16]). Our choice for the noncommutative dendrex
construction was guided by this consideration. Observe that D.L0/ D C , since Œ0�
corresponds to the unit tree
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whose modified tree is simply
�

�

with only one edge. This phenomenon reflects the fact that the edges of a tree correspond
to the colours of its associated operad.

2.1 Functoriality

The aim of this subsection is to establish the (contravariant) functoriality of the above
construction T 7!D.T / with respect to morphisms of �. To this end we begin by
defining the �–homomorphisms that the faces and degeneracies induce. If �vW T !
T nv is a degeneracy map (see Lemma 1.1) like

�

e1

�

e2

v �

�

�v
�!

�

e �

�

then define ��v W D.T nv/!D.T / as

qf 7!

�
qf if f ¤ e,
qe1
C qe2

otherwise.

Remark 2.8 The notation employed in the definition of ��v is potentially ambiguous.
In the domain qf is a generator of D.T nv/ and in the codomain it is a generator
of D.T /. One should ideally differentiate them by writing q

T nv

f
and qT

f
(or something

similar) to indicate the dependence on the tree. For notational simplicity we avoid
doing this.

Lemma 2.9 The map ��v W D.T nv/!D.T / is a �–homomorphism.

Proof We need to verify that the set f��v .qf / j f an edge in T nvg satisfies the
relations (1), (2) and (3) in D.T / that define the universal C �–algebra D.T nv/.
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For (1) note that qe1
and qe2

are both positive in D.T /, whence so is qe1
C qe2

.
Clearly each qf is also positive in D.T /. Let E1.T / be the set of edges in T . We
verify (2) by computingX

f 2E1.T nv/

��v .qf /D
X
f¤e

qf C .qe1
C qe2

/D
X

f 2E1.T /

qf D 1:

For (3) one can check by inspection that if f1 and f2 are two edges in T nv that do
not lie in a path, then they cannot lie in a path in T .

Note that every face map can be viewed as an injective map on edges (or colours
of the associated operad). Thus, if @eW T=e! T is an inner face map then define a
�–homomorphism @�e W D.T /!D.T=e/ as

qf 7!

�
qf if f ¤ e,
0 otherwise.

Similarly, if @vW T=v! T is an outer face map then define @�v W D.T /!D.T=v/ as

qf 7!

�
qf if f has not been removed,
0 otherwise.

Lemma 2.10 The maps

@�e W D.T /!D.T=e/ and @�v W D.T /!D.T=v/

are �–homomorphisms.

Proof One needs to again verify that the set f@�e .qf / j f an edge in T g satisfies
the relations (1), (2) and (3) in D.T=e/ that define the universal C �–algebra D.T /.
Relations (1) and (2) are clearly satisfied; for relation (3) one needs to observe that if
two edges e and f in T do not lie in a path, then this property continues to hold in
T=e or T=v . A similar argument is applicable to @�v .

Remark 2.11 If � W S ! T is an isomorphism in � then ��W D.T /! D.S/ acts
on the generators as qe 7! q��1.e/ . One can readily verify that �� is a unital �–
homomorphism.

Let SC�un denote the category of separable unital C �–algebras with unit-preserving
�–homomorphisms. Extending the Gelfand–Naı̆mark duality, SC�un

op is regarded as
the category of compact Hausdorff noncommutative spaces with continuous maps.
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Proposition 2.12 The association of a noncommutative dendrex with a tree T 7!

D.T / defines a functor DW �! SC�un
op .

Proof In view of Lemma 1.1 it suffices to show that the �–homomorphisms @�e , @�v ,
��v and �� satisfy the face and degeneracy identities (see Section 1.2). Note that
thanks to the universal property of universal C �–algebras we simply need to verify
that various combinations of these �–homomorphisms governed by the identities agree
on generators.

It is easy to verify that identities (I), (II), (III) and (V) are satisfied. The point is to
observe that the order in which a certain number of generators are sent to 0 or sums of
two other generators does not affect the final outcome.

For (IV) let us suppose that the tree around e looks like

n leaves

l1 ln

� v

e

�w

� x

Now @�z@
�
e will first send qe to 0 and then ql1

; : : : ; qln
to 0. On the other hand, @�w@

�
v

will first send ql1
; : : : ; qln

to 0 and then qe to 0. The end result is evidently the same.

For (VI) we begin with the commutative diagram

T
�v
// T nv

T 0

@

OO

�v
// T 0nv

@

OO

Let us suppose that the face map @ removes edges f1; : : : ; fn . Since T 0 still contains v
and its two adjacent edges (say e1 and e2 ), one can merge them to a new edge e . Thus,
@� is defined by qfi

7! 0 for i D 1; : : : ; n and ��v by qe 7! qe1
Cqe2

. Hence, it is clear
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that @���v D �
�
v @
� . The verifications of (VII) and the special cases (see Remark 1.3)

are similar and omitted.

Let us observe that D.T / is unital for every T 2� and the �–homomorphisms @�e , @�v ,
��v and �� are all unit-preserving, whence the essential image of the functor D is
indeed SC�un

op .

Note that for a map � W S!T in � the induced map is ��W D.T /!D.S/. It remains
to check that the association � 7! �� respects composition of morphisms. It is clear
that this association preserves composition of face maps as well as composition of
degeneracy maps. To complete the proof we now simply invoke Remark 1.2.

3 Draw–dendraw adjunction and the bridge

For a small category C let P.C/ denote the category of Set–valued presheaves on C,
ie Fun.Cop; Set/. Thus, setting C D � we find P.�/ D dSet. Since P.SC�un

op
/ is

cocomplete, using the covariant functoriality of the category of presheaves (via left
Kan extension) one obtains the dashed functor below:

(7)

�
D

//

��

SC�un
op

��

dSet // P.SC�un
op
/

where the vertical functors are the canonical Yoneda embeddings and the top hori-
zontal functor DW � ! SC�un

op is the one constructed in the previous section (see
Proposition 2.12). Let dr denote the dashed functor in the above diagram (7). There is
an adjunction

drW dSet� P.SC�un
op
/ Wdd;

where the right adjoint dd is defined as Œdd.Y /�.T /DY .D.T // for any Y 2P.SC�un
op
/.

Definition 3.1 For any X 2 dSet the object dr.X / is its C �–algebraic drawing. We
call the functor dr (resp. dd) the draw (resp. dendraw) functor.

Remark 3.2 In sheaf-theoretic notation, dr D D! and dd D D� . The dendraw
functor dd also admits a right adjoint D�W dSet! P.SC�un

op
/, whence it preserves

colimits.
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Recall from Section 1.3 that the category dSet admits a combinatorial model structure.

Theorem 3.3 There is a combinatorial model structure on P.SC�un
op
/ such that the

draw–dendraw adjunction

drW dSet� P.SC�un
op
/ Wdd

becomes a Quillen adjunction.

Proof The model structure on P.SC�un
op
/ that we are referring to is constructed in

Theorem A.11 (see the appendix). The left adjoint dr sends generating cofibrations
in dSet to cofibrations in P.SC�un

op
/ (see Proposition A.6 below) and generating trivial

cofibrations to trivial cofibrations in P.SC�un
op
/ (see Remark A.13 below). Now, using

Lemma 2.1.20 of [24], one concludes that the draw–dendraw adjunction is actually a
Quillen adjunction.

Remark 3.4 Associated with any (combinatorial) model category M there is an
underlying (presentable) 1–category N.Mı/ (see Definition 1.3.1 of [22]). Moreover,
a Quillen adjunction between (combinatorial) model categories (like drW dSet �
P.SC�un

op
/ Wdd) induces an 1–categorical adjunction between the underlying (pre-

sentable) 1–categories (like LdrW N.dSetı/ � N.P.SC�un
op
/ı/ WRdd) — see [22,

Proposition 1.5.1; 42, Theorem 2.1]. Although we are mainly interested in the 1–
categorical adjunction pair .Ldr;Rdd/, it is often convenient to have at our disposal
an explicit Quillen adjunction modelling it.

Remark 3.5 Viewing SC�un
op inside the category of presheaves P.SC�un

op
/ via the

Yoneda functor, we obtain a new homotopy theory for (the opposite category of)
separable unital C �–algebras, whose weak equivalences are called weak operadic
equivalences. This new class of weak operadic equivalences is potentially interest-
ing in its own right. The weak operadic equivalences on SC�un

op are different from
those inherited from the model structure on Ind.SC�un

op
/ (see [2]) via the embedding

SC�un
op
,! Ind.SC�un

op
/. These two classes of weak equivalences on SC�un

op give rise to
different homotopy theories. The class of weak operadic equivalences is not contained
in the class of standard homotopy equivalences on SC�un

op (see Remark A.12); it is not
clear to the author whether the other containment holds. Those readers who prefer to
stick to the category of C �–algebras (and not venture into the category of presheaves)
may try to classify the objects in it up to weak operadic equivalences.
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Remark 3.6 A vertex that has no incoming edges is called a stump, eg in the 0–corolla

�

the top vertex is a stump. A tree devoid of stumps is called an open tree. Let �o

denote the full subcategory of � spanned by the open trees. The canonical inclusion
�o ,! � induces an adjunction dSeto WD P.�o/ � P.�/ D dSet such that the
left adjoint dSeto ,! dSet is fully faithful. The objects of dSeto are called open
dendroidal sets. The category dSeto inherits a combinatorial model structure via the
adjunction dSeto� dSet, making it a Quillen pair (see Section 2.3 of [21]). The fully
faithful functor sSet! dSet factors through dSeto . The fibrant objects of dSeto

are 1–operads without constants. It was noticed by Moerdijk that our construction
of the noncommutative dendrices functor does not distinguish between a leaf and an
edge whose top vertex is a stump; in particular, the C �–algebra associated with the
unit tree and the 0–corolla are both C . Thus, our draw–dendraw adjunction should be
restricted to open dendroidal sets via the composite adjunction

dSeto� dSet� P.SC�un
op
/:

So far we have constructed the solid adjunctions in the following diagram of 1–
categories:

N.dSetıo/

""

N.P.SC�un
op
/ı/

Rddqq
!!

N.dSetı/

Ldr 22
bb

NS

aa

Now we define the 1–category of noncommutative spaces NS. Then we complete
the connection between 1–operads and noncommutative spaces via a sequence of
1–categorical adjunctions. The dashed pair above actually represents a zigzag of
adjunctions.

3.1 The rest of the bridge between NS and N.P.SC�
un

op/ı/

Earlier we constructed the compactly generated 1–category of pointed noncommu-
tative spaces generalizing the category of pointed compact noncommutative spaces
(see Definition 2.13 of [37]). Let SC�op denote the opposite topological category of
separable C �–algebras with all (not necessarily unit-preserving) �–homomorphisms.
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We view it as a topological category by endowing the morphism sets with the point-
norm topology. Let SC�1

op denote the topological nerve of SC�op . It is shown in
Proposition 2.7 of [37] that SC�1

op admits finite colimits.

Definition 3.7 We set NS� D Ind!.SC�1
op
/ and call it the compactly generated 1–

category of pointed noncommutative spaces.

Similarly, there exists a compactly generated 1–category NS of noncommutative
(unpointed) spaces whose construction is outlined below.

Definition 3.8 Let C denote the opposite of the topological category of separable
unital C �–algebras with unit-preserving �–homomorphisms. We again view it as a
topological category by endowing the morphism sets with the point-norm topology.

Here we have included the zero C �–algebra in the topological category C. The zero
C �–algebra should be viewed as the (unital) C �–algebra of continuous functions on
the empty space. Therefore, for every separable unital C �–algebra A there is a unique
unital �–homomorphism A! 0, ie the opposite category C has an initial object. But
the zero �–homomorphism 0!A is not unital unless AD 0.

Definition 3.9 Let NSfin denote the topological nerve of the topological category C.
Here it is vitally important to consider the point-norm topology on the morphism spaces
while constructing the topological nerve.

One can show as in Proposition 2.7 of [37] that NSfin admits finite colimits. For the rest
of this section we set IndD Ind! , which denotes the 1–categorical ind–completion.

Definition 3.10 We set NS WD Ind.NSfin/ and call it the compactly generated 1–
category of (unpointed) noncommutative spaces.

Remark 3.11 This 1–categorical construction of noncommutative spaces NS is
simple and practical. It incorporates homotopy theory and analysis in a systematic
manner; the analytical aspects are contained within the world of C �–algebras. More
complicated topological algebras like pro-C �–algebras can be viewed within this setup
via the homotopy theory of diagrams of C �–algebras. The mechanism is explained in
our earlier work [37; 36].
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There is a canonical fully faithful embedding of (topological) categories SC�un
op
,! C.

This functor induces an adjunction of the corresponding categories of presheaves
P.SC�un

op
/� P.C/. A map f W C !D in C is a C �–homotopy equivalence if there

is another map gW D ! C and homotopies fg ' idD and gf ' idC . The set of
C �–homotopy equivalences gives rise to a set of maps in P.C/ that, finally, gives rise
to another set of maps in P.SC�un

op
/ via the adjunction P.SC�un

op
/� P.C/.

Definition 3.12 (mixed model structure on P.SC�un
op
/) The left Bousfield localization

of the combinatorial model category P.SC�un
op
/ equipped with the operadic model

structure (see Theorem A.11) along the set of maps induced by the C �–homotopy
equivalences is the mixed model structure on P.SC�un

op
/. We denote the mixed model

category by P.SC�un
op
/mix , which again turns out to be combinatorial.

The Bousfield localization P.SC�un
op
/! P.SC�un

op
/mix of combinatorial model cate-

gories induces an adjunction of underlying presentable1–categories N.P.SC�un
op
/ı/�

N.P.SC�un
op
/ımix/ that exhibits N.P.SC�un

op
/ımix/ as a localization of N.P.SC�un

op
/ı/. Let

� denote the composition of the functors

C
j
,�! P.C/! P.SC�un

op
/
.�/f
��! P.SC�un

op
/fmix;

where j is the Yoneda embedding, P.SC�un
op
/fmix is the full subcategory of (bi)fibrant

objects of P.SC�un
op
/mix and .�/f denotes a fibrant replacement functor in the mixed

model category P.SC�un
op
/mix . Let us view P.SC�un

op
/fmix as a relative category in the

sense of [4] via the weak equivalences inherited from the model category P.SC�un
op
/mix .

We can also view C as a relative category with the C �–homotopy equivalences as the
weak equivalences.

Lemma 3.13 The functor � W C! P.SC�un
op
/fmix is a morphism of relative categories.

Proof We need to verify that � preserves weak equivalences. Our construction of the
mixed model category P.SC�un

op
/mix ensures this property (see Definition 3.12).

For any relative category A we denote the underlying 1–category by A1 (see
Section 1.2 of [42]). The morphism of relative categories � W C!P.SC�un

op
/fmix induces

a morphism of underlying 1–categories � W C1 ! .P.SC�un
op
/fmix/1 . For any 1–

category A there is an 1–category of 1–presheaves P1.A/ (see [30]). Note the
subtle difference in notation — for an ordinary category A we denote by P.A/ the
category of Set–valued presheaves on A, whereas for an 1–category A we denote
by P1.A/ the 1–category of 1–presheaves on A.
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Proposition 3.14 The morphism of 1–categories � W C1 ! .P.SC�un
op
/fmix/1 in-

duces a colimit-preserving functor z� W P1.C1/! N.P.SC�un
op
/ımix/.

Proof The canonical inclusion P.SC�un
op
/fmix ,! P.SC�un

op
/mix induces an equivalence

of underlying 1–categories [18] (see also Lemma 2.8 of [42]). Thanks to the universal
property of the category of presheaves P1.�/ in the setting of 1–categories (see
Theorem 5.1.5.6 of [30]), it suffices to show that .P.SC�un

op
/fmix/1 ' N.P.SC�un

op
/ımix/

admits small colimits. Since the model category P.SC�un
op
/mix is combinatorial, its

underlying 1–category is presentable (see Corollary 1.5.2 of [22]), ie it is cocomplete.

The following result is proven in Proposition 3.18 of [2] using the formalism of weak
(co)fibration categories [3].

Lemma 3.15 There is an equivalence of 1–categories Ind.C1/' NS.

Remark 3.16 Actually Proposition 3.18 of [2] proves a pointed version of the above
lemma. The desired result can be shown using similar methods and hence its proof is
omitted.

Theorem 3.17 There is a diagram of adjunctions of presentable 1–categories

N.P.SC�un
op
/ımix/ 33

rr

P1.C1/

z�
ss

  

N.P.SC�un
op
/ı/

22

Ind.C1/' NS

``

Proof The presentability of each 1–category in the above diagram is clear. Ob-
serve that z� W P1.C1/! N.P.SC�un

op
/ımix/ is a colimit-preserving functor between

presentable 1–categories (see Proposition 3.14). Hence, using the adjoint functor
theorem (see Corollary 5.5.2.9 of [30]) we deduce that it admits a right adjoint. The
existence of the adjunction pair P1.C1/� Ind.C1/' NS is standard (see for instance
Theorem 5.5.1.1 of [30]). The adjunction N.P.SC�un

op
/ı/ � N.P.SC�un

op
/ımix/ has

already been explained above.

Remark 3.18 For the benefit of the reader we explain briefly the meaning and signifi-
cance of this result. It is the author’s perception that several results in the two paradigms
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of noncommutative geometry use very similar techniques, albeit in different contexts.
For example, the constructions of the bivariant K–theory category and the category of
noncommutative motives are philosophically almost identical (only applied to different
notions of spaces). That led to the vision of abstracting away the commonalities and
providing a framework whereby results can be transferred back and forth, creating
synergies (see Section 0.1). In what follows we substantiate this assertion with a few
potential directions for development.

4 Prospects: commutative spaces and graph algebras

It is known how to view commutative spaces (or motives) inside their noncommutative
counterparts in the algebrogeometric setting [27; 50; 7]. We briefly explain how the1–
category of spaces (not necessarily compact) sits inside that of noncommutative spaces
via a colocalization in the setting of Connes. We also highlight how noncommutative
dendrices naturally interpolate between the two canonical notions of building blocks.

4.1 Commutative spaces via colocalization

Let S (resp. S� ) denote the 1–category of spaces (resp. pointed spaces). It is shown
in Theorem 1.9(1) of [36] that there is a fully faithful !–continuous functor S� ,! NS� .
In the same vein one can show that there is a fully faithful !–continuous functor
S ,! NS.

Proposition 4.1 The fully faithful !–continuous functor S� ,! NS� (as well as
S ,! NS) admits a right adjoint , ie it is colimit-preserving.

Proof Due to the Gelfand–Naı̆mark correspondence there is a fully faithful functor
f W Sfin

� ,! SC�1
op that induces the fully faithful !–continuous functor Ind!.f /W S� ,!

NS� of Theorem 1.9(1) of [36]. The functor f preserves finite colimits, whence it is
right exact. Therefore, by Proposition 5.3.5.13 of [31], the functor Ind!.f / admits a
right adjoint. The proof of the corresponding assertion for S ,! NS is similar.

Definition 4.2 We denote the right adjoint of S� ,! NS� (resp. S ,! NS) in the above
Proposition 4.1 by US�W NS� ! S� (resp. USW NS! S) and call it the underlying
pointed space (resp. underlying space) functor. Since US� and US admit fully faithful
left adjoints they are colocalizations, ie they constitute the commutative (pointed) space
approximation of a noncommutative (pointed) space.
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Now we are going to demonstrate how noncommutative dendrices interconnect sim-
plices and matrices. Let Tn denote the linear graph

�0
e1
 � �1

e2
 � � � �

en
 � �n;

whose graph algebra C �.Tn/ is isomorphic to MnC1.C/ (the construction of the
graph algebra is explained below in Section 4.2). Let Dab.Tn/ denote the commutative
unital C �–algebra generated by requiring the generators fqe1

; : : : ; qen
g of D.Tn/

to commute (see Remark 2.5). There is a canonical surjective �–homomorphism
�nW D.Tn/!Dab.Tn/ that is identity on the generators. It follows from Proposition 2.1
of [16] that Dab.Tn/ is isomorphic to the commutative C �–algebra C.�n/. There
is also a canonical �–homomorphism snW D.Tn/! C �.Tn�1/ ŠMn.C/, sending
qei
7! eii . Note that

Pn
iD1 eii is the identity matrix that is the unit in the graph algebra

C �.Tn�1/ŠMn.C/. Thus, we have a zigzag of arrows

(8)

D.Tn/

�n

uu

sn

**

Dab.Tn/Š C.�n/ C �.Tn�1/ŠMn.C/

The set of �–homomorphisms fsn jn2Ng defines a set of maps M in the1–category
noncommutative spaces NS via the functor j W NSfin ! NS. Thus, we are going to
invert the maps in M to construct the simplex–matrix-identified version of NS. It is
quite natural to consider matrix algebras as noncommutative simplices.

Definition 4.3 The accessible localization LM W NS!M�1NSDWNSSM , which admits
a fully faithful right adjoint, is defined to be the 1–category of simplex–matrix-
identified noncommutative spaces.

Remark 4.4 Since NS is a presentable 1–category, so is NSSM .

Remark 4.5 The composite functor NSSM ,! NS US
�! S defines the underlying space

functor on NSSM . The subcategory of simplex–matrix-identified noncommutative
spaces NSSM is a tractable part of the entire 1–category of noncommutative spaces NS
and it would be nice to explore it further.

Remark 4.6 Let CWfin denote the category of finite CW complexes. The geomet-
ric realization functor j � jW sSet ! Ind.CWfin/ preserves (tensor) products and de-
tects weak equivalences, whose counterpart in the world of dendroidal sets has been
treated in [20; 5]. It is plausible (and desirable) that one could modify the functor
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drW dSet ! P.SC�un
op
/ to produce yet another C �–algebraic or noncommutative

geometric realization of dendroidal sets that fits into the commutative diagram

sSet
j � j

//

��

Ind.CWfin/

��

dSet ?
// Ind.SC�un

op
/� P.SC�un

op
/

We leave it as an open problem.

4.2 Graph algebras

There is a vast literature on graph algebras (or graph C �–algebras) with several
interesting results relating structural aspects of the graph algebra (like simplicity) to
purely graph-theoretic properties. We encourage the interested reader to consult for
instance [49].

Let E be a finite directed graph and let H be a fixed separable Hilbert space. A
Cuntz–Krieger E–family fS;Pg on H (abbreviated as CK E–family) consists of a set
P DfPv jv2E0g of mutually orthogonal projections on H and a set SDfSe j e2E1g

of partial isometries on H such that

(CK1) S�e Se D Ps.e/ for all e 2E1 ; and

(CK2) Pv D
P
fe2E1Wr.e/Dvg SeS�e provided fe 2E1 W r.e/D vg ¤∅.

The graph algebra of E, denoted by C �.E/, is by definition the universal C �–algebra
generated by fS;Pg subject to relations (CK1) and (CK2). It is known that C �.E/ is
unital if and only if the set of vertices E0 is finite (see Proposition 1.4 of [28]).

Remark 4.7 Some authors prefer to write the relations (CK1) and (CK2) differently,
viz the roles of r and s are interchanged. We have adopted the convention from [49].
The advantage of this viewpoint is that juxtaposition of edges in a path corresponds to
composition of partial isometries on the Hilbert space H .

Example 4.8 The graph algebra corresponding to the graph � is the Cuntz
algebra O2.

The left Quillen functor drW dSet! P.SC�un
op
/ is obtained by the left Kan extension

of � D
�! SC�un

op
! P.SC�un

op
/ along �! dSet. Explicitly it is given by the formula

Œdr.X /�.A/D colim
f WD.T /!A

X.T /;
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where the colimit is taken over the comma category .D #A/. The Quillen adjunction
descends to an adjunction of homotopy categories

LdrW Ho.dSet/� Ho.P.SC�un
op
// WRdd;

after taking the total derived functors of dr and dd (Ldr and Rdd, respectively).

The composite LdrıRdd defines a comonad on Ho.P.SC�un
op
//. Viewing any separable

unital C �–algebra A inside Ho.P.SC�un
op
// via the Yoneda functor, we may consider

the map given by the counit of the adjunction LdrıRdd.A/! Id.A/. It is presumably
not an isomorphism; nevertheless, one should consider its comonadic resolution. If A

is a graph algebra, this resolution can be viewed as a resolution of the underlying graph
by trees. It would be nice to classify C �–algebras up to this dendroidal invariant.

Remark 4.9 In the world of C �–algebras a celebrated result of Kirchberg asserts
that topological K–theory acts as a complete invariant on the subcategory of so-called
stable Kirchberg algebras that satisfy UCT [26]. It was shown in [35; 15] that for such
C �–algebras (in fact for a larger subcategory of C �–algebras) algebraic K–theory is
naturally isomorphic to topological K–theory (see Theorem 2.4 and Remark 1 of [35]).
If the vision outlined in the introduction can be realized, viz if one can show that
algebraic K–theory and KK–theory can be recovered from diagram (2), then the above-
mentioned construction would provide a higher invariant that has the potential to act
as a complete invariant on a bigger subcategory than that of stable Kirchberg algebras
satisfying UCT. Observe that topological K–theory is also the primary classification
tool for graph algebras. It would be actually more prudent to analyze this construction
for a graph algebra at the level of underlying 1–categories (and not at the level of
homotopy categories), possibly after passing to the stabilization.

Appendix The model structure on P.SC�
un

op/

For any small category C there is a Cisinski model structure on P.C/ [9], whose
construction is described below. A functorial cylinder object is an endofunctor

I ˝ .�/W P.C/! P.C/

such that for every X 2 P.C/ there are natural morphisms @0
X

, @1
X

and �X that satisfy:
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(1) The following diagram commutes:

X

@0
X ##

idX

$$
I ˝X

�X
// X

X

@1
X

;;

idX

99

(2) The canonical morphism XqX! I˝X induced by @0
X

and @1
X

is a monomor-
phism.

The choice of a functorial cylinder object JD .I˝ .�/; @0
.�/
; @1
.�/
; �.�// constitutes an

elementary homotopical datum if J satisfies the following two additional conditions:

(i) the functor I ˝ .�/ commutes with small colimits, and

(ii) for every monomorphism j W K!L in P.C/ for e D 0; 1, the diagram

K
j

//

@e
K
��

L

@e
L
��

I ˝K
I˝j

// I ˝L

is a pullback square.

Using the functorial cylinder object J, one can define an elementary J–homotopy
between two maps in P.C/, viz two maps f;gW X ! Y are elementary J–homotopic
if there is a map �W I ˝X ! Y making the following diagram commute:

X
f

""

@0
X
��

I ˝X
�
// Y

X

@1
X

OO

g

<<

Let HoJP.C/ denote the category whose objects are those of P.C/ and whose mor-
phisms are the elementary J–homotopy classes of morphisms of P.C/.

Definition A.1 There is a canonical functor P.C/! HoJP.C/ and the morphisms
that descend to isomorphisms under this functor are called J–homotopy equivalences.
This notion obviously depends on the choice of J.
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The model structure on P.C/ depends on another choice, viz a class An of anodyne
extensions. For a class M of maps of P.C/ we denote by llp.M / (resp. rlp.M /) the
class of maps that satisfy the left (resp. right) lifting property with respect to M. For
any cartesian square

X //

��

Y

��

Z // W

in P.C/ with Y !W and Z!W monomorphisms, the canonical map YqX Z!W

is also a monomorphism. For brevity this monomorphism is suggestively written as
Y [Z!W .

Definition A.2 Let J be an elementary homotopy datum on P.C/. Then a class of
anodyne extensions An relative to J is a class of morphisms in P.C/ such that

(a) AnD llp.rlp.M // for a small set of maps M,

(b) for any monomorphism K!L and eD0; 1, the induced map I˝K[feg˝L!

I ˝L belongs to An, and

(c) if K ! L belongs to An, then so does I ˝K [ @I ˝ L ! I ˝ L, where
@I ˝LDLqL.

Remark A.3 It is shown in Proposition 1.3.13 of [9] that for any small set S of
monomorphisms of P.C/ there is a smallest class of anodyne extensions relative to J

that is generated by S. This class of morphisms is denoted by AnJ.S/.

Theorem A.4 [9, Théorème 1.3.22] Let J be an elementary homotopy datum
on P.C/ and AnJ.S/ be a class of anodyne extensions relative to J that is generated
by a small set S of monomorphisms. Then there is a combinatorial model structure
on P.C/ satisfying

(1) the cofibrations are the monomorphisms,

(2) X 2 P.C/ is fibrant if the map X ! ?, where ? is the terminal object, satisfies
the right lifting property with respect to all anodyne extensions AnJ.S/, and

(3) a map f W X ! Y is a weak equivalence if for all fibrant objects Z the induced
map f �W HoJP.C/.Y;Z/! HoJP.C/.X;Z/ is bijective.
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Remark A.5 The Cisinksi model structure on P.C/ admits a functorial fibrant re-
placement. A set of generating cofibrations can be chosen to be those monomorphisms
whose codomains are quotients of representable presheaves (see Proposition 1.2.27
of [9]). Every object of P.C/ is cofibrant and its homotopy category is equivalent to
the full subcategory of HoJP.C/ spanned by the fibrant objects (see 1.3.23 of [9]).
Moreover, a morphism between two fibrant objects is a weak equivalence if and only if
it is a J–homotopy equivalence.

Proposition A.6 The functor drW dSet! P.SC�un
op
/ preserves cofibrations.

Proof The set of generating cofibrations in dSet is f@�ŒT �!�ŒT � j T 2�g. Each
face map @W T 0! T of trees induces a monomorphism of representable presheaves,
whose image is specified by the datum of this monomorphism of representable pre-
sheaves (see Chapter IV of [32]). For any tree T the boundary inclusion @�ŒT �!�ŒT �

is obtained as a union of the images of such face maps. We know that dr sends the
representable presheaf of T to that of D.T /. Each face map @W T 0! T in � induces
a surjective �–homomorphism @�W D.T / ! D.T 0/ in SC�un (see Section 2.1). It
induces a monomorphism in SC�un

op and the Yoneda embedding preserves monomor-
phisms, whence dr.@/W SC�un

op
.�;D.T 0//! SC�un

op
.�;D.T // is a monomorphism

in P.SC�un
op
/. It follows from the universal property of the noncommutative dendrices

construction that dr sends the generating cofibrations of dSet to monomorphisms
of P.SC�un

op
/. Note that the cofibrations of P.SC�un

op
/ are precisely the monomorphisms,

whence Lemma 2.1.20 of [24] shows that dr preserves cofibrations.

Remark A.7 It is clear that the above proposition does not depend on the choice of J.

For the choice of the elementary homotopy datum we have a few possibilities at our
disposal.

Example A.8 [9, Example 1.3.9] Let C be any small category. For an object C 2 C

let us denote the representable presheaf of C in P.C/ by hC . Let L denote the presheaf
that associates with every C 2 C the set L.C /D fsubobjects of hC g. For every map
uW C!D in C the map L.D/!L.C / is induced by pullback along u. The presheaf L
turns out to be a subobject classifier, ie P.C/.X;L/' fsubobjects of the presheaf X g.
If ? is the final object of P.C/, then it has exactly two subobjects ? ,! ? and
∅ ,! ?, where ∅ denotes the initial object of P.C/. These define two morphisms
�0; �1W ?! L. The tuple .L; �0; �1/ gives rise to an elementary homotopy datum by
setting I˝X DL�X, @e

X
D �e � idX for eD 0; 1 and �X D pr2W L�X !X. This
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elementary homotopy datum is called the Lawvere cylinder, and exists in any category
of presheaves like P.SC�un

op
/.

Example A.9 For any nonzero separable unital C �–algebra A there is a sequence
of two �–homomorphisms A �

�! AŒ0; 1� WD C.Œ0; 1�;A/ evt
�! A for any t 2 Œ0; 1�

(natural in A), whose composition is the identity �–homomorphism on A. Here �.a/
is the constant a–valued function on Œ0; 1� for every a 2A and evt is the evaluation
at t 2 Œ0; 1�. For AD C , after reversing the arrows and passing to the representable
presheaves in P.SC�un

op
/ we get the square

(9)

∅ //

��

hC

@1Dev�
1

��

hC
@0Dev�

0 // hC.Œ0;1�/

where ∅ is the initial object (empty presheaf) of P.SC�un
op
/. Note that P.SC�un

op
/ are

Set–valued covariant functors on SC�un and we do not notationally distinguish between
objects in a category and in its opposite. For every A2 SC�un

op we find that the diagram

∅ //

��

hC.A/

ev�
1

��

hC.A/
ev�

0
// hC.Œ0;1�/.A/

is a pullback square in Set. Indeed, hC.A/D SC�un
op
.A;C/D f1Ag, where 1A is the

unique unital �–homomorphism C!A and .1Aıev�t /.f /D f .t/1A for t D 0; 1 and
for every f 2CŒ0; 1�D C.Œ0; 1�;C/. In this argument it is crucial that A is a nonzero
separable unital C �–algebra. Since limits are computed objectwise in P.SC�un

op
/ we

conclude that diagram (9) is a pullback square. It follows from Example 1.3.8 of [9]
that

JD .I �X; @0
� idX ; @

1
� idX ; prX W I �X !X /

defines an elementary homotopy datum.

Example A.10 (continuous cylinder) Consider again the sequence of �–homomor-
phisms A �

�! AŒ0; 1�
evt
�! A (natural in A), whose composition is the identity �–

homomorphism on A. Given any representable object hA we set I ˝ hA D hAŒ0;1�

and extend the cylinder construction to all objects of P.SC�un
op
/ by commuting with

colimits, ie if X Š colimi hAi
, then we set I ˝X Š colimi hAi Œ0;1� .

We choose the elementary homotopy datum of Example A.8 since it is the most canonical
choice for the Cisinski model structure on any presheaf category. Subsequently we are
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going to localize our model structure based on our requirements. Let X be a set of
generating trivial cofibrations of dSet and set S D dr.X /. By Proposition A.6, S is
a set of monomorphisms of P.SC�un

op
/ that generates a class of anodyne extensions

AnJ.S/ relative to J (see Remark A.3). As a consequence of Theorem A.4 we obtain:

Theorem A.11 (operadic model structure) With the choice of the elementary homo-
topy datum J of Example A.8 and the class of anodyne extensions AnJ.S/ relative to J

described above, P.SC�un
op
/ acquires the structure of a combinatorial model category.

Remark A.12 The Lawvere cylinder is different from the continuous cylinder of
Example A.10. Hence, the evaluation map AŒ0; 1�

evt
�! A is not a weak equivalence

in the operadic model structure; it roughly mirrors the Joyal model structure on the
category of simplicial sets, in which �1!�0 is not a weak equivalence.

Remark A.13 It is shown in Lemma 1.3.31 of [9] that every anodyne extension is
a weak equivalence. Since dr.X /D S � AnJ.S/, where X is the set of generating
trivial cofibrations of dSet, we observe that, by construction, the functor dr sends
generating trivial cofibrations of dSet to trivial cofibrations of P.SC�un

op
/.

Remark A.14 The construction of the Cisinski model structure can be profitably used
in other contexts. For instance, one can start with a small category A of topological
algebras (Banach, Fréchet or locally convex) with some mild hypotheses. Then one
can simply start with the minimal model structure on P.Aop/ by choosing the Lawvere
cylinder (see Example A.8) for the elementary homotopy datum J and AnJ.∅/ for the
class of anodyne extensions. Now one can localize this combinatorial model category by
inverting a small set of morphisms like differentiable homotopy equivalences between
the representable objects in P.Aop/. This would produce an unstable model category
to start with that can be (1–categorically) stabilized and localized further according to
one’s requirements; for instance, one can aim for a stable1–category whose morphism
groups model the Cuntz kk–groups for locally convex algebras [17]. Østvær developed
his homotopy theory of C �–algebras adopting a similar strategy in the setting of cubical
set-valued presheaves on the category of separable C �–algebras [47] but we do not
expect a Quillen equivalence between his unstable model category for cubical C �–
spaces and P.SC�un

op
/ equipped with the operadic model structure as in Theorem A.11.

This is because the evaluation map AŒ0; 1�
evt
�!A of the continuous cylinder construction

(see Example A.10) is not a weak equivalence in the operadic model structure. One
final observation — all the ingredients needed to develop a Waldhausen K–theory of
noncommutative spaces are now at our disposal.
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Examples of nontrivial contact mapping classes for
overtwisted contact manifolds in all dimensions

FABIO GIRONELLA

We construct (infinitely many) examples in all dimensions of contactomorphisms
of closed overtwisted contact manifolds that are smoothly isotopic but not contact-
isotopic to the identity.

53D10, 57R17

1 Introduction

One of the problems in the field of contact topology is to understand the topol-
ogy of the space of contactomorphisms D.V; �/ of a given contact manifold .V; �/
in comparison with that of the space of diffeomorphisms D.V / of the underlying
smooth manifold V or, more specifically, the problem of understanding the map
j�W �k.D.V; �//! �k.D.V // induced by the natural inclusion j W D.V; �/! D.V /.

If „.V / denotes the space of all the contact structures on V , in the case of closed
manifolds the natural map D.V /! „.V / given by � 7! ��� helps to understand
the properties of the j� , and shows that the relation between the topology of D.V; �/
and that of D.V / is mediated by the topology of „.V /. Indeed, (the proof of) Gray’s
theorem implies, modulo a general fibration criterion, that this map is a locally trivial
fibration with fiber D.V; �/; see for instance Giroux and Massot [21] for an explanation
of this result or Massot [26] for a more detailed proof (the reader can also consult
Geiges and Gonzalo Perez [14] for a proof of the fact that the map is a Serre fibration).
Then the exact long sequence of homotopy groups

� � � ! �kC1.„.V //! �k.D.V; �//
j�
�! �k.D.V //! �k.„.V //! � � �

associated to the fibration gives a relationship between the topologies of the three
spaces D.V /, D.V; �/ and „.V /.

As far as the 3–dimensional case is concerned, the availability of classification results
for the isotopy classes of tight contact structures on particular 3–manifolds V gives
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some explicit results about the lower homotopy groups in the long exact sequence above
for these specific manifolds. The reader can consult Geiges and Gonzalo Perez [14],
Bourgeois [5], Ding and Geiges [9], Geiges and Klukas [15] and Giroux and Massot [21]
for results on �1.„.V /; �/ as well as Giroux [19], Giroux and Massot [21] for results
on �0.D.V; �//.

The situation in higher dimensions is more complicated, due to the lack of classification
results. The only results known so far are contained in Bourgeois [5], Massot and
Niederkrüger [27] and Lanzat and Zapolsky [23]. In the first paper, Bourgeois gives
results on some homotopy groups �k.„.V /; �/, for particular contact manifolds .V; �/,
using tools from contact homology. In [27], the authors give examples of contact man-
ifolds .V; �/ for which ker

�
�0.D.V; �//! �0.D.V //

�
is nontrivial; these examples

rely on constructions in Massot, Niederkrüger and Wendl [28], which we will also use
in the following. The last paper, dealing with the noncompact case, contains examples
of embeddings of braid groups in the contactomorphism group of contactizations of
certain noncompact symplectic manifolds.

All the examples recalled so far are given on tight contact manifolds. For the 3–
dimensional case, the dichotomy tight–overtwisted has been well known since Eliash-
berg [10] and plays an important role in the classification results on which the cited
examples are based. In the higher-dimensional case, a clear definition of overtwistedness
is given in Borman, Eliashberg and Murphy [3] and according to it the three examples
above are also tight.

As far as the class of overtwisted manifolds is concerned, the only result known
at the moment is the classification result of the path components of the space of
contactomorphisms for all overtwisted contact structures on the 3–sphere. This result,
without proof until recently, is attributed to Chekanov according to Eliashberg and
Fraser [11, Remark 4.16]. Vogel published a complete proof of this classification in [31],
where it is also proven, using 3–dimensional techniques, that the space of embeddings
of overtwisted disks in one of the overtwisted contact structures on S3 is not path-
connected. This gives in particular the first known examples of contactomorphisms of
overtwisted 3–manifolds that are smoothly isotopic but not contact-isotopic to the iden-
tity (we recall that, according to Cerf [8], each orientation-preserving diffeomorphism
of the 3–sphere is smoothly isotopic to the identity).

In this article we give other explicit examples of overtwisted .V; �/ such that the kernel
of �0.D.V; �//! �0.D.V // is nontrivial. Though, we bypass here the problem of
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understanding the �0 of the space of embeddings of overtwisted disks, about which
nothing is known so far in high dimensions; the advantage of our approach is then that
it gives (infinitely many) examples in each odd dimension.

More precisely, we start by proving the following result:

Theorem 1.1 Consider a closed manifold W of dimension 2n � 2 and let � be a
coorientable contact structure on the manifold V WD S1 �W . Suppose that the first
Chern class c1.�/2H 2.V IZ/ is toroidal and that, for each natural k � 2, the pullback
��
k
� of � via the k–fold cover �k W S1 �W ! S1 �W given by �k.s; p/D .ks; p/

satisfies c1.��k �/D k � c1.�/ modulo the submodule H 2
ator.V IZ/ of atoroidal classes.

Then the contact transformation f W .S1 � W;��
k
�/ ! .S1 � W;��

k
�/ defined by

f .s; p/D
�
sC 2�

k
; p
�

is smoothly isotopic but not contact-isotopic to the identity.

Recall that a class c 2H 2.V IZ/ is called toroidal if there is f W T2! V such that
f �c ¤ 0 2H 2.T2IZ/, and atoroidal otherwise.

Remark Theorem 1.1 also holds (with similar proof) if one exchanges

(�) c1.�/ is toroidal and c1.�
�
k
�/ D k � c1.�/ modH 2

ator.V IZ/ for each natural
k � 2,

with the condition

(�0) c1.�/ is not torsion and c1.��k �/D k � c1.�/ for each natural k � 2.

Notice that a 2H 2.V IZ/ is toroidal if and only if Œa� 2H 2.V IZ/=H 2
ator.V IZ/ is not

torsion, because H 2.T2IZ/' Z. In particular, (�) is equivalent to

c1.�/ is not torsion modulo H 2
ator.V IZ/ and c1.��k �/D k � c1.�/ modH 2

ator.V IZ/,

hence it is just a variation modulo H 2
ator.V IZ/ of (�0) (and it is neither stronger nor

weaker than (�0)). Slightly anticipating what follows, we also point out that the contact
structures given in Theorem 1.2, Proposition 1.4 and Theorem 1.3(i) below actually
satisfy both (�) and (�0); on the other hand, working modulo H 2

ator.V IZ/, ie with (�),
is necessary for Theorem 1.3(ii) We hence decided to formulate everything in terms
of (�), even though (�0) would give (everywhere but in Theorem 1.3(ii)) slightly more
direct proofs.

We then give, for each natural n� 1, an infinite number of explicit overtwisted contact
manifolds .S1 �W 2n; �/ satisfying the hypothesis of Theorem 1.1:

Algebraic & Geometric Topology, Volume 19 (2019)
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Figure 1: Dividing set on the torus T2
.s;t/
� f�0g

Theorem 1.2 Let .M 2n�1; ˛C; ˛�/ be one of the infinitely many Liouville pairs
constructed in Massot, Niederkrüger and Wendl [28]. Consider the (coorientable)
contact structure �D ker

�
1
2
.1Ccos s/˛CC 1

2
.1�cos s/˛�Csin s dt

�
on the manifold

V WD T2
.s;t/
�M (here, the notation T2

.s;t/
denotes the choice of coordinates .s; t/

on T2 ) and denote by � the overtwisted contact structure obtained from � via a half
Lutz–Mori twist along f.0; 0/g�M, as defined in Massot, Niederkrüger and Wendl [28].

Then c1.�/ 2H 2.V IZ/ is toroidal and, for each natural k � 2, we have c1.��k �/D
k �c1.�/ modH 2

ator.V IZ/, where �k W T2
.s;t/
�M!T2

.s;t/
�M is given by �k.s; t; q/D

.ks; t; q/.

Example If nD 3, .M; ˛˙/D .S1;˙d�/. Moreover, if k D 2, the contact structure
��2 � on V WDT2�M is the unique (up to isotopy) contact structure which is invariant
by the left action by multiplication of M D S1 on V , invariant by the f .s; t; �/ D
.sC�; t; �/ defined in the statement and such that each torus T2

.s;t/
� f�0g is convex

with dividing set as in Figure 1. Theorems 1.2 and 1.1 then say that f is not contact-
isotopic to the identity; to our knowledge, even in this simple and very explicit setting,
there is no trace of this result in the literature.

If one is just interested in giving examples, in each odd dimension, of nontrivial elements
in the kernel of the map �0.D.V; �//! �0.D.V //, without wanting the underlying
overtwisted contact manifolds .V; �/ to be as explicit as those from Theorem 1.2,
the following result can also be proven using the existence of adapted open-book
decompositions proven by Giroux [19]:
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Theorem 1.3 Consider W a closed 2n–dimensional manifold and � a coorientable
overtwisted contact structure on V WD S1 �W . Suppose that c1.�/ is toroidal and
that, for each k � 2, the pullback of � via the k–fold covering �k W V ! V , given by
�k.s; p/D .ks; p/, satisfies c1.��k�/D k � c1.�/ modH 2

ator.V IZ/. Then:

(i) Each contact structure � on V �T2 obtained via the Bourgeois construction [4]
from .V; �/ (is coorientable and) has first Chern class also satisfying the above
conditions, with respect to the covering �k WD .�k; Id/W V �T2! V �T2 .

(ii) Let �W V � †g ! V � T2 be induced by a covering †g ! T2 branched
over two points (here, †g denotes the closed surface of genus g � 2). Then
every contact branched covering �g of � on V �†g (is coorientable and) has
first Chern class satisfying the above conditions, with respect to the covering
�
g

k
WD .�k; Id/W V �†g ! V �†g . Moreover, if � is overtwisted and g is

large enough, �g is also overtwisted.

By an induction on the dimension, Theorem 1.3 gives, for any integer n� 2, examples
of .S1 � W 2n; �/ whose first Chern class satisfies the desired conditions. As far
as point (ii) is concerned, the reader can consult Geiges [12] for a construction and
Gironella [17] for a definition of contact branched coverings. We also point out that
the optimal integer g to guarantee overtwistedness of �g is actually 2, according to an
observation due to Massot and Niederkrüger (see Gironella [17, Observation 5.10]).

Using the h–principle of Borman, Eliashberg and Murphy [3], an even bigger class of
(nonexplicit) examples can be obtained:

Proposition 1.4 Consider a closed connected manifold W 2n which is almost complex,
spin and satisfies H 1.W IZ/¤ f0g. Then there is a coorientable overtwisted contact
structure � on V WD S1 �W such that c1.�/ is toroidal and c1.�

�
k
�/ D k � c1.�/

modH 2
ator.V IZ/, where �k W S1s �W ! S1s �W is given by �k.s; p/D .ks; p/.

Outline

Section 2 contains a proof by contradiction of Theorem 1.1. Assuming that the contacto-
morphism f is contact-isotopic to the identity, we construct a contactomorphism
between two contact structures �1 and �2 ; on the other hand, the hypothesis on the
first Chern class of � implies that �1 and �2 are not even isomorphic as almost contact
structures.
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Section 3 shows how to obtain examples of contact manifolds .S1�W 2n; �/ satisfying
the hypothesis of Theorem 1.1 starting from Massot, Niederkrüger and Wendl [28].

More precisely, Sections 3.1 and 3.2 recall, respectively, the definition of half Lutz–Mori
twist and the explicit constructions of Liouville pairs, both from Massot, Niederkrüger
and Wendl [28]. Then Section 3.3 describes the effects of a half Lutz–Mori twist on
Chern classes in this context and Section 3.4 contains a proof of Theorem 1.2.

Finally, in Section 4 we show how to get examples of contactomorphisms smoothly
isotopic but not contact-isotopic to the identity using the existence of adapted open-book
decompositions proven by Giroux [20] and the h–principle of Borman, Eliashberg and
Murphy [3]. More precisely, Theorem 1.3 and Proposition 1.4 are proven in Sections 4.2
and 4.1, respectively.
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2 Proof of Theorem 1.1

As each contactomorphism gives in particular an isomorphism of the underlying almost
contact structures, Theorem 1.1 directly follows from the two following lemmas:
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Lemma 2.1 Let .S1 � W 2n; �/ be a contact manifold, with � coorientable. For
each natural k � 2, denote by �k W S1 �W ! S1 �W the k–fold cover �k.s; p/D
.ks; p/ and by f W .S1�W;��

k
�/! .S1�W;��

k
�/ the contactomorphism f .s; p/D�

sC 2�
k
; p
�
.

If f is contact-isotopic to the identity, then there is a contactomorphism

�W .S1 �W;��kN �/
��! .S1 �W;��kNC1�/:

Lemma 2.2 Let .V WD S1�W; �/, �k and f be as in Lemma 2.1. If moreover c1.�/
is toroidal and c1.�

�
m�/D m � c1.�/ modH 2

ator.V IZ/ for every natural m � 2, then
��m� and ��mC1� are not isomorphic as almost contact structures.

Proof of Lemma 2.1 In order to find the desired contactomorphism � , we use an
idea that already appeared in Geiges and Gonzalo Perez [14] and in Marinković and
Pabiniak [25], and which consists in cutting off contact hamiltonians on a particular
cover of the manifold we are working with.

By hypothesis, the contactomorphism f W .S1�W;��
k
�/! .S1�W;��

k
�/ defined by

f .s; p/D
�
sC 2�

k
; p
�

is contact-isotopic to the identity. Call .Fr/r2Œ0;1� the isotopy,
so that F0 D Id, F1 D f and Fr is a contactomorphism for all r 2 Œ0; 1�.

Take now the universal cover Rs of the factor S1s of the manifold S1s �W . Then pull
back ��

k
� to a contact structure �k on the covering Rs �W of S1s �W and lift the

contact isotopy Fr to a contact isotopy ˆr of .Rs �W; �k/ starting at the identity.
Fix a certain contact form ˇk for �k and denote by Hr W Rs �W ! R the path of
contact hamiltonians ˇk.Yr/ associated to the contact vector field Yr generating the
isotopy ˆr (see for instance Geiges [13, Section 2.3] for more details on contact
hamiltonians).

Now, by compactness of W and Œ0; 1�, there is an N > 0 such that, for each r 2 Œ0; 1�,
ˆr.f0gs �W / is contained in .�2.N � 1/�;C1/s �W .

Consider then an � > 0 very small and a smooth function �W R!R such that �.x/D 0
for x < �2N� C � and �.x/D 1 for x > �2.N � 1/� � � . We can then construct a
new contact hamiltonian, Kr.s; p/ WD �.s/ �Hr.s; p/ for all .s; p/ 2Rs �W .

We claim that the contact vector field Zr associated to this new hamiltonian Kr

(ie the unique contact vector field Zr such that ˇk.Zr/ D Kr ; see for instance
[13, Section 2.3]) can be integrated to a contact isotopy .‰r/r2Œ0;1� of .Rs �W; �k/
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starting at the identity. Indeed, Zr is zero for s < �2N� C � and equal to the contact
field Yr for s > �2.N � 1/� � � , which means in particular that it is integrable
outside of a compact set of Rs �W (note that Yr is trivially integrable, because it
comes from a contact isotopy); this implies integrability on all R �W . Moreover,
‰r jf0g�W Dˆr jf0g�W and ‰r jf�2N�g�W D Idjf�2N�g�W for all r 2 Œ0; 1�.

In particular, ‰1 maps Œ�2N�; 0� �W contactomorphically to
�
�2N�; 2�

k

�
�W ,

where we consider on the domain and on the codomain the contact structure �k .

Now, by the periodicity of �k , we can identify the two boundary components of
Œ�2N�; 0��W , so that the restriction of �k induces a well-defined contact structure on
the quotient. More precisely, the quotient contact manifold obtained is .S1s �W;�

�
kN
�/.

The analogous procedure for the codomain
�
�2N�; 2�

k

�
�W of ‰1 gives as quotient

the contact manifold .S1s �W;�
�
kNC1

�/.

Lastly, because ‰1W Œ�2N�; 0��W !
�
�2N�; 2�

k

�
�W is the identity on a neigh-

borhood of f�2N�g�W and a lift of the translation f on a neighborhood of f0g�W ,
it induces on the quotient contact manifolds a well-defined contactomorphism

�W .S1s �W;�
�
kN �/

��! .S1s �W;�
�
kNC1�/:

Proof of Lemma 2.2 Suppose by contradiction that there is an isomorphism of almost
contact structures  W .V; ��m�/

��! .V; ��mC1�/; in particular,

(1)  �c1.�
�
m�/D c1.�

�
mC1�/:

Because the submodule H 2
ator.V IZ/ of atoroidal classes is natural (ie it is preserved

by pullbacks induced by continuous maps V ! V ), the map  � induces a well-
defined endomorphism, which is moreover an isomorphism, of the Z–module N WD
H 2.V IZ/=H 2

ator.V IZ/. We then have  �.��n �/ D n �c1.�/ modH 2
ator.V IZ/ for

each natural n� 2, so that (1) becomes

(2) m �c1.�/D .mC 1/c1.�/ mod H 2
ator.V IZ/:

Notice also that N is a finitely generated Z–module without torsion. In particular,
there is a well-defined divisibility map

d W N n f0g !N n f0g; a 7!maxfk 2N j aD kb for some b 2N g;

which also satisfies d.ha/ D hd.a/ and d. �a/ D d.a/ for each a 2 N n f0g and
h 2 N n f0g. Because c1.�/ is toroidal, we can then apply d to both the left- and
right-hand sides of (2), thus obtaining the desired contradiction.
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3 Examples from Liouville pairs and half Lutz–Mori twists

The idea of the proof of Theorem 1.2 is the following. The contact structure � on the
manifold V DS1�W in the statement has trivial Chern classes (better, it is trivializable
as a complex bundle). We then apply a semilocal modification to � and obtain another
contact structure � ; the explicit nature of this modification (as well as the explicit
nature of the original contact manifold .V; �/) allows us to compute the first Chern
class of � , and to show that it satisfies the desired conditions.

This section is structured in the following way. We recall in Sections 3.1 and 3.2,
respectively, the notion of half Lutz–Mori twist and the construction of Liouville pairs,
both from Massot, Niederkrüger and Wendl [28]. We then describe in Section 3.3 how
half Lutz–Mori twists (along contact submanifolds belonging to one of the Liouville
pairs constructed in [28]) affect the Chern classes of the underlying almost contact
structure. Finally, Section 3.4 contains the proof of Theorem 1.2.

3.1 The half Lutz–Mori twist

Developing some ideas introduced by Mori in [29] in the 5–dimensional case, Massot,
Niederkrüger and Wendl introduce in [28] the notion of Lutz–Mori twist along a sub-
manifold belonging to a Liouville pair as a generalization of the known 3–dimensional
Lutz twists. In this section, we briefly recall how to perform the half version of the
Lutz–Mori twist, which we will use in the following.

We start by recalling the notion of Liouville pair:

Definition 3.1 [28] Let M 2n�1 be an oriented manifold. A Liouville pair on M is
a pair of contact forms .˛C; ˛�/ such that ˙˛˙ ^ .d˛˙/n�1 > 0 and such that the
form er˛CC e

�r˛� is a Liouville form (ie its differential is symplectic) on Rr �M.

We point out that the existence of Liouville pairs on closed manifolds is not trivial; at
the moment, the only known examples in high dimensions are given by the construction
in [28, Section 8], which is nonetheless a source of infinitely many nonhomeomorphic
manifolds with Liouville pairs in each (odd) dimension. In Section 3.2 we will recall
the properties of this construction which are needed in order to prove Theorem 1.1.

Let now .V; �/ be a contact manifold having as a codimension-2 contact submanifold
.M; �C/ such that ˛C defining �C belongs to a Liouville pair .˛C; ˛�/. We want to
describe how to perform a half Lutz–Mori twist on .V; �/ along .M; �C/.

Algebraic & Geometric Topology, Volume 19 (2019)



1216 Fabio Gironella

Consider then the 1–form

˛ D 1
2
.1C cos s/˛CC 1

2
.1� cos s/˛�C sin s dt

on Œ�; 2��s�S1t �M ; notice that this is a contact form because .˛C; ˛�/ is a Liouville
pair on M. Let then .U; �U / be the blow-down of .Œ�; 2��s �S1t �M; ker˛/ along
f�g �S1t �M, as defined in [28, Section 5.1].

More explicitly, .U; �U / is obtained as follows. The hypersurface — or, better, round
hypersurface, as defined in [28, Section 5.1] — f�g �S1t �M admits a neighborhood
of the form .Œ0; �/x � S1t �M; ker.˛� C x dt// inside .Œ�; 2��s � S1t �M; ker˛/
in such a way that f�gs � S1t �M corresponds to f0gx � S1t �M ; this follows
from the fact that the restriction of the two contact structures to the two hyper-
surfaces coincide (see [28, Lemma 5.1]). We can then remove the hypersurface
f�gs�S1t �M inside .Œ�; 2��s�S1t �M; ker˛/ and glue .D2p

�
�M; ker.˛�Cr2d'//

(here .r; '/ are polar coordinates on the 2–disc D2p
�

centered at the origin and of
radius

p
� ) thanks to the contactomorphism from ..D2p

�
n f0g/�M; ker.˛�C r2d'//

to ..0; �/x �S1t �M; ker.˛�Cx dt// (seen as a subset of ..�; 2��s �S1t �M; ker˛/)
given by .r; '; p/ 7! .r2; '; p/. The resulting contact manifold (with one boundary
component) is the desired .U; �U /.

At this point, performing a half Lutz–Mori twist along .M; �C/ means replacing a
neighborhood of .M; �C/ in .V; �/ with .U; �U /.

More precisely, one can see that the boundary component f2�g �S1t �M of .U; �U /
also admits a neighborhood ..��; 0�x �S1t �M; ker.˛CC x dt// inside .U; �U /, in
such a way that f2�gs �S1t �M corresponds to f0gx �S1t �M. Now, .M; �C/ is a
codimension-2 contact submanifold with trivial normal bundle in .V; �/; hence, by the
contact neighborhood theorem (see Geiges [13, Theorem 2.5.15]), there is ı > 0 such
that .M; �C/ admits a neighborhood .D2

ı
�M;�0 WD ker.˛CC r2d'// inside .V; �/

(here, .r; '/ are polar coordinates on D2
ı

) in such a way that .M; �C/ corresponds to
.f0g�M;�0jf0g�M /. Because ..D2

ı
nf0g/�M; ker.˛CC r2d'// is contactomorphic

to ..0; ı2/x �S1t �M; ker.˛CC x dt// via .r; '; p/ 7! .r2; '; p/, we can then glue
.U; �U / to .V nM;�/ and obtain a well-defined contact manifold .V; �/ (notice that
the underlying smooth manifold is still V ).

The above construction does not depend, up to isotopy, on any choice made.

Definition 3.2 [28, Remark 9.6] .V; �/ is said to be obtained from .V; �/ by a half
Lutz–Mori twist along the contact submanifold .M; �C D ker.˛C// belonging to the
Liouville pair .˛C; ˛�/.
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We point out that performing a half Lutz–Mori twist makes the contact manifold
overtwisted. Indeed, it is explained in Massot, Niederkrüger and Wendl [28, Remark 9.6]
that this twist always gives a PS-overtwisted manifold, which then is also overtwisted
according to Casals, Murphy and Presas [7] and Huang [22].

3.2 Construction of Liouville pairs

We recall here the construction in Massot, Niederkrüger and Wendl [28, Section 8],
leaving the details that are not important for our purposes.

Consider the product manifold Rm �RmC1 with the pair of contact structures �C
and �� induced by the pair of contact forms

˛˙ WD ˙e
t1C���Ctm d�0C e

�t1 d�1C � � �C e
�tm d�m;

where we use coordinates .t1; : : : ; tm/ on Rm and .�0; : : : ; �m/ on RmC1 . A direct
computation shows that .˛C; ˛�/ is a Liouville pair on Rm �RmC1 .

We now remark that there are two Lie groups acting explicitly on Rm�RmC1 by strict
contact transformations for both ˛C and ˛� .

Indeed, the left action of the group RmC1 on Rm �RmC1 given by the translations

.'0; : : : ; 'm/ � .t1; : : : ; tm; �0; : : : ; �m/ WD .t1; : : : ; tm; �0C'0; : : : ; �mC'm/

and the left action of Rm given by the law

.�1; : : : ; �m/ � .t1; : : : ; tm; �0; : : : ; �m/

WD .t1C �1; : : : ; tmC �m; e
��1C�����m�0; e

�1�1; : : : ; e
�m�m/

are Lie group left actions on Rm �RmC1 and they both preserve the contact forms
˛C and ˛� .

Moreover, these two actions allow us to produce a compact contact manifold from
Rm�RmC1 . Indeed, there are lattices ƒ and ƒ0 of Rm and RmC1 , respectively, such
that the ƒ–action on Rm �RmC1 induced by the action of Rm preserves Rm �ƒ0.
This implies that, by first taking the quotient of Rm�RmC1 by ƒ0 and then quotienting
it by the (well defined by the above property) induced action of ƒ, we obtain a compact
manifold M.

Finally, this manifold M naturally inherits a Liouville pair, still denoted by .˛C; ˛�/,
from the Liouville pair on the covering Rm �RmC1 , because Rm and RmC1 act on
Rm �RmC1 by strict contactomorphisms for both ˛C and ˛� .
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We point out that this construction actually gives an infinite number of nonhomeo-
morphic manifolds M, hence an infinite number of nonisomorphic Liouville pairs, in
each odd dimension greater than or equal to 3.

Indeed, the existence of the lattices ƒ and ƒ0 follows from number theory arguments
and the manifold M obtained depends on the choice of a totally real field of real
numbers k with finite dimension over Q. Now, for each dimension � 2 over Q, there
are infinitely such fields k and the corresponding manifolds are nonhomeomorphic.
See [28, Lemma 8.3] for the details.

As far as Theorem 1.2 is concerned, this means that we have, in each odd dimension
2nC 1� 5, a contact structure satisfying the hypothesis of Theorem 1.1 on infinitely
many different smooth manifolds T2�M 2n�1 ; in dimension 3, we obtain one contact
structure on T2 �M 1 D T3 . In both cases, Theorem 1.1 then gives examples of
contactomorphisms smoothly isotopic but not contact-isotopic to the identity for the
countably many contact structures .��

k
�/k�2 on each T2 �M.

3.3 Effects of half Lutz–Mori twists on Chern classes

Chern classes are global invariants of complex vector bundles E over a manifold V .
In our setting, we then have to find a way to study how local modifications (ie over
an open set U of V ) of the complex vector bundle E affect its Chern classes. The
solution is either to use a relative version of Chern classes or to shift to another point
of view more local in nature.

Aguilar, Cisneros-Molina and Frías-Armenta [1] adopt in particular this second strategy
and this allows them to prove a generalization of the classical fact that the top Chern
class of E is the Poincaré dual of the zero locus of a section of E which is transverse
to the zero section. In order to achieve such generalization, they deal with the following
technical issue: when 1 < k � r D rkC.E/, the locus Sk of points where k–sections
s1; : : : ; sk are C–linearly dependent may not be a smooth submanifold of V , even for
a “generic” choice of s1; : : : ; sk , hence it has a priori no well-defined homology class.
In [1] it is hence proved that Sk can be desingularized to a smooth submanifold Zk of
V �CPk�1 in such a way that the .r�kC1/st Chern class of E can be interpreted as
the Poincaré dual of the pushforward in V of the class of Zk � V �CPk�1 via the
map induced in homology by the projection V �CPk�1! V .

In our context of half Lutz–Mori twists along particular contact submanifolds, the
results proven by Aguilar, Cisneros-Molina and Frías-Armenta [1] give the following:
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Proposition 3.3 Let .V 2mC3; �/ be a contact manifold containing the .M 2mC1; �C/

of Section 3.2 as a codimension-2 contact submanifold with trivial normal bundle. Then,
if we denote by � 0 the contact structure on V obtained by performing a half Lutz–Mori
twist along the submanifold .M; �C/ (where we consider M with the orientation given
by �C ), we have the following:

(1) For all i D 2; : : : ; mC 1, ci .� 0/� ci .�/D 0 in H 2i .V IZ/.

(2) c1.�
0/�c1.�/D�2PD.j�ŒM �/ in H 2.V IZ/, where j W M!V is the inclusion,

j�W H2mC1.M IZ/! H2mC1.V IZ/ is the induced map and PD.˛/ denotes
the Poincaré dual of the homology class ˛ 2H�.V IZ/.

Remark This result is not in contradiction with Massot, Niederkrüger and Wendl
[28, Theorem 9.5], where the authors prove that the contact structures before and after
a full Lutz–Mori twist (as defined in [28, Section 9.1]) are homotopic through almost
contact structures, hence have the same Chern classes. Indeed, the result � 00 of a full
Lutz–Mori twist can be interpreted as a pair of successive half twists. More precisely,
we first perform a half twist along a submanifold .M; �C/ to obtain � 0 ; this changes the
core of the tube where we perform the twist from .M; �C/ to .M; ��/. We then perform
another half twist, this time along the new core .M; ��/, to obtain � 00. Hence, applying
Proposition 3.3 twice and using the fact that �� induces an orientation that is opposite
to that induced by �C , we get that ci .� 00/D ci .� 0/D ci .�/ for all i D 2; : : : ; mC 1
and that

c1.�
00/D c1.�

0/� 2PD.j�Œ�M�/D c1.�/� 2PD.j�ŒM �/� 2PD.j�Œ�M�/D c1.�/;

as we expected from [28, Theorem 9.5].

The proof of Proposition 3.3 relies on the explicit results in [1]; we hence made
the choice to omit it in this paper, in order to avoid lengthy technical digressions
and keep the focus on the motivating contact geometric problem, ie the research of
examples of contactomorphisms smoothly isotopic but not contact-isotopic to the
identity on overtwisted contact manifolds of high dimensions. A detailed proof of
Proposition 3.3 (together with the necessary background from [1]) can be found in
Gironella [18, Section 4.2.3 and Appendix A].

3.4 Proof of Theorem 1.2

We use in this section the notation introduced in the statement of Theorem 1.2.
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The contact structure � on the manifold T2
.s;t/
�M can be explicitly written as the kernel

of ˛ WD
Pm
iD1 e

�ti d�i C cos.s/e
Pm

iD1 ti d�0C sin s dt , where we use locally on M
the coordinates .t1; : : : ; tm; �0; : : : ; �m/ induced by the covering Rm �RmC1!M,
as described in Section 3.2. Then � admits a trivialization as a complex vector bundle
given by the following sections and choice of d˛j�–compatible complex structure J :

(1) Si WD @ti for i D 1; : : : ; m, and SmC1 WD @s

(2) J.Si / WD e
�
Pm

jD1 tj cos.s/@�0
� eti@�i

C sin.s/@t for i D 1; : : : ; m, and
J.SmC1/ WD �e

�
Pm

jD1 tj sin.s/@�0
C cos.s/@t .

(An explicit computation shows that these sections are indeed well defined on T2
.s;t/
�M

and not only on T2
.s;t/
�Rm �RmC1 .)

In particular, all the Chern classes of � are zero. Hence, applying Proposition 3.3 to
the pair .�; �/ we get the following: if we denote by j W M !T2

.s;t/
�M the inclusion

j.p/D .0; 0; p/ and by j�W H2mC1.M IZ/!H2mC1.T2�M IZ/ the induced map
in homology, then c1.�/D�2PD.j�ŒM �/ in H 2.T2 �M IZ/.

We now prove that c1.�/ is toroidal. Fix a p 2M and consider f W T2! T2 �M

given by f .�; '/D .�; '; p/ for every .�; '/2T2 . Because f is transverse to j.M/,
we have f � PDT2�M .j�ŒM �/DPDT2.Œf �1.j.M//�/; here, the notation PDX means
that we are considering the Poincaré duality on the compact manifold X. Now,
PDT2

�
Œf �1.j.M//�

�
D PDT2

�
Œf.0; 0/g�

�
generates H 2.T2IZ/' Z; in other words,

PD.j�ŒM �/ is toroidal. As H 2.V IZ/=H 2
ator.V IZ/ is torsion-free, c1.�/ is also toroidal.

The only thing left to show is that c1.��k �/D kc1.�/ modH 2
ator.V IZ/ for each k � 2.

Because � is a trivial complex vector bundle over T2 �M, the same is true for
each ��

k
�; in particular, each ��

k
� has trivial Chern classes. Notice that ��

k
� can also

be seen as obtained from ��
k
� by performing a half Lutz–Mori twist along each of the

k submanifolds
˚�
2l�
k
; 0
�	
�M with l D 0; : : : ; k� 1. Then Proposition 3.3 tells that

c1.�
�
k
�/ D �2k PD.j�ŒM �/ D kc1.�/, so that c1.��k �/ D kc1.�/ modH 2

ator.V IZ/

too.

4 Examples from adapted open books and the h–principle

In this section, we show how to obtain examples of .S1 �W; �/ as in the hypothesis
of Theorem 1.1 using the existence of adapted open-book decompositions due to
Giroux [20] and the h–principle of Borman, Eliashberg and Murphy [3].
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In the following, we are going to adopt two (homotopically equivalent) points of view
on (coorientable) almost contact structures on V 2nC1 . More precisely, in Sections 4.1
and 4.2 we look at them as, respectively, pairs .�; !�/ and .�; J�/, where � is a
coorientable hyperplane field on V , !� is a symplectic structure on � and J� is a
complex structure on it.

4.1 Proof of Theorem 1.3

In order to prove Theorem 1.3, we need the following lemma, which describes the
effects of the Bourgeois construction [4] and of its branched coverings at the level of
almost contact structures as well as a sufficient condition for overtwistedness in the
case of branched covers:

Lemma 4.1 Let .V 2n�1; �/ be a contact manifold, where � is coorientable, .B; '/
an open-book decomposition supporting � and ˛ a contact form defining � and adapted
to the open book. Then we have the following:

(1) The Bourgeois construction [4] on .V; �/ and .B; '; ˛/ gives a contact struc-
ture � on V � T2 which is homotopic, as an almost contact structure, to
.�˚TT2; d˛˚!T /, where !T is a volume form on T2 .

(2) Any contact branched covering �g of � via a branched covering �W V �†g !
V �T2 , induced by a covering †g!T2 branched over two points, is homotopic,
as an almost contact structure, to .�˚T†g ; d˛˚!g/, where !g is a volume
form on †g .

(3) Suppose � is overtwisted. Then, if g is large enough, �g is overtwisted too.

Notice that point (1) above has already been pointed out by Lisi, Marinković and
Niederkrüger [24, Remark 2.1].

We now prove, in this order, Theorem 1.3 and Lemma 4.1:

Proof of Theorem 1.3 We use the notation of Theorem 1.3. Denote also the natural
projections by

pW V �T2
! V; pg W V �†g ! V and p0g W V �†g !†g :

Lemma 4.1(1)–(2) imply that c1.�/Dp�c1.�/ and c1.�g/Dp�gc1.�/C.p
0
g/
�c1.T†g/.

Recall now that every continuous map from T2 to †g has degree 0 (here, we use
g � 2); in particular, for each f W T2! V �†g , we have

f �.p0g/
�c1.T†g/D .p

0
g ıf /

�c1.T†g/D 0 2H
2.T2

IZ/;
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ie .p0g/
�c1.T†g/ is atoroidal. We hence have that

(3)
c1.�/D p

�c1.�/ mod H 2
ator.V �T2

IZ/;

c1.�g/D p
�
gc1.�/ mod H 2

ator.V �†g IZ/:

We now claim that both p and pg pull back toroidal classes on V to toroidal classes on,
respectively, V �T2 and V �†g . By equation (3) and the fact that c1.�/ is toroidal
by hypothesis, this would then directly imply that c1.�/ and c1.�g/ are toroidal too.

Let a 2H 2.V IZ/ be toroidal, ie there is t W T2! V with t�a¤ 0; we then want to
prove that p�a 2H 2.V �T2IZ/ is toroidal too. Consider any hW T2! V �T2 such
that p ı hD t ; for instance, let q0 2 T2 and take h. � / WD .t. � /; q0/. Then

h�.p�a/D .p ı h/�aD t�a¤ 0 2H 2.T2
IZ/;

ie p�a is toroidal, as desired. An analogous argument shows that p�ga is toroidal too.

The fact that � and �g satisfy

c1.�
�
k�/D kc1.�/ mod H 2

ator.V �T2
IZ/;

c1..�
g

k
/��g/D kc1.�g/ mod H 2

ator.V �†g IZ/

follows, by a direct computation, from equation (3), from the equalities �k ıpDpı�k
and �k ıpg D pg ı�

g

k
and from the fact that c1.��k�/D kc1.�/ modH 2

ator.V IZ/.

Lastly, if � is overtwisted, Lemma 4.1(3) gives the overtwistedness of �g for g large
enough, thus concluding the proof.

Proof of Lemma 4.1 We start by proving (1). The Bourgeois construction [4] on .V; �/
and .B; '; ˛/ gives a function ˆ D .f; g/W V ! R2 defining the open book .B; '/
and such that � on V �T2

.x;y/
is defined by ˇ WD ˛C f dx�g dy . Then an explicit

homotopy of almost contact structures from .�; dˇj�/ to .�˚TT2; d˛j�C dx ^ dy/

is given by the Œ0; 1�t –family of hyperplane fields �t given by the kernel of

˛C .1� t /.f dx�g dy/;

together with the symplectic structures given by the restriction of

d˛C .1� t /Œdf ^ dx� dg^ dy�C t dx ^ dy

to �t .

As far as point (2) is concerned, as explained in Geiges [12], an explicit contact branched
covering �g on V �†g is given by the kernel of a differential 1–form ��ˇC�h.r/r2d� ;
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here, .r; �/ are radial coordinates on the D2–factor of a neighborhood D2�fp; qg of
the upstairs branching locus fp; qg of the branched covering †g ! T2 , the constant
� > 0 is very small and hD h.r/ is a smooth function with support in D2 � fp; qg,
equal to 1 on the branching locus and strictly decreasing in r . As contact branched
coverings are unique up to isotopy (see Gironella [17, Section 2.2]), it’s enough to
prove that this specific �g is homotopic to the desired almost contact structure.

Now, an explicit computation (analogous to the one in [17, Section 6.5]) shows that
the desired homotopy of almost contact structures is given by the Œ0; 1�t –family of
hyperplane fields � tg defined as the kernel of ��˛C.1�t /Œ��.f dx�g dy/C�hr2d��,
together with the symplectic structures given by the restriction of

��d˛C .1� t /Œ��.df ^ dx� dg^ dy/C � d.hr2/^ d��C t!g

to � tg .

Point (3) has already been discussed in [17, Section 7.2]; more precisely, it essentially
follows from the following three facts. Firstly, the contact branched covering �g can
be chosen (up to isotopy) in such a way that it induces on each fiber of V �†g !†g

the original overtwisted contact structure �. Secondly, Niederkrüger and Presas
[30, page 724] describe how the “size” of a contact neighborhood of each connected
component .V; �/ of the branching set of V �†g!V �T2 is diverging to C1 as the
index g of the branched covering is going to C1; see also [17, Lemma 7.10]. Then,
according to Casals, Murphy and Presas [7, Theorem 3.1], topologically trivial contact
neighborhoods of overtwisted manifolds in codimension 2 are themselves overtwisted
provided they are sufficiently “large”. This concludes the proof of Lemma 4.1.

4.2 Proof of Proposition 1.4

The proof is structured as follows. We start from a natural almost contact structure �0
on V WDS1�W and we modify it to an almost contact structure � with first Chern class
c1.�/ satisfying the desired conditions. Then the h–principle from Borman, Eliashberg
and Murphy [3] says that � can be deformed to an overtwisted contact structure �
on V ; the first Chern class of such a � will then satisfy the desired properties too.

Before entering into the details of the proof of Proposition 1.4, we state a lemma from
algebraic topology, whose proof is postponed:

Lemma 4.2 Let �0 be a (coorientable) almost contact structure on V 2nC1 . For each
u2H 2.V IZ/, there is an almost contact structure �u on V with c1.�u/D c1.�0/C2u.
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Proof of Proposition 1.4 The hyperplane field �0D f0g˚T W on V D S1�W is a
(coorientable) almost contact structure thanks to the almost complex structure JW on W .
Moreover, its first Chern class c1.�0/ is equal to ��W c1.W /, where �W W S1�W !W

is the projection on the second factor.

The hypothesis that W is spin means that the 2nd Stiefel Whitney class w2.W / 2
H 2.W IZ2/ of W is trivial. Because w2.W / is the reduction modulo 2 of c1.W /,
there is � 2H 2.W IZ/ such that c1.W /D 2�. Hence, c1.�0/D ��W c1.W /D 2�

�
W �.

Consider then a nontrivial c 2H 1.W IZ/¤f0g, and let v be a generator of H 1.S1IZ/.
Using Künneth’s decomposition theorem, we can see H 1.S1IZ/˝H 1.W IZ/ as a
submodule of H 2.S1 �W IZ/. An application of Lemma 4.2 with uD v˝ c ���W �
then gives an almost contact structure � with c1.�/D 2v˝ c .

Notice that the map ��
k

, induced on H 2.S1 �W IZ/ by �k , acts as multiplication
by k on the submodule H 1.S1IZ/˝H 1.W IZ/ of H 2.S1 �W IZ/. In particular,
the fact that c1.�/D 2v˝ c implies that c1.��k�/D kc1.�/ modH 2

ator.V IZ/.

We also claim that c1.�/ is toroidal. Indeed, according to the universal coefficient
theorem and the Hurewicz theorem,

H 1.W IZ/' HomZ.H1.W IZ/IZ/' HomZ.�1.W /IZ/I

in particular, as c ¤ 0 2 H 1.W IZ/, there is  W S1 ! W such that �c ¤ 0 in
H 1.S1IZ/. If we define f WD .Id; /W T2 D S1 � S1 ! S1 � W , we then have
f �c1.�/ D 2v ˝ �c ¤ 0 in H 1.S1IZ/˝H 1.S1IZ/ � H 2.T2IZ/, ie c1.�/ is
toroidal, as desired.

The h–principle from Borman, Eliashberg and Murphy [3] then gives the desired contact
structure � as a deformation of �.

We now give a proof of the lemma used above:

Proof of Lemma 4.2 Bowden, Crowley and Stipsicz [6, Lemma 2.17(1)] states that
if V is a closed connected manifold of dimension 2nC 1 and � is a stable almost
complex structure on it, then there is an almost contact structure � on V whose
stabilization gives � . Recall that a stable almost complex structure on V is the stable
isomorphism class of a complex structure on T V ˚ "kV , where "V is the trivial real
vector bundle of dimension 1 over V , and the stabilization of � is the stable isomorphism
class of the complex structure induced by � on T V ˚ "V . In particular, in order to
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prove Lemma 4.2, it’s enough to find a stable almost complex structure �u such that
c1.�u/D c1.�0/C 2u.

The existence of such a �u follows, for instance, from Geiges [13, Remark 8.1.4], of
which we recall here the idea.

There is a bijective correspondence, given by the first Chern class, between isomorphism
classes of complex line bundles over V and cohomology classes in H 2.V IZ/. Let
then Lu be the complex line bundle over V satisfying c1.Lu/D u. Consider then a
complex vector bundle Eu over V such that there are m 2N>0 and an isomorphism
�W L�u ˚C Eu ' ."C

V /
m of complex vector bundles over V , where "C

V denotes the
complexification of "V ; for a proof of the existence of such a complement Eu , see for
instance Atiyah [2, Corollary 1.4.14]. We then claim that the complex vector bundle
Fu WD �0˚Lu˚Eu can be used to define the desired stable complex structure.

The fact that L�u˚C Eu is a trivial complex vector bundle implies in particular that
c1.Eu/D�c1.L

�
u/D u; hence, c1.Fu/D c1.�/CuCuD c1.�/C 2u.

Now, because L�u and Lu are isomorphic as real vector bundles, � induces an iso-
morphism of real vector bundles �0W Lu ˚R Eu ' "

2m
V . Moreover, the choice of a

vector field X on V transverse to �0 gives an isomorphism of real vector bundles
‰W �0˚ "V ' T V . We then have an isomorphism � of real vector bundles over V
given by the composition

Fu D �0˚Lu˚Eu '

Id˚�0
��! �0˚ "

2m
V DR .�0˚ "V /˚ "

2m�1
V '

‰˚Id
���! T V ˚ "2m�1V :

In particular, the pushforward ��J of the complex structure J on Fu via � gives the
desired stable almost complex structure �u on V .
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Uniform exponential growth for CAT(0) square complexes

ADITI KAR

MICHAH SAGEEV

We start the inquiry into proving uniform exponential growth in the context of groups
acting on CAT(0) cube complexes. We address free group actions on CAT(0) square
complexes and prove a more general statement. This says that if F is a finite
collection of hyperbolic automorphisms of a CAT(0) square complex X, then either
there exists a pair of words of length at most 10 in F which freely generate a free
semigroup, or all elements of F stabilize a flat (of dimension 1 or 2 in X ). As a
corollary, we obtain a lower bound for the growth constant, 10

p
2 , which is uniform

not just for a given group acting freely on a given CAT(0) cube complex, but for all
groups which are not virtually abelian and have a free action on a CAT(0) square
complex.

20F65

1 Introduction

Given a group G and a finite generating set S, we let C.G;S/ denote the Cayley
graph of G relative to S. The length of an element g 2 G with respect to the word
metric relative to S is denoted by jgjS and we let B.S; n/ denote the ball of radius n

in C.G;S/. The exponential growth rate of G relative to S is defined to be the
following limit (which always exists):

!.G;S/D lim
n!1

jB.S; n/j1=n:

The exponential growth rate of G is then given by

!.G/D inff!.G;S/ j finite generating sets Sg:

The group G is said to have exponential growth if !.G;S/ > 1 for some and therefore
for all finite generating sets S. Moreover, G is said to have uniform exponential growth
if !.G/ > 1. See de la Harpe [9] for details.

Gromov asked if every group of exponential growth is also of uniform exponential
growth. The first example of a group with exponential growth which is not of uniform
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exponential growth was constructed by Wilson [15]. Wilson’s group and future counter-
examples were finitely generated. Whether Gromov’s question has an affirmative
answer for finitely presented groups remains open.

Uniform exponential growth is known to hold for groups with virtually free quotients,
hyperbolic groups, soluble groups, linear groups in characteristic zero and groups acting
on trees in the sense of Bass–Serre theory (see [9]). Uniform exponential growth is
typically established by constructing free semigroups; see Alperin and Noskov [1].

Lemma Let G be a group. Suppose there exists a constant C > 0 such that
for any finite generating set S of G, one can find two elements u; v 2 G with
maxfjujS ; jvjSg< C that freely generate a free semigroup. Then !.G/� C

p
2.

This method and variations of it often allow one to establish “uniform uniform exponen-
tial growth”. Bucher and de la Harpe considered actions on trees and showed in [10]
that the constant in the above lemma is 4

p
2 for nondegenerate amalgams and HNN

extensions. Mangahas [12] proved that finitely generated subgroups of the mapping
class group Mod.S/ of a surface S which are not virtually abelian have uniform
exponential growth with minimal growth rate bounded below by a constant depending
exclusively on the surface S. Breuillard [2, Main Theorem] established a different sort
of uniformity for linear groups: for every d 2 N there is N.d/ 2 N such that if K

is any field and F a finite symmetric subset of GLd .K/ containing 1, either FN.d/

contains two elements which freely generate a nonabelian free group, or the group
generated by F is virtually solvable. We refer the reader to Button [5] for further
examples.

In this paper we start the inquiry into proving uniform exponential growth in the context
of groups acting on CAT(0) cube complexes. We address free group actions on CAT(0)
square complexes. We do this by proving a more general statement about groups
generated by hyperbolic elements.

Theorem 1 Let F be a finite collection of hyperbolic automorphisms of a CAT(0)
square complex. Then either

(1) there exists a pair of words of length at most 10 in F which freely generate a
free semigroup , or

(2) there exists a flat (of dimension 1 or 2) in X stabilized by all elements of F.

Algebraic & Geometric Topology, Volume 19 (2019)
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As a corollary, we obtain a “uniform uniform” type result, which says that there is a
uniform lower bound for growth, not just for a given group, but for all groups acting
freely on any CAT(0) square complex.

Corollary 2 Let G be a finitely generated group acting freely on a CAT(0) square
complex. Then either w.G/� 10

p
2 or G is virtually abelian.

We expect that a similar result will hold for all dimensions, in that for a finitely generated
group G acting freely on a CAT(0) cube complex of dimension n, G will be virtually
abelian or w.G/� w0 > 1 where, w0 will depend only on the dimension n, and not
on the group or the complex.

Acknowledgements We would like to thank the referee for many helpful comments
and, in particular, for pointing out an error in the original statement of Theorem 1.

Sageev was supported by the Israel Science Foundation (grant 1026/15).

2 Hyperplanes and group elements

We review some relevant basic facts regarding hyperplanes and halfspaces. See for
example [6] or [13] for more details. We let X be a CAT(0) square complex. We use
h , k to denote halfspaces, yh , yk to denote the corresponding hyperplanes and h� , k �

to denote the complementary halfspaces.

We let Aut.X / denote the collection of cubical, inversion-free automorphisms of X.
(An inversion is an isometry of X that preserves a hyperplane and inverts the corre-
sponding halfspaces.) If G is an action on X which contains inversions, then we may
subdivide X so that there are no inversions.

In a CAT(0) cube complex of dimension n, any collection of nC1 hyperplanes contains
a disjoint pair. In particular, in the case of our 2–dimensional complex, if g 2 Aut.X /
and yh is a hyperplane, then the triple fyh;gyh;g2yhg contains a pair that is either disjoint
or equal. Thus, either g2yh D yh , or one of the pairs fyh;gyhg or fyh;g2yhg is a disjoint
pair.

Given a hyperplane yh in X and g 2 Aut.X / a hyperbolic isometry of X, we say that
g skewers yh if for some choice of halfspace h associated to yh , we have g2h � h (note
that this includes the case gh � h ). This property is equivalent to saying that any axis
for g intersects yh in a single point.

Algebraic & Geometric Topology, Volume 19 (2019)
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We say that a hyperbolic isometry g 2 Aut.X / is parallel to yh if any axis for g is a
bounded distance from yh , and a hyperbolic isometry is peripheral to yh if it neither
skewers yh nor is parallel to yh . In this case, any axis lies in a halfspace h bounded by
the hyperplane yh and is not contained in any neighborhood of yh . It follows that either
gh� � h or g2h� � h .

Definition 3 Given a hyperbolic isometry g 2Aut.X /, we define the skewer set of g ,
denoted by sk.g/, as the collection of all hyperplanes skewered by g . We define a
disjoint skewer set for g as a collection of disjoint hyperplanes in sk.g/ which is
invariant under g2 .

If g is parallel to a hyperplane yh , then any hyperplane in sk.g/ intersects yh . Since
there are no intersecting triples of hyperplanes in X, this means that no two hyperplanes
in sk.g/ intersect. Furthermore, any two translates of yh under hgi are parallel to g

and hence cross every hyperplane in sk.g/. Again, by the 2–dimensionality of X, this
means that the two translates of yh under hgi are disjoint. We record this observation,
since we will make use of it.

Observation 4 If g is parallel to yh , then all the hyperplanes in sk.g/ are disjoint and
two distinct hyperplanes in the orbit of yh under hgi are disjoint.

Lemma 5 Let g be a hyperbolic automorphism of X ; then sk.g/ is a union of finitely
many disjoint skewer sets.

Proof Consider yh 2 sk.g/. If gyh \ yh D∅, we let P1 D fg
n.yh/ j n 2 Zg. Otherwise,

since X is 2–dimensional, we have g2yh \ yh D∅. We then set P1 D fg
2n.yh/ j n 2 Zg

and P2 D fg
2nC1yh j n 2 Zg. Thus, P1 and P2 break up the orbit of yh under hgi into

two disjoint skewer sets. Since there are finitely many orbits of hyperplanes in sk.g/
under the action of hgi, this breaks up sk.g/ into finitely many disjoint skewer sets.

Example 6 Let X denote the Euclidean plane, squared in the usual way by unit
squares. Let g be an integer translation in the vertical direction. Then the skewer set
of g is the collection of horizontal hyperplanes and the number of disjoint skewer sets
depends on the translation length of g .

Example 7 Again, let X denote the Euclidean plane. Let g be a glide reflection
along the diagonal axis, g.x;y/D .yC1;xC1/. Then the skewer set of g is a union
of four disjoint skewer sets, each invariant under g2 .

Algebraic & Geometric Topology, Volume 19 (2019)
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3 The parallel subset of an element

Given a hyperbolic g 2 Aut.X /, we describe combinatorially a certain invariant
subcomplex associated to g which consists of all the lines parallel to axes in G. (This
subcomplex is discussed also in [11] and is slightly different than the minimal set of G,
as described in [3] or [7].)

We consider the following partition of hyperplanes yH of X. Let

yHk.g/Dfyh j yh intersects every hyperplane in sk.g/g; yHP .g/D yH�.sk.g/[yHk.g//:

Since the elements of yHP .g/ are peripheral to g , it follows that for each hyperplane
yh 2 yHP .g/, there exists a well-defined halfspace h containing all the axes of g . Recall
that the collection of cubes intersecting a hyperplane yh has a product structure yh� Œ0; 1�.
We let N.yh/D yh � .0; 1/. For a halfspace h we let R.h/D h �N.yh/.

We define
Yg D

\
`g2h and yh2yHP .g/

R.h/:

The subspace Yg is a hgi–invariant convex subcomplex of X, and as Yg contains the
axes of g , it is nonempty.

The hyperplanes intersecting Yg are the hyperplanes of sk.g/ and yHk.g/. Since sk.g/
and yHk.g/ are transverse collections of hyperplanes, we obtain (by [6]) that Yg admits
a product structure Yg Š Eg � Tg , where Eg is defined by the hyperplanes sk.g/
and Tg is defined by the hyperplanes in yHk.g/. Note that sk.g/ does not contain any
disjoint facing triples of hyperplanes. As g does not skewer any hyperplane in yHk.g/,
g fixes a vertex in Tg . Since Yg is 2–dimensional, there are two possibilities:

(1) Eg D R and Tg is isomorphic to a tree.

(2) Eg is 2–dimensional and Tg is a point.

We call Yg the parallel set of g and Eg its Euclidean factor.

We need a further understanding of Eg in order to conclude that groups that stabilize
it have nice properties.

Lemma 8 Let Eg be the Euclidean factor of Yg . Then either Eg is a Euclidean plane
or Eg contains an Aut.Eg/–invariant line.

Algebraic & Geometric Topology, Volume 19 (2019)
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Proof See [4] or [6] for a discussion of ultrafilters, intervals and medians, which are
used in the following argument. We claim first that Eg is an interval complex. That is,
there exist two ultrafilters ˛ and ˇ on H such that Eg D Œ˛; ˇ� (where Eg denotes
the ultrafilter closure of Eg ). To see this, choose a point on an axis `g for g and let
RC and R� be the two subrays of `g defined by p . Define two ultrafilters

˛C D fh 2H jRC\ h is unboundedg;

˛� D fh 2H jR�\ h is unboundedg:

Note that since `g intersects every hyperplane of Eg , ˛C and ˛� are ultrafilters.
Moreover, ˛C and ˛� make the opposite choices for each hyperplane, which is to say
˛C\˛� D∅. It follows that for every other ultrafilter ˇ , we have that

med.˛C; ˛�; ˇ/D .˛C\˛�/[ .˛C\ˇ/[ .˛�\ˇ/D ˇ:

This means that Eg D Œ˛C; ˛��, as claimed.

It follows, by [4, Theorem 1.16], that Eg embeds isometrically in the standard squaring
of the Euclidean plane. We can thus assume that Eg is an isometrically embedded
subset of the standard squaring of the Euclidean plane. It follows that the hyperplanes
in Eg are either lines, rays or closed intervals. Since g 2 Aut.Eg/ is a hyperbolic
element, we also have that there are finitely many orbits of hyperplanes under the action
of Aut.Eg/ on Eg .

If all the hyperplanes are lines, then we obtain that Eg is itself a Euclidean plane
and we are done. If some hyperplane, say a horizontal one, is a ray, then we claim
that all the other horizontal hyperplanes are rays. For if some horizontal hyperplane
were a line, then by the fact that g is acting cofinitely on the hyperplanes, we would
obtain two horizontal line hyperplanes, separated by a horizontal ray hyperplane. This
would contradict the fact that Eg is isometrically embedded in the Euclidean plane.
By the same reasoning, there can be no closed interval horizontal hyperplanes, for we
would obtain two ray intervals a bounded Hausdorff distance apart in Eg separated by
a closed interval hyperplane. From this it follows that all the vertical hyperplanes are
rays as well and we have that Eg is a “staircase”, as in Figure 1.

In this “stairstep” case, the space of lines which coarsely contains the endpoints of the
hyperplanes is itself a ray R which is Aut.Eg/–invariant; hence, there is an Aut.Eg/

fixed point in R and hence an Aut.Eg/–invariant line in Eg .

If there exists a hyperplane in Eg which is a closed interval, then by similar considera-
tions as above, we may conclude that all hyperplanes are closed intervals. Since hgi
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:::

:::

Figure 1: The case in which all hyperplanes in Eg are rays. The endpoints
of the rays are invariant, and hence any line in Eg a bounded distance from
all endpoints is Aut.Eg/–invariant.

acts cocompactly on Eg , it follows that all lines in Eg are parallel and the space of
such lines is a compact interval I. Since the action of Aut.Eg/ on I has a fixed point,
it then follows that there is an Aut.Eg/–invariant line.

4 The ping pong lemma and hyperplane patterns that yield
free semigroups

We will use the following version of the ping pong lemma (see for example [8]):

Lemma 9 (semigroup ping pong) Suppose that a group G is acting on a set X and
U and V are disjoint subsets of X. If the elements a; b 2Gnf1g satisfy

� a.U [V /� U,

� b.U [V /� V ,

then a and b freely generate a free subsemigroup in G.

Proof Let † be the semigroup generated by a and b in G. Observe that for any
g; h 2†�G, ag D ah or bg D bh in † if and only if g D h in †. Therefore, it is
enough to check that two words of the form ag and bh cannot be equal in †. But,
ag.U [V /� U and bh.U [V /� V . Since U \V D∅, ag ¤ bh.

4.1 On groups acting on trees

To warm up, and to record a few observations we use later on, we first explore what
happens for a pair of hyperbolic isometries acting on a tree. We include the proofs
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here because we will need these types of arguments. However, this is not new. See
for example [1]. Let T be a simplicial tree. Recall if an element g of Aut.T / is
hyperbolic then there is a unique geodesic `g (called the axis of g ) which is invariant
under g , on which g induces a translation.

Proposition 10 If a and b are two hyperbolic automorphisms of a tree T , then one
of the following occurs:

� a and b share the same axis.

� a˙1 and b˙1 freely generate a free semigroup.

Proof Suppose that `a ¤ `b . First assume that `a\ `b is nonempty and contains an
edge e D Œp; q�. (See Figure 2.) Choose e so that q is a point of bifurcation of `a and
`b . Let Tq be the component of T � interior.e/ containing q . After possibly replacing
a by a�1 and/or b by b�1 , we see that ae � Tq and be � Tq . Set U D aTq and
V D bTq . Then U and V satisfy the hypothesis of Lemma 9. We will generalize this
argument in our context.

p e q
Tq

ae

U

`a

be

V

`b

Figure 2: The hyperbolic isometries a and b have unequal but overlapping axes.

The case when `a \ `b D ∅ calls for a different argument (see Figure 3). Consider
an edge e D Œp; q� situated along the geodesic arc joining `a and `b . Let Tp be the
component of T �interior.e/ containing p and Tq be the component of T �interior.e/
containing q . Suppose (without loss of generality) that `a � Tp and `b � Tq . Then,
letting U D

S
n>0 anTq and V D

S
n>0 bnTp , we see that a.U [ V / � U and

b.U [V /� V , as required. In fact, in this case, we can argue that a and b generate a
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Tq

Tp

q

p
aTq

a2Tq

`a

`b

Figure 3: The hyperbolic isometries a and b have disjoint axes.

free group by adjusting U and V to include all nonzero powers of a and b , but we
will not need this fact. Note that there is a singular case in which `a and `b intersect
in a single point. In this case, we simply use the intersecting vertex to separate T into
two subtrees, each containing a different axis, and proceed in the same manner.

4.2 Back to CAT(0) cube complexes

The following lemma works in any dimension and so, just for the paragraph below, we
let X be an n–dimensional CAT(0) cube complex.

Lemma 11 Let g1;g2 2 Aut.X / and suppose that there exists a halfspace h of X

such that gih � h and g1h � g2h� . Then g1 and g2 generate a free semigroup.

Proof This argument resembles the first case in the proof of Proposition 10. Set
U D g1h and set V D g2h and apply Lemma 9.

We call the triple fh;g1h;g2hg a ping pong triple for g1 and g2 .

5 Main argument

Now, let X be a CAT(0) square complex.

Lemma 12 (all or nothing) Let a and b be hyperbolic isometries of X and let P

be a disjoint skewer set for a. Suppose that no pair of words of length at most 6 in a

and b generate a free semigroup; then either b skewers every hyperplane in P or b

does not skewer any hyperplane in P.
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Proof Recall that for any yh in sk.a/, there exists an associated halfspace h such that
a2h � h . If b skewers some element in P, but not all, we may also choose h such that
h is skewered by b but a2h is not skewered by b . After replacing b possibly by b�1 ,
we may assume that b2h � h. Note that b , and hence b2 , is peripheral to a2yh .

Now, by the 2–dimensionality of X, either b2a2yh \ a2yh D∅ or b4a2yh \ a2yh D ∅.
We further have that b2a2h � b2h � h and b4a2h � b4h � h .

We thus have that either fh; a2h; b2a2hg or fh; a2h; b4a2hg is a ping pong triple of
halfspaces for the pairs fa2; b2a2g or fa2; b4a2g. See Figure 4. In either case, we
obtain words of length at most 6 freely generating a free semigroup, a contradiction.

hh

`b

b2a2h

a2h

`a

Figure 4: The element b skewering h but not ah

Proposition 13 (not skewering means parallel) Let a and b be hyperbolic isometries
of X and let P be a disjoint skewer set for a. Let `b be an axis for b . Suppose that b

does not skewer any element of P and that no pair of words of length no more than 10

freely generate a free semigroup. Then:

(1) The axis `b is parallel to every hyperplane yh 2 P.

(2) bP 2 sk.a/.

(3) b2 stabilizes every hyperplane in P.

Proof The disjoint skewer set P decomposes as a finite union of ha2i–orbits. So,
the assumption that b does not skewer any hyperplane in P holds for each orbit. If
the conclusion of the proposition holds for each ha2i–orbit, then it holds for all of P.
Therefore, it suffices to prove the proposition for when P is a single ha2i–orbit: there
exists h 2 P such that a2h � h and P D fa2k yh j k 2 Zg. We set c D a2 . Since b
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does not skewer any hyperplane in P, we may assume that `b � h \ ch� . (We are
using here that the action is without inversions, so that if `b �

yh for some hyperplane,
there is a parallel axis for b on either side of yh .) We will now use our assumptions to
remove the possibility that b is peripheral to yh or cyh .

First, suppose b is peripheral to both yh and cyh . We claim that we can find a facing
triple of hyperplanes of the form fyh; bs yh; bt yhg with jsj; jt j � 4.

To see this, consider the six translates fb�2yh; b�1yh; yh; byh; b2yh; b3yhg. Construct the
intersection graph � for these six hyperplanes: the vertices of � are the elements
of fb�2yh; b�1yh; yh; byh; b2yh; b3yhg, and two vertices are joined by an edge if and only
if the respective hyperplanes cross. Since R.3; 3/ D 6, the graph � possesses a
clique or an anticlique on three vertices. However, as in a CAT(0) square complex,
three distinct hyperplanes cannot pairwise intersect; the intersection graph � must
have an anticlique T consisting of three hyperplanes. If T contains yh , then we are
done; else, we take a suitable translate of T . The highest exponents appear when
T D fb�2yh; b2yh; b3yhg, and, in this case, we take b�2T as our chosen set of facing
triples.

We now have s and t of absolute value at most 4, such that yh , bs yh and bt yh are disjoint
and form a facing triple. Translating by c , we get that cyh , cbs yh and cbt yh form a
facing triple of hyperplanes. As b is also peripheral to cyh , there exists �� 2 such that
b�cyh \ cyh D ∅. Now, cbsh� and cbt h� are both disjoint halfspaces that lie inside
the halfspace b�ch� . This implies that the two elements cbsc�1b�� and cbtc�1b��

(each of length � 10) freely generate a free semigroup, a contradiction.

Let us now assume that b is parallel to yh but peripheral to cyh . It follows from
Observation 4 that for any i 2Z, bi yh D yh or bi yh\ yh D∅. First let us consider the case
that b2yh D yh . Note that since we are assuming that Aut.X / acts with no inversions,
we have that b2h D h . Now, since b is peripheral to cyh , for k D 1 or 2 we have that
b2kcyh \ cyh D∅. We thus obtain a ping pong triple of halfspaces fh; ch; b2kchg for
the elements c and b2kc . From Lemma 11 we see that c and b2kc freely generate a
free semigroup, a contradiction since these are words of length at most 6 in a and b .
(See Figure 5.)

We may thus assume that byh \ yh D∅ and b2yh \ yh D∅. Only one of byh or b2yh can
separate yh and cyh , for otherwise we would have bh � b2h or b2h � h . So for some
� D 1 or 2, we can assume that b� yh does not separate yh and cyh . Note also that since
cyh is peripheral to b , one cannot have b� yh � ch .
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h

`b

b2kch

ch

Figure 5: If b stabilizes h , we obtain a ping pong triple of hyperplanes.

If cyh \ b� yh D∅, then we obtain a ping pong triple of halfspaces fch�; h�; b�h�g for
the words c�1 and b�c�1 . Since these are words of length at most 4 in a and b , we
have a contradiction. (See Figure 6.)

h
b�h

`b

ch

Figure 6: If cyh \ b� yh D∅ and b� yh does not separate yh and cyh , we obtain a
ping pong triple.

Thus, we assume that b� yh \ cyh ¤ ∅ and refer to Figure 7. Since, by Observation 4,
any hyperplane in sk.b/ intersects b� yh , and we are assuming that b� yh \ cyh ¤ ∅,
the 2–dimensionality of X implies that any hyperplane in sk.b/ is disjoint from cyh .
Moreover, by Observation 4, we have that for any hyperplane yk in sk.b/, bk � k

for some choice of halfspace k associated to yk . We may further choose k such that
ch � k \ bk � .
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Applying c�1 , we see that h � c�1k \ c�1bk � . Applying b� , we see that b�c�1yk �
b�h�� h . Thus, we have a ping pong triple of half spaces fc�1bk �; c�1k �; b�c�1k �g
for the elements c�1b�1c and b�c�1b�1c . So, by Lemma 9 we have that c�1b�1c

and b�c�1b�1c generate a free semigroup and these are words of length at most 7.

c�1bk

c�1h

c�1k

h

b�h

bk

ch

k

`b

Figure 7: If cyh \ b� yh ¤∅ , we obtain a ping pong triple.

We may thus assume that b is parallel to both yh and cyh . Assume that d.`b; yh/ �
d.`b; cyh/. (There is no loss of generality here, for if d.`b; cyh/ � d.`b; yh/, we will
reverse the roles of yh and cyh in the following argument.)

As before, we first consider what happens if yh is not stabilized by b2 . Here we obtain
that yh , byh and b2yh are disjoint. We cannot have that byh D cyh or b2yh D cyh , for then we
would obtain that c�1byh or c�1b2yh is an inversion of yh . Thus, we have that byh � ch�

and b2yh � ch� . We now proceed as in the case in which cyh is peripheral to b to
produce a ping pong triple of halfspaces fch�; h�; b�h�g for the words c�1 and b�c�1 .
(The configuration is the same as in Figure 6 except that here cyh is parallel to `b .)

So assume b2yh D yh . Again, as above, if b2 did not also stabilize cyh , we would obtain
a small ping pong triple. Thus, b2 stabilizes cyh as well. Since b2 stabilizes cyh (and
the action is inversion-free), we have an axis for b2 in ch \ c2h� . We can now carry
out all the above arguments, replacing yh and cyh with cyh and c2yh , to conclude that b2

stabilizes c2yh . Proceeding in this way we see that b is parallel to every hyperplane
of P and that b2P D P.

We are left to show that bP � sk.a/. We now argue as in the proof of Lemma 12
using the pair bab�1 and a. The pairs fba2b�1; a2ba2b�1g and fba2b�1; a4ba2b�1g

made of words of length at most 8 in a and b may freely generate free semigroups. But
we have assumed that there are no such free semigroups. Hence, in our current case,
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Lemma 12 implies that a skewers every hyperplane in bP or none of the hyperplanes
in bP. In the former case, we get bP � sk.a/, as required. So suppose that a does not
skewer any hyperplane in bP. Note that byh must be disjoint from yh and cyh because `b

is parallel to all three. Similarly, bcyh is disjoint from yh and cyh . Since `b � h \ ch� ,
we have either bh� � h \ ch� or bch � h \ ch� , depending on which of yh or cyh is
closer to `b . In either case, we then get a small ping pong triple, a contradiction.

If a and b are elements such that there exists a disjoint skewer set P for a as in
Proposition 13, then we say that b is subparallel to a.

Corollary 14 Given hyperbolic isometries a and b such that no words of length at
most 10 generate a free semigroup of rank 2, b is subparallel to a if and only if
sk.a/� sk.b/¤∅.

Proof If b is subparallel to a, then, by definition, there exists a disjoint skewer set
for a such that b is parallel to all the hyperlanes in P. Thus, P � sk.a/ � sk.b/.
Conversely, if there exists yh 2 sk.a/� sk.b/, then by Lemma 12, the entire disjoint
parallel set P for a containing yh is not skewered by b . Then, by Proposition 13, b is
subparallel to a.

From this corollary, we see that there are three possibilities for two hyperbolic elements
a and b such that words of length at most 10 do not freely generate a free semigroup:

(I) sk.a/D sk.b/.

(II) b is subparallel to a and a is subparallel to b .

(III) b is subparallel to a and a is not subparallel to b (or the same with the roles of
a and b reversed).

We claim that in each of these cases, we can find an invariant line or flat for ha; bi.

Proposition 15 Let a and b be hyperbolic isometries such that no words in a and b

of length at most 10 freely generate a free semigroup; then there exists a Euclidean
subcomplex of X invariant under ha; bi.

Proof We analyze the three cases above. Suppose we are in case I, so that sk.a/D
sk.b/. Then we consider Y D Ya D Yb D E � T . If T is trivial (ie a single point),
then we have that both a and b leave E invariant, as required. Otherwise we have that
Y D R�T , where a and b both act by vertical translation. We consider the action
of a and b on T . Both a and b have nonempty fixed point sets, which we denote by
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Fa and Fb . If Fa\Fb ¤∅, then, choosing p 2 Fa\Fb we have that both a and b

stabilize the line R� fpg � R�T .

So suppose that Fa\Fb D∅. As in [14], we have that ab is hyperbolic in its action
on T , stabilizing a line ` which intersects both Fa and Fb . We claim that a stabilizes `.
For, otherwise, consider the line a`. This is stabilized by the element uD a.ab/a�1 .
If a`¤ `, then we obtain that .ab/˙1 and u˙1 freely generate a free semigroup by
Proposition 10, contradicting our assumption. Similarly, we see that b stabilizes ` as
well. Thus, ha; bi stabilizes the flat R� `� R�T , as required.

We now consider case II, where a and b are subparallel to one another. Note that
since an axis for a is parallel to a hyperplane (in sk.b/), then all the hyperplanes
in sk.a/ are disjoint. Similarly all the hyperplanes in sk.b/ are disjoint. Note also
every hyperplane in sk.a/ crosses every hyperplane in sk.b/, so that they determine a
flat ED Ya\Yb . Moreover, since b is parallel to one of the hyperplanes in sk.a/, it is
parallel or peripheral to all hyperplanes in sk.a/. But then Proposition 13 implies that
for all disjoint skewer sets P � sk.a/, we have bP � sk.a/. Thus, b sk.a/ � sk.a/.
By the same argument, we obtain b�1 sk.a/� sk.a/, so that b sk.a/D sk.a/.

Similarly, we have that a sk.b/D sk.b/. We thus have that ha; bi stabilizes the flat E.

Finally, we consider case III. In this case there exists a disjoint skewer set P for a, so
that b is parallel to P. However, since a is not subparallel to b , a also skewers every
element in sk.b/. Since the hyperplanes in sk.b/ all intersect the hyperplanes in P,
we have that sk.a/ has crossing hyperplanes. It follows that the parallel set Ya for a is
of the form Ya DE � fpointg. It is also easy to see that b stabilizes E, so that ha; bi
stabilizes E.

We are now ready to prove Theorem 1, which we restate here for convenience:

Theorem 1 Let F be a finite collection of hyperbolic automorphisms of a CAT(0)
square complex. Then either

(1) there exists a pair of words of length at most 10 in F which freely generate a
free semigroup , or

(2) there exists a flat (of dimension 1 or 2) in X stabilized by all elements of F.

Proof Consider F D fs1; s2; : : : ; sng. Each of the pairs fsi ; sj g satisfy one of the
cases I, II or III, above.

If there exists a pair of type III, without loss of generality, assume that is the pair
fs1; s2g, with s2 subparallel to s1 and s1 not subparallel to s2 . In this case, the parallel
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set Ys1
DE �fpointg. In this case, for every other si , we have that the pair fs1; sig is

either of type I or III. In either case, we obtain that si stabilizes E and we are done.

So we suppose that no pair fsi ; sj g is of type III. Suppose, that there exists a pair,
say fs1; s2g, which is of type II. Let E be the flat in X on which hs1; s2i acts. For
any other si , we have that the pairs fs1; sig and fs2; sig are of type I or II. It cannot
be that both pairs are of type I since sk.s1/\ sk.s2/D ∅. Also, it cannot be that si

is subparallel to both s1 and s2 , for otherwise `si
would be parallel to hyperplanes

in sk.s1/ and in sk.s2/, but every hyperplane in sk.s1/ crosses every hyperplane in
sk.s2/ in a single point. Thus, a line cannot be parallel to a hyperplane in sk.s1/ and a
hyperplane in sk.s2/. It follows that, without loss of generality, si is subparallel to s1

and sk.si/D sk.s2/. It then follows that si stabilizes E.

Finally, suppose that all the pairs fsi ; sj g are of type I. Thus, sk.si/D sk.sj / for all i

and j . Thus, G stabilizes Y DE �T DEsi
�Tsi

. If E contains squares, then T is
trivial and si stabilizes E, as required. So suppose that Y D R�T , and each si acts
“vertically”. That is, si acts by translation along R and has a fixed point in T .

We now examine the action of G on T . Let Fi denote the fixed set of si . If for each
pair i and j , Fi \Fj ¤∅, then by a standard result, Xn D

Tn
iD1 Fi ¤∅. Choose a

vertex pn 2Xn . Then Hn D hs1; : : : ; sni acts on `n D R�pn by translations. Thus,
Hn stabilizes a flat in X.

So suppose that there exists a pair, say F1 and F2 , such that F1 \F2 D ∅. In this
case, as in the proof of Proposition 15, there exist a line `� T on which hs1; s2i acts
as a dihedral group. As in the proof of Proposition 15, we also obtain that for every i ,
si stabilizes `. Thus, G stabilizes `, and therefore the flat R� `, as required.

Remark 16 The proof of the theorem shows that in case (1), there is a subset F0

of F made of two or three elements and a pair of words of length � 10 in F0 which
generate the free semigroup of rank 2.

Corollary 2 now follows from the main theorem since when the action of a group is
free, stabilizing a flat implies the group is virtually abelian, by the Bieberbach theorem.
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Commensurability invariance for abelian splittings of
right-angled Artin groups, braid groups

and loop braid groups

MATTHEW C B ZAREMSKY

We prove that if a right-angled Artin group A� is abstractly commensurable to a
group splitting nontrivially as an amalgam or HNN extension over Zn , then A� must
itself split nontrivially over Zk for some k � n . Consequently, if two right-angled
Artin groups A� and A� are commensurable and � has no separating k –cliques
for any k � n , then neither does � , so “smallest size of separating clique” is a
commensurability invariant. We also discuss some implications for issues of quasi-
isometry. Using similar methods we also prove that for n � 4 the braid group Bn

is not abstractly commensurable to any group that splits nontrivially over a “free
group–free” subgroup, and the same holds for n� 3 for the loop braid group LBn .
Our approach makes heavy use of the Bieri–Neumann–Strebel invariant.

20F65; 20F36, 57M07

Introduction

We say two groups are abstractly commensurable or for brevity commensurable if
they contain isomorphic finite-index subgroups. It has been an ongoing problem to
understand commensurability for right-angled Artin groups, or RAAGs for short. This
can mean either to understand when a group is commensurable to a given RAAG, or to
understand when two RAAGs are commensurable to each other. For instance, a RAAG
is commensurable to a nonabelian free group if and only if it itself is a nonabelian
free group, and on the other hand Zn is not commensurable to any RAAG except
itself. Related questions include all of the above replacing “commensurable” with
“quasi-isometric” everywhere, and the “rigidity” question asking for which RAAGs
does quasi-isometry imply commensurability.

Recall that for a finite simplicial graph � , the RAAG A� is defined by the presentation
with a generator for each vertex of � and the relations that two generators commute
if and only if their corresponding vertices span an edge in � . A great deal of work
has been done toward understanding the above questions for RAAGs A� assuming
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various restrictions on � . For example, in [14] Huang proved that if A� has finite
outer automorphism group, which is equivalent to saying that � has no separating
closed stars and no instances of lk v � stw for vertices v ¤ w , then a RAAG A� is
commensurable to A� if and only if it is quasi-isometric. Moreover, if A� and A� both
have finite outer automorphism group then they are quasi-isometric if and only if �Š�.
Other examples of past work include Huang [13; 15], Casals-Ruiz, Kazachkov and
Zakharov [6], Casals-Ruiz [5], Behrstock, Januszkiewicz and Neumann [2] and Kim
and Koberda [16; 17]. In all of these examples, results are shown assuming the RAAG
or RAAGs in question have defining graphs falling into certain classes. For example,
there are results if the graph is a tree, or a join, or an atomic graph, or a cyclic graph,
or has some other such global structure.

In this paper we do not focus on any particular graph or class of graphs, but rather inspect
the commensurability problem in terms of some more local features of the graph, with
an eye on separating cliques. These correspond to nontrivial splittings over free abelian
groups. Recall that a nontrivial splitting of a group G over a subgroup C is a decom-
position GDA�C B with G¤A;B or GDA�C with G¤A. Our main results are:

Theorem 3.5 Let � be a finite simplicial nonclique graph with no separating k –
cliques for any k�n. Then A� is not commensurable to any group splitting nontrivially
over Zn .

Corollary 3.6 If A� and A� are commensurable and � has no separating k –cliques
for any k � n, then neither does �.

An equivalent way to phrase Theorem 3.5 is to say that such an A� does not virtually
split nontrivially over Zn . Another equivalent formulation is: if a RAAG virtually splits
nontrivially over Zn then it must actually split nontrivially over Zk for some k � n.
Corollary 3.6 can be phrased informally as “‘smallest size of separating clique’ is a
commensurability invariant for RAAGs”. We suspect that the conclusion of Theorem 3.5
is true even if we only assume � has no separating n–cliques, though proving this
would require new ideas (for instance, even in the proof of Proposition 2.3, concerning
when A� itself splits, we cannot precisely control the size of the cliques that arise).

Say that a group is NF if it contains no nonabelian free subgroups (so, colloquially, it
is a “free group–free group”). It is a fact that RAAGs satisfy a strong Tits alternative,
namely every NF subgroup of a RAAG is abelian; even more strongly, every pair of
elements in a RAAG either commute or generate a copy of F2 ; see Baudisch [1],
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Carr [4] and Kim and Koberda [18]. This leads to the following corollary in the case
when � has no separating cliques at all:

Corollary 3.7 Let � be a finite simplicial nonclique graph with no separating cliques.
Then A� is not commensurable to any group splitting nontrivially over an NF subgroup.

The key to proving Theorem 3.5 is understanding the Bieri–Neumann–Strebel (BNS)
invariant well enough to produce nontrivial characters of the groups of interest that
contain certain prescribed subgroups in their kernels while still lying in the BNS
invariant. The BNS invariant of an arbitrary RAAG is known from work of Meier and
VanWyk [22]. There has been some other recent interest in using the BNS invariants
of RAAGs to distinguish groups; for instance, Koban and Piggott [20] determined
precisely when the pure symmetric automorphism group of a RAAG is itself a RAAG,
and Day and Wade [11] used a new homology theory to produce similar results for the
“outer” version.

Using the BNS invariant to approach questions of commensurability is a natural en-
deavor, but to the best of our knowledge it has not been exploited in the literature. We
expect that our techniques could be used in the future to get similar commensurability
results for other groups whose BNS invariants are known. In the interest of providing
other explicit examples, we inspect braid groups and loop braid groups, and use similar
methods to those used for RAAGs to get the following results:

Theorem 5.1 For n� 4 the braid group Bn is not commensurable to any group that
splits nontrivially over an NF subgroup.

Theorem 5.2 For n� 3 the loop braid group LBn is not commensurable to any group
that splits nontrivially over an NF subgroup.

The BNS invariant of the (loop) braid group is known but turns out not to be useful here,
since it is too small (characters tend to become trivial as soon as they kill interesting
subgroups). Instead we use the BNS invariants of the pure braid group PBn and pure
loop braid group PLBn , which are known from work of Koban, McCammond and
Meier [19] and Orlandi-Korner [23], and are robust enough to use for these purposes.
Another relevant comment here is that Clay, Leininger and Margalit proved that for
n� 4 the group Bn is not commensurable to any RAAG [9].

This paper is organized as follows. In Section 1 we recall the BNS invariant and
establish some results about kernels of characters. In Section 2 we discuss RAAGs and
their BNS invariants, and refine a result of Groves and Hull [12] about which RAAGs
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split over which abelian subgroups. In Section 3 we prove our main commensurability
results, Theorem 3.5 and Corollaries 3.6 and 3.7, about RAAGs, and in Section 4 we
discuss the consequences our results have for questions of quasi-isometry. Finally, in
Section 5 we prove related commensurability results, Theorems 5.1 and 5.2, about
braid groups and loop braid groups.

Acknowledgements Thanks are due to Matt Brin, Matt Clay, Thomas Koberda, Ric
Wade and Stefan Witzel for helpful discussions, useful comments, clarification of
results and general encouragement. I am also grateful to Jingyin Huang for Lemma 4.1.
Finally, I thank the anonymous referee for helpful remarks, including pointing out a
more concise way to phrase Theorem 3.5.

1 Characters of a group

A character of a group G is a homomorphism G!R. In this section we recall the
definition of the BNS invariant and establish some facts about the behavior of kernels
of characters.

1.1 The BNS invariant

The BNS invariant †1.G/ of a finitely generated group G is a certain subset of the
character sphere

S.G/ WD fŒ�� j 0¤ � 2 Hom.G;R/g

of G. Here Œ�� is the equivalence class of the character � 2 Hom.G;R/ under the
equivalence relation given by �� �0 whenever �D a�0 for some a 2R>0 . The char-
acter sphere is thus the “sphere at infinity” for the euclidean vector space Hom.G;R/.
The invariant †1.G/ is the subset of S.G/ defined as follows:

Definition 1.1 (BNS invariant) Let G be a finitely generated group and let Cay.G/
be its Cayley graph with respect to some finite generating set. For 0¤ � 2Hom.G;R/
let Cay.G/��0 be the induced subgraph of Cay.G/ supported on those vertices g with
�.g/� 0. The BNS invariant †1.G/ is defined to be

†1.G/ WD fŒ�� 2 S.G/ j Cay.G/��0 is connectedg.

Denote by †1.G/c the complement S.G/ n†1.G/. For various reasons it will be
convenient to adopt the convention that the trivial character 0 lies in †1.G/c (but note
that this runs counter to the definition).
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In general the BNS invariant can be very difficult to compute. It contains a huge
amount of information; for example, it reveals exactly which (normal) subgroups
N �G containing ŒG;G� are finitely generated or not, namely N is finitely generated
if and only if Œ�� 2†1.G/ for all 0¤ � such that �.N /D 0.

Even if †1.G/ is completely known, it can still be very difficult to compute †1.H /

for H a finite-index subgroup of G. There is a region of S.H / that can be understood
based just on knowing †1.G/, namely the region given by characters of H that are
restrictions of characters of G :

Citation 1.2 [24, Proposition B1.11] Let G be a finitely generated group and H

a finite-index subgroup. Let � 2 Hom.G;R/ and consider the restriction �jH 2

Hom.H;R/ of � to H. We have that Œ�jH � 2†1.H / if and only if Œ�� 2†1.G/.

1.2 Kernels of characters

In this subsection we find a way to control which generators of a group must lie in the
kernel of a character, given the knowledge that some prescribed subgroup lies in the
kernel. The main result is Proposition 1.4.

Fix a finitely generated group G. Let V denote the R–vector space .G=ŒG;G�/˝R.
Let �W G!V be the “euclideanization” map obtained by composing the abelianization
map G!G=ŒG;G� with the map G=ŒG;G�! .G=ŒG;G�/˝R.

Definition 1.3 Given a subset A of G , define the radical
p

A of A to be the set
fg 2G j gq 2A for some q 2Znf0gg. Note that A�

p
A�G, and if A is a subgroup

of G containing ŒG;G� then
p

A is a subgroup of G.

For J �G, if a character � 2 Hom.G;R/ contains J in its kernel then it necessarily
contains

p
J ŒG;G�. This next proposition says, first, that � does not necessarily

contain more than this, and, second, that under an addition restriction on G (which will
be satisfied by our future groups of interest), the number of generators of J controls
the number of generators of G that can lie in ker.�/.

Proposition 1.4 (kill J and little else) Let G be a finitely generated group, and let
J �G. Then there exists � 2 Hom.G;R/ with ker.�/D

p
J ŒG;G�. Moreover, if G

admits a finite generating set S such that dimR.V /D jS j, and J is generated by n

elements, then at most n elements of S lie in ker.�/.

Proof The quotient G=
p

J ŒG;G� is a finitely generated torsion-free abelian group (ie
a free abelian group), and hence can be embedded in R. Composing this embedding
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with G!G=
p

J ŒG;G� yields a character � 2Hom.G;R/ with ker.�/D
p

J ŒG;G�.
Now suppose G admits a finite generating set S such that dimR.V / D jS j, and
J is generated by n elements j1; : : : ; jn . We claim that the image of

p
J ŒG;G�

in V spans a subspace W of dimension at most n. It suffices to prove that every
element of

p
J ŒG;G� maps under � to a vector of V in the span of the �.ji/. Let

g 2
p

J ŒG;G�, say gq D jc for q ¤ 0, j 2 J and c 2 ŒG;G�. Then �.g/ D
1
q
�.gq/D 1

q
�.jc/D 1

q
�.j /, which indeed lies in the span of the �.ji/. Now, since

dimR.V /D jS j and �.S/ spans V , we must have that � is injective on S and �.S/
is also linearly independent. Hence, at most n elements of S can map into W , and
hence at most n elements of S can lie in

p
J ŒG;G�D ker.�/.

2 Right-angled Artin groups

A right-angled Artin group or RAAG is a group admitting a finite presentation in which
each relator is a commutator of two generators. Given a finite simplicial graph � ,
with vertex set V .�/ and edge set E.�/, we get a RAAG, denoted by A� , by taking
a generator for each vertex and declaring that two vertices commute if and only if
they share an edge. For example, if E.�/D∅ then A� Š FjV .�/j , the free group on
jV .�/j generators, and if � is a clique, ie a graph where every pair of vertices spans
an edge, then A� Š ZjV .�/j .

The BNS invariants of RAAGs were fully computed by Meier and VanWyk [22]. We
recall the computation here.

Definition 2.1 (living/dead subgraph) Given a character �2Hom.A� ;R/, define the
�–living subgraph ��� to be the induced subgraph of � supported on those vertices v

with �.v/¤0, and the �–dead subgraph �|
� to be the induced subgraph of � supported

on those vertices v with �.v/D 0.

Citation 2.2 (BNS of RAAG [22]) Œ��2†1.A�/ if and only if the �–living subgraph
��� is connected and dominating in � .

Here a subgraph � of � is called dominating (in � ) if every vertex of � n� is adjacent
to a vertex of �.

In [12], Groves and Hull proved that the only way a nonabelian RAAG can split
nontrivially over an abelian subgroup is if its defining graph admits a (possibly empty)
separating clique. Recall that a subgraph � of � is called separating ( for � ) if � n�
is disconnected.

Algebraic & Geometric Topology, Volume 19 (2019)



Commensurability invariance for abelian splittings of RAAGs and (loop) braid groups 1253

We now inspect the details of Groves and Hull’s proof of their Theorem A to get the
following refined result:

Proposition 2.3 (splittings and cliques) Let � be a finite simplicial graph that is
not a clique. The minimal n � 0 such that A� splits nontrivially over Zn equals
the minimal n � 0 such that � admits a separating n–clique, with n taken to be 1
whenever such splittings or cliques do not exist.

To clarify, by n–clique we mean a clique with n vertices, ie the 1–skeleton of an
.n�1/–simplex.

Proof of Proposition 2.3 The nD1 case is immediate from [12, Theorem A], so
assume n<1. Note that if � has a separating n–clique then A� splits nontrivially
over Zn , so the thing to prove is that if A� splits nontrivially over Zn then � admits a
separating k –clique for some k � n. The splitting gives us an action of A� on a tree T

with edge stabilizers isomorphic to Zn , no global fixed points and no edge inversions,
and we will inspect this action using the proof of Theorem A in [12] as an outline.

First suppose some v 2 V .�/ acts hyperbolically on T . Let e be any edge of the axis
of v in T , so StabA�

.e/ Š Zn . Let u be a vertex in lk� v , so u stabilizes the axis
of v in T . Hence, there exist nu;mu 2Z with nu¤ 0 such that unuvmu fixes this axis
pointwise, and in particular unuvmu 2 StabA�

.e/. Since this holds for every u 2 lk� v ,
and since StabA�

.e/ is abelian, we conclude that Œunu ; wnw �D 1 for any u; w 2 lk� v ,
which implies that lk� v is a clique (this conclusion is also in [12]), and, even more
precisely, since StabA�

.e/ŠZn we conclude that lk� v is a k –clique for some k � n.
Since lk� v separates v from � n st� v (and the latter is nonempty since � is not a
clique but st� v is), we have our separating k –clique.

Now assume that every v 2 V .�/ acts elliptically on T . Groves and Hull define a
map F W �! T that in particular takes each v 2 V .�/ to some point of T that it fixes.
There is a special point p , at the midpoint of an edge, that is the image under F of
every v fixing it. Since the action does not invert edges, all these v even fix the edge
containing p . As Groves and Hull show, F�1.p/ is a separating clique in � , but even
more precisely it is a separating k –clique for some k � n, since the edge stabilizer
is isomorphic to Zn .

As a remark, the reason to exclude the case when � is a clique is that while cliques
have no separating cliques, technically Zn does split nontrivially over Zn�1 , as the
HNN extension Zn D Zn�1�t where the stable element t conjugates Zn�1 to itself
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via the identity map. Another remark is that the nD 1 case was previously proved by
Clay [8], and Groves and Hull remarked in [12, Remark 0.1] that their approach could
recover Clay’s result. Finally, to reiterate a point made in the introduction, the reason
that the statement of the proposition is only about the minimal n is that in the proof
we cannot control the size of the cliques produced, only an upper bound. However, we
suspect that the stronger statement “A� splits nontrivially over Zn if and only if �
admits a separating n–clique” is true.

3 Commensurability results for RAAGs

In this section we prove our main results about RAAGs, Theorem 3.5 and Corollaries 3.6
and 3.7. We first prove a proposition about general finitely generated groups that shows,
outside a trivial case, that if a group G is commensurable to a group G0 that splits over
a subgroup L, then G contains a copy of a finite-index subgroup of L that cannot be
killed by any pair of opposite characters ˙� in the BNS invariant of G.

Proposition 3.1 Let L be a group and let G be a finitely generated group that is not
virtually of the form K Ì Z for any finite-index subgroup K of L. Suppose G is
commensurable to a group G0 that splits nontrivially over L. Then there exists K �G,
with K isomorphic to a finite-index subgroup of L, such that for any � 2 Hom.G;R/,
if �.K/D 0 then at least one of Œ˙�� lies in †1.G/c .

Proof Let H be a finite-index subgroup of G that embeds with finite index into G0.
We will abuse notation and write H also for the finite-index image of H in G0. Since
G0 splits nontrivially over L, we know H decomposes as the fundamental group of a
finite reduced graph of groups G whose edge groups are H intersected with conjugates
of L in G0. Since H has finite index in G0, these edge groups are all isomorphic to
finite-index subgroups of L. Let K �H be one of these edge groups; for example,
just take K WD H \L. First suppose G is a strictly ascending HNN extension, say
H DK�t . Then, for any  2Hom.H;R/ such that  .K/D 0, if moreover  .t/D 0

then  D 0 and Œ˙ � 2†1.H /c by our convention. If  .K/D 0 and  .t/¤ 0 then
either Œ � or Œ� � lies in †1.G/c (see for instance [3, Theorem 2.1]). Next suppose
G is an ascending HNN extension that is not strict, ie H ŠK ÌZ. Then G is virtually
of the form K Ì Z, which we ruled out. Finally suppose G is not an ascending HNN
extension. Then [7, Proposition 2.5] says that for any  2 Hom.H;R/, if  .K/D 0

then Œ � 2†1.H /c . In any case, for any � 2Hom.G;R/ with �.K/D 0, at least one
of Œ˙�jH � 2†1.H /c , so by Citation 1.2 also at least one of Œ˙�� 2†1.G/c .
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Now we specialize to RAAGs.

Lemma 3.2 Let � be a finite simplicial graph and let K be an abelian subgroup
of A� . Let �K � � be the induced subgraph supported on those vertices v such that
v 2

p
KŒA� ;A� �. Then �K is a clique.

Proof Suppose v and w are distinct vertices in �K , say with vqc; wr d 2 K for
q; r 2Zn f0g and c; d 2 ŒA� ;A� �. Since K is abelian, vqc and wr d commute. Now
suppose v and w are not adjacent, so there is a retract � W A� ! F2 D hv;wi. We
have that �.vqc/D vq�.c/ and �.wr d/D wr�.d/ commute in F2 . Since neither is
trivial, this means that .vq�.c//a D .wr�.d//b for some a; b 2Zn f0g. Abelianizing
F2 to Z2 D hxv; Swi, this produces qaxv D rbSw , with qa; rb ¤ 0, which is absurd.

Corollary 3.3 Let � be a finite simplicial graph and let K �A� with KŠZn . Then
there exists � 2 Hom.A� ;R/ such that �.K/D 0 and the �–dead subgraph �|

� is a
k –clique for some 0� k � n.

Proof Choose � as in Proposition 1.4 with G DA� , S D V .�/ and J DK . Then
�.K/D 0 and v 2 V .�/ satisfies v 2 �|

� if and only if v 2
p

KŒA� ;A� �. Since the
abelianization of A� is ZjV .�/j , Proposition 1.4 also says that at most n vertices satisfy
this, and Lemma 3.2 says they must span a clique.

Proposition 3.1 applied to the L D Zn case said that a RAAG commensurable to
a group splitting over Zn contains a copy of Zn that cannot be killed by a pair of
opposite characters ˙� in the BNS invariant. This next proposition says that for a
RAAG that does not obviously split over Zn , any copy of Zn can be killed by a pair
of opposite characters ˙� in the BNS invariant.

Proposition 3.4 Let � be a finite simplicial graph with no separating k –cliques for
any k � n. Then, for any proper subgroup K Š Zn of A� , there exists a character
� 2 Hom.A� ;R/ such that �.K/D 0 but Œ˙�� 2†1.A�/.

Proof Choose � as in Corollary 3.3, so �.K/D 0 and �|
� is a k –clique for some

0 � k � n. If � is a clique, then since K is a proper subgroup of A� we know �
|
�

is not all of � , so in this case ��� is connected and dominating. Now assume � is
not a clique. Since � has no separating k –cliques, ��� is connected. Also, it must be
dominating since if st�.v/ lies in �|

� then st�.v/ is an `–clique for some `� k , and
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since � is not a clique this means lk�.v/ is a separating .`�1/–clique, which we have
ruled out. In either case Citation 2.2 says Œ�� 2 †1.A�/. Since ��� D �

�
�� , we also

have Œ��� 2†1.A�/.

Now we can prove our main results.

Theorem 3.5 Let � be a finite simplicial nonclique graph with no separating k –
cliques for any k�n. Then A� is not commensurable to any group splitting nontrivially
over Zn .

Proof Suppose A� is commensurable to a group splitting nontrivially over Zn . By
Proposition 3.1 using LDZn (which applies since A� contains F2 and hence cannot
be virtually of the form Zn Ì Z) there exists a subgroup K Š Zn of A� such that
for any � 2 Hom.A� ;R/ if �.K/ D 0 then at least one of Œ˙�� lies in †1.A�/

c

(in fact both do since †1.A�/ happens to be closed under inverting characters). But
by Proposition 3.4 we know that there exists a character � 2 Hom.A� ;R/ such that
�.K/D 0 but Œ˙�� 2†1.A�/, a contradiction.

We immediately get the following commensurability invariant for RAAGs:

Corollary 3.6 If A� and A� are commensurable and � has no separating k –cliques
for any k � n, then neither does �.

Proof If � is itself a clique then we must have � D�. If � is not a clique then the
result is immediate from Proposition 2.3 and Theorem 3.5.

We also get the following corollary in the special case where � has no separating
cliques at all. Recall from the introduction that any NF subgroup (that is, one containing
no nonabelian free subgroups) of a RAAG is abelian.

Corollary 3.7 Let � be a finite simplicial nonclique graph with no separating cliques.
Then A� is not commensurable to any group splitting nontrivially over an NF subgroup.

Proof Suppose A� is commensurable to a group that splits nontrivially over an NF
subgroup. By Proposition 3.1, which applies since A� is not (virtually) NF, there exists
an NF subgroup K � A� such that for any � 2 Hom.A� ;R/ if �.K/ D 0 then at
least one of Œ˙�� lies in †1.A�/

c . Since NF subgroups of RAAGs are abelian, in fact
K is abelian, so by Proposition 1.4 and Lemma 3.2 we can choose � 2 Hom.A� ;R/
such that �.K/D 0 and �|

� is a clique. Since � has no separating cliques, this implies
Œ˙�� 2†1.A�/, as explained in the proof of Proposition 3.4, a contradiction.
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As a remark, if A� is commensurable to a group splitting nontrivially over an NF
subgroup generated by n elements, then in general we cannot control the number
of generators of the subgroup K described in the proof, and hence cannot control
the size of the clique �|

� . Of course, if the NF subgroup is Zn then K is also Zn ,
since finite-index subgroups of Zn are isomorphic to Zn (which is why Theorem 3.5
worked), but in general we do not get a statement like Corollary 3.7 if we merely
rule out separating cliques up to some size; we really need to rule out all separating
cliques.

4 Quasi-isometry results for RAAGs

This brief section amounts to a collection of examples of results about quasi-isometry,
which follow immediately from our results about commensurability together with
results by Huang [14; 15; 13] tying commensurability to quasi-isometry.

First we need one technical lemma, the proof of which is essentially due to Jingyin
Huang.

Lemma 4.1 Let � be a finite simplicial graph. Suppose Out.A�/ is finite. Then �
has no separating cliques.

Proof (Jingyin Huang) Since Out.A�/ is finite we know � has no separating closed
stars, and no instances of lk v � stw for vertices v ¤ w . Now suppose � has a
separating clique K , say the connected components of its complement are C1; : : : ;Ck ,
so k � 2. If K D∅ (ie it is a 0–clique) then � is disconnected and has infinite outer
automorphism group, so we know K¤∅. Pick a vertex v 2K , so K� st v . Since st v
is not separating, at most one of the Ci n st v can be nonempty. Since k � 2 this means
at least one of the Ci n st v must be empty, say without loss of generality C1 n st vD∅,
ie C1 � st v . But now for any vertex w in C1 , we have lkw � C1 [K � st v , a
contradiction.

Corollary 4.2 Suppose A� and A� are quasi-isometric, and that Out.A�/ is finite,
so by Lemma 4.1 we know � has no separating cliques. Then � also has no separating
cliques.

Proof This follows from [14, Theorem 1.2] and Corollary 3.6.
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Corollary 4.3 Suppose A� and A� are quasi-isometric and � is of weak type I or
type II as defined in [13]. Then, if � has no separating k –cliques for any k � n,
neither does �.

Proof This follows from [13, Theorems 1.3 and 1.6] and Corollary 3.6.

Corollary 4.4 Let G be a finitely generated group quasi-isometric to A� . Suppose
that every automorphism of � fixing a closed star of a vertex pointwise fixes all of � ,
that � contains no induced 4–cycles and that Out.A�/ is finite. Then G does not split
nontrivially over Zn for any n.

Proof Since Out.A�/ is finite, � has no separating cliques by Lemma 4.1. The result
now follows from [15, Theorem 1.2] and Theorem 3.5.

In general, we would get similar sorts of results anytime there is a graph � for which
quasi-isometry to A� implies commensurability to A� .

5 Commensurability results for (loop) braid groups

In this section we apply our approach to braid groups and loop braid groups.

5.1 Commensurability results for braid groups

The n–strand braid group is the group presented by

Bn D

�
s1; : : : ; sn�1

ˇ̌̌
sisiC1si D siC1sisiC1 for all 1� i � n� 2

and sisj D sj si for all ji � j j> 1

�
.

There is a projection Bn! Sn given by adding the relations s2
i D 1 for all i , and the

kernel of this map is the n–strand pure braid group PBn .

We will work with a specific generating set of PBn , namely S DfSi;j j 1� i < j � ng,
where Si;j WD sisiC1 � � � sj�2s2

j�1
s�1
j�2
� � � s�1

iC1
s�1
i . Visually, in Si;j the i th strand

crosses in front of all the strands between it and the j th strand, spins around the j th

strand, and returns to where it came from, again crossing in front of the intermediate
strands. An important fact we will use is that PB3ŠF2�Z, with S1;2 and S1;3 serving
as generators of the F2 factor. We will also make use of the standard projections
PBn! PBm for m< n, obtained by deleting some collection of n�m strands.
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The BNS invariant †1.PBn/ was computed by Koban, McCammond and Meier [19].
We recall the computation here. If n� 5, then Œ��2†1.PBn/

c if and only if �D�0ı�
for � one of the standard projections PBn! PB4 or PBn! PB3 given by deleting
strands, and Œ�0� 2†1.PB3/

c or †1.PB4/
c . In particular, to understand †1.PBn/

c we
need only understand †1.PB3/

c and †1.PB4/
c . For PB3 , we have Œ�� 2†1.PB3/

c if
and only if �.S1;2/C�.S1;3/C�.S2;3/D 0. For PB4 we have Œ��2†1.PB4/

c if and
only if either �D �0 ı� for Œ�� 2†1.PB3/

c and � W PB4! PB3 one of the standard
projections, or else � satisfies the equations �.S1;2/D �.S3;4/, �.S1;3/D �.S2;4/,
�.S1;4/D �.S2;3/ and �.S1;2/C�.S1;3/C�.S1;4/D 0. Note that these characteri-
zations imply that, for any �, Œ�� 2†1.PBn/ if and only if Œ��� 2†1.PBn/.

We now use the ideas from the previous sections to prove the following:

Theorem 5.1 For n� 4 the braid group Bn is not commensurable to any group that
splits nontrivially over an NF subgroup.

Note that PB3 Š F2 �Z D Z2 �Z Z2 and Z is NF, so the n � 4 restriction in the
theorem is necessary. Also, the NF condition is obviously necessary, since for instance
Bn Š ŒBn;Bn�Ì Z is a nontrivial HNN extension.

Proof of Theorem 5.1 We will work with the pure braid group PBn , which is com-
mensurable to Bn (being a finite-index subgroup). Suppose PBn is commensurable to a
group that splits nontrivially over an NF subgroup. Since PBn is not NF, Proposition 3.1
implies that PBn admits an NF subgroup K such that for any � 2 Hom.PBn;R/, if
�.K/D 0 then at least one of Œ˙�� lies in †1.PBn/

c , which means Œ�� 2†1.PBn/
c .

By Proposition 1.4, there exists � 2 Hom.PBn;R/ with ker.�/ D
p

KŒPBn;PBn�.
Since �.K/D 0 we know Œ�� 2†1.PBn/

c , which implies that either nD 4 or else �
is induced from some standard projection onto PB3 or PB4 .

In particular, if n � 5 then there exists j such that �.Si;j / D �.Sj ;k/ D 0 for any
i < j or j < k (just choose j to be the label of a strand getting deleted), which implies
that Si;j ;Sj ;k 2

p
KŒPBn;PBn� for any such i or k . Up to automorphisms (note that

the BNS invariant is invariant under automorphisms) we can assume j D 1, so in
particular S1;2;S1;3 2

p
KŒPBn;PBn�. Choose q; r 2 Z n f0g and c; d 2 ŒPBn;PBn�

such that S
q
1;2

c;Sr
1;3

d 2K , which, since K is NF, implies that S
q
1;2

c and Sr
1;3

d do
not generate a copy of F2 . Now consider the standard projection � W PBn ! PB3

given by deleting all but the first three strands. Then S
q
1;2
�.c/ and Sr

1;3
�.d/ do not

generate a copy of F2 in PB3 , and so neither do their images in PB3=Z.PB3/Š F2 .
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Hence, these images commute,1 and so modulo Z.PB3/, S
q
1;2
�.c/ and Sr

1;3
�.d/ have

a common power, say .Sq
1;2
�.c//a D .Sr

1;3
�.d//bz for a; b 2 Z and z 2 Z.PB3/.

But modding out Z.PB3/ and abelianizing F2 to Z2 D hS1;2;S1;3i, this implies that
qaS1;2 D rbS1;3 , which is absurd.

Now suppose n D 4. If � is induced from a standard projection PB4 ! PB3

then we can use the above argument to get our contradiction, so suppose it is not.
Hence, we have �.S1;2/ D �.S3;4/, �.S1;3/ D �.S2;4/, �.S1;4/ D �.S2;3/ and
�.S1;2/C�.S1;3/C�.S1;4/D 0. In particular,

S1;2S�1
3;4;S1;3S�1

2;4 2 ker.�/D
p

KŒPB4;PB4�;

so we can choose q; r 2 Z n f0g and c; d 2 ŒPB4;PB4� such that .S1;2S�1
3;4
/qc and

.S1;3S�1
2;4
/r d lie in K , and hence do not generate a copy of F2 . Their images under

the standard projection � W PB4! PB3 given by deleting all but the first three strands
also do not generate a copy of F2 , so S

q
1;2
�.c/ and Sr

1;3
�.d/ do not generate a copy

of F2 in PB3 . We are now in the same situation as in the proof of the n� 5 case, and
as in that proof we reach a contradiction.

As a remark, it would not have worked to try and apply this technique to Bn itself,
so working with PBn really was necessary. Indeed, every Œ�� 2 †1.Bn/ satisfies
ker.�/D ŒBn;Bn�, so it is impossible to find such a � with an arbitrary NF subgroup
lying in its kernel.

5.2 Commensurability results for loop braid groups

Much of this subsection proceeds very similarly to Section 5.1.

The loop braid group LBn on n loops is the group of symmetric automorphisms of
the free group Fn . Fixing a free generating set fx1; : : : ;xng for Fn , an automorphism
˛ 2 Aut.Fn/ is called symmetric if it takes each xi to a conjugate of some xj or x�1

j .
Sometimes the word symmetric is reserved for those ˛ taking each xi to a conjugate
of some xj , not allowing x�1

j ; this produces a finite-index subgroup of what we are
calling LBn . This terminological ambiguity will not matter here, since we will actually
work with the pure loop braid group PLBn , the group of automorphisms ˛ 2 Aut.Fn/

taking each xi to a conjugate of xi , which is again a finite-index subgroup of LBn .

1Actually S
q
1;2

c and Sr
1;3

d already commute in PBn by [21], but we have to pass to F2 anyway, so

it is not necessary to appeal to the result from [21].
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The name loop braid group comes from viewing such automorphisms as pictures of n

loops in 3–space moving around and through each other. See [10] for a great deal of
background and more details.

The BNS invariant †1.PLBn/ was computed by Orlandi-Korner [23]. We recall here
some of her setup. First, PLBn is generated by f˛i;j j i ¤ j g, where ˛i;j is the
automorphism of Fn taking xi to x�1

j xixj and xk to itself for k ¤ i . For m< n a
standard projection PLBn! PLBm is a map induced from some projection Fn!Fm

given by sending some choice of n�m generators to the identity and sending the
remaining m generators to the generators of Fm . Now †1.PLBn/ is described as
follows: For n�4, Œ��2†1.PLBn/

c if and only if �D�0ı� for � a standard projection
PLBn! PLB2 or PLBn! PLB3 and Œ�0� in †1.PLB2/

c or †1.PLB3/
c . For nD 3

we have that Œ�� 2†1.PLB3/
c if and only if it is induced from a standard projection to

PLB2 or else �.˛2;1/C�.˛3;1/D0, �.˛1;2/C�.˛3;2/D0 and �.˛1;3/C�.˛2;3/D0.
For nD 2 we have †1.PLB2/D∅ (in fact PLB2 Š F2 ). Note that a consequence of
all this is that Œ�� 2†1.PLBn/ if and only if Œ��� 2†1.PLBn/.

We now use the ideas from the previous sections to prove the following. The proof is
very similar to the proof of Theorem 5.1.

Theorem 5.2 For n� 3 the loop braid group LBn is not commensurable to any group
that splits nontrivially over an NF subgroup.

The n� 3 restriction is necessary since PLB2 Š F2 splits nontrivially over f1g, and
the NF condition is necessary for reasons similar to the braid group case.

Proof of Theorem 5.2 We will work with the pure loop braid group PLBn , which
is commensurable to LBn (being a finite-index subgroup). Suppose PLBn is com-
mensurable to a group that splits nontrivially over an NF subgroup. Since PLBn is
not NF, Proposition 3.1 implies that PLBn admits an NF subgroup K such that for
any � 2 Hom.PLBn;R/, if �.K/ D 0 then at least one of Œ˙�� lies in †1.PLBn/

c ,
which means Œ�� 2†1.PLBn/

c . By Proposition 1.4, there exists � 2 Hom.PLBn;R/

with ker.�/D
p

KŒPLBn;PLBn�. Since �.K/D 0 we know Œ��2†1.PLBn/
c , which

implies that either n D 3 or else � is induced from some standard projection onto
PLB2 or PLB3 .

In particular, if n� 4 then there exists i such that �.˛i;j /D �. j̨ ;i/D 0 for all i ¤ j

(just choose i such that xi is sent to 1 in the projection of Fn inducing the standard
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projection of PLBn ), which implies that ˛i;j ; j̨ ;i 2
p

KŒPLBn;PLBn� for all i ¤ j .
Up to automorphisms (note that the BNS invariant is invariant under automorphisms) we
can assume iD1, so in particular ˛1;2; ˛2;12

p
KŒPLBn;PLBn�. Choose q; r 2Znf0g

and c; d 2 ŒPLBn;PLBn� such that ˛q
1;2

c; ˛r
2;1

d 2K , which, since K is NF, implies
that ˛q

1;2
c and ˛r

2;1
d do not generate a copy of F2 . Now consider the standard

projection � W PLBn! PLB2 given by sending all but the first two generators of Fn

to 1 and the first two to the generators of F2 (in order). Then ˛q
1;2
�.c/ and ˛r

2;1
�.d/

do not generate a copy of F2 in PLB2 . Since PLB2 Š F2 , this means ˛q
1;2
�.c/ and

˛r
2;1
�.d/ have a common power, say .˛q

1;2
�.c//a D .˛r

2;1
�.d//b for a; b 2 Z. But

abelianizing F2 to Z2 D hx̨1;2; x̨2;1i, this implies that qax̨1;2 D rb x̨2;1 , which is
absurd.

Now suppose nD 3. If � is induced from a standard projection PLB3! PLB2 then
we can use the above argument to get our contradiction, so suppose it is not. Hence,
we have �.˛2;1/C �.˛3;1/D 0, �.˛1;2/C �.˛3;2/D 0 and �.˛1;3/C �.˛2;3/D 0.
In particular, ˛1;2˛3;2; ˛2;1˛3;1 2 ker.�/ D

p
KŒPLB3;PLB3�, so we can choose

q; r 2 Z n f0g and c; d 2 ŒPLB3;PLB3� such that .˛1;2˛3;2/
qc and .˛2;1˛3;1/

r d lie
in K , and hence do not generate a copy of F2 . Their images under the standard
projection � W PLB3! PLB2 induced by the projection F3! F2 sending x1 to x1 ,
x2 to x2 and x3 to 1 also do not generate a copy of F2 , so ˛q

1;2
�.c/ and ˛r

2;1
�.d/

do not generate a copy of F2 in PLB2 . We are now in the same situation as in the
proof of the n� 4 case, and as in that proof we reach a contradiction.

Much like in the braid group case, it would not have worked to try and apply this
technique to LBn itself, so working with PLBn really was necessary. In fact LBn has
finite abelianization, so it is impossible to find nontrivial characters killing arbitrary
NF subgroups simply because there no nontrivial characters at all.
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Occupants in simplicial complexes

STEFFEN TILLMANN

Let M be a smooth manifold and K �M be a simplicial complex of codimension
at least 3 . Functor calculus methods lead to a homotopical formula of M nK in
terms of spaces M nT where T is a finite subset of K . This is a generalization of
the author’s previous work with Michael Weiss (Contemp. Math. 682, Amer. Math.
Soc., Providence, RI (2017) 237–259), where the subset K is assumed to be a smooth
submanifold of M and uses his generalization of manifold calculus adapted for
simplicial complexes.

57R19; 55P65

1 Introduction

Let K be a simplicial complex — that is, the geometric realization of an abstract
simplicial complex. Let M be a smooth manifold with codimension dimM�dimK�3.
Throughout this paper we assume that K is a subset of M such that each (closed)
simplex of K is smoothly embedded in M. We would like to recover the homotopy
type of M nK from the homotopy types of the spaces M n T where T is a finite
subset of K . The finite subset T �K could be regarded as a finite set of occupants.

It turns out that it is possible to find such a homotopical formula, but only if we allow
standard thickenings of the finite subsets T � K and inclusions between them. We
get an interesting poset regarded as a category — the configuration category con.K/
of K . The objects of con.K/ are pairs .T; �/ where T is a finite subset of K and
�W T ! .0;1/ is a function which assigns to each element t 2 T the radius �.t/
of the corresponding thickening using a standard metric on K . These pairs have to
fulfill certain conditions, eg the thickenings of the elements t 2 T are pairwise disjoint
(for a precise definition, see Section 3.1). For each object .T; �/ in con.K/, we get
a corresponding open subset VK.T; �/ �K , which is the disjoint union of the open
balls of radius �.t/ about the points t 2 T . We note that for each element .T; �/ of the
configuration category, there is an inclusion

M nK!M nVK.T; �/

Published: 21 May 2019 DOI: 10.2140/agt.2019.19.1265

http://msp.org
http://www.ams.org/mathscinet/search/mscdoc.html?code=57R19, 55P65
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and thus a map from M nK into the associated homotopy limit. The following theorem
is our (technical) main result:

Theorem 1.1 If the codimension dimM � dimK is at least 3, the canonical map

M nK! holim
.T;�/2con.K/

M nVK.T; �/

is a weak equivalence.

The condition on the codimension is essential, that is, the result is not true for co-
dimension � 2. A nice counterexample is given in Tillmann and Weiss [11, 1.3.3].

Theorem 1.1 is an application of manifold calculus adapted for simplicial complexes,
as developed in Tillmann [10]. In this paper the configuration category con.K/ is
a convenient replacement of the category of special open subsets

S
k Ok.K/ there.

Recall: the objects of
S
k Ok.K/ are those open subsets V of K which have finitely

many components and where each component of V is stratified isotopy equivalent to
the open star of some simplex � in K (intersection of the open stars of the vertices
of � ). Roughly speaking, a stratified isotopy equivalence is a simplexwise smooth
isotopy equivalence.

As is to be expected from manifold calculus, there is a stronger version of our main
result with restricted cardinalities (see Theorem 4.1). More precisely, the map from
M nK into the homotopy limit over the full subcategory of con.K/ of the set with
restricted cardinality is highly connected, depending on that cardinality.

Now let M be a Riemannian manifold with boundary and let L�M n@M be a smooth
submanifold without boundary. Using Theorem 1.1, we can prove an approximation
theorem of M nL in some cases where no conditions on the codimension of M and L
is needed. More precisely, we can recover the homotopy type of M n L from the
homotopy types of the spaces M n T where T is a finite subset of L. Again, we
need to allow thickenings of the finite subsets T in L and inclusions between them.
Therefore, we consider the configuration category con.L/ of L (see Section 5.3 for a
precise definition). For each object .T; �/ in con.L/, we have again a corresponding
open subset VL.T; �/ (using the Riemannian metric), which is the union of the open
balls of radius �.t/ about the points t 2 T . The inclusions

M nL!M nVL.T; �/

induce a map from M nL into the homotopy limit taken over the category con.L/.
Assume now that L is a smooth thickening of a compact simplicial complex K � L,

Algebraic & Geometric Topology, Volume 19 (2019)



Occupants in simplicial complexes 1267

as defined in Definition 5.2. In particular, this means that K is a retract of L weakly
equivalent to it. This is our main application:

Theorem 1.2 If the codimension dimM � dimK is at least 3, the canonical map

M nL! holim
.T;�/2con.L/

M nVL.T; �/

is a weak equivalence.

In particular, we can prove an approximation theorem for the boundary of the manifold
in some cases. Namely, if M n @M is a smooth thickening of a compact simplicial
complex K �M n @M, we get the following corollary:

Corollary 1.3 If the codimension dimM � dimK is at least 3, the canonical map

@M ! holim
.T;�/2con.Mn@M/

M nVMn@M .T; �/

is a weak equivalence.

In this case we also have a stronger version with restricted cardinalities (see Corollary
5.11) and it generalizes one of the main results in [11]. In the absence of the calculus
for simplicial complexes as developed in [10], there we had to assume the existence of
a smooth disk fiber bundle M ! L with fiber dimension c � 3 where L is a closed
smooth submanifold of M. This condition is a special case of our smooth thickening
condition here (see Examples 5.4).

The ideas and strategies of [11] and of the generalization here thus intersect, so we
feel compelled to indicate the substantial technical issues needed to establish the
generalization. The main issue is to reformulate the key definitions. We give two basic
examples: First, the definition of the configuration category con.K/ of a simplicial
complex K is quite different from its analogue, the configuration category of a smooth
manifold (see Remark 4.4 for a comparison). Since we will apply manifold calculus for
simplicial complexes, the technical conditions introduced in [10] go into the definition
of con.K/. Using these technical conditions, it becomes clear that in order to prove the
main theorem, we also have to solve new technical challenges. Second, the definition
of a smooth thickening of a simplicial complex involves various technical conditions.
Again we have to verify that this definition is a convenient replacement of its analogue,
the smooth fiber bundle condition, in [11].

In an application we will study the following question: Let M be a smooth manifold
with boundary. It is well known that the boundary @M can be recovered as the
homotopy link of the basepoint in M=@M Š .M n @M/[1. Therefore, it is possible

Algebraic & Geometric Topology, Volume 19 (2019)
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to say that there is an action of the homeomorphism group homeo.M n @M/ on the
pair .M; @M/ by homotopy automorphisms, ie each homeomorphism of M n @M
determines a homotopy automorphism of the pair .M; @M/. But it is also well known
that there is a canonical map of topological grouplike monoids (if an explanation is
needed, see Section 6)

homeo.M n @M/ ,! hautNFin.con.M n @M//;

where NFin is the nerve of the category of finite sets and maps between finite
sets and hautNFin.con.M n @M// is the space of the homotopy automorphisms of
con.M n @M/ over NFin. In [14] Weiss studies the question in what cases the action
of homeo.M n @M/ on the pair .M; @M/ by homotopy automorphisms extends to an
action of hautNFin.con.M n @M// on the pair .M; @M/ by homotopy automorphisms.
This has also applications in Weiss [15]. We can generalize his result (see Theorem 6.5):
the action can be extended if the condition in Theorem 1.2 is satisfied.

Our paper with Weiss [11] attracted attention in applied topology because of possible
relevance in the study of sensor network problems (for an introduction from the
topological point of view see Adams and Carlsson [1] and de Silva and Ghrist [9]).
At the moment there is no application of the theory developed in this paper outside
the smooth setting, but we give a short explanation why there are potential ones in
the context of sensor networks: In [1] movable sensor networks and evasion paths are
studied. More concretely, let X be a subspace of a euclidean space. Assume we have
a collection of points in X, each point equipped with a sensor. Each sensor covers a
neighborhood of its location, for simplicity a ball of fixed radius. Then an evasion path
is a specific embedding of a one-dimensional space into X minus the sensor region,
which is the space covered by the union of all sensors. The spaces involved are usually
not equipped with a smooth manifold structure, so the authors explicitly ask for an
extension of the Goodwillie–Weiss manifold calculus to the setting of nonmanifold
spaces [1, Section 7]. In particular, the theory developed in this paper could be a relevant
application of manifold calculus for simplicial complexes because complements in
manifolds are studied and the sensor region can be represented as a simplicial complex.

Outline

In Section 2 we recall the basic results of manifold calculus adapted for simplicial
complexes. Using Goodwillie’s homotopy functor calculus, we give general criteria for
when a functor is analytic or polynomial and manifold calculus can be applied.
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In Section 3 we will introduce the configuration categories of a simplicial complex
and a smooth manifold. The configuration category carries a continuous structure. We
will take this into account when we define homotopy limits. This leads to the notion
of the continuous homotopy limit. We prove that in cases important to us it is weakly
equivalent to the ordinary (or discrete) homotopy limit.

In Section 4 we will formulate Theorem 1.1 more precisely as well as the stronger
version with restricted cardinalities and compare it with the situation in [11], where K
is replaced by a smooth submanifold. Then we use manifold calculus (adapted for
simplicial complexes) to prove it.

In Section 5 we will define a smooth thickening of a simplicial complex embedded in a
smooth manifold and explain how this is a generalization of a smooth disk bundle over
a smooth manifold. We will prove Theorem 1.2 and its stronger version with restricted
cardinalities. In Section 6 these results will be applied in our study of homotopy
automorphisms of the pair .M; @M/.

Notation The category .Top/ is the category of topological spaces. By a simplex
S of a simplicial complex, we mean a nondegenerate closed simplex. For such a
simplex S, we denote by op.S/ the open simplex. For a positive integer k , we set
Œk� WD f0; 1; : : : ; kg and k WD f1; : : : ; kg.
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2 Manifold calculus adapted for simplicial complexes

In [10] we develop a generalization of manifold calculus where the smooth manifold
is replaced by a simplicial complex. The main results of this paper are applications
of this theory. Therefore, we introduce the constructions and main results of [10] and
compare them with the homotopy functor calculus. The comparison leads to criteria
which help us to apply manifold calculus (adapted to simplicial complexes).
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2.1 Definitions and main results

All the constructions and results can be found in [10]. We define the category ODO.K/
as follows: the objects are the open subsets of K and the morphisms are inclusions,
ie for U; V 2 O there is exactly one morphism U ! V if U � V and there are no
morphisms otherwise.

Definition 2.1 Let U; V 2 O be open subsets and let f0; f1W U ! V be two maps
such that fi jU\S is a smooth embedding from U \S into V \S for all simplices S
of K and i D 0; 1. We call f0 and f1 stratified isotopic if there is a continuous map
H W U � Œ0; 1�! V such that

H j.U\S/�Œ0;1�W .U \S/� Œ0; 1�! .V \S/

is a smooth isotopy from f0jU\S to f1jU\S for all simplices S of K . In this case
we call H a stratified isotopy (from f0 to f1 ).

Note: for an n–dimensional simplex S, we can regard U \ S as a subspace in the
euclidean space RnC1 .

Definition 2.2 Let U; V 2O be two open subsets with U �V . The inclusion i W U!V

is a stratified isotopy equivalence if there is a map eW V ! U such that ejV\S is an
embedding from V \S into U \S for all simplices S of K and i ı e (resp. e ı i ) is
stratified isotopic to idV (resp. idU ).

In the manifold calculus of Goodwillie and Weiss we consider functors which take
smooth isotopy equivalences between open subsets of a fixed manifold to weak equiv-
alences. In the version for simplicial complexes, stratified isotopy equivalences are
replacing these smooth isotopy equivalences.

Definition 2.3 A contravariant functor F W O! .Top/ is good if:

(1) F takes stratified isotopy equivalences to weak homotopy equivalences.

(2) For every family fVigi2N of objects in O with Vi � ViC1 for all i 2 N, the
following canonical map is a weak homotopy equivalence:

F

�[
i

Vi

�
! holim

i
F.Vi /:

Recall: For a positive integer k , let P.Œk�/ be the power set of Œk�. Then a functor
from P.Œk�/ to topological spaces is a .kC1/–cube of spaces.

Algebraic & Geometric Topology, Volume 19 (2019)



Occupants in simplicial complexes 1271

Definition 2.4 Let � be a cube of spaces. The total homotopy fiber of � is the
homotopy fiber of the canonical map

�.∅/! holim
∅¤T�Œk�

�.T /:

If this map is a weak homotopy equivalence, we call the cube � (weak homotopy)
cartesian.

Now we define polynomial functors. To this end, let F be a good functor, let V 2O
be an open subset of K and let A0; A1; : : : ; Ak be pairwise disjoint closed subsets
of V (for a positive integer k ). Define a k–cube by

(2-1) T 7! F

�
V n

[
i2T

Ai

�
:

Definition 2.5 The functor F is polynomial of degree � k if the k–cube defined
in (2-1) is cartesian for all V 2O and pairwise disjoint closed subsets A0; A1; : : : ; Ak
of V .

Notation Let x 2 K be given and let Sx be the open star of the open simplex
containing x , ie Sx WD

S
S op.S/, where the union ranges over all closed simplices S

of K such that x is an element of S.

Definition 2.6 For a positive integer k , we define a full subcategory Ok.K/D Ok
of O . Its objects are the open subsets V �K with the following properties: V has at
most k connected components and, for each component V0 of V , there is an x 2K
such that V0 � Sx and the inclusion V0! Sx is a stratified isotopy equivalence. An
element of Ok (for some k ) is called a special open set.

Theorem 2.7 Let F1! F2 be a natural transformation between two k–polynomial
functors. If F1.V / ! F2.V / is a weak equivalence for all V 2 Ok , it is a weak
equivalence for all V 2O .

Let F W O! .Top/ be a good functor. There is a concept of (relative) handle index in a
simplicial complex [10, Section 3.1]. We can use it to define analyticity for F . To this
end, let P be a compact codimension-zero subobject of K and let � be a fixed integer.
Suppose A0; A1; : : : ; Ar are pairwise disjoint compact codimension-zero subobjects
of K n int.P / with relative handle index qAi

� � (relative to P ). For T � Œr�, we set
AT WD

S
i2T Ai and assume r � 1.
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Definition 2.8 The functor F is called �–analytic with excess c if, in these circum-
stances, the cube

T 7! F.int.P [AT //; T � Œr�;

is
�
cC

Pr
iD0.��qAi

/
�
–cartesian for some integer c .

Theorem 2.9 [10, Theorem 3.6] Let F be a �–analytic functor with excess c and
let V 2O be an open subset. Then the map

�k�1.V /W F.V /! Tk�1F.V /

is .cCk.��dimK//–connected for every k > 1.

Remark 2.10 Theorem 2.9 is weaker than [10, Theorem 3.6], which uses the homotopy
dimension of V [10, Definition 3.4] in order to increase the connectivity. For our
purposes we do not need this stronger version.

Corollary 2.11 Let F be a �–analytic functor with � > dimK . For all open sets
V 2O.K/, the canonical map

F.V /! T1F.V /D holim
k

TkF.V /

is a weak equivalence.

2.2 Comparison with homotopy functor calculus

In the last section we introduced a version of manifold calculus for simplicial complexes.
We saw that in order to apply the approximation theorem, Theorem 2.9, we need to
assume analyticity of the functor. Therefore, we should look for criteria which imply
that a functor is analytic. Surprisingly, the homotopy functor calculus introduced by
Goodwillie [6] helps to find such criteria.

Functor calculus investigates (covariant) homotopy functors from topological spaces
to themselves. A functor GW .Top/! .Top/ is called homotopy functor if it takes
weak equivalences to weak equivalences. If G is such a functor, we can compose it
with a contravariant functor F from O.K/ to .Top/. The composition G ı F is a
contravariant functor from O.K/ to .Top/. We will examine this composition.

Definition 2.12 A cube of spaces is called strongly cocartesian if each sub-2–face is
a homotopy pushout.
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Definition 2.13 A homotopy functor G from .Top/ to itself is called polynomial of
degree � k if it takes any strongly cocartesian .kC1/–cube to a weakly cartesian
.kC1/–cube.

Let V 2O.K/ be an open subset of K , let A0; A1; : : : ; Ak be pairwise disjoint closed
subsets of V (for a positive integer k ) and let AT WD

S
i2T Ai , where T is a subset

of Œk�. The following proposition is an easy observation:

Proposition 2.14 Let F W O.K/ ! .Top/ be a good (contravariant) functor (see
Definition 2.3) such that

F.V nAT\T 0 /

��

// F.V nAT /

��

F.V nAT 0 /
// F.V nAT[T 0 /

is a homotopy pushout for all T; T
0

� Œk� and all choices of V;A0; : : : ; Ak as above
and let GW .Top/! .Top/ be a (covariant) homotopy functor. We suppose that G is
k–polynomial in the sense of homotopy functor calculus (see Definition 2.13). Then
the composition G ıF is k–polynomial in the sense of manifold calculus (adapted for
simplicial complexes).

We would like to have a similar statement for analyticity.

Definition 2.15 Let � be an integer and let � be a cocartesian k–cube of spaces such
that the maps �.∅/!�.fig/ are ki –connected with ki >� for all i 2 Œk�. A homotopy
functor G is called �–analytic with excess c if the cube G ı� is

�
cC

P
i2Œk�.ki��/

�
–

cartesian (for all choices of �).

Example 2.16 According to the Blakers–Massey theorem [5], for any strongly co-
cartesian cube � where the map �.∅/! �.fig/ is �i –connected for each i 2 Œk�,
the cube � is �–cartesian with � D 1C

P
i2Œk�.�i � 1/. Therefore, by definition, the

identity functor idW .Top/! .Top/ is 1–analytic with excess 1.

Let F W O.K/! .Top/ be a good functor (see Definition 2.3). Recall that there is
a concept of relative handle index in a simplicial complex [10, Section 3.1]. Let P
be a compact codimension-zero subobject of K and let � be a fixed integer. Sup-
pose A0; A1; : : : ; Ar are pairwise disjoint compact codimension-zero subobjects of
K n int.P / with relative handle index qAi

� � (relative to P ). For T � Œk�, we set
AT WD

S
i2T Ai and assume k � 1.
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Proposition 2.17 Suppose that the cube

T 7! F.int.P [AT //; T � Œk�;

is strongly cocartesian and suppose that there is a positive integer ı such that the maps

F.int.P [AŒk�//! F.int.P [AŒk�nfig//

are .ı�qAi
/–connected. Then F is .ı�1/–analytic with excess 1 (in the sense of

Definition 2.8).

Proof The idea is to apply the Blakers–Massey theorem. By assumption, the cube
T 7! F.int.P [AT // is strongly cocartesian. We consider the cube

T 7! id ıF.int.P [AT //; T � Œk�:

By applying Example 2.16, we deduce that the cube is
�
1C

P
i2Œk�.ı�qAi

�1/
�
–

cartesian.

Remark 2.18 In the last proposition we use the analyticity of the identity map in
topological spaces to find a criteria for analyticity of F , where F is a good functor. More
generally, the following statement holds: for a �–analytic functor GW .Top/! .Top/
with excess c and F as above, the composition G ıF is a .ı��/–analytic functor
with excess c and where ı is as above.

For an additional short note on the relationship of manifold calculus (for smooth
manifolds) and homotopy functor calculus, see [11, Remark 1.3.2].

3 Background

In this section we provide some background which we will need for the discussions in
the next sections. We introduce the configuration category of a simplicial complex and
the continuous homotopy limit.

3.1 Configuration category of a simplicial complex

We will need the configuration category of a manifold as well as the configuration
category of a simplicial complex. First, we recall the Riemannian model of the configu-
ration category of a smooth manifold. Note that there are several equivalent definitions
of the configuration category of a manifold [2].
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Let M be a smooth manifold without boundary of dimension m and suppose that we
have fixed a Riemannian metric on M. Then the configuration category con.M/ of M
is a topological poset. The objects are pairs .T; �/ where T is a finite subset of M
and �W T ! .0;1/ is a function such that:

(1) For each t 2 T , the exponential map expt is defined and regular on the compact
disk of radius �.t/ about the origin in the tangent space TtM.

(2) The images in M of these disks under the exponential maps expt are pairwise
disjoint.

For such a pair .T; �/, let VM .T; �/�M be the union of the open balls of radius �.t/
about t 2T . Then VM .T; �/ is an open subset of M which is diffeomorphic to T �Rm .
All these pairs form a topological poset con.M/ by

.T; �/� .T 0; �0/ () VM .T; �/� VM .T
0; �0/:

This poset can also be regarded as a category. We would like to adapt this definition and
introduce the configuration category con.K/ of the simplicial complex K . Therefore,
we should start with the following observation:

Remark 3.1 Let x be an element of K and let Sx be the open star neighborhood
of x in K . The closure Kx WD cl.Sx/ of Sx in K carries a canonical metric d D dx
induced by the euclidean structure of each simplex. The precise definition is technical
and can be done by distinguishing the following two cases: If two elements y; y0 2Kx
are in the same simplex, we can use the euclidean structure of the simplex to define
d.y; y0/ 2 Œ0;1/ as the distance between y and y0 in the euclidean space. If they are
not in the same simplex, we set

d.y; y0/ WD min
z2Sy\Sy0

d.y; z/C d.z; y0/;

where Sy (resp. Sy0 ) is the simplex of maximal dimension which includes y (resp. y0 ).
By definition, we can use again the euclidean structure.

We wrote d instead of dx to avoid the index x . In fact, d.y; y0/ is independent of
the element x in K : if x and x0 are two elements of K with y; y0 2 Sx \Sx0 , then
dx.y; y

0/D dx0.y; y
0/.

Now we introduce the configuration category con.K/. The objects are again pairs .T; �/
where T is a finite subset of K and �W T ! .0;1/ is a function fulfilling the following
two conditions:
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(1) For each t 2 T , there is an element x 2K such that t 2 Sx and the open ball
Bd
�.t/
.t/�Kx D cl.Sx/ of radius �.t/ about t determined by the metric d D dx

is a subset of the open star neighborhood Sx and the inclusion Bd
�.t/
.t/ ,! Sx is

a stratified isotopy equivalence (see Definition 2.2). In particular, Bd
�.t/
.t/ 2O1

is a special open set (see Definition 2.6).

(2) The open balls Bd
�.t/
.t/�K with origin t and radius �.t/ are pairwise disjoint.

For such a pair .T; �/, let VK.T; �/�M be the union of the open balls Bd
�.t/
.t/�K

of radius �.t/ about t 2 T . Then VK.T; �/ is a special open subset of K (see
Definition 2.6). By analogy with the manifold case, we form the topological poset
con.K/ by

.T; �/� .T 0; �0/ () VK.T; �/� VK.T
0; �0/:

This poset can also be regarded as a category.

Remark 3.2 Since this is a very technical notion, we feel compelled to give a short
explanation why this category con.K/ is nonempty. Let T be a configuration in K . If
we choose � small enough, then the function �W T ! .0;1/ mapping all elements of T
to � fulfills all conditions in the definition of con.K/. More precisely, the inclusion
of the open ball Bd� .t/ about an element t 2 T of radius � into the open star St of t
is a stratified isotopy equivalence. If � is small enough, the open balls for different
elements of T are also pairwise disjoint.

Now we want to take a closer look at the configuration category con.K/. But note that
the following results are also true for con.M/, the configuration category of a smooth
manifold M (without boundary).

Remark 3.3 The configuration category con.K/ is a topological poset, ie the objects
as well as the morphisms form a topological space. More generally, if N.con.K// is
the nerve of the category con.K/, then Nr.con.K// is a topological space for all r � 0.
This is obvious since Nr.con.K// is the space of all strings

.T0; �0/� .T1; �1/� � � � � .Tr ; �r/;

where .Ti ; �i / for 0� i � r is an element of con.K/.

Now we want to investigate the homotopy type of the configuration category con.K/
as a topological space. It is very reminiscent of the configuration spaces.
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Definition 3.4 We define Cr.K/ to be the space of unordered configurations of r
points in K : Let Fr.K/ be the space of ordered r –configurations of K given by

Fr.K/ WD f.x1; : : : ; xr/ 2K
r
j xi ¤ xj for all i ¤ j g:

The symmetric group †r acts freely on Fr.K/. Then

Cr.K/ WD Fr.K/=†r

is the space of unordered r –configurations.

Remark 3.5 What is the relation between the configuration category and the config-
uration spaces? Let r � 0 be a fixed integer. We define the space C fat

r .K/ to be the
space of all pairs .T; �/ 2 con.K/ with jT j D r . Then we have a forgetful projection
map

C fat
r .K/! Cr.K/;

which is a fiber bundle with contractible fibers. Therefore, this map is a weak equiva-
lence of spaces.

3.2 Continuous homotopy limit

Let con.K/ be the configuration category of K and let N.con.K// be its nerve. We
saw that Nr.con.K// is a topological space for all r �0. We are studying the functor ˆ
from con.K/ to topological spaces defined by

ˆ..T; �// WDM nVK.T; �/

and its homotopy limit

holim
con.K/

ˆD holim
.T;�/2con.K/

M nVK.T; �/:

During our study of this homotopy limit, we would like to integrate the continuous
structure of the nerve of con.K/. To this end, we will introduce the continuous
homotopy limit of ˆ using the topological structure of the configuration category.

We recall that the ordinary (or discrete) homotopy limit holimcon.K/ˆ of the contra-
variant functor ˆ is defined to be the totalization of the cosimplicial space

Œr� 7!
Y

.T0;�0/�����.Tr ;�r /2Nr .con.K//

ˆ..Tr ; �r//:
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By definition, the right-hand side is equal to the space of all sections from Nr.con.K//
equipped with the discrete topology toa

.T0;�0/�����.Tr ;�r /2Nr .con.K//

ˆ..Tr ; �r//:

Equivalently, it is equal to the space of all maps f W Nr.con.K//!M such that

f ..T0; �0/� � � � � .Tr ; �r// 2M nVK.Tr ; �r/;

where Nr.con.K// is again given the discrete topology. Using the continuous structure
of con.K/, we introduce the following notation:

Definition 3.6 We define �r.ˆ/ as the space of all continuous maps f WNr.con.K//!
M such that f ..T0; �0/� � � � � .Tr ; �r// 2M nVK.Tr ; �r/.

If we define EŠr.ˆ/ to be the spacea
.T0;�0/�����.Tr ;�r /2Nr .con.K//

ˆ..Tr ; �r//

equipped with the subspace topology of Nr.con.K//�M, then the projection map
EŠr.ˆ/ ! Nr.con.K// is a fiber bundle and �r.ˆ/ is the space of all continuous
sections of this fiber bundle.

Definition 3.7 The continuous homotopy limit ctsholimcon.K/ˆ of ˆ is defined to be
the totalization of the cosimplicial space Œr� 7! �r.ˆ/.

Lemma 3.8 The canonical inclusion map

ctsholim
con.K/

ˆ! holim
con.K/

ˆ

is a weak equivalence.

We skip the proof because it is equal to the proof of [11, Lemma 1.2.1]. (If we replace
the manifold L appearing in [11, 1.2.1] by the simplicial complex K , then we get a
proof for Lemma 3.8.)

Using this result, we can work in the following with either of these homotopy limits —
the discrete homotopy limit or the continuous homotopy limit.

Remark 3.9 For an open subset U of K , let con.K/jU be the full subcategory of
con.K/ such that the objects are all elements .T; �/ in con.K/ with VK.T; �/ � U.
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For r � 0, let �r.ˆ/jU be the space of all continuous maps f W Nr.con.K/jU /!M

such that
f ..T0; �0/� � � � � .Tr ; �r// 2M nVK.Tr ; �r/:

Now we define ctsholimcon.K/jUˆ to be the totalization of the cosimplicial space
r 7! �r.ˆ/jU . There is a canonical inclusion map

ctsholim
con.K/jU

ˆ! holim
con.K/jU

ˆ;

which is a weak equivalence. The proof is equal to that of Lemma 3.8.

Remark 3.10 The cosimplicial space r 7! �r.ˆ/jU is Reedy fibrant for every open
subset U of K . The verification is the same as that in [11, 1.1.3]. Recall that for a
map X ! Y between cosimplicial spaces which is a degreewise weak equivalence,
the map of their totalizations Tot.X/! Tot.Y / is a weak equivalence.

4 The main theorem

We formulate the main theorem and apply manifold calculus (adapted to simplicial
complexes) in order to prove it.

4.1 The formulation of the problem

We remind the reader that M is a smooth manifold and K �M is a simplicial complex
such that each (closed) simplex of K is smoothly embedded in M. For each element
.T; �/ of the configuration category con.K/, there is an inclusion map

M nK!M nVK.T; �/;

where VK.T; �/ is the open subset of K corresponding to the pair .T; �/. If we
define a contravariant functor ˆ from con.K/ to topological spaces by ˆ..T; �// WD
M nVK.T; �/, then the inclusion maps induce a canonical map

(4-1) M nK! holim
con.K/

ˆ:

We can ask if the canonical map is a weak equivalence. There is a variant with
restricted cardinalities. Let n� 0 be an integer. Then we define con�n.K/ to be the
full subcategory of con.K/ where the objects are all elements .T; �/ of con.K/ with
jT j � n. Again, we get a canonical map

(4-2) M nK! holim
con�n.K/

ˆ
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induced by inclusions. In this case we do not expect that this map is a weak equivalence.
But, we can ask if it is highly connected. In the following theorem we use the notation
m WD dimM and � WD dimK .

Theorem 4.1 If �C 3�m, then the canonical map (4-1) is a weak equivalence and
(4-2) is .1C.nC1/.m���2//–connected.

Remark 4.2 The homotopy limit appearing in (4-1) is the ordinary (or discrete)
homotopy limit. By Lemma 3.8, we could also use the continuous homotopy limit
and the theorem would still hold. Using similar arguments, we could also use the
continuous homotopy limit in (4-2).

Remark 4.3 We assumed that the codimension of K in M is at least three. In fact,
the theorem would be false without this assumption. There is a nice counterexample in
codimension two [11, Remark 1.3.3].

Remark 4.4 The theorem is a generalization of [11, Theorem 1.1.1]. Let L be a
compact, smooth submanifold (without boundary) of M where the codimension of L
in M is at least three. We can choose a triangulation of L and get a simplicial
complex K , ie K D L as a topological space but the configuration categories con.L/
and con.K/ are quite distinct because the structure of K as a simplicial complex goes
into the definition of con.K/.

Let
S
k Ok.L/ be the category of all special open subsets of L [12]. These are all the

open subsets of L which are diffeomorphic to a disjoint union of open disks. Then we
have the inclusions of categories

con.L/ ,!
[
k

Ok.L/ - con.K/

and we get a zigzag

holim
.T;�/2con.L/

ˆ..T; �// holim
U2

S
k Ok.L/

M nU ! holim
.T;�/2con.K/

ˆ..T; �//:

These projection maps of homotopy limits given by inclusion of categories are both
weak equivalences.

4.2 A good functor

In order to prove Theorem 4.1, we would like to apply manifold calculus (adapted to
simplicial complexes). Naively, one could suggest to apply the approximation theorem
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(Theorem 2.9) to the contravariant functor which maps an open subset V �K to the
topological space M nV . Unfortunately, this functor is not good because in general it
does not take stratified isotopy equivalences to weak equivalences (for a counterexample,
see [11, 1.3]). Therefore, we need a modification.

Definition 4.5 We define the functor F from the category O.K/ of open subsets
of K to topological spaces by

F.V / WD holim
C�V

M nC;

where C runs over all compact subsets of V .

We will see that F is an appropriate replacement of the functor V 7!M nV . The proof
in the following lemma is similar to that of [11, 1.3.1]. For the sake of completeness,
we will give all required arguments.

Lemma 4.6 The functor F is good (in the sense of Definition 2.3).

Proof First, we notice that the (co)limit axiom is fulfilled. This is obvious. In
order to show that the functor takes stratified isotopy equivalences to weak homotopy
equivalences, we will use the reformulation of stratified isotopy equivalences as given
in Remark 4.7. To this end, let V0 and V1 be two open subsets of K with V0 � V1 and
let et W V0! V1 for t 2 Œ0; 1� be a stratified isotopy such that e0 is the inclusion and,
for each simplex S of K , e1 is a homeomorphism such that e1jS W S \V0! S \V1

can be extended to a diffeomorphism (see Remark 4.7).

Let fCigi�0 be a sequence of compact subsets of V1 such that Ci �CiC1 for all i � 0
and such that, for every compact subset C of V1 , there is an element Ci of this
sequence with C � Ci . By definition, the inclusion

fCigi�0! fC � V1 j C compactg

is homotopy terminal. (Note that the morphisms are the inclusions of compact subsets.)
Therefore, the canonical map

F.V1/! holim
i

M nCi

is a weak equivalence. Now we define the compact sets Ct;i WD et .e�11 .Ci //. Note
that C1;i D Ci . By definition, the inclusion

fC0;igi�0! fC � V0 j C compactg
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is homotopy terminal and induces a weak equivalence

F.V0/! holim
i

M nC0;i :

We fix the notation

Yi WD fwW Œ0; 1�!M j w.t/ …M nCt;ig:

There are evaluation maps Yi ! M n C0;i and Yi ! M n C1;i . Using the isotopy
extension theorem [8, 6.5], it is straightforward to find homotopy inverses. For a
comment on the isotopy extension theorem for stratified spaces, see Remark 4.8. We
get homotopy equivalences

M nC0;i  ! Yi  !M nC1;i :

Since the evaluation maps are natural, we get weak equivalences

holim
i

M nC0;i  holim
i

Yi ! holim
i

M nC1;i

To summarize, we have shown that the spaces F.V1/ and F.V0/ are weakly equivalent.
Now we have to argue that the canonical map F.V1/! F.V0/ induced by inclusion
is a weak equivalence.

Let gW N!N be a monotone injective function such that for every i 2N and t 2 Œ0; 1�,
the compact set Ct;i is a subset of C1;g.i/ . We consider the composition

‰W holim
i

M nC1;i ! holim
i

M nC1;g.i/! holim
i

M nC0;i ;

where the first map is induced by the inclusion fC1;g.i/gi ! fC1;igi of categories and
the second map is induced by the inclusions C0;i ,! C1;g.i/ of spaces for i 2N . In
order to verify that the composition ‰ is a weak equivalence, we consider the homotopy
commutative triangle

holimi Yi
Š

//

Š

''

holimi M nC1;i

‰vv

holimi M nC0;i

It does not seem to be trivial that the triangle is homotopy commutative. But, by careful
inspection, the definition of the homotopy limit provides a homotopy whereby the
triangle is homotopy commutative. Using the same argument, we get a homotopy
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commutative square
F.V1/

Š

��

// F.V0/

Š

��

holimi M nC1;i
‰
// holimi M nC0;i

Since ‰ is a weak equivalence, the canonical map F.V1/! F.V0/ is also a weak
equivalence.

Remark 4.7 We need a slight reformulation of a stratified isotopy equivalence. Ac-
cording to Definition 2.2, an inclusion i W V0! V1 of open subsets of K is a stratified
isotopy equivalence if there is a continuous map eW V1! V0 such that ejV1\S is a
smooth embedding from V1\S into V0\S for all simplices S of K and if there are
a stratified isotopy from i ı e to idV1

and a stratified isotopy from e ı i to idV0
. The

following definition would also be appropriate: we could call an inclusion i W V0! V1

of open subsets of K a stratified isotopy equivalence if i is stratified isotopic to a
homeomorphism eW V0! V1 such that ejV0\S is a diffeomorphism from V0\S to
V1\S for all simplices S of K . (Note that S is not a manifold, so more precisely we
should say: the map ejV0\S from V0\S to V1\S can be extended to a diffeomorphism
using that S is canonically embedded in an euclidean space.)

Why is the second definition of stratified isotopy equivalences also appropriate? We
do not know if these definitions are equivalent, but it is straightforward to verify the
following claim: Let GW O.K/! .Top/ be a contravariant functor. Then G takes
stratified isotopy equivalences as in Definition 2.2 to weak equivalences if and only if
G takes stratified isotopy equivalences as in the second definition to weak equivalences.

Remark 4.8 In the proof of the last lemma we can use a continuous version of the
isotopy extension theorem for stratified spaces as provided in [8, 6.5]: Let C � V0 be a
compact subset, where V0 �K is an open subset as above. We consider a continuous
family of open topological embeddings ft W C!K for 0� t � 1, with f0D idC . Then
there is a continuous family of homeomorphisms Ht W K!K such that Ht jC D ft
and H0 D idK .

We can use this theorem in the proof above as follows: Let et W V0! V1 for t 2 Œ0; 1�
be a stratified isotopy as above. In particular, e0 is the inclusion of V0 into V1 and
e1 is a homeomorphism. For a positive integer i , we define C WD e�11 .Ci / and
ft WD et jC W C ! V1 �K . Using the isotopy extension theorem, we get a continuous
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family of homeomorphisms Ht W K!K such that Ht jC D ft and H0 D idK . Then
a homotopy inverse of the evaluation map Yi !K nC0;i given by w 7! w.0/ can be
defined by x 7! .t 7!Ht .x//.

4.3 Proof of the main theorem

Now we prove Theorem 4.1, ie we show that the top horizontal arrow in the commutative
diagram

M nK

��

// holim
.T;�/2con.K/

M nVK.T; �/

��

F.K/ // holim
.T;�/2con.K/

F.VK.T; �//

is a weak equivalence. The left vertical arrow is a weak equivalence because K is a
maximal element in the category (poset) of all compact subsets of K . The right vertical
arrow is a weak equivalence because for every .T; �/ 2 con.K/, the category of all
compact subsets of VK.T; �/ has a directed subcategory which is homotopy terminal.
Therefore, we have to show that the bottom horizontal arrow is a weak equivalence.
To this end, we will use the good properties of the functor F and manifold calculus
(adapted to simplicial complexes). The bottom arrow equals the composition

F.K/! holim
U2

S
k Ok.K/

F.U /! holim
.T;�/2con.K/

F.VK.T; �//;

where the first map is the canonical map and the second map is induced by the inclusion
of posets

con.K/!
[
k

Ok.K/

given by .T; �/ 7! VK.T; �/. Therefore, the following two lemmas complete the proof.
(The proof of the case with restricted cardinalities follows similar lines.)

Lemma 4.9 The canonical projection map

holim
U2

S
k Ok.K/

F.U /! holim
.T;�/2con.K/

F.VK.T; �//

induced by the inclusion con.K/!
S
k Ok.K/ is a weak equivalence.

Proof By [3, Theorem 6.14], it remains to show that the canonical map

F.U /! holim
.T;�/2con.K/jU

F.VK.T; �//
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is a weak equivalence for all U 2
S
k Ok.K/. Recall that con.K/jU is the full

subcategory of con.K/ where the objects are all elements .T; �/ in con.K/ with
VK.T; �/�U. For a fixed U 2

S
k Ok.K/, we choose an element .T 0; �/2 con.K/jU

such that the map F.U /!F.Vk.T; �// is a weak equivalence. We set W WDVK.T 0; �/
and consider the commutative diagram

F.U /

��

// holim
.T;�/2con.K/jU

F.VK.T; �//

��

F.W / // holim
.T;�/2con.K/jW

F.VK.T; �//

The bottom arrow is a weak equivalence because W is a maximal element in con.K/jW .
In order to show that the right vertical arrow is a weak equivalence, we will consider the
two homotopy limits as continuous homotopy limits. This is allowed by Remark 3.9.
Then we compare the two spaces con.K/jW and con.K/jU . By definition of their
topologies, the inclusion con.K/jW ! con.K/jU is a weak equivalence. Similarly,
the maps of section spaces �r.ˆ/jU ! �r.ˆ/jW are weak equivalences for all r � 0.
So they induce a weak equivalence of continuous homotopy limits.

Lemma 4.10 If dimKC 3� dimM , the canonical map

F.K/! holim
U2

S
k Ok.K/

F.U /

is a weak equivalence.

Proof Note that we have already shown that F is good (Lemma 4.6). Let P be a
smooth compact codimension-zero subobject of K and let A0; A1; : : : ; Ar be compact
codimension-zero subobjects of K n int.P / with relative handle index qAi

(relative
to P ). For T � Œr�, we define

WT WD int
�
P [

[
i2T

Ai

�
;

where int.�/ is the interior in K . We have to show that the cube

T 7! F.WT /; T � Œr�;

is strongly cocartesian and that, for every 0� i � r , the maps

F.WŒr�/! F.WŒr�nfig/
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are ..m�1/�qAi
/–connected, where m is the dimension of M. Note that WS is the

interior of a compact codimension-zero subobject of K . Therefore, instead of using
the functor F , we can work with the cube

T 7!G.WT / WDM nWT :

Why can we use this cube? Because of the special assumption, there is a directed
homotopy terminal subcategory in the category of all compact subsets of WT . Thus,
the canonical map G.WT /! F.WT / is a weak equivalence.

Let i; j 2 Œr� be two distinct elements. In order to show that the cube induced by G is
strongly cocartesian, we need to investigate if the canonical map from the homotopy
pushout of

G.WŒr�nfig/ G.WŒr�/!G.WŒr�nfj g/

to G.Wrnfi;j g/ is a weak equivalence. But this can easily be seen. In fact, using the
assumptions that all Ai are pairwise disjoint, we can find a copy of G.Wrnfi;j g/ in
the homotopy pushout which is a retract of the homotopy pushout. Likewise, it is not
difficult to check that for a fixed i 2 Œr�, the map

G.WŒr�/!G.WŒr�nfig/

is .m�qAi
�1/–connected since the target is homotopy equivalent to the source with

attached cells of dimension �m� qAi
.

5 Occupants in the interior of a manifold

In this section, let M be a manifold with boundary and let L be a smooth submanifold
without boundary. We discuss Theorem 1.2, where the homotopy type of M nL is
recovered from the homotopy types of the spaces M nT with T � L finite. To this
end, we give the definition of a smooth thickening of a simplicial complex (in M ) and
discuss first observations and examples. Then we prove the tube lemma, Lemma 5.6,
which we will need in order to prove Theorem 1.2.

5.1 Smooth thickenings of a simplicial complex

We consider the following situation: Let M be a manifold with boundary. Let L �
M n @M be a smooth submanifold without boundary of dimension l .
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Definition 5.1 Let K � L be a simplicial complex. We say that pW L!K is a nice
projection map if the following conditions hold:

(1) pjK D idK .

(2) The open set p�1.VK.T; �//�L is diffeomorphic to T �Rl for every element
.T; �/ of the configuration category con.K/ of K .

Definition 5.2 We say that L is a smooth thickening of K in M if each (closed)
simplex of K is smoothly embedded in L and if there exists a nice projection map
pW L!K such that the inclusion M np�1.V /!M nV is a weak equivalence for
all open sets V 2O.K/.

Definition 5.3 If M n@M is a smooth thickening of K in M, then we just say that M
(which is a manifold with boundary) is a smooth thickening of K .

Examples 5.4 (1) The definition of smooth thickening weakens the strong condition
in [11, 2.1.1] in the following sense: Let L be a smooth closed manifold and let
pW M ! L be a smooth disk bundle, ie a smooth fiber bundle where each fiber is
diffeomorphic to a (closed) disk Dr of fixed dimension r � 0. Then L can be
considered as a subset of M by using the zero section of p . We can choose a
triangulation of L and then L is a smooth thickening of its triangulation in M.

(2) We consider the 1–dimensional simplicial complex K with four vertices fa;b;c;dg
and 1–simplices ffa; bg; fa; cg; fb; cg; fb; dg; fc; dgg, ie we have two triangles which
coincide in exactly one simplex, namely fb; cg. Now it is an easy exercise to build up a
compact manifold M of dimension mD 2 such that the interior M n @M is a smooth
thickening of K in M, ie M is a smooth thickening of K . We ought to consider M
as a manifold with four 0–handles and five 1–handles. This example can easily be
generalized to all dimensions m� 2 and/or to an one-dimensional simplicial complex
which consists of more than two triangles.

Lemma 5.5 We assume that dimKC 3�m and that L is a smooth thickening of K
in M. Let pW L!K be a nice projection map. Then the canonical map

M nL! holim
.T;�/2con.K/

M np�1.VK.T; �//

is a weak equivalence.
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Proof We consider the five homotopy equivalences

M nL'M nK

'M n .K [ @M/

' holim
.T;�/

M n .VK.T; �/[ @M/

' holim
.T;�/

M nVK.T; �/

' holim
.T;�/

M np�1.VK.T; �//;

where the three homotopy limits are taken over all .T; �/ in con.K/. By definition
of smooth thickenings in M, the first equivalence can be verified, as well as the fifth
equivalence. By Theorem 4.1, the third map is a weak equivalence. The second and
the fourth map are weak equivalences since M ŠM n @M.

5.2 Tube lemma

Now we adapt the results of [11, 2.2] for a nice projection map. Note that for the
following lemma we do not have to require that the codimension be at least three. It
could also be zero.

Lemma 5.6 Let L be a smooth manifold without boundary and let K be a compact
simplicial complex K . Let pW L!K be a nice projection map (see Definition 5.1).
Then the canonical map

hocolim
.T;�/2con.K/

Cn
�
p�1.VK.T; �//

�
! Cn.L/(5-1)

is a weak equivalence.

Proof We are going to show that the map is a microfibration with contractible fibers.
Then the lemma will follow [13, Lemma 2.2]. Let T be an element of the configuration
space Cn.L/. The fiber of the map (5-1) over the configuration T is identified with
the classifying space of the poset of all .T; �/ 2 con.K/ with T 2 p�1.VK.T; �//, ie
p.T / 2 VK.T; �/. The inclusion of the directed posetn

.T; �/ 2 con.K/ j 9n 2N 8t 2 T �.t/D
1

n

o
into the above described poset is a homotopy initial functor. (We consider the posets as
categories.) Therefore, the fiber is contractible.
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Now we verify the lifting condition. We start with an observation: The projection map
and the map (5-1) determine an injective, continuous map

hocolim
.T;�/2con.K/

Cn
�
p�1.VK.T; �//

�
! jN con.K/j �Cn.L/:

(This map is not an embedding, ie a homeomorphism onto its image. See also
Remark 5.7.) We call this map g D .g1; g2/.

Let Z be a compact CW–space. We consider the diagram

Z

��

// hocolim
.T;�/2con.K/

Cn
�
p�1.VK.T; �//

�
��

Z � I // Cn.L/

We call the upper horizontal map f and we can consider it as a pair of maps f D
.f1; f2/ if we define fi WD gi ıf for i D 1; 2. We call the bottom horizontal map h.
The right vertical arrow is equal to g2 . We can define a small lift

H W Z � Œ0; ��! hocolim
.T;�/2con.K/

Ck
�
p�1.VK.T; �//

�
by H WD .f1; h/.

How can we describe the map H ? Let z 2Z be given. By the formula H WD .f1; h/,
the map

fzg � Œ0; �� H�! hocolim
.T;�/2con.K/

Cn
�
p�1.VK.T; �//

� g1
�!N con.K/

is constant; more precisely, g1 ıH.fzg � Œ0; ��/D ff1.z/g.

How can we find an � > 0 such that H is well defined? Let S be an r –simplex of
jN con.K/j, let E be the corresponding open simplex and let .T0; �0/� � � � � .Tr ; �r/
be the corresponding element in Nrcon.K/. We define

ZS WD f
�1
1 .S/D f �1.g�11 .S//�Z;

ZE WD f
�1
1 .E/D f �1.g�11 .E//�Z:

We take a close look at the map

f2jZS
W ZS

f
�! hocolim

.T;�/2con.K/
Cn
�
p�1.VK.T; �//

� g2
�! Cn.L/:

First, we note that f2.ZE /� Cn
�
p�1.VK.T0; �0//

�
by definition. By definition (of

smooth thickening), p�1.VK.Tj ; �j // is a special open set for every 0� j � r . In the
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spirit of Remark 5.7, we conclude that f2.ZS / is also a subset of Cn
�
p�1.VK.T0; �0//

�
.

(For an easier example of this argument, see [11, 2.2.1].) Since f2.ZS /D h.ZS �f0g/
is compact, there is an �S > 0 with

h.ZS � Œ0; �S �/� Cn
�
p�1.VK.T0; �0//

�
:

The image of Z is contained in a finite union of open cells of jN con.K/j. Therefore,
there is a finite number of simplices S such that ZS is nonempty. We can define � to
be the minimum of all �S , where the minimum ranges over all simplices S such that
ZS is nonempty.

Remark 5.7 Let U 2Rn be a bounded open subset. Then the mapping cylinder of the
inclusion U !Rn is not homeomorphic to a subspace of RnC1 . The quotient topology
equips the mapping cylinder with a different structure. In fact, it is not metrizable
[11, 2.2.2].

Corollary 5.8 The canonical map

hocolim
.T;�/2con.K/

N0con
�
p�1.VK.T; �//

�
!N0con.L/

determined by the inclusions is a weak equivalence.

Proof We remind the reader that for an open set U �K , we defined con.U / to be
the full subcategory of con.K/ with all objects .T; �/ such that VK.T; �/ is a subset
of U. There is a commutative square

hocolim
.T;�/2con.K/

N0con
�
p�1.VK.T; �//

�
��

// N0con.L/

��

hocolim
.T;�/2con.K/

`
n Cn

�
p�1.VK.T; �//

�
//
`
n Cn.L/

where the vertical arrows are weak equivalences (the left one is induced by a natural
transformation). Therefore, we only have to verify that the bottom map is a weak
equivalence. But this follows from the fact that the homotopy colimit commutes with
disjoint union.

Corollary 5.9 For every r � 0, the canonical map

hocolim
.T;�/2con.K/

Nrcon
�
p�1.VK.T; �//

�
!Nrcon.L/

induced by the inclusions is a weak equivalence.
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Proof We consider the commutative square

hocolim
.T;�/2con.K/

Nrcon
�
p�1.VK.T; �//

�
��

// Nrcon.L/

��

hocolim
.T;�/2con.K/

N0con
�
p�1.VK.T; �//

�
// N0con.L/

Here the vertical arrows are given by the ultimate target operator and the horizontal
arrows are the canonical maps induced by the inclusions. We can check that this is a
(strict) pullback square and that the right vertical arrow is a fibration. Since .Top/ is a
proper model category [7, 13.1.11] and the bottom arrow is a weak equivalence, we
conclude that the upper arrow is also a weak equivalence.

5.3 Boundary recovered

Let M be a manifold with boundary @M and let L be a smooth submanifold without
boundary. We recover the homotopy type of M nL from the homotopy types of the
spaces M nT where T is a finite subset of L. Again, we need to allow thickenings
of the finite subsets T and inclusions between them. We recall that for each object
.T; �/ in the configuration category con.L/ of L, there is a corresponding open subset
VL.T; �/ in L. We can define a contravariant functor  from con.L/ to the category
of topological spaces by  ..T; �// WDM nVL.T; �/. We get a canonical map

(5-2) M nL! holim
.T;�/2con.L/

M nVL.T; �/;

induced by the inclusions M nL!M nVL.T; �/. We can ask if this map is a weak
equivalence. There is also a variant with restricted cardinalities. Let con�n.L/ be the
full subcategory of con.L/ where the objects are all pairs .T; �/2 con.L/ with jT j�n.
Again, we get a canonical map

(5-3) M nL! holim
.T;�/2con�n.L/

M nVL.T; �/;

induced by inclusions. We can ask whether this map is highly connected and whether
there is a lower bound for the connectivity. The following theorem, where we use again
the notation � WD dimK and m WD dimM, answers these questions.

Theorem 5.10 The canonical map (5-2) is a weak equivalence if the following con-
dition holds: there is a compact simplicial complex K � M of dimension � with
�C 3�m such that L is a smooth thickening of K in M (see Definition 5.2). In this
case, the canonical map (5-3) is .1C.nC1/.m���2//–connected.

Algebraic & Geometric Topology, Volume 19 (2019)



1292 Steffen Tillmann

Corollary 5.11 The canonical map

@M ! holim
.T;�/2con�n.Mn@M/

M nVMn@M .T; �/

is a weak equivalence if the following condition holds: there is a compact simplicial
complex K �M of dimension � with �C 3�m such that M is a smooth thickening
of K (see Definition 5.3). In this case, the canonical map

@M ! holim
.T;�/2con�n.Mn@M/

M nVMn@M .T; �/

is .1C.nC1/.m���2//–connected.

Remark 5.12 In (5-2) and (5-3), the discrete (or ordinary) homotopy limit can be
replaced by the continuous homotopy limit without changing the (weak) homotopy
type. This can be justified with arguments which are provided in [11, 1.2] (and in
Section 2.2).

Remark 5.13 This corollary is a generalization of [11, Theorem 2.1.1]; compare
Example 5.4(2). It can be applied in the proof of [14, Theorems 5.2.1 and 5.3.1],
whereby we get a weaker condition in these theorems (this will extensively be studied
in Section 6).

In order to prove that (5-2) is a weak equivalence, we consider the following diagram,
where all arrows are the canonical maps and pW L!K is a nice projection map:

M nL

��

// holim
.T;�/2con.K/

M np�1.VK.T; �//

��

holim
.T 0;�/2con.L/

 .T 0; �/ // holim
.T;�/2con.K/

holim
.T 0;�/2con.L/

p.VL.T
0;�//�VK.T;�/

 .T 0; �/

It commutes because both compositions factorize through the ordinary limit and the
two maps through the ordinary limit are clearly the same. In Lemma 5.5 we have
already shown that the upper horizontal arrow is a weak equivalence. Therefore, the
first part of the theorem follows from the next two lemmas.

Lemma 5.14 The right vertical arrow is a weak equivalence.

Proof Let .T; �/ 2 con.K/ be fixed. Since the map under investigation is induced by
a natural transformation, it suffices to show that the map

M np�1.VK.T; �//DM nU ! holim
.T 0;�/2con.U /

 .T 0; �/
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is a weak equivalence, where, for simplicity, U is defined to be the open set

U WD p�1.VK.T; �//� L:

Note that by definition, the open set U is diffeomorphic to T �Rl . We consider the
composition of maps

M nU ! holim
.T 0;�/2con.U /

 .T 0; �/! holim
.T 0;�/2con.U /

F.VK.T
0; �//;

where F is the functor from the category O.U / of open subsets of U to topological
spaces given by F.W / WD holimC�W M n C, where C runs through the compact
subsets of W . Note that the category of all compact subsets of VK.T 0; �/ has a
directed subcategory which is homotopy terminal. Therefore, the canonical map
 .T 0; �/! F.VK.T

0; �// is a weak equivalence for every .T 0; �/ 2 con.U /. Using
the homotopy invariance of the homotopy limit, the second map is a weak equivalence.
So, in order to prove that the first map is a weak equivalence, we have to show that the
composition is a weak equivalence. To this end, we consider another composition

M nU ! F.U /! holim
W 2

S
k Ok.U /

F.W /! holim
.T 0;�/2con.U /

F.VK.T
0; �//:

First of all, we note that the two compositions give the same map since both compositions
factorize through the ordinary limit and the two maps through the ordinary limit are
clearly the same. The first map in this composition is a weak equivalence because the
category of all compact subsets of U has a directed subcategory which is homotopy
terminal. The third map is a weak equivalence by an argument which we have seen
in Lemma 4.9. The second map is a weak equivalence because the open set U is a
maximal element in

S
k Ok.U /.

Lemma 5.15 The bottom horizontal arrow is a weak equivalence.

Proof If replace the homotopy limit by the continuous homotopy limit, the source
is the totalization of the cosimplicial space Œr� 7! �r.‰/, where �r.‰/ is the space
of all sections from NrP.L/ to EŠ.‰/. (All notation is introduced in Section 3.2.)
If replace the second homotopy limit in the target by the continuous homotopy limit
(compare Remark 3.9), the target is isomorphic to the totalization of the cosimplicial
space Œr� 7! z�r.‰/, where z�r.‰/ is the space of all sections from

hocolim
.T;�/2con.K/

Nrcon
�
p�1.VK.T; �//

�
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to EŠ.‰/. The bottom horizontal arrow in the above diagram is induced by composition
with the map in Corollary 5.9,

hocolim
.T;�/2con.K/

Nrcon
�
p�1.VK.T; �//

�
!Nrcon.L/!EŠ.‰/:

Using Corollary 5.9, this map is a weak equivalence.

Now we investigate the case with restricted cardinalities. To this end, we fix n � 0.
Let j be an integer with 0� j � n be given. There is the following modification of
the tube lemma, Lemma 5.6. The canonical map

hocolim
.T;�/2con�n.K/

Cj
�
p�1.VK.T; �//

�
! Cj .L/

is a weak equivalence. The proof is the same: The projection map is a microfibration
with contractible fibers. Why do we need that j � n? In the proof of Lemma 5.6 we
introduced a homotopy initial subposet, in order to show that the fibers are contractible.
In the restricted case, this poset is defined if and only if j � n.

Using this observation, the proof of the restricted case follows similar lines. In particular,
there is a commutative diagram

M nL

��

// holim
.T;�/2con�n.K/

M np�1.VK.T; �//

��

holim
.T 0;�/2con�n.L/

 .T 0; �/ // holim
.T;�/2con�n.K/

holim
.T 0;�/2con�n.L/

p.VL.T
0;�//�VK.T;�/

 .T 0; �/

By Theorem 4.1 (and Lemma 5.5), the top horizontal map is .1C.nC1/.m�k�2//–
connected. Using a modification of Corollary 5.9, the bottom horizontal arrow is a
weak equivalence. In order to justify that the right vertical arrow is a weak equivalence,
we can use arguments which we have seen in Lemma 5.14.

6 Homotopy automorphisms

Let M be a smooth, compact manifold with boundary.

Definition 6.1 We define the homotopy link holink.M=@M;�/ of the basepoint in
M=@M to be the space of paths  W Œ0; 1� ! M=@M which satisfy the condition
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�1.f�g/D f0g. The topology is the compact–open topology. We define the map

qM W holink.M=@M;�/!M n @M

by  7! .1/.

Remark 6.2 It is well known that the map qM is a good homotopical substitute for
the inclusion map @M ,!M : if we define ZM to be the space of paths  W Œ0; 1�!M

which satisfy the condition �1.@M/D f0g (with the compact–open topology), we
get a homotopy commutative diagram

holink.M=@M; ?/
qM

// M n @M

'

��

ZM

'

OO

'
// @M

� � // M

Let homeo.M/ be the homeomorphism group of M. Evidently, there is a canonical
action of homeo.M/ on the complete diagram. This action extends to an action of the
homeomorphism group homeo.M n @M/ on qM . But, unfortunately, the action does
not extend to an action of the homeomorphism group homeo.M n@M/ on the inclusion
map @M ,!M. We are interested in this extension. That is why we introduced the
homotopical substitute qM .

Definition 6.3 Let c be an object in a model category C . We define haut.c/ to be the
space of derived homotopy automorphisms of c in C , ie haut.c/ is the union of the
homotopy invertible path components of the derived mapping space Rmap.c; c/. With
composition, haut.c/ is a grouplike topological or simplicial monoid. (For a suitable
definition of simplicial mapping spaces, we follow [4].)

Note that the map qM can be regarded as a functor from the totally ordered set f0; 1g
to the category of topological spaces. The category of such functors has well-known
standard model category structures. If we choose one of them, we can study the
space of derived homotopy automorphisms haut.qM / of qM . In particular, since
homeo.M n@M/ acts on qM , each homeomorphism of M n@M determines a (derived)
homotopy automorphism of qM . Therefore, we get a map

Bhomeo.M n @M/! Bhaut.qM /(6-1)

of classifying spaces.
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Let Fin be the category of finite sets and maps between them. The nerve NFin is
a simplicial set. We introduced the Riemannian model of the configuration category
con.M n @M/. The nerve of this category is a simplicial space over NFin.

Definition 6.4 Let X be a simplicial space over NFin. We define hautNFin.X/ to
be the space of derived homotopy automorphisms of X over NFin, ie haut.X/ is
the union of the homotopy invertible path components of the derived mapping space
RmapNFin.X;X/ of X over NFin. (If an introduction to derived mapping spaces of
simplicial spaces is needed, we refer the reader to [14, Section 3].) With composition,
hautNFin.X/ is a grouplike topological or simplicial monoid.

If we use the particle model [2, Section 3.1; 14, Section 1] of the configuration category
con.M n @M/, it is easy to see that each homeomorphism of M n @M determines a
(derived) homotopy automorphism of the nerve of con.M n @M/ over NFin.

Particle model In this model, the space of objects of the configuration category
con.M n @M/ is a

k�0

emb.k;M n @M/:

A morphism from f 2 emb.k;M n @M/ to g 2 emb.l;M n @M/ is a map vW k! l

and a homotopy
.t /t2Œ0;a�W k!M n @M

from f to gv which satisfies the stickiness condition: if s.b1/D s.b2/ for s 2 Œ0; a�
and b1; b2 2 k , then t .b1/ D t .b2/ for all t 2 Œs; a�. Therefore, the space of
morphisms of the configuration category con.M n @M/ in the particle model isa

k;l�0; vWk!l

ƒ.v/:

Here ƒ.v/ is the space of all triples .f; g; / where f 2 emb.k;M n @M/, g 2
emb.l;M n @M/ and  is a homotopy from f to gv which satisfies the stickiness
condition. The Riemannian model of the configuration category and the particle model
are equivalent [2, Section 3.2].

Using the particle model of the configuration category con.M n@M/, there is an inclu-
sion of topological grouplike monoids from homeo.Mn@M/ to hautNFin.con.Mn@M//.
We get a map of classifying spaces

(6-2) Bhomeo.M n @M/! BhautNFin.con.M n @M//:
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Now we can ask whether the map (6-1) has a factorization through the map (6-2).

Theorem 6.5 We assume that the following condition holds: there is a compact
simplicial complex K � M of dimension � with � C 3 � m such that M is a
smooth thickening (see Definition 5.3) of K . Then the broken arrow in the homotopy
commutative diagram

Bhomeo.M n @M/
(6-1)

// Bhaut.qM /

Bhomeo.M n @M/
(6-2)

// BhautNFin.con.M n @M//

OO

can be supplied.

Using Corollary 5.11, the proof is equal to that of [14, Theorem 5.2.1]. There is
also a variant with restricted cardinalities. Following [14, 5.3], we need a Postnikov
decomposition of the map qM . It is well known that for each integer a � 0, there is a
decomposition

@M ! }a@M !M

of the inclusion map @M ,!M such that the homotopy groups of }a@M are zero in
dimension � aC 2 and equal to the homotopy groups of @M in dimension � aC 1.
(}a@M is obtained from @M, as a space over M, by killing the relative homotopy
groups of @M !M in dimensions � aC 2.) By analogy with this construction, there
is a decomposition

holink.M=@M;�/! }a.qM /!M n @M

of the map qM , where }a.qM / has the same properties as }a@M.

Theorem 6.6 We assume that the following condition holds: there is a compact
simplicial complex K � M of dimension � with � C 3 � m such that M is a
smooth thickening (see Definition 5.3) of K . Then the broken arrow in the homotopy
commutative diagram

Bhomeo.M n @M/
action

// Bhaut.}.jC1/.m���2/.qM //

Bhomeo.M n @M/
action

// BhautNFin.con�j .M n @M//

OO

can be supplied. Here the two action maps are the maps (6-1) and (6-2) applied to the
restricted case.
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On uniqueness of end sums and 1–handles at infinity

JACK S CALCUT

ROBERT E GOMPF

For oriented manifolds of dimension at least 4 that are simply connected at infinity,
it is known that end summing is a uniquely defined operation. Calcut and Haggerty
showed that more complicated fundamental group behavior at infinity can lead to
nonuniqueness. We examine how and when uniqueness fails. Examples are given,
in the categories TOP, PL and DIFF, of nonuniqueness that cannot be detected in a
weaker category (including the homotopy category). In contrast, uniqueness is proved
for Mittag-Leffler ends, and generalized to allow slides and cancellation of (possibly
infinite) collections of 0– and 1–handles at infinity. Various applications are pre-
sented, including an analysis of how the monoid of smooth manifolds homeomorphic
to R4 acts on the smoothings of any noncompact 4–manifold.

57N99, 57Q99, 57R99

1 Introduction

Since the early days of topology, it has been useful to combine spaces by simple gluing
operations. The connected sum operation for closed manifolds has roots in nineteenth
century surface theory, and its cousin, the boundary sum of compact manifolds with
boundary, is also classical. These two operations are well understood. In the oriented
setting, for example, the connected sum of two connected manifolds is unique, as is
the boundary sum of two manifolds with connected boundary. The boundary sum
has an analogue for open manifolds, the end sum, which has been used in various
dimensions since the 1980s, but is less well known and understood. The first author
and Haggerty showed in 2014 [7] that, in contrast with boundary sums, end sums of
one-ended oriented manifolds need not be uniquely determined, even up to proper
homotopy. The present paper explores uniqueness and its failure in more detail. To
illustrate the subtlety of the issue, we present examples in various categories (homotopy,
TOP, PL and DIFF) where uniqueness fails, but the failure cannot be detected in weaker
categories. In counterpoint, we find general hypotheses under which the operation is
unique in all categories and apply this result to exotic smoothings of open 4–manifolds.
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Our results naturally belong in the broader context of attaching handles at infinity.
We obtain general uniqueness results for attaching collections of 0– and 1–handles
at infinity, generalizing handle sliding and cancellation. We conclude that end sums,
and, more generally, collections of handles at infinity with index at most one, can be
controlled in broad circumstances, although deep questions remain.

End sums are the natural analogue of boundary sums. To construct the latter, we choose
codimension-zero embeddings of a disk into the boundaries of the two summands,
then use these to attach a 1–handle. For an end sum of open manifolds, we attach a
1–handle at infinity, guided by a properly embedded ray in each summand. Informally,
we can think of the 1–handle at infinity as a piece of tape joining the two manifolds;
see Definition 2.1 for details. Boundary summing two compact manifolds then has
the effect of end summing their interiors. While this notion of end summing seems
obvious, the authors have been unable to find explicit appearances of it before the
second author’s 1983 paper [18] and sequel [19] on exotic smoothings of R4 . However,
the germ of the idea may be perceived in Mazur’s 1959 paper [33] and Stallings’
1965 paper [38]. End summing was used in [19] to construct infinitely many exotic
smoothings of R4 . The appendix of that paper showed that the operation is well
defined in that context, so is independent of choice of rays and their order (even for
infinite sums). Since then, the second author and others have continued to use end
summing with an exotic R4 for constructing many exotic smoothings on various open
4–manifolds, eg Taylor [39, Theorem 6.4] in 1997 and Gompf [23, Section 7] in 2017.
The operation has also been subsequently used in other dimensions, for example by
Ancel (unpublished) in the 1980s to study high-dimensional Davis manifolds, and by
Tinsley and Wright [40] in 1997 and Myers [35] in 1999 to study 3–manifolds. In 2012,
the first author, with King and Siebenmann, gave a somewhat general treatment [8]
of end sum (called CSI, for connected sum at infinity, therein) in all dimensions
and categories (TOP, PL and DIFF). One corollary gave a classification of multiple
hyperplanes in Rn for all n¤ 3, which was used by Belegradek [2] in 2014 to study
certain interesting open aspherical manifolds. Most recently, Sparks [37] in 2018 used
infinite end sums to construct uncountably many contractible topological 4–manifolds
obtained by gluing two copies of R4 along a subset homeomorphic to R4 .

While [19] showed that end sums are uniquely determined for oriented manifolds
homeomorphic to R4 , uniqueness fails in general for multiple reasons. The most
obvious layer of difficulty already occurs for the simpler operation of boundary summing.
In that case, when a summand has disconnected boundary, we must specify which
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boundary component to use. For example, nondiffeomorphic boundary components
can lead to boundary sums with nondiffeomorphic boundaries. We must also be careful
to specify orientations — a pair of disk bundles over S2 with nonzero Euler numbers
can be boundary summed in two different ways, distinguished by their signatures
(0 or ˙2). In general, we should specify an orientation on each orientable boundary
component receiving a 1–handle. Similarly, for end sums and 1–handles at infinity,
we must specify which ends of the summands we are using and an orientation on each
such end (if orientable).

Unlike boundary sums, however, end sums have a more subtle layer of nonuniqueness.
One difficulty is specific to dimension 3: the rays in use can be knotted. Myers [35]
showed that uncountably many homeomorphism types of contractible manifolds can
be obtained by end summing two copies of R3 along knotted rays. For this reason,
the present paper focuses on dimensions above 3. However, another difficulty persists
in high dimensions: rays determining a given end need not be properly homotopic.
The first author and Haggerty [7] constructed examples of pairs of one-ended oriented
n–manifolds (for all n� 3) that can be summed in different ways, yielding manifolds
that are not even properly homotopy-equivalent. We explore this phenomenon more
deeply in Section 3. After sketching the key example of [7] in Example 3.2, we exhibit
more subtle examples of nonuniqueness of end summing (and related constructions)
on fixed oriented ends. Examples 3.3 include topological 5–manifolds with properly
homotopy-equivalent but nonhomeomorphic end sums on the same pair of ends, and PL

n–manifolds (for various n� 9) whose end sums are properly homotopy-equivalent
but not PL homeomorphic. Unlike other examples in this section, those in Examples 3.3
have extra ends or boundary components; the one-ended case seems more elusive.
Examples 3.4 provide end sums of smooth manifolds (for most n � 8) that are PL

homeomorphic but not diffeomorphic. The analogous construction in dimension 4 gives
smooth manifolds whose end sums are naturally identified in the topological category,
but whose smoothings are not stably isotopic. Distinguishing their diffeomorphism
types seems difficult.

These failures of uniqueness arise from complicated fundamental group behavior at the
relevant ends, contrasting with uniqueness associated with the simply connected end
of R4 . Section 4 examines more generally when ends are simple enough to guarantee
uniqueness of end sums and 1–handle attaching. In dimensions 4 and up, it suffices for
the end to satisfy the Mittag-Leffler condition (also called semistability), whose defini-
tion we recall in Section 4. Ends that are simply connected or topologically collared are
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Mittag-Leffler; in fact, the condition can only fail when the end requires infinitely many
.n�1/–handles in any topological handle decomposition (Proposition 4.3). For example,
Stein manifolds of complex dimension at least 2 have (unique) Mittag-Leffler ends. (See
Corollaries 4.4 and 4.10, and Theorem 5.4 for an application to 4–manifold smoothing
theory.) The Mittag-Leffler condition is necessary and sufficient to guarantee that any
two rays approaching the end are properly homotopic. This fact traces back at least to
Geoghegan in the 1980s, and appears to have been folklore since the preceding decade.
(See also Edwards and Hastings [13], Mihalik [34, Theorem 2.1] and Geoghegan [17].)
The first author and King worked out an algebraic classification of proper rays up to
proper homotopy on an arbitrary end in 2002. This material was later excised from the
2012 published version of [8] due to length considerations and since a similar proof had
appeared in Geoghegan’s text [17] in the meantime. The present paper gives a much
simplified version of the proof, dealing only with the Mittag-Leffler case, in order to
highlight the topology underlying the algebraic argument (Lemma 4.11). This lemma
leads to a general statement (Theorem 4.6) about attaching countable collections of
1–handles to an open manifold. The following theorem is a special case:

Theorem 1.1 Let X be a (possibly disconnected ) n–manifold , with n � 4. Then
the result of attaching a (possibly infinite) collection of 1–handles at infinity to some
oriented Mittag-Leffler ends of X depends only on the pairs of ends to which each
1–handle is attached , and whether their orientations agree.

Note that uniqueness of end sums along Mittag-Leffler ends (preserving orientations)
is a special case. Theorem 4.6 also deals with ends that are nonorientable or not
Mittag-Leffler.

Theorem 4.6 has consequences for open 4–manifold smoothing theory, which we
explore in Section 5. The theorem easily implies the result from [19] that the oriented
diffeomorphism types of 4–manifolds homeomorphic to R4 form a monoid R under
end sum, allowing infinite sums that are independent of order and grouping. This
monoid acts on the set S.X / of smoothings (up to isotopy) of any given oriented 4–
manifold X with a Mittag-Leffler end, and more generally a product of copies of R acts
on S.X / through any countable collection of Mittag-Leffler ends (see Corollary 5.1).
One can also deal with arbitrary ends by keeping track of a family of proper homotopy
classes of rays. Similarly, one can act on S.X / by summing with exotic smoothings of
S3 �R along properly embedded lines (Corollary 5.5), or modify smoothings along
properly embedded star-shaped graphs. While summing with a fixed exotic R4 is
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unique for an oriented (or nonorientable) Mittag-Leffler end, Section 3 suggests that
there should be examples of nonuniqueness when the end of X is not Mittag-Leffler.
However, such examples seem elusive, prompting the following natural question:

Question 1.2 Let X be a smooth , one-ended , oriented 4–manifold. Can summing
X with a fixed exotic R4 , preserving orientation , yield different diffeomorphism types
depending on the choice of ray in X ?

We show (Proposition 5.3) that such examples would be quite difficult to detect.

Having studied the uniqueness problem for adding 1–handles at infinity, we progress
in Section 6 to uniqueness of adding collections of 0– and 1–handles at infinity
(Theorem 6.1). It turns out that, when adding countably many handles of index 0

and 1, the noncompact case is simpler than for compact handle addition. As an
application of Theorem 6.1, we present (Theorem 6.2) a very natural and partly novel
proof of the hyperplane unknotting theorem of Cantrell [9] and Stallings [38]: each
proper embedding of Rn�1 in Rn for n� 4 is unknotted (in each category DIFF, PL

and TOP). An immediate corollary is the TOP Schoenflies theorem: the closures of the
two complementary regions of a (locally flat) embedding of Sn�1 in Sn for n � 4

are topological disks. Mazur’s infinite swindle still lies at the heart of our proof of the
hyperplane unknotting theorem. The novelty in our proof consists of the supporting
framework of 0– and 1–handle additions, slides and cancellations at infinity.

Throughout the text, we take manifolds to be Hausdorff with countable basis, so with
only countably many components. We allow boundary, and note that the theory is
vacuous unless there is a noncompact component. Open manifolds are those with no
boundary and no compact components. We work in a category CAT that can be DIFF,
PL or TOP. For example, DIFF homeomorphisms are the same as diffeomorphisms.
Embeddings (particularly with codimension zero) are not assumed to be proper. (Proper
means the preimage of every compact set is compact.) In PL and TOP, embeddings
are assumed to be locally flat (as is automatically true in DIFF). It follows that in each
category, codimension-one two-sided embeddings in Int X are bicollared (Brown [6]
in TOP; see Connelly [11] for a simpler proof in both TOP and PL). Furthermore,
a CAT proper embedding  W Y ,! X n of a CAT 1–manifold Y with b1.Y / D 0

and �1.@X /D∅ extends to a CAT proper embedding x�W Y �Dn�1 ,! X n whose
boundary (after rounding corners in DIFF) is bicollared. (This is easy in DIFF and PL,
and follows in TOP by a classical argument: cover suitably by charts exhibiting Y as
locally flat, then stretch one chart consecutively through the others.) If we radially
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identify Rn�1 with Int Dn�1 , then x� determines an embedding �W Y �Rn�1 ,! X.
We call � and x� tubular neighborhood maps, and their images open (resp. closed)
tubular neighborhoods of Y . Thus, an open tubular neighborhood extends to a closed
tubular neighborhood by definition.

2 1–handles at infinity

We begin with our procedure for attaching 1–handles at infinity.

Definition 2.1 A multiray in a CAT n–manifold X is a CAT proper embedding
 W S � Œ0;1/ ,!X, with �1.@X /D∅, for some discrete (so necessarily countable)
set S, called the index set of  . If the domain has a single component,  will be called
a ray. Given two multirays �; CW S � Œ0;1/ ,! X with disjoint images, choose
tubular neighborhood maps �˙W S � Œ0;1/�Rn�1 ,!X with disjoint images, and let
Z be the CAT manifold obtained by gluing S � Œ0; 1��Rn�1 to X using identifications
�˙ ı .idS �'

˙ � �˙/, where '�W
�
0; 1

2

�
! Œ0;1/ and 'CW

�
1
2
; 1
�
! Œ0;1/ and

�˙W Rn�1!Rn�1 are diffeomorphisms, with �˙ chosen so that '˙ � �˙ preserves
orientation. Then Z is obtained by attaching 1–handles at infinity to X along �

and C (see Figure 1).

X Z

h

Figure 1: Data for attaching h , a 1–handle at infinity, to the n–manifold X

(left) and resulting n–manifold Z (right)

The case of handle attaching where S is a single point and X has two components
that are connected by the 1–handle at infinity is called the end sum or connected
sum at infinity in the literature. In general, we will see that Z depends in a subtle
way on the choice of images of ˙ (Section 3), but not on the parametrizations of
their rays. It depends on the orientations locally induced by �˙ , but is otherwise
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independent of the choices of maps �˙ , '˙ and �˙ . (Independence follows from the
stronger Theorem 4.6 when n� 4, and by a similar method in lower dimensions.) By
reparametrizing the maps '˙ , we can change their domains to smaller neighborhoods
of the endpoints of Œ0; 1� without changing Z , making it more obvious that attaching
compact 1–handles to the boundary of a compact manifold has the effect of attaching
handles at infinity to the interior. Yet another description of handle attaching at infinity
is to remove the interiors of the closed tubular neighborhoods from X and glue together
the resulting Rn�1 boundary components. Some articles (eg [8; 37]) use this perspective
for defining end sums. It can be useful to start, more generally, with any countable
collection of disjoint rays, allowing clustering (for example to preserve an infinite
group action as in Gompf [25]). However, this gains no actual generality, since we can
transform such a collection to a multiray by suitably truncating the domains of the rays
to achieve properness of the combined embedding.

Remark The second author exploited higher-index handles at infinity in [24], but
additional subtleties arise in that context. For example, a Casson handle CH can be
attached to an unknot in the boundary of a 4–ball B so that the interior of the resulting
smooth 4–manifold is not diffeomorphic to the interior of any compact manifold.
However, Int CH is diffeomorphic to R4 , so we can interchange the roles of Int CH
and Int B , exhibiting the manifold as R4 with a 2–handle attached at infinity. The
latter is attached along a properly embedded S1 � Œ0;1/ in R4 that is topologically
unknotted but smoothly knotted, and cannot be smoothly compactified to an annulus
in the closed 4–ball. This proper annulus seems analogous to a knotted ray in a
3–manifold, but is more subtle since it is unknotted in TOP.

Variations on the above 1–handle construction were recently applied to 4–dimensional
smoothing theory by the second author [23]. Let X be a topological 4–manifold
with a fixed smooth structure, and let R be an exotic R4 (a smooth, oriented mani-
fold homeomorphic but not diffeomorphic to R4 ). Choose a smooth ray in X, and
homeomorphically identify a smooth, closed tubular neighborhood N of it with the
complement of a tubular neighborhood of a ray in R. Transporting the smooth structure
from R to N , where it fits together with the original one on X �Int N , we obtain a new
smooth structure on X diffeomorphic to an end sum of X and R. The advantage of this
description is that it fixes the underlying topological manifold, allowing us to assert, for
example, that the two smooth structures are stably isotopic. Another variation from [23]
is to sum a smooth structure with an exotic R�S3 along a smooth, properly embedded
line in each manifold, with one line topologically isotopic to R � fpg � R � S3 .
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(We order the factors this way instead of the more commonly used S3 �R so that
the obvious identification with R4 � f0g preserves orientation.) One can similarly
change a smooth structure on a high-dimensional PL manifold by summing along a
line with R�† for some exotic sphere †. We exhibit these operations in Section 5
as well-defined monoid actions on the set of isotopy classes of smoothings of a fixed
topological manifold. One can also consider CAT sums along lines in general. We
discuss nonuniqueness of this latter operation in Section 3 as a prelude to discussing
subtle end sums.

There are several obvious sources of nonuniqueness for attaching 1–handles at infin-
ity. For attaching 1–handles in the compact setting, the result can depend both on
orientations and on choices of boundary components. We will consider orientations in
Section 4, but now recall the noncompact analogue of the set of boundary components,
the space of ends of a manifold. (See eg Hughes and Ranicki [29].) This only depends
on the underlying TOP structure of a CAT manifold X (and generalizes to other spaces).
A neighborhood of infinity in X is the complement of a compact set, and a neighborhood
system of infinity is a nested sequence fUi j i 2 ZCg of neighborhoods of infinity with
empty intersection and with the closure of UiC1 contained in Ui for all i 2 ZC .

Definition 2.2 For a fixed neighborhood system fUig of infinity, the space of ends
of X is given by E D E.X /D lim

 ��
�0.Ui/.

That is, an end � 2 E.X / is given by a sequence V1 � V2 � V3 � � � � , where each Vi

is a component of Ui . For two different neighborhood systems of infinity for X, the
resulting spaces E.X / can be canonically identified: the set is preserved when we
pass to a subsequence, but any two neighborhood systems of infinity have interleaved
subsequences. A neighborhood of the end � is an open subset of X containing one
of the subsets Vi . This notion allows us to topologize the set X [ E.X / so that X is
homeomorphically embedded as a dense open subset and E.X / is totally disconnected.
(The new basis elements are the components of each Ui , augmented by the ends of
which they are neighborhoods.) The resulting space is Hausdorff with a countable
basis. If X has only finitely many components, this space is compact and called the
Freudenthal [16] or end compactification of X. In this case, E.X / is homeomorphic to
a closed subset of a Cantor set.

Ends can also be described using rays, most naturally if we allow the rays to be singular.
We call a continuous, proper map  W S � Œ0;1/!X (with S discrete and countable)
a singular multiray, or a singular ray if S is a single point. Every singular ray  in
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a manifold X determines an end � 2 E.X /. This is because  is proper, so every
neighborhood U of infinity in X contains  .Œk;1// for sufficiently large k , and
this image lies in a single component of U. In fact, an alternative definition of E.X /
is as the set of equivalence classes of singular rays, where two such are considered
equivalent if their restrictions to ZC are properly homotopic. A singular multiray
 W S � Œ0;1/ ,!X then determines a function � W S! E.X / that is preserved under
proper homotopy of  . Attaching 1–handles at infinity depends on these functions
for � and C , just as attaching compact 1–handles depends on choices of boundary
components, with examples of the former easily obtained from the latter by removing
boundary. We will find more subtle dependence on the defining multirays in the next
section, but a weak condition preventing these subtleties in Section 4.

3 Nonuniqueness

We now investigate examples of nonuniqueness in the simplest setting. In each case, we
begin with an open manifold X with finitely many ends, and attach a single 1–handle
at infinity, at a specified pair of ends. We assume the 1–handle respects a preassigned
orientation on X. For attaching 1–handles in the compact setting, this would be enough
information to uniquely specify the result, but we demonstrate that uniqueness can
still fail for a 1–handle at infinity. The first author and Haggerty showed in [7] that
even the proper homotopy type need not be uniquely determined; Example 3.2 below
sketches the simplest construction from that paper. Our subsequent examples are more
subtle, having the same proper homotopy (or even CAT0 homeomorphism) type but
distinguished by their CAT homeomorphism types.

All of our examples necessarily have complicated fundamental group behavior at
infinity, since Section 4 proves uniqueness when the fundamental group is suitably
controlled. We obtain the required complexity by the following construction, which
generalizes examples of [7]:

Definition 3.1 For an oriented CAT manifold X, let �; CW S � Œ0;1/ ,! X be
multirays with disjoint images. Ladder surgery on X along � and C is orientation-
preserving surgery on the infinite family of 0–spheres given by f�.s; n/; C.s; n/g
for each s 2 S and n 2 ZC . That is, we find disjoint CAT balls centered at the
points ˙.s; n/, remove the interiors of the balls and glue each resulting pair of
boundary spheres together by a reflection (so that the orientation of X extends).
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It is not hard to verify that the resulting oriented CAT homeomorphism type only
depends on the end functions �˙ of the multirays; see Corollary 4.13 for details and
a generalization to unoriented manifolds. If X has two components X1 and X2 , each
with k ends, any bijection from E.X1/ to E.X2/ determines a connected manifold
with k ends obtained by ladder surgery with S D E.X1/. Such a manifold will be
called a ladder sum of X1 and X2 . For closed, connected, oriented .n�1/–manifolds
M and N, we let L.M;N / denote the ladder sum of the two-ended n–manifolds
R�M and R�N for the bijection preserving the ends of R. (This is a slight departure
from [7], which used the one-ended manifold Œ0;1/ in place of R.) Note that any
ladder surgery transforms its multirays ˙ into infinite unions of circles, and surgery
on all these circles (with any framings) results in the manifold obtained from X by
adding 1–handles at infinity along ˙ . (This is easily seen by interpreting the surgeries
as attaching 1– and 2–handles to I �X.)

The examples in [7] are naturally presented in terms of ladder sums and attaching
1–handles at infinity. They represent the simplest type of example, where a single
1–handle may be attached at infinity in essentially distinct ways, namely an orientation-
preserving end sum of one-ended manifolds.

Example 3.2 Homotopy-inequivalent end sums (one-ended) [7] For a fixed prime
p > 1, let E denote the R2 –bundle over S2 with Euler number �p (so E has a
neighborhood of infinity diffeomorphic to R�L.p; 1/). Let Y be the ladder sum of E

and R4 . We will attach a single 1–handle at infinity to the disjoint union X D Y tE

in two ways to produce distinct, one-ended, boundaryless manifolds Z0 and Z1 . Let
0 and 1 be rays in Y , with 0 lying in the E summand and 1 lying in the R4

summand. Let  be any ray in E, and let Zi be obtained from X by attaching a
1–handle at infinity along i and  . The manifolds Z0 and Z1 are not properly
homotopy-equivalent (in fact, their ends are not properly homotopy-equivalent) since
they have nonisomorphic cohomology algebras at infinity [7]. The basic idea is that
both manifolds Zi have obvious splittings as ladder sums. For Z0 , one summand
is R4 , so all cup products from H 1.Z0IZ=p/˝H 2.Z0IZ=p/ are supported in the
other summand in a 1–dimensional subspace of H 3.Z0IZ=p/. However, Z1 has cup
products on both sides, spanning a 2–dimensional subspace.

Our remaining examples are pairs with the same homotopy type, distinguished by more
subtle means.
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Examples 3.3 (a) Homotopy-equivalent but nonhomeomorphic sums It should
not be surprising that the sum of two manifolds along a properly embedded line in
each depends on more than just the ends and orientations involved. However, as a
warm-up for end sums, we give an explicit example in TOP where moving one line
changes the resulting homeomorphism type but not its proper homotopy type. Let P

and Q, respectively, denote CP2 and Freedman’s fake CP2 (eg [14]). Then there
is a homotopy-equivalence between P and Q, restricting to a pairwise homotopy-
equivalence between the complements of a ball interior in each. But P and Q cannot be
homeomorphic since Q is unsmoothable. The ladder sum L.P;Q/ is an unsmoothable
topological 5–manifold with two ends. The lines R�fpg�R�P and R�fqg�R�Q

can be chosen to lie in L.P;Q/, with each spanning the two ends of L.P;Q/, but
they are dual to two different elements of H 4.L.P;Q/IZ=2/ (see [7]), with R� fqg

dual to the Kirby–Siebenmann smoothing obstruction of L.P;Q/. Clearly, there is
a proper homotopy-equivalence of L.P;Q/ interchanging the two lines. Thus, the
two resulting ways to sum L.P;Q/ along a line with R�Q (where the orientation
on Q is reversed for later convenience) give properly homotopy-equivalent manifolds,
namely L.Q # P;Q/ and L.P;Q # Q/ D L.P;P # P /. (The last equality follows
from Freedman’s classification of simply connected topological 4–manifolds [14].)
These two manifolds cannot be homeomorphic, since the latter is a smooth manifold
whereas the former is unsmoothable, with Kirby–Siebenmann obstruction dual to a pair
of lines running along opposite sides of the ladder. (A discussion of the cohomology
of such manifolds can be found in [7], but, more simply, there are subsets .a; b/�Q

on which the Kirby–Siebenmann obstruction must evaluate nontrivially.)

(b) Homotopy-equivalent but nonhomeomorphic end sums We adapt the previ-
ous example to end sums. Instead of summing along a line, we end sum L.P;Q/

with R�Q along their positive ends in two different ways (using rays obtained from
the positive ends of the previous lines). We obtain a pair of properly homotopy-
equivalent, unsmoothable, three-ended manifolds. In one case, the modified end
has a neighborhood that is smoothable, and in the other case, all three ends fail to
have smoothable neighborhoods since the Kirby–Siebenmann obstruction cannot be
avoided. Thus, we have a pair of nonhomeomorphic, but properly homotopy-equivalent,
manifolds, both obtained by an orientation-preserving end sum on the same pair of
ends.

There are several other variations of the construction. We can replace the R factor by
Œ0;1/ so that the ladder sum is one-ended, to get an example of nonuniqueness of
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summing one-ended topological manifolds with compact boundary. Unfortunately, we
cannot cap off the boundaries to obtain one-ended open manifolds, since the Kirby–
Siebenmann obstruction is a cobordism invariant of topological 4–manifolds. However,
we can modify the original ladder sum so that we do ladder surgery on the positive
end, but end sum on the negative end (which then has a neighborhood homeomorphic
to R� .P # Q/). Now we have a connected, two-ended open manifold whose ends
can be joined by an orientation-preserving 1–handle at infinity in two different ways,
yielding properly homotopy-equivalent but nonhomeomorphic one-ended manifolds,
only one of which has a smoothable neighborhood of infinity.

(c) Homotopy-equivalent but not PL homeomorphic end sums In higher dimen-
sions, the Kirby–Siebenmann obstruction of a neighborhood V of an end cannot be
killed by adding 1–handles at infinity (since H 4.V IZ=2/ is not disturbed), but we
can do the analogous construction using higher smoothing obstructions. This time, we
obtain PL n–manifolds (for various n�9) that are properly homotopy-equivalent but not
PL homeomorphic. Let P and Q be homotopy-equivalent PL .n�1/–manifolds with
P and Q�fq0g smooth but Q unsmoothable. (For an explicit 24–dimensional pair,
see Anderson [1, Proposition 5.1].) The previous discussion applies almost verbatim
with PL in place of TOP, with the smoothing obstruction in H n�1.X I‚n�2/ for PL

manifolds X in place of the Kirby–Siebenmann obstruction. The one change is that
smoothability of Q # Q follows since it is the double of the smooth manifold obtained
from Q by removing the interior of a PL ball centered at q0 . (This time the orientation
reversal is necessary since the smoothing obstruction need not have order 2.)

Examples 3.4 (a) PL homeomorphic but nondiffeomorphic end sums (one-
ended) A similar construction shows that end summing along a fixed pair of ends
can produce PL homeomorphic but nondiffeomorphic manifolds. Let † be an exotic
.n�1/–sphere with n> 5. Then † is PL homeomorphic to Sn�1 , so the ladder sum
L.†;Sn�1/ is a two-ended smooth manifold with a PL self-homeomorphism that is not
isotopic to a diffeomorphism. Since †#†DSn�1 , summing L.†;Sn�1/ along a line
with R�† gives the two manifolds L.Sn�1;Sn�1/ and L.†;†/. The first of these
bounds an infinite handlebody made with 0– and 1–handles, as does its universal cover.
Since a contractible 1–handlebody is a ball with some boundary points removed, it
follows that the universal cover of L.Sn�1;Sn�1/ embeds in Sn . However, L.†;†/

contains copies of † arbitrarily close to its ends. Since any homotopy .n�1/–sphere
with n> 5 that embeds in Sn cuts out a ball, so is a standard sphere, it follows that
no neighborhood of either end of L.†;†/ has a cover embedding in Sn . Thus, the
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two manifolds have nondiffeomorphic ends, although they are PL homeomorphic. As
before, we can modify this example to get a pair of end sums of two-ended manifolds,
or a pair obtained from a two-ended connected manifold by joining its ends with a
1–handle in two different ways. This time, however, we can also interpret the example
as end summing two one-ended open manifolds, by first obtaining one-ended manifolds
with compact boundary, then capping off the boundary. (Note that † bounds a compact
manifold. Unlike codimension-0 smoothing existence obstructions, the uniqueness
obstructions are not cobordism invariants.) The resulting pair of one-ended DIFF

manifolds are now easily seen to be PL homeomorphic (by Corollary 4.9, for example)
but nondiffeomorphic.

(b) Nonisotopic DIFF D PL structures on a fixed TOP 4–manifold (one-ended)
The previous construction has an analogue in dimension 4, where the categories
DIFF and PL coincide. Replace R �† by W , Freedman’s exotic R � S3 . This is
distinguished from the standard R�S3 by the classical PL uniqueness obstruction in
H 3.R�S3IZ=2/ Š Z=2, dual to R� fpg. The ladder sum L of W with R�S3

can be summed along a line with W in two obvious ways. These can be interpreted as
smoothings on the underlying topological manifold L.S3;S3/, and can be transformed
to an example of end summing one-ended DIFF manifolds as before: To transform W

into a one-ended DIFF manifold, cut it in half along a Poincaré homology sphere †, then
cap it with an E8 –plumbing. The result E is a smoothing of a punctured Freedman
E8 –manifold. (Alternatively, we can take E homeomorphic to a punctured fake CP2 .)
We ladder sum with R4 . The two results of end summing with another copy of E

are identified in TOP with a ladder sum of two copies of E (see Corollary 4.9). The
smoothings are nonisotopic (even stably, ie after Cartesian product with Rk ), since the
uniqueness obstruction by which they differ near infinity is dual to a pair of lines on
opposite sides of the ladder. However, the authors have not been able to distinguish
their diffeomorphism types. The problem with the previous argument is that the sum of
two copies of W along a line is not diffeomorphic to R�S3 (although the classical
invariant vanishes). While W contains a copy of † separating its ends, so cannot
embed in S4 , the sum of two copies of W contains †#†, which also does not embed
in S4 . The effect of summing with reversed orientation or switched ends, or replacing
† by a different homology sphere, is less clear. This leads to the following question,
which is discussed further in Section 5 (Question 5.6):

Question 3.5 Are there two exotic smoothings on R�S3 whose sum along a line is
the standard R�S3 ?
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If such smoothings exist, one of which has the additional property that every neighbor-
hood of one end has a slice .a; b/�S3 (as seen in TOP) that cannot smoothly embed
in S4 , then the method of Example 3.4(a) gives two one-ended open 4–manifolds that
can be end summed in two homeomorphic but not diffeomorphic (or PL homeomorphic)
ways.

4 Uniqueness for Mittag-Leffler ends

Having examined the failure of uniqueness in the last section, we now look for hypothe-
ses that guarantee that 1–handle attaching at infinity is unique. There are several separate
issues to deal with. In the compact setting, attaching a 1–handle to given boundary
components can yield two different results if both boundary components are orientable,
so uniqueness requires specified orientations in that case. The same issue arises for
1–handles at infinity. Beyond that, we must consider the dependence on the involved
multirays. Since rays in R3 can be knotted, uncountably many homeomorphism types
of contractible manifolds arise as end sums of two copies of R3 (Myers [35]; see also
Calcut and Haggerty [7]). Thus, we assume more than 3 dimensions and conclude, not
surprisingly, that the multirays affect the result only through their proper homotopy
classes, and that the choices of (suitably oriented) tubular neighborhood maps cause
no additional difficulties. We have already seen that different rays determining the
same end can yield different results for end summing with another fixed manifold and
ray, but we give a weak group-theoretic condition on an end that entirely eliminates
dependence on the choice of rays limiting to it.

We begin with terminology for orientations. We will call an end � of an n–manifold X

orientable if it has an orientable neighborhood in X. An orientation on one connected,
orientable neighborhood of � determines an orientation on every other such neighbor-
hood, through the component of their intersection that is a neighborhood of � . Such a
compatible choice of orientations will be called an orientation of � , so every orientable
end has two orientations. We let EO � E.X / denote the open subset of orientable
ends of X. (This need not be closed, as seen by deleting a sequence of points of X

converging to a nonorientable end.) If  is a singular multiray in a DIFF manifold X,
the tangent bundle of X pulls back to a trivial bundle  �TX over S � Œ0;1/. A
fiber orientation on this bundle will be called a local orientation of X along  , and if
such an orientation is specified,  will be called locally orienting. We apply the same
terminology in PL and TOP, using the appropriate analogue of the tangent bundle, or,
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equivalently but more simply, using local homology groups Hn.X;X �f .s; t/g/ŠZ.
If  is a (nonsingular) CAT multiray, a CAT tubular neighborhood map � induces a
local orientation of X along  ; if this agrees with a preassigned local orientation
along  , then � will be called orientation preserving. A homotopy between two
singular multirays determines a correspondence between their local orientations (eg by
pulling back the tangent bundle to the domain of the homotopy). If a singular ray 
determines an orientable end � 2 EO , then a local orientation along  induces an
orientation on the end, since  .Œk;1// lies in a connected, orientable neighborhood
of � when k is sufficiently large.

We now turn to the group theory of ends. See Geoghegan [17] for a more detailed
treatment. An inverse sequence of groups is a sequence G1  G2  G3  � � � of
groups and homomorphisms. We suppress the homomorphisms from the notation, since
they will be induced by obvious inclusions in our applications. A subsequence of an
inverse sequence is another inverse sequence obtained by passing to a subsequence
of the groups and using the obvious composites of homomorphisms. Passing to a
subsequence and its inverse procedure, along with isomorphisms commuting with the
maps, generate the standard notion of equivalence of inverse sequences.

Definition 4.1 An inverse sequence G1 G2 G3 � � � of groups is called Mittag-
Leffler (or semistable) if for each i 2ZC there is a j � i such that all Gk with k � j

have the same image in Gi .

Clearly, a subsequence is Mittag-Leffler if and only if the original sequence is, so the
notion is preserved by equivalences. After passing to a subsequence, we may assume
j D i C 1 in the definition.

For a manifold X with a singular ray  and a neighborhood system fUig of infinity,
we reparametrize  so that  .Œi;1// lies in Ui for each i 2 ZC .

Definition 4.2 The fundamental progroup of X based at  is the inverse sequence of
groups �1.Ui ;  .i//, where the homomorphism �1.UiC1;  .i C 1//! �1.Ui ;  .i//

is the inclusion-induced map to �1.Ui ;  .iC1// followed by the isomorphism moving
the basepoint to  .i/ along the path  jŒi;iC1� .

This only depends on the TOP structure of X. Passing to a subsequence of fUig replaces
the fundamental progroup by a subsequence of it. Since any two neighborhood systems
of infinity have interleaved subsequences, the fundamental progroup is independent, up
to equivalence, of the choice of neighborhood system. It is routine to check that it is
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similarly preserved by any proper homotopy of  , so it only depends on X and the
proper homotopy class of  . Furthermore, the inverse sequence is unchanged if we
replace each Ui by its connected component containing  .Œi;1//, so it is equivalent
to use a neighborhood system of the end � . Beware, however, that even if there is
only one end, the choice of proper homotopy class of  can affect the fundamental
progroup, and even whether its inverse limit vanishes. (See [17, Example 16.2.4]. The
homomorphisms in the example are injective, but changing  conjugates the resulting
nested subgroups, changing their intersection.)

We call the pair .X;  / Mittag-Leffler if its fundamental progroup is Mittag-Leffler.
We will see in Lemma 4.11(a) below that this condition implies  is determined up
to proper homotopy by its induced end � , so the fundamental progroup of � is
independent of  in this case, and it makes sense to call � a Mittag-Leffler end. Note
that this condition rules out ends made by ladder surgery, and hence the examples of
Section 3. We will denote the set of Mittag-Leffler ends of X by EML � E.X /, and its
complement by Ebad .

Many important types of ends are Mittag-Leffler. Simply connected ends are (essentially
by definition) the special case for which the given images all vanish. Topologically
collared ends, with a neighborhood homeomorphic to R �M for some compact
.n�1/–manifold M, are stable, the special case for which the fundamental progroup
is equivalent to an inverse sequence with all maps isomorphisms. Other important
ends are neither simply connected nor collared, but still Mittag-Leffler if the maps
are nontrivial surjections (Example 4.5). Any end admits a neighborhood system for
which the maps are not even surjective, obtained from an arbitrary system by adding
1–handles to each Ui inside Ui�1 ; such ends may still be Mittag-Leffler. In the smooth
category, we can analyze ends using a Morse function ' that is exhausting (ie proper
and bounded below). For such a function, the preimages '�1.i;1/ for i 2 ZC form
a neighborhood system of infinity.

Proposition 4.3 Let X be a DIFF open n–manifold. If an end � of X is not Mittag-
Leffler, then for every exhausting Morse function ' on X and every t 2 R, there
are infinitely many critical points of index n � 1 in the component of '�1.t;1/

containing � . In particular, if X admits an exhausting Morse function with only finitely
many index-.n�1/ critical points, then all of its ends are Mittag-Leffler.

Proof After perturbing ' and composing it with an orientation-preserving diffeomor-
phism of R, we can assume each '�1Œi; i C 1� is an elementary cobordism. Since � is
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not Mittag-Leffler, its corresponding fundamental progroup must have infinitely many
homomorphisms that are not surjective. Thus, there are infinitely many values of i for
which '�1Œi;1/ is made from '�1Œi C 1;1/ by attaching a 1–handle with at least
one foot in the component of the latter containing � . This handle corresponds to an
index-1 critical point of �' , or an index-.n�1/ critical point of ' .

The Mittag-Leffler condition on an end of a CAT manifold is determined by its underlying
TOP structure (in fact, by its proper homotopy type), so we are free to change the smooth
structure on a manifold before looking for a suitable Morse function. This is especially
useful in dimension 4. For example, an exhausting Morse function on an exotic R4 with
nonzero Taylor invariant must have infinitely many index-3 critical points [39], but after
passing to the standard structure, there is such a function with a unique critical point.
(Furthermore, an exotic R4 is topologically collared and simply connected at infinity.)
Proposition 4.3 is most generally stated in TOP, using topological Morse functions.
(These are well behaved [31] and can be constructed from handle decompositions,
which exist on all open TOP manifolds; see eg [14].)

Since every Stein manifold of complex dimension m (real dimension 2m) has an
exhausting Morse function with indices at most m, we conclude:

Corollary 4.4 For every Stein manifold of complex dimension at least 2, the unique
end of each component is Mittag-Leffler.

Example 4.5 For infinite-type Stein surfaces (mD 2), the ends must be Mittag-Leffler,
but they are typically neither simply connected nor stable (and hence not topologically
collared). This is more generally typical for open 4–manifolds whose exhausting
Morse functions require infinitely many critical points, but none of index above 2.
As a simple example, let X be an infinite end sum of R2 –bundles over S2 . (Its
diffeomorphism type is independent of the choice of rays, by Theorems 4.6 and 6.1, but
it is convenient to think of the bundles as indexed by ZC and summed consecutively.)
If each Euler number is less than �1, then X will be Stein. We get a neighborhood
system of infinity with each Ui obtained from a collar of the end of the first i –fold
sum by attaching the remaining (simply connected) summands. Then each group Gi is
a free product of i cyclic groups, and each homomorphism is surjective, projecting out
one factor. The inverse limit is not finitely generated, so the end is not stable. (Every
neighborhood system of the end has a subsequence that can be interleaved by some of
our neighborhoods Ui .)
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We can now state our main theorem on uniqueness of attaching 1–handles. Its primary
conclusion is that when we attach 1–handles at infinity, any locally orienting defining
ray that determines a Mittag-Leffler end will affect the outcome only through the end
and local orientation it determines. If the end is also nonorientable, then even the local
orientation has no influence (as for a compact 1–handle attached to a nonorientable
boundary component). To state this in full generality, we also allow rays determining
ends that are not Mittag-Leffler, which are required to remain in a fixed proper homotopy
class. That is, we allow an arbitrary multiray  , but require its restriction to the subset
��1
 .Ebad/ of the index set S (corresponding to rays determining ends that are not

Mittag-Leffler) to lie in a fixed proper homotopy class. For each 1–handle with at least
one defining ray determining a nonorientable Mittag-Leffler end, no further constraint is
necessary, but otherwise we keep track of orientations. We do this through orientations
of the end if they exist. In the remaining case, the end is not Mittag-Leffler, and we
compare the local orientations of the rays through a proper homotopy. More precisely,
we have:

Theorem 4.6 For a CAT n–manifold X with n � 4, discrete S and i D 0; 1, let
�i ; 

C
i W S � Œ0;1/ ,!X be locally orienting CAT multirays whose images (for each

fixed i ) are disjoint , and whose end functions �
˙

i

W S ! E.X / are independent of i .
Suppose that

(a) after �
0

and �
1

are restricted to the index subset ��1
�

0
.Ebad/, there is a proper

homotopy between them;

(b) for each s 2 ��1
�

0
.Ebad [ EO/ \ �

�1

C

0
.Ebad [ EO/, the local orientations of the

corresponding rays in �
0

and �
1

induce the same orientation of the end if there
is one , and otherwise correspond under the proper homotopy of (a);

(c) the two analogous conditions apply to Ci .

Let Zi be the result of attaching 1–handles to X along ˙i (for any choice of
orientation-preserving tubular neighborhood maps �˙i ). Then there is a CAT homeomor-
phism from Z0 to Z1 sending the submanifold X onto itself by a CAT homeomorphism
CAT ambiently isotopic in X to the identity map.

It follows that 1–handle attaching is not affected by reparametrization of the rays (a
proper homotopy), or changing the auxiliary diffeomorphisms '˙ and �˙ occurring
in Definition 2.1 (which only results in changing the parametrization and tubular
neighborhood maps, respectively).
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Corollary 4.7 For an oriented CAT n–manifold X with n � 4, every countable
multiset of (unordered ) pairs of Mittag-Leffler ends canonically determines a CAT

manifold obtained from X by attaching 1–handles at infinity to those pairs of ends,
respecting the orientation.

Since the end of Rn is Mittag-Leffler, we immediately obtain cancellation of 0=1–
handle pairs at infinity:

Corollary 4.8 For n � 4, every end sum of a CAT n–manifold X with Rn (or
countably many copies of Rn ) is CAT homeomorphic to X.

See Section 6 for further discussion of 0–handles at infinity. This corollary shows that
end summing with an exotic R4 doesn’t change the homeomorphism type of a smooth
4–manifold (although it typically changes its diffeomorphism type); see Section 5. It
also shows:

Corollary 4.9 Suppose X0 and X1 are connected, oriented CAT n–manifolds with
n � 4, and that X0 has an end � that is CAT collared by Sn�1 . Then all manifolds
obtained as the oriented end sum of X0 with X1 at the end � are CAT homeomorphic.

Proof Write X0 as a connected sum X # Rn . Then any such end sum is X # X1 .

The following corollary shows that 1–handles at infinity respect Stein structures. This
will be applied to 4–manifold smoothing theory in Theorem 5.4.

Corollary 4.10 Every manifold Z obtained from a Stein manifold X by attaching
1–handles at infinity, respecting the complex orientation, admits a Stein structure. The
resulting almost-complex structure on Z can be assumed to restrict to the given one
on X, up to homotopy.

Proof Since every open, oriented surface has a Stein structure and a contractible space
of almost-complex structures, we assume X has real dimension 2m � 4. Since X

is Stein, it has an exhausting Morse function with indices at most m. It can then be
described as the interior of a smooth (self-indexed) handlebody whose handles have
index at most m. This is well known when there are only finitely many critical points.
A proof of the infinite case is given in the appendix of [21], which also shows that
when mD 2 one can preserve the extra framing condition that arises for 2–handles,
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encoding the given almost-complex structure. By Corollaries 4.4 and 4.7, we can
realize the 1–handles at infinity by attaching compact handles to the handlebody before
passing to the interior (after adding infinitely many canceling 0=1 pairs if necessary to
accommodate infinitely many new 1–handles, avoiding compactness issues). Now we
can convert the handlebody interior back into a Stein manifold by Eliashberg’s theorem;
see [10]. The almost-complex structures then correspond by construction.

The proof of Theorem 4.6 follows from two lemmas. The first guarantees that (a) Mittag-
Leffler ends are well defined and (b) singular multirays with a given Mittag-Leffler end
function are unique up to proper homotopy.

Lemma 4.11 (a) If .X;  / is a Mittag-Leffler pair, then every singular ray de-
termining the same end as  is properly homotopic to  . In particular, the
Mittag-Leffler condition for ends is independent of choice of singular ray , so the
subset EML � E is well defined.

(b) Let 0; 1W S�Œ0;1/ ,!X be locally orienting singular multirays with the same
end function. Suppose that this function �0

D �1
has image in EML , and that

for each s with �0
.s/ 2 EO , the corresponding locally orienting singular rays of

0 and 1 induce the same orientation (depending on s ) of the end �0
.s/. Then

there is a proper homotopy from 0 to 1 , respecting the given local orientations.

The first sentence and its converse are essentially Proposition 16.1.2 of Geoghegan [17],
which is presented as an immediate consequence of two earlier statements: Proposi-
tion 16.1.1 asserts that the set of proper homotopy classes of singular rays approaching
an arbitrary end corresponds bijectively to the derived limit lim

 ��

1 �1.Ui ;  .i// of a
neighborhood system Ui of infinity; Theorem 11.3.2 asserts that an inverse sequence
of countable groups Gi is Mittag-Leffler if and only if lim

 ��

1 Gi has only one element.
We follow those proofs but considerably simplify the argument, eliminating use of
derived limits, by focusing on the Mittag-Leffler case. This reveals the underlying
geometric intuition: If an end � is topologically collared by a neighborhood identified
with R�M, and  D .R; M /W Œ0;1/!R�M is a singular ray, we can assume after
a standard proper homotopy of the first component that RW Œ0;1/!R is inclusion.
Then the proper homotopy s.t/ D

�
t; M ..1� s/t/

�
D

1
1�s

 ..1� s/t/ (where the
last multiplication acts only on the first factor) stretches the image of  , pushing any
winding in M out toward infinity, so that when s! 1 the ray becomes a standard
radial ray. If, instead, � only has a neighborhood system with �1 –surjective inclusions,
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we can compare two singular rays using an initial proper homotopy after which they
agree on ZC � Œ0;1/, and so only differ by a proper sequence of loops. Then �1 –
surjectivity again allows us to push the differences out to infinity: inductively collapse
loops by transferring their homotopy classes to more distant neighborhoods of infinity,
so that the resulting homotopy sends one ray to the other. In the general Mittag-Leffler
case, we still have enough surjectivity to push each loop to infinity after pulling it
back a single level in the neighborhood system (with properness preserved because we
only pull back one level). The following proof efficiently encodes this procedure with
algebra:

Proof First we prove (a), showing that an arbitrary singular ray  0 determining the
same Mittag-Leffler end as  is properly homotopic to it. We also keep track of
preassigned local orientations along the two singular rays. If � is orientable, we
assume these local orientations induce the same orientation on � (as in (b)). Let
fUig be a neighborhood system of infinity, arranged (by passing to a subsequence if
necessary) so that each j is i C 1 in the definition of the Mittag-Leffler condition, and
that the component of U1 containing � is orientable if � is. Then reparametrize
 so that each  .Œi;1// lies in Ui . Reparametrize  0 similarly, then arrange it to
agree with  on ZC by inductively moving  0 near each i 2 ZC separately, with
compact support inside Ui . The limiting homotopy is then well defined and proper. If
� is nonorientable, then so is the relevant component of each Ui , so we can assume
(changing the homotopy via orientation-reversing loops as necessary) that the local
orientations along the two singular rays agree at each i . (This is automatic when
� is orientable.) The two singular rays now differ by a sequence of orientation-
preserving loops, representing classes xi 2 �1.Ui ;  .i// for each i � 1. Inductively
choose orientation-preserving classes yi 2 �1.Ui ;  .i// for all i � 2 starting from
an arbitrary y2 , and for i � 1 choosing yiC2 2 �1.UiC2;  .i C 2// to have the
same image in �1.Ui ;  .i// as x�1

iC1
yiC1 2 �1.UiC1;  .i C 1//. (This is where the

Mittag-Leffler condition is necessary.) For each i � 1, let zi D xiyiC1 2 �1.Ui ;  .i//

(where we suppress the inclusion map). In that same group, we then have ziz
�1
iC1
D

xiyiC1y�1
iC2

x�1
iC1
Dxi . After another proper homotopy, we can assume the two singular

rays and their induced local orientations on X agree along 1
2
ZC and give the sequence

z1; z
�1
2
; z2; z

�1
3
; : : : in U1;U1;U2;U2; : : : . Now a proper homotopy fixing ZCC 1

2

cancels all loops between these points and eliminates z1 (moving  0.0/), so that the
two singular rays coincide. This completes the proof of (a), and also (since EML is now
well defined) the case of (b) with S a single point.
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For the general case of (b), we wish to apply the previous case to each pair of singular
rays separately. The only issue is properness of the resulting homotopy of singular
multirays. Let fWj g be a neighborhood system of infinity with W1 D X. For each
s 2 S, find the largest j such that Wj contains both rays indexed by s , and apply
the previous case inside that Wj . Since the singular multirays are proper, each Wj

contains all but finitely many pairs of singular rays, guaranteeing that the combined
homotopy is proper.

Remark To see the correspondence of this proof with the geometric description, first
consider the case with all inclusion maps �1 –surjective. Then the argument simplifies:
We can just define z1 D 1, and inductively choose ziC1 to be any pullback of x�1

i zi .
Then zi is a pullback of .x1 � � �xi�1/

�1 to Ui , exhibiting the loops being transferred
toward infinity.

To upgrade a proper homotopy of multirays to an ambient isotopy, we need the following
lemma:

Lemma 4.12 Suppose that X is a CAT n–manifold with n � 4 and Y is a CAT

1–manifold with b1.Y /D 0. Let �W I �Y ,! Int X be a topological proper homotopy,
between CAT embeddings i for i D 0; 1 that extend to CAT tubular neighborhood
maps �i W Y �Rn�1 ,!X whose local orientations correspond under � . Then there is
a CAT ambient isotopy ˆW I �X ! X, supported in a preassigned neighborhood of
Im� , such that ˆ0 D idX and ˆ1 ı �0 agrees with �1 on a neighborhood of Y � f0g

in Y �Rn�1 .

This lemma is well known when CATD DIFF or PL, but a careful proof seems justified
by the subtlety of noncompactness: the corresponding statement in R3 is false even
with � a proper (nonambient) isotopy of Y D R. (Such an isotopy � can slide a
knot out to infinity, changing the fundamental group of the complement, and this can
even be done while fixing the integer points of R.) The case CAT D TOP is also
known to specialists. We did not find a theorem in the literature from which it follows
immediately. Instead, we derive it from much stronger results of Dancis [12] with
antecedents dating back to pioneering work of Homma [28].

Proof First we solve the case CATD DIFF . By transversality, we may assume (after
an ambient isotopy that we absorb into ˆ) that 0 and 1 have disjoint images. Then
we properly homotope � rel @I �Y to be smooth and generic, so it is an embedding if
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n� 5 and an immersion with isolated double points if nD 4. After decomposing Y as
a cell complex with 0–skeleton Y0 , we can assume � restricts to a smooth embedding
on some neighborhood of I �Y0 . Then there is a tubular neighborhood J of Y0 in Y

such that �jI�J extends to an ambient isotopy. (Apply the isotopy extension theorem
separately in disjoint compact neighborhoods of the components of �.I �Y0/.) After
using this ambient isotopy to define ˆ for parameter t � 1

2
, it suffices to assume �

fixes J, and view � as a countable collection of path homotopies of the 1–cells of Y .
We need the resulting immersed 2–disks to be disjoint. This is automatic when n� 5,
but is the step that fails for knotted lines in R3 . For n D 4, we push the disks off
of each other by finger moves. This operation preserves properness of � since each
compact subset of X initially intersects only finitely many disks, which have only
finitely many intersections with other disks (and we do not allow finger moves over
other fingers). Now we can extend to an ambient isotopy, working in disjoint compact
neighborhoods of the disks. We arrange �0 to correspond with �1 by uniqueness of
tubular neighborhoods and contractibility of the components of Y .

We reduce the PL and TOP cases to DIFF. As before, we can assume the images of
0 and 1 are disjoint. (We did not find a clean TOP statement of this. However, we
can easily arrange 0.Y0/ to be disjoint from 1.Y /, then apply [12, General Position
Lemma 3]. While this lemma assumes the moved manifold is compact and without
boundary, we can apply it to the remaining 1–cells of 0.Y / by arbitrarily extending
them to circles.) A tubular neighborhood N of 0.Y /t1.Y / now inherits a smoothing
† from the maps �i . If nD 4, † extends over the entire manifold X except for one
point in each compact component [14]. Homotoping � off of these points, we reduce
to the case CATD DIFF . If n� 5, we again homotope � rel @I �Y to an embedding.
(Again we found no clean TOP statement, but it follows by smoothing � on ��1.N /,
homotoping so that ��1.N / is a collar of @I � Y , and applying [12, Corollary 6.1]
in X �N.) Since .I; @I/ � Y has no cohomology above dimension 1, there is no
obstruction to extending † over a neighborhood of the image of � , again reducing to
CATD DIFF .

Proof of Theorem 4.6 For each iD0; 1, the two multirays �i and Ci can be thought
of as a single multiray i with index set S� D S � f�1; 1g. For each index .s; �/ 2
��1
0
.EO/�S� , we arrange for the corresponding locally orienting rays in 0 and 1 to

induce the same orientation of the end: If this is not already true, then hypothesis (b) of
the theorem implies that the opposite end �0

.s;��/ is Mittag-Leffler but nonorientable.
In this case, reverse the local orientations along both rays in 1 parametrized by s . This
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corrects the orientations without changing Z1 , since the change extends as a reflection
of the 1–handle fsg � Œ0; 1��Rn�1 . Now split i into two multirays ML

i and  bad
i ,

according to whether the rays determine Mittag-Leffler ends. By hypothesis (a), we
have a proper homotopy from  bad

0
to  bad

1
, which respects the local orientations by

hypothesis (b) after further possible flips as above when the opposite end is Mittag-
Leffler but nonorientable. Lemma 4.11(b) then gives a proper homotopy from ML

0

to ML
1

respecting local orientations. Reassembling the multirays, we obtain a proper
homotopy from 0 to 1 that respects local orientations. Now we apply Lemma 4.12
with Y D S� � Œ0;1/, and �i the given tubular neighborhood map for i (after the
above flips). We obtain a CAT ambient isotopy ˆ of idX such that ˆ1 ı �0 agrees
with �1 on a neighborhood N of S��Œ0;1/�f0g in S��Œ0;1/�Rn�1 . Note that the
quotient space Zi does not change if we cut back the 1–handles S�Œ0; 1��Rn�1 to any
neighborhood N 0 of S �

˚
1
2

	
�Rn�1 and use the restricted gluing map. Recall that the

gluing map factors through an Rn�1 –bundle map idS �'
˙��˙ to S��Œ0;1/�Rn�1 .

We can assume that the resulting image of N 0 lies in some disk bundle (with radii
increasing along the rays) inside S� � Œ0;1/ � Rn�1 . A smooth ambient isotopy
supported inside a larger disk bundle moves this image into N . Conjugating with �i

gives a CAT ambient isotopy ‰.i/ on X. Then ˆ0 D‰�1
.1/
ıˆ ı‰.0/ is a CAT ambient

isotopy for which ˆ0
1
ı�0 agrees with �1 on N 0. The CAT homeomorphism ˆ0

1
extends

to one sending Z0 to Z1 with the required properties.

We can now address uniqueness of ladder surgeries. Note that their definition immedi-
ately extends to unoriented manifolds, provided that we use locally orienting multirays.

Corollary 4.13 For a CAT manifold X, discrete S and iD0; 1, let ˙i W S�Œ0;1/ ,!
X be locally orienting CAT multirays with disjoint images (for each fixed i ) such that
the end functions �

˙
i

W S ! E.X / are independent of i . Suppose that for each
s 2 ��1

�
0
.EO/\ �

�1

C

0
.EO/, the local orientations of the corresponding rays in ˙i induce

the same orientation of the end for i D 0; 1. Then the manifolds Zi obtained by ladder
surgery on X along ˙i are CAT homeomorphic.

Proof As in the previous proof, we assume that each ray of ˙
0

determining an
orientable end induces the same orientation of that end as the corresponding ray of ˙

1
,

after reversing orientations on some mated pairs of rays (with the mate determining
a nonorientable end). Since the end functions are independent of i , there is a proper
homotopy of ˙

0
for each choice of sign, after which ˙i .s; n/ is independent of i for

each s 2 S and n 2 ZC (as in the proof of Lemma 4.11). We can assume the local
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orientations agree at each of these points, after possibly changing the homotopy on
each ray determining a nonorientable end. The proper homotopy of ˙

0
jS�ZC extends

to an ambient isotopy as in the proof of Lemma 4.12, without dimensional restriction
(since we only deal with the 0–skeleton Y0 ).

5 Smoothings of open 4–manifolds

Recall from Section 2 that end summing with an exotic R4 can be defined as an
operation on the smooth structures of a fixed topological 4–manifold, and that one can
similarly change smoothings of n–manifolds by summing with an exotic R�Sn�1

along a properly embedded line. (The latter is most interesting when nD 4, but the
comparison with higher dimensions is illuminating.) We now address uniqueness of
both operations, expressing them as monoid actions on the set of isotopy classes of
smoothings of a topological manifold. We define an action of a monoid M on a set S
by analogy with group actions: each element of M is assigned a function S ! S ,
with the identity of M assigned idS , and with monoid addition corresponding to
composition of functions in the usual way.

We first consider end summing with an exotic R4 . The second author showed in [19]
that the set R of oriented diffeomorphism types of smooth manifolds homeomorphic
to R4 admits the structure of a commutative monoid under end sum, with identity given
by the standard R4 , and such that countable sums are well defined and independent
of order and grouping. (Infinite sums were defined as simultaneously end summing
onto the standard R4 along a multiray in the latter. Thus, the statement follows
from Theorem 4.6 with the two multirays Ci in R4 differing by a permutation of S,
and with Corollary 4.8 addressing grouping; see also Section 6.) For any set S, the
Cartesian product RS inherits a monoid structure with the same properties, as does the
submonoid RS

c of S –tuples that are the identity except in countably many coordinates.
Note that every action by such a monoid inherits a notion of infinite iteration, since we
can sum infinitely many monoid elements together before applying them. In the case
at hand, we obtain the following corollary of the lemmas of the previous section. We
again split a multiray  W S � Œ0;1/!X into two multirays MLW SML� Œ0;1/!X

and badW Sbad � Œ0;1/!X, according to which rays determine Mittag-Leffler ends.

Corollary 5.1 Let X be a TOP 4–manifold with a locally orienting TOP multiray
 W S � Œ0;1/!X. Then  determines an action of RS on the set S.X / of isotopy
classes of smoothings of X. The action only depends on the proper homotopy class of
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the locally orienting multiray bad , the function �ML and the subset of SML inducing a
preassigned orientation on the orientable ends. In particular , if X is oriented (or orien-
tations are specified on all orientable Mittag-Leffler ends) then the monoid REML.X /

c

acts canonically on S.X /.

Note that orientation reversal induces an involution on the monoid R, and changing
the local orientations of  changes the action by composing with this involution on the
affected factors of RS.

Proof To define the action, fix a smoothing on X and an indexed set fRs j s 2 Sg of
elements of R. According to Quinn [36] — see also [14] —  can be made smooth by a
TOP ambient isotopy. For each s2S, choose a smooth ray  0 in Rs , and use it to sum Rs

with X along the corresponding ray in X. We do this by homeomorphically identifying
the complement of a tubular neighborhood of  0 (with smooth R3 boundary) with a
corresponding closed tubular neighborhood of the ray in X (preserving orientations),
then transporting the smoothing of Rs to X. We assume the identification is smooth
near each boundary R3 , and then the smoothing fits together with the given one on the
rest of X. This process can be performed simultaneously for all s 2S, provided that we
work within a closed tubular neighborhood of  . Each ray  0 is unique up to smooth
ambient isotopy (Lemma 4.12), and the required identifications of neighborhoods
(homeomorphic to the half-space Œ0;1/�R3 ) are unique up to topological ambient
isotopy that is smooth on the boundary (by the Alexander trick), so the resulting
isotopy class of smoothings on X is independent of choices made in the Rs summands.
Similarly, the resulting smoothing is changed by an isotopy if the original smoothing of
X is isotoped or  is changed by a proper homotopy (Lemma 4.12 again). In particular,
the initial choice of smoothing of  does not matter. Since the proper homotopy class
of the locally orienting multiray ML is determined by �ML and the orientation data
(Lemma 4.11(b)), we have a well-defined function S.X /! S.X / determined by an
element of RS and the data given in the corollary.

The rest of the corollary is easily checked. To verify that we have a monoid action,
consecutively apply two elements fRsg and fR0sg of RS. This uses the multiray �
twice. After summing with each Rs , however, � lies in the new summands, so we are
equivalently end summing X with the sum of the two elements of RS as required. If
we enlarge the index set S of fRsg while requiring all of the new summands Rs to
be R4 , the induced element of S.X / will be unchanged, so it is easy to deduce the
last sentence of the corollary even when EML is uncountable.

Algebraic & Geometric Topology, Volume 19 (2019)



On uniqueness of end sums and 1–handles at infinity 1325

In contrast with more general end sums, the action of RS on S.X / is not known to
vary with the choice of proper homotopy class of  (for a fixed end function).

Question 5.2 Suppose that two locally orienting multirays in X have the same end
function , and that for each s2S, the two corresponding rays induce the same orientation
on the corresponding end , if it admits one. Can the two actions of RS on S.X / be
different?

We can also ask about diffeomorphism types rather than isotopy classes as in Question 1.2.
Clearly, any example of nonuniqueness must involve an end that fails to be Mittag-
Leffler, such as one arising by ladder surgery. While such examples seem likely to
exist, there are also reasons for caution, as we now discuss.

First, not every exotic R4 can give such examples. Freedman and Taylor [15] con-
structed a “universal” R4 , RU 2R, which is characterized as being the unique fixed
point of the R–action on itself. They essentially showed that for any smoothing †
of a 4–manifold X, the result of end summing with copies of RU depends only on
the subset of E.X / at which the sums are performed, regardless of whether those
ends are Mittag-Leffler. Then R subsequently acts trivially on each of those ends.
They also showed that the result of summing with RU on a dense subset of ends
creates a smoothing depending only on the stable isotopy class of † (classified by
H 3.X; @X IZ=2/). For such a smoothing, RS acts trivially for any choice of multiray.
The main point is that the universal property is obtained through a countable collection
of disjoint compact subsets of RU that allow h–cobordisms to be smoothly trivialized.
If X is summed with RU on one side of a ladder sum (for example), those compact
subsets are also accessible on the other side by reaching through the rungs of the ladder.

A second issue is that examples of nonuniqueness would be subtle and hard to distin-
guish:

Proposition 5.3 Let X be a TOP 4–manifold with smoothing †. Let

0; 1W S � Œ0;1/!X

be multirays as in the above question, inducing smoothings †0 and †1 , respectively,
via a fixed element of RS. Then, for every compact DIFF 4–manifold K , every †0 –
smooth embedding �W K!X is TOP ambiently isotopic to a †1 –smooth embedding.
After isotopy of †1 , every neighborhood of infinity in X contains another such
neighborhood U such that whenever �.K/�U and K is a 2–handlebody, the resulting
isotopy can be assumed to keep �.K/ inside U.
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This shows that many of the standard 4–dimensional techniques for distinguishing
smooth structures will fail in the above situation. One of the oldest techniques for
distinguishing two smoothings on R4 is to find a compact DIFF manifold that smoothly
embeds in one but not the other [19]. A newer incarnation of this idea is the Taylor
invariant [39], distinguishing DIFF 4–manifolds via an exotic R4 embedded in one
with compact closure. Clearly, such techniques must fail in the current situation. Most
recently, the second author [23] constructed infinite families of smooth structures on
many open 4–manifolds, distinguished by the minimal genera of smoothly embedded
surfaces representing various homology classes. However, any such surface for the
above smoothing †0 will be homologous to one of the same genus for †1 and
vice versa. Minimal genera at infinity [23] will also fail: if we choose a system of
neighborhoods U of infinity as in the proposition, any corresponding sequence of
†0 –smooth surfaces in these will be homologous to a corresponding sequence for
†1 with the same genera. A possibility remains of distinguishing †0 and †1 by
sequences of smoothly embedded 3–manifolds approaching infinity (such as by the
engulfing index of Bižaca and Gompf [5]; see also [23, Remark 4.3(b)]) but there
does not currently seem to be any good way to analyze such sequences. Note that
the situation is not improved by passing to a cover, since the corresponding lifted
smoothings will behave similarly. (The multirays i will lift to multirays, and for
each s 2 S the lifts of the corresponding rays of 0 and 1 will be multirays with end
functions whose images have the same closure in E. zX /; see the last paragraph of the
proof of [22, Theorem 8.1]. The proof below still applies to this situation.)

Proof For the first conclusion, let x�i W S � Œ0;1/�D3! X be the closed tubular
neighborhood maps of the multirays i used for the end sums. By properness, both
subsets x��1

i �.K/ are contained in a single subset of the form T D S0 � Œ0;N ��D3

for some finite S0 � S and N 2 ZC . We need a †–smooth ambient isotopy ˆt

of idX such that ˆ1 ı x�0 D x�1 on T , allowing no new intersections with �.K/, ie
with x��1

1
ˆ1�.K/ still lying in T . This is easily arranged, since for each s 2 S0

the corresponding rays of 0 and 1 determine the same end and induce the same
orientation on it if possible. This allows us to move 0.s;N / to 1.s;N / so that the
local orientations agree, and then complete the isotopy following the initial segments of
the rays. (The end hypothesis is needed when X � �.K/ is disconnected, for example.)
After we perform the end sums, our isotopy will only be topological. However, ˆ1 ı �

will be †1 –smooth, as required, since the new smoothings correspond under ˆ1 on
the images of T and the smoothing † is preserved elsewhere on �.K/.
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For the second statement, assume (isotoping †1 ) that the images of x�i for i D 0; 1 are
disjoint. Given a neighborhood of infinity, pass to a smaller neighborhood U such that
the two subsets x��1

i .U / are equal, with complement of the form S1 � Œ0;N
0��D3

for some finite S1 and N 0 2 ZC . For any K and � with �.K/� U, we can repeat the
previous argument. There is only one difficulty: if K DM 3 � I, for example, some
sheets of M may be caught between @U and the moving image of 0 during the final
isotopy, and be pushed out of U. However, if K is a handlebody with all indices 2 or
less, we can remove the image of K from the path of 0 (which will be following arcs
of 1 ) by transversality. The statement now follows as before.

Elements of R can be either large or small, depending on whether they contain a com-
pact submanifold that cannot smoothly embed in the standard R4 (eg [26, Section 9.4]).
Action on S.X / by small elements does not change the invariants discussed above
(except for 3–manifolds at infinity), but still can yield uncountably many diffeomor-
phism types [23, Theorem 7.1]. However, large elements typically do change invariants.
In particular, the minimal genus of a homology class can drop under end sum with,
for example, the universal R4 [23, Theorem 8.1]. For Stein surfaces, the adjunction
inequality gives a lower bound on minimal genera, which is frequently violated after
such sums. Thus, the following application of Corollary 4.10 seems surprising:

Theorem 5.4 (Bennett [3, Corollary 4.1.3]) There is a family fRt j t 2Rg of distinct
large elements of R (with nonzero Taylor invariant) such that if Z is obtained from
a Stein surface X by any orientation-preserving end sums with elements Rt then the
adjunction inequality of X applies in Z .

Nevertheless, we expect such sums to destroy the Stein structure, since every handle
decomposition of each Rt requires infinitely many 3–handles. The idea of the proof is
that [3] or [4] constructs such manifolds Rt embedded in Stein surfaces, in such a way
that the sums can be performed pairwise. By Corollary 4.10, we obtain Z embedded
in a Stein surface, so that the adjunction inequality is preserved.

Next we consider sums along properly embedded lines. For a fixed n� 4, let Q denote
the set of oriented diffeomorphism types of manifolds homeomorphic to R�Sn�1 , with
a given ordering of their two ends. Each such manifold admits a DIFF proper embedding
of a line, preserving the order of the ends, and this is unique up to DIFF ambient isotopy
by Lemma 4.12. Thus, Q has a well-defined commutative monoid structure induced
by summing along lines, preserving orientations on the lines and n–manifolds. (This
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time, properness prevents infinite sums.) The identity is R�Sn�1 with its standard
smoothing. For nD 5; 6; 7, Q is trivial, and for n> 5, Q is canonically isomorphic
to the finite group ‚n�1 of homotopy .n�1/–spheres [30] (by taking their product
with R). However, when n D 4, Q has much more structure: High-dimensional
theory predicts that Q should be Z=2, but in fact it is an uncountable monoid with
an epimorphism to Z=2 (analogous to the Rokhlin invariant of homology 3–spheres).
Uncountability is already suggested by Corollary 5.1, but the structure of Q is richer
than can be obtained just by acting by R at the two ends, as can be seen as follows.
For V;V 0 2Q, call V a slice of V 0 if it embeds in V 0 separating the ends. (For this
discussion, orientations and order of the ends do not matter.) Every known “large”
exotic R4 has a neighborhood of infinity in Q with the property that disjoint slices are
never diffeomorphic [19]. This neighborhood clearly has infinitely many disjoint slices,
which form an infinite family in Q such that no two share a common slice. Thus, no
two are obtained from a common element of Q by the action of R�R. A similar
family representing the other class in Z=2 is obtained from the end of a smoothing of
Freedman’s punctured E8 –manifold.

To get an action on S.X / for n � 4, let  W S � R ! X (with S discrete) be a
proper, locally orienting TOP embedding. Then QS has a well-defined action on S.X /
(although without infinite iteration) by the same method as before, and this only
depends on the proper homotopy class of  . (We assume after proper homotopy that
�1.@X / D ∅. To see that a self-homeomorphism rel boundary of R �Dn�1 is
isotopic to the identity, first use the topological Schoenflies theorem to reduce to the
case where f0g�Dn�1 is fixed.) Note that while Q admits only finite sums, the set S

may be countably infinite. Examples 3.4 showed that the action of Q on S.X / for a
two-ended 4–manifold X can depend on the choice of line spanning the ends, and in
high dimensions, even the resulting diffeomorphism type can depend on the line. We
next find fundamental group conditions eliminating such dependence.

To obtain such conditions, note that the fundamental progroup of X based at a ray 
has an inverse limit with well-defined image in �1.X;  .0//. In the Mittag-Leffler case,
its image equals the image of �1.U2;  .2// for a suitably defined neighborhood system
of infinity (ie with j D i C 1 in Definition 4.1). If  is instead a line, it splits as a pair
˙ of rays, obtained by restricting its parameter ˙t to Œ0;1/, determining ends �˙
and images G˙��1.X;  .0// of the corresponding inverse limits. We will call the pair
.��; �C/ a Mittag-Leffler couple if both ends are Mittag-Leffler and the double coset
space G�n�1.X;  .0//=GC is trivial. The proof below shows that  is then uniquely
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determined up to proper homotopy by the pair of ends, so the condition is independent
of choice of  (as well as the direction of  ). A proper embedding  W S�R!X now
splits into ML and bad according to which lines connect Mittag-Leffler couples, and
the restriction �ML of the end function � W S �f˙1g! E picks out the corresponding
pairs of Mittag-Leffler ends. For simplicity, we now assume X is oriented.

Corollary 5.5 Let X be an oriented topological n–manifold (with n � 4) with a
proper embedding  W S �R! X. Then  determines an action of QS on S.X /,
depending only on the proper homotopy classes of bad and ML . If the latter consists
of finitely many lines , it only affects the action through its end function �ML .

If X is simply connected and EML is finite, we obtain a canonical action of QEML�EML

on S.X /.

Proof For a proper embedding  of R determining a Mittag-Leffler couple �˙ as
above, we show that any other embedding  0 determining the same ordered pair of ends
is properly homotopic to  . This verifies that Mittag-Leffler couples are well defined,
and proves the corollary. (The finiteness hypothesis guarantees properness of the
homotopy that we make using the proper homotopies of the individual lines.) Let fUig

be a neighborhood system of infinity as in the proof of Lemma 4.11, and reparametrize
the four rays ˙ and 0

˙
accordingly (fixing 0). As before, we can properly homotope  0

to agree with  on Z�R, so that  and  0 are related by a doubly infinite sequence
of loops. The loop captured between ˙2 (starting at  .0/, then following � ,  0 and,
backwards, C ) represents a class in �1.X;  .0// that by hypothesis can be written in
the form w�wC with w˙ 2G˙ . After a homotopy of  0 supported in Œ�2; 2�, we can
assume that  0 D  on Œ�1; 1�, and the innermost loops are given by w˙ pulled back
to �1.U1;  .˙1//. Working with each sign separately, we now complete the proof
of Lemma 4.11(a), denoting the pullback of w˙ by x1 as before. By the definition
of G˙ , x1 can be assumed to pull back further to �1.U2; ˙.2//; let y2 be the inverse
of such a pullback. Completing the construction, we see that z1 D 1, so that  0 is then
properly homotoped to  rel Œ�1; 1�.

Corollary 5.5 is most interesting when nD 4, since classical smoothing theory reduces
the higher-dimensional case to discussing the Poincaré duals of the relevant lines in
H n�1.X; @X I‚n�1/. When nD 4, this same discussion applies to the classification of
smoothings up to stable isotopy (isotopy after product with R) by the obstruction group
H 3.X; @X IZ=2/, but one typically encounters uncountably many isotopy classes (and
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diffeomorphism types) within each stable isotopy class. Note that the above method
can be used to study sums of more general CAT manifolds along collections of lines.
In dimension 4, one can also consider actions on S.X / of the monoid Qk of oriented
smooth manifolds homeomorphic to a k –punctured 4–sphere †k with an order on
the ends, generalizing the cases Q1 DR and Q2 DQ considered above. (The monoid
operation is summing along k –fold unions of rays with a common endpoint; see the
end of Gompf [20] for a brief discussion.) However, little is known about this monoid
beyond what can be deduced from Corollaries 5.1 and 5.5 and the structure of R
and Q. It follows formally from having infinite sums that R has no nontrivial invertible
elements, and no nontrivial homomorphism to a group [19]; see also Theorem 6.2.
However, the other monoids do not allow infinite sums. This leads to the following
reformulation of Question 3.5:

Question 5.6 Does Q (or more generally any Qk with k � 2) have any nontriv-
ial invertible elements? Is H 3.†k IZ=2/ the largest possible image of Qk under a
homomorphism to a group?

6 1–handle slides and 0=1–handle cancellation at infinity

Our uniqueness result for adding 1–handles at infinity (Theorem 4.6) easily extends to
adding both 0– and 1–handles at infinity, while allowing infinite slides and cancellation
(Theorem 6.1). With compact handles of index 0 and 1, one may easily construct
countable handlebodies that are contractible, but are distinguished by their numbers
of ends. In this regard, adding 0– and 1–handles at infinity turns out to be simpler.
For instance, in each dimension at least four, every (at most) countable, connected and
oriented union of 0– and 1–handles at infinity is determined by its first Betti number.
As an application of Theorem 6.1, we give a very natural and partly novel proof of the
hyperplane unknotting theorem. The novelty here is that 0– and 1–handles at infinity
provide the basic framework in which we employ Mazur’s infinite swindle.

For simplicity, we assume throughout this section that all manifolds are oriented and
all handle additions respect orientations.

Let X be a possibly disconnected CAT n–manifold with n� 4. Add to X a collection
of 0–handles at infinity W D

F
i2J wi where each wi is CAT homeomorphic to Rn .

The index set J and all others below are discrete and countable. Attach to X tW a
collection of 1–handles at infinity H D

F
i2S hi where each hi is CAT homeomorphic
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h1

h2

h3 h4

h5

h6

h7

h8

h9

h10

h11

h12 h13

w1

w2

w3

w4

w5 w6

X

Figure 2: Manifold Z obtained from the manifold X by adding 0– and
1–handles at infinity, the latter denoted by arcs

to Œ0; 1��Rn�1 (see Figure 2). By Definition 2.1 and Theorem 4.6, H is determined
by multiray data �; CW S � Œ0;1/ ,!X tW with disjoint images.

To this data, we associate a graph G defined as follows (see Figure 3). Let fvi j i 2 Ig

be the set of proper homotopy classes of rays in the multiray data for H that lie in X.
Each vi has at least one representative of the form �.ji/ or C.ji/ for some ji 2 S.
The vertex set V of G is

V WD fvi j i 2 Ig t fwi j i 2 J g:

D1
C1

C2

C3

v1

v2

v3

v4

v5

w1

w2

w3

w4

w5 w6

P1 D fv1; v2; v4g

P2 D fv3g

P3 D fv5g

Figure 3: Graph G associated to the construction in Figure 2 and induced
partition of the vertices vi in X
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The collection E of edges of G is bijective with the 1–handles at infinity H and thus
is indexed by S. The edge ei , with i 2 S, corresponding to hi is formally defined
to be the multiset of the two vertices in V determined by the multiray data of hi . In
particular, E itself is a multiset, and the graph G is countable, but is not necessarily
locally finite, connected or simple. Indeed, G may have multiple edges and loops. Let
C D

F
i2I.C / Ci be the connected components of G such that each component Ci

contains a vertex vj.i/ in X. Let D D
F

i2I.D/Di be the remaining components of
G where each component Di contains no vertex vj in X. Notice that C induces a
partition P D fPj j j 2 I.C /g of fvi j i 2 Ig where Pj is the subset of vertices in
fvi j i 2 Ig that lie in Cj . Below, Betti numbers bk are finite or countably infinite.

Theorem 6.1 For a CAT n–manifold X with n�4, the CAT oriented homeomorphism
type of the manifold Z obtained by adding 0– and 1–handles at infinity to X as above
is determined by:

(a) The set of pairs .Pj ; b1.Cj // where Pj 2 P .

(b) The multiset with elements b1.Di/ where i 2 I.D/.

Thus, we only need to keep track of which proper homotopy classes of rays in X

are used by at least one 1–handle (encoded as the vertices in each Pj ), together with
the most basic combinatorial data of the new handles. When the relevant ends are
Mittag-Leffler, we can replace the ray data by the set of corresponding ends. The
theorem implies that all 0–handles at infinity can be canceled except for one in each
component of Z disjoint from X, and that we can slide 1–handles over each other
whenever their attaching rays are properly homotopic (eg whenever they determine
the same Mittag-Leffler end). Furthermore, any reasonable notion of infinitely iterated
handle sliding is allowed.

Proof First, consider a component Di of G. Let M denote the component of Z

corresponding to Di . By Corollary 4.7, we can and do assume that the rays used to
attach 1–handles at infinity in M are radial (while still remaining proper and disjoint).
Then, when Di is a tree, we can easily describe M as a nested union of smooth
n–disks, so it is a copy of Rn . In general, a spanning tree T of Di determines a copy
of Rn in M (namely, one ignores a subset of the 1–handles at infinity). Thus, M

is Rn with b1.Di/ 1–handles at infinity attached. By Corollary 4.7, such a manifold
is determined by b1.Di/.

Second, consider a component Cj of G. Let N denote the component of Z corre-
sponding to Cj . Let N 0 be the n–manifold obtained from N as follows. For each
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vertex vk in Cj , introduce a 0=1–handle pair at infinity where the new 1–handle at
infinity attaches to a ray in the class vk and to a ray in the new 0–handle at infinity.
Also, the 1–handles at infinity in N attached to rays in the class of vk attach in N 0

to rays in the new 0–handle at infinity. Theorem 4.6 implies that N and N 0 are CAT

oriented homeomorphic. The graph C 0j corresponding to N 0 is obtained from Cj by
adding a leaf to each vk . Let T be a spanning tree of the connected graph obtained
by removing the new leaves from C 0j . Then, T determines a copy of Rn in N 0. This
exhibits N 0 as the components of X containing the vertices in Pj , a single 0–handle
at infinity w0 , b1.Cj / oriented 1–handles at infinity attached to w0 , and an oriented
1–handle at infinity from each vk 2 Pj to w0 .

As an application of 1–handle slides and 0=1–handle cancellation at infinity, we prove
the hyperplane unknotting theorem of Cantrell [9] and Stallings [38]. Recall that we
assume CAT embeddings are locally flat.

Theorem 6.2 Let f W Rn�1! Rn be a proper CAT embedding with n � 4, and let
H D f .Rn�1/. Then there is a CAT homeomorphism of Rn that carries H to a linear
hyperplane.

A CAT ray in Rk is unknotted provided there is a CAT homeomorphism of Rk that
carries the ray to a linear ray. Recall that each CAT ray in Rk , k � 4, is unknotted. For
CATD PL and CATDDIFF , this fact follows from general position, but for CATD TOP it
is nontrivial and requires Homma’s method (see Lemma 4.12 above and [8, Section 7]).
Thus, the following holds under the hypotheses of Theorem 6.2 by taking r to be the
image under f of a linear ray in Rn�1 : There is a CAT ray r �H that is unknotted in
both H and Rn , where the former means f �1.r/ is unknotted in Rn�1 .

The hyperplane H separates Rn into two connected components by Alexander duality.
Let A0 and B0 denote the closures in Rn of these two components as in Figure 4. So,
@A0 DH D @B0, and H has a bicollar neighborhood in Rn . Using the bicollar, define

A WDA0[ .open collar on H in B0/;

B WDB0[ .open collar on H in A0/;

as in Figure 4. Figure 4 also depicts CAT rays a�A and b � B that are radial with
respect to the collarings. Evidently, a and b are CAT ambient isotopic to r in A

and B , respectively. (These simple isotopies have support in a neighborhood of the
open collars).
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Rn

H

A0

B0 r

a

b

.A; r/

.B; r/

Figure 4: Closures A0 and B0 of the complement of H in Rn (left) and their
unions A and B with open collars on H (right)

Lemma 6.3 It suffices to show that A0 and B0 are CAT homeomorphic to the closed
upper half-space Rn

C .

Proof We are given CAT homeomorphisms gW A0!Rn
C and hW B0!Rn

C . Replace
h by its composition with a reflection so that h maps B0!Rn

� . Note that g and h

need not agree pointwise on H. Identify Rn�1 � f0g with Rn�1 . We have a CAT

homeomorphism j W Rn�1!Rn�1 given by the restriction of gıh�1 to Rn�1 . Define
the CAT homeomorphism kW B0!Rn

� by k D .j � id/ıh (that is, compose h with j

at each height). Now, g and k agree pointwise on H. For CATD TOP and CATD PL ,
the proof of the lemma is complete. For CATD DIFF , one smooths along collars as in
Hirsch [27, Theorem 1.9, page 182].

D .A; a/Š .A; r/

D .B; b/Š .B; r/

D .Rn; c/

Figure 5: Notation for relevant manifold/ray pairs

We will use the symbols in Figure 5 to denote the indicated manifold/ray pairs. Here,
c is a radial ray in Rn . All rays in this proof, such as a and b , will be parallel (CAT

ambient isotopic) to r or c . An added 1–handle at infinity will be denoted by an arc
connecting such symbols as in Figure 6.

Lemma 6.4 All three of the manifold/ray pairs in Figure 6 are CAT homeomorphic to
one another.
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ŠŠ

Figure 6: Isomorphic manifold/ray pairs

Proof First, we claim that adding a 1–handle at infinity to .A; a/t .B; b/ yields Rn .
Recalling the collars in Figure 4, the claim would be evident if we could choose the
tubular neighborhood maps for the 1–handle at infinity to be the full collars in the Rn�1

directions. However, an open tubular neighborhood must, by our definition, extend
to a closed tubular neighborhood. So, instead we use smaller tubular neighborhoods
inside the collars as follows. Identify the collar on H in A with Rn�1 � Œ0; 1/ so that
H corresponds to Rn�1 � f0g and the ray a corresponds to f0g �

�
1
2
; 1
�
. For each

t 2
�

1
2
; 1
�
, there is an open horizontal .n�1/–disk in Rn�1 � Œ0; 1/ at height t , of

radius 1=.1� t/ and with center on a. The union of these disks is our desired open
tubular neighborhood of a. Similarly, we obtain an open tubular neighborhood of b

using the compatible collar in B . The claim follows by attaching the 1–handle at
infinity using these tubular neighborhood maps and reparametrizing collars. Next, let
a0 and b0 be the indicated rays in Figure 6 parallel to a and b , respectively. The lemma
follows by shrinking the above tubular neighborhood maps in the Rn�1 directions to
be disjoint from a0 and b0, respectively.

Lemma 6.5 It suffices to prove that .A; a/ and .B; b/ are CAT homeomorphic as
pairs to .Rn; c/.

Proof First, consider the cases CATD DIFF and CATD PL . The collar on H in A is
a CAT closed regular neighborhood of a in A with boundary H. Using the hypothesis
.A; a/Š .Rn; c/, apply uniqueness of such neighborhoods in .Rn; c/ to see that A0 is
CAT homeomorphic to Rn

C . Similarly, B0 is CAT homeomorphic to Rn
C . Now, apply

Lemma 6.3.

For CATD TOP , we are given a homeomorphism gW .A; a/! .Rn; c/. Let V ŠRn
C

be the collar added to A0 along H to obtain A as in Figure 4. Let U Š Rn
C be a

collar on H in A on the opposite side of H as in Figure 7. Recall that Rn itself is an
open mapping cylinder neighborhood of c in Rn (see Kwun and Raymond [32] and
Calcut, King and Siebenmann [8, pages 1816 and 1831]). Similarly, U [V is an open
mapping cylinder neighborhood of a in U [V . So, g.U [V / is another open mapping
cylinder neighborhood of c in Rn . Uniqueness of such neighborhoods (see [32; 8])
implies there exists a homeomorphism hW g.U [V /!Rn that fixes g.V / pointwise.
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{
{

.A; a/

U

V

a H

g

Š

c

.Rn; c/

Figure 7: Homeomorphic manifold/ray pairs .A; a/ and .Rn; c/ . Also de-
picted are the hyperplane H, the collar V added to A0 to obtain A , a collar
U on the other side of H, and their images in Rn .

Therefore,
g.U /ŠRn

� Int g.V /D g.A0/:

Hence, A0 Š U Š Rn
C . Similarly, B0 is homeomorphic to Rn

C . Again, Lemma 6.3
completes the proof.

Finally, we come to the heart of the proof of the hyperplane unknotting theorem. Mazur’s
infinite swindle [33] is realized as 1–handle slides and 0=1–handle cancellations at
infinity. Figure 8 proves that .A; a/ is CAT homeomorphic to .Rn; c/. In Figure 8, the

Š

Š

Š

Š

Š

Figure 8: Mazur’s infinite swindle as 1–handle slides and 0=1–handle can-
cellations at infinity
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horizontal region is a copy of Rn . The first, third and fifth isomorphisms in Figure 8
hold by Theorem 6.1. The second and fourth isomorphisms hold by Lemma 6.4. With
.A; a/Š .Rn; c/, Figure 6 implies that .B; b/Š .Rn; c/. By Lemma 6.5, our proof of
the hyperplane unknotting theorem is complete.
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The topology of arrangements of ideal type

NILS AMEND

GERHARD RÖHRLE

In 1962, Fadell and Neuwirth showed that the configuration space of the braid
arrangement is aspherical. Having generalized this to many real reflection groups,
Brieskorn conjectured this for all finite Coxeter groups. This in turn follows from
Deligne’s seminal work from 1972, where he showed that the complexification of
every real simplicial arrangement is a K.�; 1/–arrangement.

We study the K.�; 1/–property for a certain class of subarrangements of Weyl
arrangements, the so-called arrangements of ideal type AI . These stem from ideals I
in the set of positive roots of a reduced root system. We show that the K.�; 1/–
property holds for all arrangements AI if the underlying Weyl group is classical and
that it extends to most of the AI if the underlying Weyl group is of exceptional type.
Conjecturally this holds for all AI . In general, the AI are neither simplicial nor is
their complexification of fiber type.

14N20, 20F55, 52C35; 13N15

1 Introduction and results

By fundamental work of Fadell and Neuwirth [9], Brieskorn [4] and Deligne [8],
all Coxeter arrangements are K.�; 1/–arrangements, ie the complements of their
complexifications are aspherical spaces.

While Coxeter arrangements are well studied, their subarrangements are considerably
less well understood. In this paper we study the topology of the complements of
certain arrangements which are associated with ideals in the set of positive roots of
a reduced root system, so-called arrangements of ideal type AI (Definition 1.1); see
Sommers and Tymoczko [19, Section 11]. We show that a combinatorial property
introduced by Röhrle [18, Condition 1.10] combined with Terao’s fibration theorem [21]
gives an inductive method to show that a large class of (the complexifications of) the
arrangements of ideal type AI are indeed K.�; 1/–arrangements. This inductive
technique was used in [18] to show that many of the arrangements AI are inductively
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1342 Nils Amend and Gerhard Röhrle

free. In general a subarrangement of a Weyl arrangement need not be K.�; 1/; eg see
Example 2.7.

Let ˆ be an irreducible, reduced root system and let ˆC be the set of positive roots
with respect to some set of simple roots …. An (upper) order ideal, or simply ideal
for short, of ˆC, is a subset I of ˆC satisfying the following condition: if ˛ 2 I
and ˇ 2 ˆC are such that ˛Cˇ 2 ˆC, then ˛Cˇ 2 I . Recall the standard partial
ordering � on ˆ, ˛ � ˇ provided ˇ � ˛ is a Z�0 –linear combination of positive
roots or ˇ D ˛ . Then I is an ideal in ˆC if and only if, whenever ˛ 2 I and ˇ 2ˆC

with ˛ � ˇ , also ˇ 2 I .

Let ˇ be in ˆC. Then ˇ D
P
˛2… c˛˛ for c˛ 2 Z�0 . The height of ˇ is defined to

be ht.ˇ/D
P
˛2… c˛ . Let I �ˆC be an ideal and let

Ic
WDˆC n I

be its complement in ˆC.

Following [19, Section 11], we associate with an ideal I in ˆC the arrangement
consisting of all hyperplanes with respect to the roots in Ic. Let A .ˆ/ be the Weyl
arrangement of ˆ, ie A .ˆ/ D fH˛ j ˛ 2 ˆ

Cg, where H˛ is the hyperplane in the
Euclidean space V DR˝Zˆ orthogonal to the root ˛ .

Definition 1.1 [19, Section 11] Let I �ˆC be an ideal. The arrangement of ideal
type associated with I is the subarrangement AI of A .ˆ/ defined by

AI WD fH˛ j ˛ 2 Ic
g:

It was shown by Sommers and Tymoczko [19, Theorem 11.1] that each AI is free if
the root system is classical or of type G2 . The general case was settled in a uniform
manner for all types by Abe, Barakat, Cuntz, Hoge and Terao [1, Theorem 1.1]. The
nonzero exponents are given by the dual of the height partition of the roots in Ic.

Note that the complement Ic forms a lower ideal in ˆC. Thus in particular, in type An

the arrangements of ideal type AI are graphic arrangements corresponding to chordal
graphs on nC1 vertices. The freeness of the latter is due to Stanley [20, Proposition 2.8].

In [2, Corollary 5.15], Barakat and Cuntz showed that every Weyl arrangement A .ˆ/

is inductively free. It was shown in [18] that the free subarrangements AI of A .ˆ/

are also inductively free with possible exceptions only in type E8 . The remaining
instances in type E8 were settled only recently by Cuntz, Röhrle and Schauenburg [7].

Algebraic & Geometric Topology, Volume 19 (2019)
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Note that if I D¿, then AI D A .ˆ/ is just the reflection arrangement of ˆ and so
A¿ is K.�; 1/ by Deligne’s result. So we may assume that I ¤¿.

Next we describe a combinatorial condition for an ideal I � ˆC from [18]. Using
induction and Terao’s fibration theorem [21], it allows us to show that a large class of
arrangements of ideal type consists of K.�; 1/ arrangements. Let ˆ0 be a (standard)
parabolic subsystem of ˆ and let

ˆc
0 WDˆ

C
nˆC

0
;

the set of positive roots in the ambient root system which do not lie in the smaller one.

Condition 1.2 [18, Condition 1.10] Let I ¤ ¿ be an ideal in ˆC and let ˆ0 be
a maximal parabolic subsystem of ˆ such that ˆc

0
\ Ic ¤ ¿. Assume that, firstly,

ˆc
0
\ Ic is linearly ordered with respect to �, so that there is a unique root of every

occurring height in ˆc
0
\Ic, and, secondly, for any ˛¤ˇ in ˆc

0
\Ic, there is a  2ˆC

0

such that ˛ , ˇ and  are linearly dependent.

The instances when this condition is satisfied have been determined in [18].

Our first main result shows that Condition 1.2 entails the K.�; 1/–property for the
associated arrangement of ideal type AI .

Theorem 1.3 Let I ¤ ¿ be an ideal in ˆC and let ˆ0 be a maximal parabolic
subsystem of ˆ such that Condition 1.2 is satisfied. Then AI is K.�; 1/.

Specifically, this is the case if and only if one of the following holds:

(i) ˆ is of type An , Bn or Cn for n� 2 or G2 and I is any ideal in ˆC ;

(ii) ˆ is of type Dn for n� 4 and either Ic does not contain both e1˙ en or I is
generated by the root en�2C en�1 ;

(iii) ˆ is of type F4 , E6 , E7 or E8 and I is as in [18, Section 4].

In addition we use Thom’s first isotopy lemma to construct explicit locally trivial
fibrations in each of the remaining instances in type Dn not covered in Theorem 1.3(ii),
ie when ˆ is of type Dn and Ic does contain both e1˙en . Combined with Theorem 1.3,
this gives our second main result.

Theorem 1.4 For ˆ of classical type and I an ideal in ˆC, we have that AI is
K.�; 1/.

Algebraic & Geometric Topology, Volume 19 (2019)



1344 Nils Amend and Gerhard Röhrle

In Table 1 we present the number of all arrangements of ideal type for each exceptional
type in the first row. In the second row, we list the number of all AI when I satisfies
Condition 1.2 with respect to a suitable parabolic subsystem; see [18, Table 1]. Thus,
in these instances AI is K.�; 1/, by Theorem 1.3(iii).

ˆ E6 E7 E8 F4 G2

all AI 833 4160 25080 105 8

aspherical AI 771 3433 18902 85 8

Table 1: Aspherical AI for exceptional ˆ from Theorem 1.3

It is evident from Table 1 that with the possible exception of a relatively small number of
cases in the exceptional types, all AI are K.�; 1/. The number of possible exceptions in
types F4 , E6 , E7 and E8 are 20, 62, 727 and 6178, respectively. Thus, Theorems 1.3
and 1.4 give strong evidence for the following conjecture:

Conjecture 1.5 Let ˆ be a reduced root system with Weyl arrangement A .ˆ/. Then
any subarrangement of ideal type AI of A .ˆ/ is a K.�; 1/–arrangement.

Remarks 1.6 (i) Let ˆ be of type F4 and let I be the ideal generated by the root
0122 of height 5. Although I is not covered by Theorem 1.3, it turns out that AI is
simplicial (see Cuntz and Heckenberger [6]), and so AI is K.�; 1/.

(ii) Since the AI in type E6 and type E7 are localizations of arrangements of ideal
type in type E8 , thanks to Remark 2.2, the open cases in Conjecture 1.5 reduce to the
ones in type F4 and E8 .

Remark 1.7 It is worth emphasizing that Theorems 1.3 and 1.4 provide new examples
for K.�; 1/–arrangements that are neither of fiber type nor simplicial. For instance,
one can check that none of the nonsupersolvable arrangements AI in type E6 that are
shown to be K.�; 1/ by Theorem 1.3 are simplicial. See also Examples 3.6.

Note that in type Dn and type Bn , some of the arrangements AI that contain the full
braid arrangement of An�1 as a subarrangement are shown to be K.�; 1/ by Falk and
Proudfoot [10, Section 5].

For general information about arrangements, Weyl groups and root systems, we refer
the reader to Bourbaki [3] and Orlik and Terao [16].

Algebraic & Geometric Topology, Volume 19 (2019)
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2 Preliminaries

2.1 Hyperplane arrangements

Let V DCn be an n–dimensional complex vector space. A hyperplane arrangement is
a pair .A ;V /, where A is a finite collection of hyperplanes in V . Usually, we simply
write A in place of .A ;V /.

The lattice L.A / of A is the set of subspaces of V of the form H1\� � �\Hi , where
fH1; : : : ;Hig is a subset of A . For X 2L.A /, we have two associated arrangements:
firstly AX WD fH 2 A jX �H g � A , the localization of A at X , and, secondly, the
restriction of A to X , .A X ;X /, where A X WD fX \H jH 2 A nAX g. The lattice
L.A / is a partially ordered set by reverse inclusion: X � Y provided Y � X for
X;Y 2L.A /.

Throughout, we only consider arrangements A such that 0 2 H for each H in A .
These are called central. In that case the center T .A / WD

T
H2A H of A is the unique

maximal element in L.A / with respect to the partial order. A rank function on L.A /

is given by r.X / WD codimV .X /. The rank of A is defined as r.A / WD r.T .A //.

2.2 K.�; 1/–arrangements

A member X in L.A / is said to be modular provided X C Y 2 L.A / for every
Y 2L.A / [16, Corollary 2.26]. The following is an immediate consequence of Terao’s
work [21] (see also [16, Section 5.5]). Indeed, A is strictly linearly fibered (see
Definition 2.3) if and only if L.A / admits a modular element of rank r � 1; see
[21, Corollary 2.14] (see also [16, Corollary 5.112]).

Lemma 2.1 Let A be a complex arrangement of rank r . Suppose that X 2L.A / is
modular of rank r � 1. If AX is K.�; 1/, then so is A .

Remark 2.2 Thanks to an observation by Oka, if the complex arrangement A

is K.�; 1/, then so is every localization AX for X in L.A /; eg see [17, Lemma 1.1].

There is a standard construction for K.�; 1/–arrangements using locally trivial fibra-
tions with K.�; 1/–spaces as bases and fibers. The long exact sequence in homotopy
theory then gives that M.A / is a K.�; 1/–space; eg see [16, Theorem 5.9]. We
recall two basic definitions due to Falk and Randell [11]; also see [16, Definitions 5.10
and 5.11].

Algebraic & Geometric Topology, Volume 19 (2019)
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Definition 2.3 An n–arrangement A is called strictly linearly fibered if, after a
suitable linear change of coordinates, the restriction of the projection of M.A / to the
first n� 1 coordinates is a locally trivial fibration whose base space is the complement
of an arrangement in Cn�1 and whose fiber is the complex line C with finitely many
points removed.

Definition 2.4 (i) The 1–arrangement .f0g;C/ is of fiber type.

(ii) For n� 2, the n–arrangement A is of fiber type if A is strictly linearly fibered
with base M.B/, where B is an .n�1/–arrangement of fiber type.

A repeated application of the homotopy exact sequence shows that a fiber-type arrange-
ment A is K.�; 1/; eg see [16, Proposition 5.12].

The following important tool for proving that a given map is a locally trivial fibration
is due to Thom [22]; see also [15].

Theorem 2.5 (Thom’s first isotopy lemma) Let M and P be smooth manifolds,
f W M ! P a smooth mapping and S �M a closed subset which admits a Whitney
stratification S . Suppose f jS W S!P is proper and f jX W X !P is a submersion for
each stratum X 2S . Then f jS W S ! P is a locally trivial fibration and, in particular,
f jX W X ! P is a locally trivial fibration for all X 2S .

Let Bn be the reflection arrangement of the hyperoctahedral group of type Bn . In the
following example we consider a fiber-type subarrangement Jn of Bn which is used
in Section 4 in the proof of Theorem 1.4.

Example 2.6 The subarrangement Jn of Bn is obtained by removing the anti-
diagonals from Bn . So Jn is the union of the rank n Boolean arrangement and the
braid arrangement An�1 , ie Jn has defining polynomial

Q.Jn/ WD

nY
iD1

xi

Y
1�i<j�n

.xi �xj /:

One easily checks that Jn is of fiber type, eg by projecting onto the first n � 1

coordinates and using induction on n.

We observe that the fiber-type arrangement Jn was already used by Brieskorn in his
proof of the asphericity of the Coxeter arrangement in type Dn ; see [4; 11, Section 5].
Also note that Jn is the irreducible version of the braid arrangement of type An . It

Algebraic & Geometric Topology, Volume 19 (2019)
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is isomorphic to the restriction A .An/
X , where X D ker.x0/; the hyperplane ker xi

in Jn then corresponds to the hyperplane ker.x0�xi/ in A .An/.

The following related example shows that in general a subarrangement of a Coxeter
arrangement need not be K.�; 1/ (nor free):

Example 2.7 Let Bn be as above and let An�1 be its subarrangement consisting of
the braid arrangement of type An�1 . Let

Kn WDBn nAn�1

be the complement of An�1 in Bn . As opposed to the subarrangement Jn of Bn

from Example 2.6, rather than removing the antidiagonal hyperplanes from Bn , for Kn

we remove all the diagonals instead. Thus, Kn has defining polynomial

Q.Kn/D

nY
iD1

xi

Y
1�i<j�n

.xi Cxj /:

We show by induction on n that Kn is not K.�; 1/ for n� 3. Owing to [12, (3.12)],
K3 is not K.�; 1/. Now suppose that n > 3 and that the statement holds for Kn�1 .
Let X WD

Tn�1
iD1 ker xi . Then one readily checks that

.Kn/X ŠKn�1:

It follows from our induction hypothesis and Remark 2.2 that also Kn fails to be K.�; 1/.

In [12, (3.12)], Falk and Randell also observe that K3 is not free. Accordingly, by
the argument above along with [16, Theorem 4.37], we see that Kn is not free for
all n� 3.

So, while the construction of Kn is quite similar to that of Jn , its combinatorial,
algebraic and topological properties differ sharply from those of Jn .

3 Proof of Theorem 1.3

Let ˆ be a reduced root system of rank n with Weyl group W and reflection arrange-
ment A D A .ˆ/D A .W /. Let ˆC be the set of positive roots with respect to some
set of simple roots … of ˆ. For …0 a proper subset of …, the (standard parabolic)
subsystem of ˆ generated by …0 is ˆ0 WDZ…0\ˆ; see [3, Chapter VI, Section 1.7].
Define ˆC

0
WDˆ0\ˆ

C, the set of positive roots of ˆ0 with respect to …0 . If the rank
of ˆ0 is n� 1, then ˆ0 is said to be maximal.

Algebraic & Geometric Topology, Volume 19 (2019)
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Set X0 WD
T
2ˆ

C

0

H . Then A .ˆ/X0
DA .ˆ0/. Therefore, the reflection arrangement

A .WX0
/ of the parabolic subgroup WX0

is just A .ˆ0/, ie ˆ0 is the root system of WX0

(see [16, Theorem 6.27, Corollary 6.28]).

Definition 3.1 Fix a standard parabolic subsystem ˆ0 of ˆ. For I an ideal in ˆC,

I0 WD I \ˆC
0

is an ideal in ˆC
0

. Thus,

AI0
WD fH j  2 Ic

0 Dˆ
C

0
n I0g

is an arrangement of ideal type in A .ˆ0/, the Weyl arrangement of ˆ0 .

Obviously, since Ic
0
DˆC

0
nI0DIc\ˆC

0
�Ic, we may view AI0

as a subarrangement
of AI rather than as a subarrangement of A .ˆ0/. Note however, as such, AI0

is not
of ideal type in A in general, since I0 need not be an ideal in ˆC. We continue by
recalling some basic facts from [18].

Lemma 3.2 [18, Lemma 3.1] Viewing AI0
as a subarrangement of AI , we have

AI0
D .AI/X0

.

The next observation shows that Condition 1.2 entails the presence of a modular element
in L.AI/ of rank r.AI/� 1.

Lemma 3.3 [18, Lemma 3.4] If I � ˆC and ˆ0 satisfy Condition 1.2, then the
center Z WD T ..AI/X0

/ of .AI/X0
is modular of rank r.AI/� 1 in L.AI/.

Observe that X0 itself need not belong to L.AI/; eg see [18, Example 3.3].

Our next result shows that Condition 1.2 allows us to derive the K.�; 1/–property
for AI from that of AI0

. It is just a consequence of Lemma 2.1.

Corollary 3.4 Let I be an ideal in ˆC and let ˆ0 be a maximal parabolic subsystem
of ˆ such that either ˆc

0
\ Ic D¿ or Condition 1.2 is satisfied. Then AI0

is K.�; 1/

if and only if AI is K.�; 1/.

Proof If ˆc
0
\IcD¿, then AI is the product of the empty 1–dimensional arrangement

and AI0
, and so the result is clear. Otherwise, AI0

D .AI/X0
D .AI/Z , by Lemmas 3.2

and 3.3. Therefore, the forward implication follows from Lemmas 2.1 and 3.3, while
the reverse implication is clear by Remark 2.2.
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We note that modular elements of corank 1 were constructed in [10, Lemma 5.4] for
certain subarrangements of the reflection arrangement Bn of the hyperoctahedral group
of type Bn that contain the full braid arrangement An�1 of type An�1 .

Remark 3.5 Let ˆ be of type Dn for n� 4 and let ˆ0 be the standard subsystem
of ˆ of type Dn�1 . Here and in Section 4 we use the notation for the positive roots
from [3, Section 4.8, Planche IV]. Then ˆc

0
D fe1˙ ej j 2� j � ng. Note that ˆc

0
is

not linearly ordered by �, as e1˙ en both have height n� 1.

Suppose that I¤¿ fails to satisfy Condition 1.2 (with respect to our fixed ˆ0 ). This is
precisely the case when both e1˙ en belong to Ic. Then I consists of roots from ˆC

each of which admits the root en�2C en�1 of height 3 as a summand. Otherwise, at
least one of e1˙ en must belong to I , as I is an ideal in ˆC. This contradicts the
assumption on I . In turn this implies that if I0 D ˆ0 \ I is nonempty and fails to
satisfy Condition 1.2 with respect to the maximal rank subsystem of ˆ0 of type Dn�2 ,
then I fails to satisfy Condition 1.2 with respect to ˆ0 . For, if each root in I0 admits
the root en�3C en�2 as a summand, then necessarily each root in I has en�2C en�1

as a summand.

We conclude that if I satisfies Condition 1.2 with respect to ˆ0 , then I0 satisfies
Condition 1.2 with respect to the subsystem of ˆ0 of type Dn�2 .

Proof of Theorem 1.3 (i) For ˆ of type An , Bn or Cn for n� 2, it follows from
[19, Section 7] that for ˆ0 the canonical maximal rank subsystem of type An�1 , Bn�1

or Cn�1 , respectively, each I satisfies Condition 1.2, because irrespective of I , in each
case ˆc

0
is linearly ordered by �. So the result follows in this instance from induction

on the rank, Corollary 3.4 and the fact that central rank 2–arrangements are K.�; 1/;
see [16, Proposition 5.6]. The last result also implies that for ˆ of type G2 each
arrangement of ideal type is K.�; 1/. The very same inductive argument shows that
in all these cases each AI is actually supersolvable; see [18, Theorem 1.5], and also
[13, Theorems 6.6 and 7.1], where this is proved by different means.

(ii) Now let ˆ be of type Dn for n � 4 and let ˆ0 be the standard subsystem of
ˆ of type Dn�1 . We argue by induction on n. For n D 4, the result follows from
[18, Lemma 6.1]. Indeed, each AI which satisfies the hypothesis of the theorem is
already supersolvable.

Now suppose that n � 5 and that the result holds for root systems of type D of
smaller rank. If I0 Dˆ0\ I D¿, then AI0

DA .Dn�1/. Being simplicial, the latter
is K.�; 1/. It follows from Corollary 3.4 that also AI is K.�; 1/.
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Now suppose that I0¤¿. By Remark 3.5, I0 satisfies Condition 1.2 and so, by induc-
tion, AI0

is K.�; 1/. Using Corollary 3.4 again, we conclude that AI is also K.�; 1/,
as desired.

Now let I be the ideal in ˆ which is generated by en�2 C en�1 . Then one easily
checks that I satisfies Condition 1.2 with respect to either one of the two subsystems
of type An�1 ; see [18, Example 3.9]. So it follows from part (i) and Corollary 3.4
that AI is also K.�; 1/ in this instance.

(iii) Now suppose that ˆ is of type F4 , E6 , E7 or E8 . All instances when I
satisfies Condition 1.2 with respect to a suitably chosen maximal-rank subsystem ˆ0

are discussed in detail in [18, Section 4]. Perusing the arguments and in particular the
data in Tables 6–9 in [18, Section 4], one checks that in each instance either I0 D¿,
or I0 ¤ ¿ satisfies Condition 1.2 with respect to ˆC

0
. In the first instance we have

AI0
D A .ˆ0/, which is simplicial, and so it is K.�; 1/. In the second instance,

AI0
is K.�; 1/ by induction. In both cases it follows from Corollary 3.4 that also AI

is K.�; 1/, as claimed.

We illustrate the inductive arguments in the proof of Theorem 1.3(iii) in the following
examples.

Examples 3.6 (a) Let ˆ be of type E6 and let I be the ideal generated by the root
00111

0 of height 3. Then, according to the last entry for E6 in [18, Table 6], I together
with the subsystem ˆ0 of type D5 satisfy Condition 1.2. Since I0D¿, AI0

DA .ˆ0/

is the full reflection arrangement of type D5 , which is K.�; 1/. Thus, so is AI , by
Corollary 3.4.

(b) Next consider ˆ of type E7 and let I be the ideal generated by the root 001110
0 of

height 3. Then according to the next to last entry for E7 in [18, Table 6], I together
with the subsystem ˆ0 of type E6 satisfy Condition 1.2. Now I0 is just the ideal
in E6 considered in part (a). Consequently, AI0

is K.�; 1/. But then so is AI , again
by Corollary 3.4.

(c) Finally, let ˆ be of type E8 and let I be the ideal generated by the root 0011100
0 of

height 3. Thanks to the data in the fifth row for E8 in [18, Table 6], I together with the
subsystem ˆ0 of type E7 satisfy Condition 1.2. As I0 is the ideal in E7 considered
in part (b), we have that AI0

is K.�; 1/ and so is AI , thanks to Corollary 3.4.

Note that none of the three arrangements of ideal type AI considered in Examples 3.6
is supersolvable (see [13, Lemma 6.2]) and none of them is simplicial.
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4 Proof of Theorem 1.4

Thanks to Theorem 1.3, Theorem 1.4 follows once the outstanding instances in type Dn

not covered in Theorem 1.3(ii) are resolved. Accordingly, these are the instances when
I consists of roots from ˆC each of which admits the root en�2C en�1 of height 3

as a summand, by Remark 3.5. In addition, by the proof of Theorem 1.3, we need not
consider the case when I is the ideal in ˆ which is generated by en�2C en�1 . We
list the different cases we need to consider below. We distinguish three different types
of such ideals I according to their generators. In the first two instances, each I is
generated by just a single root and by two in the third case:

(I) 0 : : : 01 : : : 1
1
1D er C en�1 for 1� r < n�2. Here r is the first position with 1

as coefficient.

(II) 0 : : : 01 : : : 12 : : : 12
1
1D es C et , where 1 � s < t < n� 1. Here s is the first

position with a coefficient 1 and t is the first position labeled with 2.

(III) 0 : : : 01 : : : 1
1
1D erCen�1 for 1� r < n�2 and 0 : : : 01 : : : 12 : : : 12

1
1D esCet ,

where 1� s < t < n� 1 and r < s . Note that the two roots are not comparable,
since r < s .

In the following we give explicit locally trivial fibrations of the complements in each
of the three cases above. First, we consider spaces that are going to serve as our
bases for the locally trivial fibrations in these three instances. Recall the fiber-type
subarrangement Jn of Bn from Example 2.6. In the following three lemmas, we
exhibit three classes of subarrangements of Jn that are still of fiber type.

Lemma 4.1 For 1� r < n� 1 fixed, the n–arrangement

Jn.r/ WDJn n fker.xi �xj / j 1� i � r < j � ng

is of fiber type.

Proof We distinguish two cases: First, assume r D 1. Then the projection

� W Cn
!Cn�1; .z1; : : : ; zn/ 7! .z2; : : : ; zn/;

induces a locally trivial fibration z� WM.Jn.r//!M.Jn�1/ with fiber the complex
plane with one point removed.

Now assume that r > 1. Then we have Jn.r/DJr �Jn�r .

Thus, in both cases, Jn.r/ is of fiber type.
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Lemma 4.2 For 1� s < t < n fixed, the n–arrangement

Jn.s; t/ WDJn n fker.xi �xj / j 1� i � s < j � tg

is of fiber type.

Proof As in the proof of Lemma 4.1, let � W Cn!Cn�1 be the projection

.z1; : : : ; zn/ 7! .z2; : : : ; zn/:

First, assume s D 1. Then � induces a locally trivial fibration

z� WM.Jn.1; t//!M.Jn�1/

with fiber the complex plane with n� t C 1 points removed. So Jn.1; t/ is of fiber
type.

Now assume s > 1. Then � induces a locally trivial fibration

z� WM.Jn.s; t//!M.Jn�1.s� 1; t � 1//

with fiber the complex plane with n� t C s points removed. Thus, Jn.s; t/ is of fiber
type by induction on s .

Lemma 4.3 For 1� r < s < t < n fixed, the n–arrangement

Jn.r; s; t/ WDJn n fker.xi �xj / j 1� i � r < j � n or r < i � s < j � tg

is of fiber type.

Proof Take � W Cn!Cn�1 to be the projection

.z1; : : : ; zn/ 7! .z1; : : : ; zs�1; zsC1; : : : ; zn/:

If s > r C 1, this projection induces a locally trivial fibration

z� WM.Jn.r; s; t//!M.Jn�1.r; s� 1; t � 1//:

If s D r C 1, it induces a locally trivial fibration

z� WM.Jn.r; s; t//!M.Jn�1.r//:

In both cases the fiber is the complex plane with n� r C s � t C 1 points removed.
Now the result follows by induction on s and Lemma 4.1.
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We observe that the identification of Jn with a braid arrangement mentioned in
Example 2.6 yields alternative proofs of Lemmas 4.1–4.3 via Stanley’s theorem [20,
Proposition 2.8]. For, the subarrangement Jn.r/ corresponds to the graphic arrange-
ment with underlying graph the union of the complete subgraphs on the vertices
f0; 1; : : : ; rg and f0; r C 1; : : : ; ng. Further, Jn.s; t/ corresponds to the union of the
complete subgraphs on the vertices

f0; : : : ; s; t C 1; : : : ; ng and f0; sC 1; : : : ; t; t C 1; : : : ; ng:

The arrangement Jn.r; s; t/ then corresponds to the union of complete subgraphs on the
vertices f0; 1; : : : ; rg, f0; rC1; : : : ; s; tC1; : : : ; ng and f0; sC1; : : : ; t; tC1; : : : ; ng.
In all cases the graph is clearly chordal, so the arrangement is of fiber type, thanks to
[20, Proposition 2.8].

Now let I be of type (I), (II) or (III) listed above, set A D AI and, in types (I)–(III),
let B be Jn�1.r/, Jn�1.s; t/ or Jn�1.r; s; t/, respectively. Consider the map

(4.4) f WM.A /!M.B/; .y1; : : : ;yn/ 7! .y2
n �y2

1 ; : : : ;y
2
n �y2

n�1/:

Note that for ID¿, ie AIDA .ˆ/, and BDJn�1 , the map f was used in [4] to show
asphericity in type Dn ; see also [11, Section 5]. Our argument that the map f in (4.4)
is a fibration over these larger bases is inspired by an argument due to Li Li (personal
communication, 2006), who worked out the details of Brieskorn’s approach [4].

Set Y WDM.A / and Z WDM.B/. We can embed Y into Pn �Z by the “graph”
map �W Y ! Pn �Z defined by

.y1; : : : ;yn/ 7! ..1 Wy1 W � � � Wyn/; f .y1; : : : ;yn//

and denote the image of Y by C WD �.Y /. Then the map f is just f D �jC ı Q�,
where Q�W Y ! C is the homeomorphism induced by � and �jC is the restriction of the
projection � W Pn �Z!Z to C. Thus, f is a locally trivial fibration if and only if
�jC is one.

Now let Si be the hypersurface in Cn�Z � Pn�Z defined by zi D y2
n �y2

i , so that
C D S1\ � � � \Sn�1 . For z D .z1; : : : ; zn�1/ 2Z , let

.Si/z WD Si \ .C
n
� fzg/� Pn

� fzg and Cz WD .S1/z \ � � � \ .Sn�1/z;

ie Cz is the fiber of �jC over z . Moreover, let C and Cz denote the projective closures
of C and Cz in Pn �Z , respectively. Then

C D S1\ � � � \Sn�1 and Cz D .S1/z \ � � � \ .Sn�1/z;
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where S i is the hypersurface in Pn � Z given by ziy
2
0
D y2

n � y2
i and for z D

.z1; : : : ; zn�1/ 2Z ,
.Si/z WD S i \ .P

n
� fzg/:

Since S i is defined by y2
n �y2

i D ziy0 for all 1� i � n� 1 and the points at infinity
are given by setting y0 D 0, we get that Cz has the following 2n�1 points at infinity:

..0 W ˙1 W � � � W ˙1 W 1/; .z1; : : : ; zn�1//:

Lemma 4.5 For each z 2Z , the projective closure Cz of Cz is a smooth curve.

Proof The .Si/z intersect transversally, which can be seen by looking at the Jacobian
J D .@fj=@ti.y// of the polynomials given by

fi W Y !C; .t0 W t1 W � � � W tn/ 7! t2
n � t2

i � zi t
2
0 ;

where Y is the projective closure of Y in Pn .

Moreover, we have the following:

Lemma 4.6 For each z 2Z , Cz is connected.

Proof Every point in Cz satisfies the equations

y2
n �y2

1

z1

D � � � D
y2

n �y2
n�1

zn�1

D y2
0 :

First take Un to be the subset of Cz consisting of points ..y0 W � � � Wyn/; .z1; : : : ; zn�1//

with yn ¤ 0. Thus, considering the change of coordinates xi WD yi=yn and fixing
some 1� j � n� 1, we get that

x2
i D g

j
i .xj / for all 1� i � n� 1 and x2

0 D g
j
0
.xj /;

where g
j
i .x/ D .zi=zj /x

2 C .zj � zi/=zj and g
j
0
.x/ D �.1=zj /x

2 C 1=zj . Let ˛0

and ˛1 be the two branches of y D x2 . Then, for any point p 2 Un there are indices
ki 2 f0; 1g such that

pD
��
˛k0

.g
j
0
.xj //W� � �W˛kj�1

.g
j
j�1

.xj //Wxj W˛kjC1
.g

j
jC1

.xj //W� � �W˛kn�1
.g

j
n�1

.xj //W1
�
;

.z1; : : : ;zn�1/
�
:

So, by choosing an appropriate path in C , we may path-connect p to one of the points at
infinity ..0W˙1W� � �W˙1W1/; .z1; : : : ; zn�1//. As 1� j �n�1 is arbitrary and g

j
i .x/D

g
j
i .�x/, any point p 2Un is path-connected to the point ..0W1W � � � W1/; .z1; : : : ; zn�1//.
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Now take U1 to be the subset of Cz consisting of points ..y0 W � � � Wyn/; .z1; : : : ; zn�1//

with y1 ¤ 0 and observe that U1[Un D Cz . By a similar argument as the one above,
for any point q 2 U1 there are indices ki 2 f0; 1g such that

q D
��
˛k0

.h0.xn// W 1 W˛k2
.h2.xn// W � � � W˛kn�1

.hn�1.xn// Wxn

�
; .z1; : : : ; zn�1/

�
;

where h0.x/D .1=z1/x
2
n � 1=z1 , hi.x/D ..z1� zi/=z1/x

2C zi=z1 and xi D yi=y1 .
Now we can again choose a path in C that connects q to one of the points at infinity
..0 W ˙1 W � � � W ˙1 W 1/; .z1; : : : ; zn�1//. Thus, Cz is connected.

Note that this also proves that Cz is connected: as two points in Cz are connected by
a path through finitely many points at infinity and Cz is locally homeomorphic to C ,
we can alter the path around each of the points at infinity to get a path that completely
lies inside Cz .

The above lemmas prove the following:

Corollary 4.7 For each z 2Z , the curve Cz is a connected Riemann surface and Cz

is a connected Riemann surface with 2n�1 puncture points.

Theorem 4.8 The map f defined in (4.4) is a locally trivial fibration.

Proof Set D D C n C, the intersection of C with the infinity hyperplane. Then
S D fC;Dg is a Whitney stratification of C : It is obviously locally finite and satisfies
the condition of the frontier and, as C is open and D its boundary, S trivially satisfies
Whitney condition B. The intersection of D with a fiber Pn � fzg of the projection �
is just the set of the 2n�1 points ..0 W ˙1 W � � � W ˙1 W 1/; .z1; : : : ; zn�1//, which we
can think of locally as 2n�1 sections of � . Thus, �jD is locally homeomorphic and
therefore it is a submersion. The map �jC is a submersion as well, which can be seen
by considering the Jacobian again. Moreover, �jC is proper, as C is a closed subset
of Pn �Z and � is proper. Now, using Thom’s first isotopy lemma, Theorem 2.5,
�jC is a locally trivial fibration and, in particular, f D �jC ı Q� is a fibration as well.

This proves the following:

Theorem 4.9 If I is of type (I), (II) or (III), then AI is K.�; 1/.

Proof Consider the map f W Y !Z from (4.4). Clearly, the fiber f �1.z/ is home-
omorphic to Cz , so by Corollary 4.7 it is a connected Riemann surface with 2n�1
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puncture points. Thus, by the uniformization theorem, it is a K.�; 1/–space. By
Lemmas 4.1, 4.2 and 4.3, Z is a K.�; 1/–space as well. This proves the theorem.

This concludes the proof of Theorem 1.4. Note that none of the arrangements of ideal
type AI of types (I)–(III) considered here are supersolvable (see [13, Lemma 6.2])
and none of them are simplicial. So these families of AI also provide new classes of
K.�; 1/–arrangements.

Remarks 4.10 (i) If A is strictly linearly fibered over B , then there always exists
a section of the associated fibration of the complements M.A /!M.B/, eg see
[5, Corollary 1.1.6]. As a consequence, by the splitting lemma, �1.M.A // is a
semidirect product of �1.M.B// acting on the fundamental group of the fiber. In
particular, this applies to each of the cases considered in Theorem 1.3.

(ii) One can also construct a cross-section to the fibration f W Y ! Z used in the
proof of Theorem 1.4 as follows: Let

yn D yn.z1; : : : ; zn�1/D
p
jz1jC � � �C jzn�1j:

Now, for all .z1; : : : ; zn�1/ 2Z , for all 1� i � n� 1 the real part of y2
i D y2

n � zi is
positive. Thus, choosing a branch ˛ of the square root, we can define yi D ˛.y

2
n � zi/

continuously, yielding a cross-section sW Z! Y . This section was initially constructed
by Falk and Randell in [11, Section 5] in the case A is the full reflection arrangement
of type Dn , which is strictly linearly fibered over B DJn�1 ; see Example 2.6. See
also [14, Section 1.1] for a locally trivial fibration in this case with a slightly different
section.

As f ı s D idZ , the short exact sequence of fundamental groups splits. Thus, by the
splitting lemma we see that �1.Y / is a semidirect product of �1.Z/ acting on �1.Cz/,
where Cz is the fiber over z 2Z as above.
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Topological complexity of
unordered configuration spaces of surfaces

ANDREA BIANCHI

DAVID RECIO-MITTER

We determine the topological complexity of unordered configuration spaces on almost
all punctured surfaces (both orientable and nonorientable). We also give improved
bounds for the topological complexity of unordered configuration spaces on all
aspherical closed surfaces, reducing it to three possible values. The main methods
used in the proofs were developed in 2015 by Grant, Lupton and Oprea to give bounds
for the topological complexity of aspherical spaces. As such this paper is also part
of the current effort to study the topological complexity of aspherical spaces and
it presents many further examples where these methods strongly improve upon the
lower bounds given by zero-divisor cup-length.

55M99, 55P20; 20J06, 55M30, 68T40

1 Introduction

In 2003 Farber introduced the topological complexity of a space to study the problem
of robot motion planning from a topological perspective [5]. It is a numerical homotopy
invariant which measures the minimal instability of every motion planner on this space.
More explicitly, given a path-connected space X, the topological complexity TC.X /

is the sectional category of the free path fibration pX W X
I !X �X (see Section 2).

Determining TC.X / is in general a hard problem. For over a decade the topological
complexity of many spaces has been computed and diverse tools have been developed
to that end.

In this context, configuration spaces have been extensively studied because they are
of special interest from the point of view of robotics. Considering the problem of
moving n objects on a space X avoiding collisions naturally leads to the definition of
the ordered configuration space F.X; n/ of n distinct ordered points on X as

F.X; n/D f.x1; : : : ;xn/ 2X n
j xi ¤ xj for i ¤ j g:
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1360 Andrea Bianchi and David Recio-Mitter

These spaces model automated guided vehicles (AGVs) moving on a factory floor —
see Ghrist [11] — or flying drones trying to avoid each other in the air.

Farber and Yuzvinsky determined the topological complexity of F.Rd ; n/ for d D 2 or
d odd in [10]. Later, Farber and Grant extended the results to all dimensions d in [8].
The topological complexity of ordered configuration spaces of orientable surfaces has
also been computed by Cohen and Farber in [2]. Many more related results can be
found in the recent survey articles by Cohen [1] and Farber [7].

In the configuration spaces F.X; n/ considered above, the points of a configuration
are labeled (or ordered) and the symmetric group Sn acts on F.X; n/ by permuting
the labels. However, in certain situations it greatly improves the efficiency to consider
the points to be identical. For instance, consider a scenario in which all the AGVs
perform the same tasks equally. In this case we are only interested in the positions
of points in X up to permutation, in other words forgetting the labels assigned to the
points. This leads to the unordered configuration spaces C.X; n/D F.X; n/=Sn , by
definition the orbits of the symmetric group action.

As we saw above, there is a very complete picture of the topological complexity of
ordered configuration spaces of 2–dimensional manifolds and beyond. In contrast to
this, very little is known for unordered configuration spaces, as Cohen notes at the end
of [1]. One of the main reasons for this discrepancy is that all the above results use a
cohomological technique involving zero-divisors, which seems to be insufficient for
unordered configuration spaces (at least with constant coefficients).

The results in this paper use a technique to bound the topological complexity of
aspherical spaces developed in 2015 by Grant, Lupton and Oprea [12]. Being a
homotopy invariant, the topological complexity of an aspherical space only depends
on its fundamental group and the methods are algebraic in nature. An introduction to
topological complexity of groups is given in Section 2.

The mentioned technique was already used in the recent paper [13], in which Grant and
the second author computed the topological complexity of some mixed configuration
spaces F.R2; n/=.Sn�k �Sk/ on the plane, with 1 � k � n� 1. These spaces are
in a sense intermediate between the ordered and the unordered case and they model
the situation in which there are two different types of identical AGVs. It turns out that
also in the mixed case the cohomological lower bounds used in previous results are
insufficient.

Algebraic & Geometric Topology, Volume 19 (2019)



Topological complexity of unordered configuration spaces of surfaces 1361

It has to be mentioned that the topological complexity of unordered configuration
spaces of trees was computed in many cases by Scheirer in [16]. To the best of the
authors’ knowledge that is the only previous computation of the topological complexity
of an unordered configuration space with at least three points. It is worth noting that
Scheirer uses the zero-divisor cup-length lower bound, which seems to be insufficient
for unordered configuration spaces of surfaces.

In this paper we determine the topological complexity of the unordered configuration
spaces of all punctured surfaces (orientable and nonorientable) except the disc and the
Möbius band, and narrow it down to three values for all closed aspherical surfaces
(orientable and nonorientable). For the Möbius band we narrow it down to two values
and for the disc we give some improved bounds and a complete answer in the case
of three points. Many of the proofs extend to ordered configuration spaces (this is
discussed at the end of the paper).

All results except the ones for the disc are presented in the following theorem, which
follows from Theorems 4.1, 4.2, 5.1 and 5.3. In the case of the annulus the upper bound
is proven by finding an explicit motion planner.

Theorem 1.1 � Let S be obtained from a closed surface by removing a positive
number of points. If S is not the disc, the annulus or the Möbius band, then

TC.C.S; n//D 2n:

� Let S be a closed surface. If S is not the sphere or the projective plane, then

2n� TC.C.S; n//� 2nC 2:

� If A denotes the annulus, then

TC.C.A; n//D 2n� 1:

� If M denotes the Möbius band, then

2n� 1� TC.C.M; n//� 2n:

Remark 1.2 Theorem 1.1 should be compared to the corresponding results for ordered
configuration spaces of Cohen and Farber in [2]. They are consistent with the possibility
that the values of the topological complexity of ordered and unordered configuration
spaces of surfaces always agree. Note that in [2] the nonreduced version of topological
complexity is used, which is 1 greater than the one used in this paper.

Algebraic & Geometric Topology, Volume 19 (2019)



1362 Andrea Bianchi and David Recio-Mitter

The only aspherical surface not covered by Theorem 1.1 is the disc. The best estimates
we found for the disc are given in the following two theorems. Note that they greatly
improve over the best previously known lower bounds

TC.C.D; n//� cat.C.D; n//D n� 1

coming from the Lusternik–Schnirelmann category cat.C.D; n// (see [13]).

Theorem 1.3 If D is the disc, then

2n� 2� 1
2
n� n� 1C cd.ŒPn;Pn�/� TC.C.D; n//� 2n� 2:

Here cd is the cohomological dimension of a group and ŒPn;Pn� is the commutator
subgroup of the pure braid group of the disc (see Section 3).

We expect that cd.ŒPn;Pn�/ is in fact the maximum possible, which would mean that
Theorem 1.3 narrows TC.C.D; n// down to two possible values.

Conjecture 1.4 The cohomological dimension of ŒPn;Pn� is equal to n� 2.

The following theorem gives a potentially better lower bound (depending on the ac-
tual value of cd.ŒPn;Pn�/, which is unknown to the authors). It also tells us that
asymptotically TC.C.D; n// behaves like 2n.

Theorem 1.5 If D is the disc, then

2n� 2
�p

n=2
˘
� 3� TC.C.D; n//� 2n� 2:

Finally, we compute the topological complexity of the unordered configuration space
of three points on the disc by finding an explicit motion planner.

Theorem 1.6 If D is the disc, then

TC.C.D; 3//D 3:

The authors are grateful to Mark Grant for many useful discussions and comments on
earlier drafts of the paper, and to Gabriele Viaggi for suggesting the strategy for the
proof of Lemma 3.6.
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2 Topological complexity of aspherical spaces

In this section we first define the topological complexity of a general topological space
and then specialize it to aspherical spaces.

For a path-connected topological space X, let pX W X
I !X �X denote the free path

fibration on X, with projection pX . /D . .0/;  .1//.

Definition 2.1 The topological complexity of X, denoted by TC.X /, is defined to be
the minimal k such that X �X admits a cover by kC1 open sets U0;U1; : : : ;Uk , on
each of which there exists a local section of pX (that is, a continuous map si W Ui!X I

such that pX ı si D incli W Ui ,!X �X ).

Note that here we use the reduced version of TC.X /, which is 1 less than the number
of open sets in the cover.

Let � be a discrete group. It is well known that there exists a connected CW–complex
K.�; 1/ with

�i.K.�; 1//D

�
� if i D 1;

0 if i � 2:

Such a space is called an Eilenberg–Mac Lane space for the group � . Furthermore,
K.�; 1/ is unique up to homotopy. Because the topological complexity TC.X / is a
homotopy invariant of the space X (see [5]), the following definition is sensible:

Definition 2.2 The topological complexity of a discrete group � is given by

TC.�/ WD TC.K.�; 1//:

In [6] Farber posed the problem of giving an algebraic description of TC.�/. This
problem is far from being solved but some progress has been made, including the
following theorem:

Theorem 2.3 (Grant, Lupton and Oprea [12, Theorem 1.1]) Let � be a discrete
group and let A and B be subgroups of � . Suppose that gAg�1\B D f1g for every
g 2 � . Then

TC.�/� cd.A�B/:

It is worth noting that this theorem has recently been generalized using different methods
in [9, Corollary 3.5.4].

Algebraic & Geometric Topology, Volume 19 (2019)
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The corresponding problem for the Lusternik–Schnirelmann category of a group has
been completely answered: cat.�/D cd.�/. This classical result is due to Eilenberg
and Ganea [3] for cd.�/¤ 1, while the remaining case follows from the later work by
Stallings [17] and Swan [18].

We will also need the following standard result:

Lemma 2.4 TC.�/� cd.� ��/:

Proof This follows from the upper bound TC.X / � cat.X �X / given by Farber
in [5].

3 The surface braid groups

In this section we introduce the surface braid groups and we recall their main properties.

Definition 3.1 A surface S is a connected closed 2–dimensional manifold possibly
with a finite number of points removed, called punctures.

Recall from the introduction that the configuration space F.S; n/ admits an action
by the symmetric group Sn which permutes the points in each configuration. The
unordered configuration space

C.S; n/D F.S; n/=Sn

is by definition the orbit space of that action.

Definition 3.2 We call Pn.S/D �1.F.S; n// the pure braid group on n strands of
the surface S , and Bn.S/ D �1.C.S; n// the ( full) braid group on n strands of S .
When S is the disc D, we also abbreviate Pn D Pn.D/ and Bn D Bn.D/.

The covering F.S; n/! C.S; n/ yields the short exact sequence

1! Pn.S/! Bn.S/!Sn! 1:

The following theorem is due to Fadell and Neuwirth:

Theorem 3.3 (Fadell and Neuwirth [4]) Denote by Sn the surface obtained from S
by removing n points. There is a locally trivial fibration

(1) Sn! F.S; nC 1/! F.S; n/;

where the projection map forgets the last point of the ordered configuration.

Algebraic & Geometric Topology, Volume 19 (2019)
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It is well known that the only surfaces that are not aspherical are the sphere S2 and the
projective plane RP2 . From now on all the surfaces that we will consider are assumed
to be aspherical. The reason for this is that the methods in this paper only apply to
aspherical spaces.

Corollary 3.4 Let S be an aspherical surface. From the long exact sequence of
the homotopy groups applied to the Fadell–Neuwirth fibrations (1) and induction it
follows that the spaces F.S; n/ are also aspherical. Furthermore, we get the short exact
sequence

(2) 1! �1.Sn/! PnC1.S/! Pn.S/! 1:

We will need the following technical result, which we expect to be well known to the
experts. However, we could not find a full proof in the literature and thus we will give
a detailed proof here. The result appears as Proposition 2.2 in [15] but it relies on
Lemma 3.6 below (Proposition 2.1 in [15]), which is stated there without a proof.

Theorem 3.5 Let S ,! T be a smooth embedding of aspherical surfaces such that the
induced homomorphism �1.S/� �1.T / is injective.

Then the corresponding inclusion C.S; n/ ,! C.T ; n/ induces an injective homomor-
phism Bn.S/! Bn.T /.

In the proof of the theorem the following lemma will be essential. In that lemma a
slightly different definition of nonclosed surface is needed, with open balls removed
instead of points removed. This is the only place in which we make use of this definition.
We stress that this is not an essential distinction because the configuration spaces of
punctured surfaces and the configuration spaces of surfaces with boundary are homotopy
equivalent.

Lemma 3.6 Let S ,! T be a smooth embedding of aspherical surfaces, which we
assume to be closed surfaces with (possibly) some open balls removed instead of points
removed. Further assume that the image of S lies in the interior of T . Then the induced
homomorphism �1.S/! �1.T / is injective if and only if no boundary component
of S bounds a disc in T nS .

Proof Recall that we are assuming that surfaces are path-connected. Therefore, if
S is closed, the embedding has to be surjective and the claim is trivial. Assume S is

Algebraic & Geometric Topology, Volume 19 (2019)
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not closed. Because the boundary components of S are smooth simple closed curves
inside T , they separate T into S on one side and a disjoint union of surfaces on the
other side.

We first assume that the homomorphism �1.S/! �1.T / induced by the embedding is
not injective and claim that there is a disc in T nS bounded by a boundary component
of S .

A nontrivial element in the kernel of �1.S/! �1.T / can be represented by a smooth
map f W S1 ! S which extends to a smooth map on the disc gW D ! T . We may
assume that the image of f is in the interior of S and that g is transverse to @S .

Observe that the image of g needs to have a nonempty intersection with the boundary
of S . Otherwise, g would yield a nullhomotopy of f inside S , but by assumption f
represents a nontrivial class in �1.S/. Let B be a boundary component of S which
intersects the image of g .

The preimage of B in D under g is now a nonempty, smooth 1–dimensional manifold.
Since f W S1! S doesn’t intersect @S , g�1.B/ is a compact subset of the interior
of D, hence it must be a closed 1�manifold.

Therefore, given a path-component C �D of g�1.B/, we know that C is a smooth
circle and, by the Jordan–Schoenflies curve theorem, C bounds a disc zD in D on one
side and an annulus A on the other side such that @ADC [@D. We can further assume,
by choosing C to be outermost in D among the path-components of g�1.B/, that
there exists a collar neighborhood U � C in D such that g.U \A/� S . Indeed, by
transversality we have, for a small collar neighborhood U, that g.U \A/ is contained
either in S or in T nS . If C is outermost, the former must be the case, as under this
condition there is a path in A from C to @D only intersecting g�1.B/ at the starting
point, and g.@D/� S .

The curve C gives an element in �1.B/' Z. If this element is trivial then we can
redefine g on zD by a nullhomotopy living on B . After pushing the image of zD along
the collar neighborhood into the interior of S , we get a replacement of g with (at least)
one less connected component in g�1.@S/ than for the original map.

Hence, there must exist a circle C such that gjC is a nontrivial element in �1.B/, other-
wise we would construct a nullhomotopy of f inside S after finitely many iterations
of the above procedure. Therefore, there is a power of the generator ŒB� 2 �1.B/ that

Algebraic & Geometric Topology, Volume 19 (2019)



Topological complexity of unordered configuration spaces of surfaces 1367

vanishes in �1.T /. Because �1.T / is torsion-free (indeed T is a finite-dimensional
classifying space for �1.T /), ŒB� is already trivial in �1.T /.

Then B is a nullhomotopic simple closed curve and it must bound a disc in T by the
classification of surfaces. There are two possibilities. Either this disc doesn’t intersect
the interior of S and it is glued to the boundary component B to obtain T , or S
is a punctured sphere and T is obtained from S by glueing discs onto all the path-
components of @S different from B (there is at least one other boundary component
because by assumption �1.S/! �1.T / is not injective and therefore S is not a disc).

We showed that if �1.S/! �1.T / is not injective, there must be a disc in T n S
bounded by boundary component of S .

Conversely, assume that T nS contains a disc D bounded by some boundary component
B of @S . Then the corresponding element ŒB� 2 �1.S/ vanishes in �1.T /. Therefore,
the homomorphism �1.S/ ! �1.T / is not injective unless ŒB� is already trivial
in �1.S/. Again by the classification of surfaces, this can only happen if S itself is a
disc, but then T would be a sphere, contradicting the hypothesis that T is aspherical.

Proof of Theorem 3.5 By the commutativity of the following diagram with exact
rows, it suffices to show that Pn.S/! Pn.T / is injective:

1 // Pn.S/

��

// Bn.S/

��

// Sn
// 1

1 // Pn.T / // Bn.T / // Sn
// 1

We do this by induction using the Fadell–Neuwirth fibrations.

For nD 1, the homomorphism �1.S/! �1.T / is injective by assumption.

Suppose now that Pn�1.S/! Pn�1.T / is injective. The embedding S ,! T gives
rise to an embedding Sn ,! Tn , in which the n new punctures in Sn are sent to the
n new punctures in Tn . The short exact sequences (2) give rise to the commutative
diagram

1 // �1.Sn�1/

��

// Pn.S/

��

// Pn�1.S/

��

// 1

1 // �1.Tn�1/ // Pn.T / // Pn�1.T / // 1

Algebraic & Geometric Topology, Volume 19 (2019)
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The rows are exact and we assumed the vertical homomorphism on the right is injective.
If the vertical homomorphism on the left were also injective, the vertical homomorphism
in the middle would have to be injective, which would complete the induction argument.

It is not hard to see that the configuration spaces of punctured surfaces (points removed)
and the configuration spaces of surfaces with boundary components (open balls re-
moved) are homotopy equivalent. Because of this we might assume that S and T are
surfaces with boundary and that Sn�1 and Tn�1 are the surfaces which result from
removing n� 1 open balls, in order to be able to use Lemma 3.6. Then the embedding
S ,! T satisfies the assumptions of Lemma 3.6 if and only if Sn�1 ,! Tn�1 satisfies
them. Therefore, the injectivity of the leftmost vertical homomorphism is equivalent to
the injectivity of �1.S/� �1.T /, which is part of the assumptions.

4 Lower bounds

Theorem 4.1 Let S be an aspherical surface which is not the disc, the annulus or the
Möbius band. Then

TC.C.S; n//� 2n:

Proof Let S be a surface satisfying the assumptions in the theorem. Then, with
the only exception of the Klein bottle, we have rank.H1.S// � 2 and there are two
smooth simple closed curves ˛ and ˛0 on S representing linearly independent classes
of H1.S/. We may assume that there exist tubular neighborhoods A of ˛ and A0 of ˛0

that are annuli. If the tubular neighborhood of ˛ were a Möbius band, then we could
replace ˛ by the boundary of this Möbius band.

The homomorphism �1.A/! �1.S/ is injective, as can be checked by further project-
ing to H1.S/. Similarly, the homomorphism �1.A0/! �1.S/ is injective.

For the Klein bottle K , recall that the fundamental group �1.K/ has a presentation

�1.K/D ha; b j aba�1bi;

where both a and b are represented by simple closed curves ˛ and ˇ in K . Both
subgroups hai and hbi are infinite cyclic, and therefore the inclusions of collar neighbor-
hoods A of ˛ and A0 of ˇ in K are injective at the level of �1 ; the collar neighborhood
of ˛ is a Möbius band so we replace ˛ with its double as above.

Hence, by Theorem 3.5 the homomorphisms Pn.A/! Pn.S/ and Pn.A0/! Pn.S/
are injective.

Algebraic & Geometric Topology, Volume 19 (2019)
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We now construct a subgroup Zn � Pn.A/. Consider n parallel, disjoint copies
˛1; : : : ; ˛n of the curve ˛ inside A, and let T� F.A; n/ be the subspace of ordered
configurations .x1; : : : ;xn/ with xi lying on the curve ˛i for all 1� i � n; then T is
an embedded n–fold torus in F.A; n/, and at the level of fundamental groups we have
a map Zn ' �1.T/! Pn.A/.

This map is injective: indeed the composition

Zn
' �1.T/! Pn.A/D �1.F.A; n//! �1.An/' Zn

is an isomorphism. We call Zn ' Zn � Pn.A/ the image of this map.

In the same way we construct an n�fold torus T0 � F.A0; n/ and get a subgroup
Z0n � Pn.A0/ as the image of the map between fundamental groups induced by the
inclusion, with Z0n ' Zn .

Figure 1: Braids from Zn as seen from above

There is a homomorphism

Pn.S/!
nY

kD1

�1.S/!
nM

kD1

H1.S/;(3)

under which nontrivial elements in the image of Zn and Z0n inside Pn.S/ are mapped
to elements which lie in different orbits under the action which permutes the summands
in
Ln

kD1 H1.S/. This is because the image of each nontrivial element in Zn will
have at least one summand corresponding to a nontrivial multiple of the class in H1.S/
represented by the curve ˛ , whereas the image of each braid in Z0n has only summands
corresponding to multiples of the class represented by the curve ˛0. Notice that for the
Klein bottle it suffices that the homology class represented by ˛ is infinite cyclic, and
the argument works even if the homology class represented by ˛0 has order 2.

Algebraic & Geometric Topology, Volume 19 (2019)
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Now we observe that conjugating an element of Pn.S/ by an element of Bn.S/ has
the effect of permuting the summands in

Ln
kD1 H1.S/ under the homomorphism (3).

To see this first note that the homomorphism (3) consists of a sum of compositions of
homomorphisms of the form

Pn.S/! �1.S/!H1.S/

given by forgetting all strands but one and then taking the abelianization. Given a
braid  2Bn.S/, we can write  D ı� , where � is supported on a disc and ı 2Pn.S/.
Therefore, conjugating by  reduces to conjugating by � and ı . Conjugating by �
permutes the order of the strands by the corresponding permutation under the canonical
map Bn!Sn . Conjugating by ı results in a conjugation inside �1.S/ under the first
homomorphism Pn.S/! �1.S/, but this has no effect on the abelianization.

Therefore, no nontrivial element of Zn is conjugate to an element of Z0n in Bn.S/.
By Theorem 2.3 this implies the lower bound TC.Bn.S//� cd.Zn �Z0n/D 2n.

Theorem 4.2 Let S be either the annulus or the Möbius band. Then

TC.C.S; n//� 2n� 1:

Proof In the same way as in the previous proof we can find an annulus A inside S
and a subgroup Zn in Pn.A/ isomorphic to Zn . Because �1.S/'H1.S/' Z, this
time we cannot find a second annulus inducing a linearly independent homology class,
nor even a disjoint infinite cyclic subgroup of �1.S/.

However, the inclusion of a disc D in S also induces a monomorphism Pn.D/!Pn.S/
and no nontrivial element in Pn.D/ is conjugate to an element of Zn inside Bn.S/.

Indeed, if we consider the map

Pn.S/!
nY

kD1

�1.S/!
nM

kD1

H1.S/;

we see that no nontrivial element of Zn is mapped to zero, whereas all elements
of Pn.D/ are mapped to zero. As we saw in the proof of the previous theorem,
conjugation inside Bn.S/ results only in a permutation of the coordinates of the target
group

Ln
kD1 H1.S/, and the stated properties are therefore invariant under conjugation.

By Theorem 2.3 we get

TC.C.S; n//� cd.Zn
�Pn.D//D 2n� 1:

Algebraic & Geometric Topology, Volume 19 (2019)
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5 Upper bounds

Theorem 5.1 If S is a closed aspherical surface, then

TC.C.S; n//� 2nC 2:

If S is a punctured surface which is not the disc, then

TC.C.S; n//� 2n:

Proof It is well known that cd.�1.S// D 2 for closed aspherical surfaces and that
cd.�1.S// D 1 for punctured surfaces (other than the disc). Using the short exact
sequences (2) of Corollary 3.4, together with the fact that the cohomological dimension
is subadditive under group extensions, and that cd.Bn.S//D cd.Pn.S// because Bn.S/
is torsion-free and Pn.S/ is a finite-index subgroup, we see that cd.Bn.S//� nC 1 if
S is closed and cd.Bn.S//�n if S has punctures and is not the disc (the two preceding
inequalities are in fact equalities, but we don’t need that stronger statement in this proof).

The upper bounds now follow from Lemma 2.4.

Next we give an upper bound for the annulus which is 1 better than the one given in
the previous theorem (it is in fact the optimal upper bound). For the proof we will need
the following well-known technical lemma.

We defined the topological complexity in terms of the number of open sets in an open
cover of X �X, but for sufficiently nice spaces (CW–complexes for instance) there
is an equivalent characterization in terms of decompositions into disjoint Euclidean
neighborhood retracts (ENRs).

Lemma 5.2 [6] Let X be an ENR (for instance a finite-dimensional, locally finite
CW–complex). Then the topological complexity TC.X / equals the smallest integer k

such that there exists a decomposition X �X DE0tE1t� � �tEk into kC1 disjoint
ENRs, on each of which there is a local section si W Ei!X I.

The existence of such a section si W Ei ! X I is equivalent to the existence of a
deformation of Ei into the diagonal of X �X, ie a homotopy between the inclusion
Ei ,!X �X and a map whose image lies entirely in the diagonal.

Theorem 5.3 If A is the annulus, then

TC.C.A; n//� 2n� 1:
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The proof of Theorem 5.3 occupies the rest of this section. By Lemma 5.2 we need to
find a decomposition of Cn.A/�Cn.A/ into 2n disjoint ENRs which can be deformed
into the diagonal. Note that such deformations can equivalently be viewed as an explicit
motion planner with 2n different continuous rules and as such it is potentially relevant
for applications.

5.1 Decomposition of Cn.A/ � Cn.A/

The annulus can be identified with a product AD S1 �R of a circle and the real line.
The projection map pW A! S1 induces a map

pnW Cn.A/! Symn.S
1/;

where the latter space is the n–fold symmetric power of S1, defined as the quotient
of .S1/�n by the action of Sn on the coordinates.

For a given pair of configurations .x;y/2Cn.A/�Cn.A/ we interpret pn.x/ and pn.y/

as finite subsets of S1, ie we forget the multiplicities of points in S1. The cardinality
deg.x;y/D jpn.x/[pn.y/j of the union of those subsets will be called the degree of
the pair.

Notice that deg.x;y/ is at least 1 and at most 2n. This yields a decomposition of
Cn.A/ � Cn.A/ into 2n disjoint subspaces Lk D deg�1.k/, corresponding to the
different values of deg; see Figure 2. Furthermore, Lk is a smooth embedded manifold
and in particular an ENR.

5.2 Local motion planners

Given a pair .x;y/ 2Lk , the union pn.x/[pn.y/ contains exactly k distinct points
q1; : : : ; qk 2 S1, ordered cyclically on S1 in the clockwise direction. We need to

Figure 2: A pair of configurations in L4 , with one double point
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introduce some notation. Let nx;i be the number of points in x mapped to qi under p

and let ny;i be the number of points in y mapped to qi under p . Finally, let ıi D
nx;i � ny;i be the difference between those two numbers.

The following map is continuous and well defined:

 k W Lk !

n
.mi/i 2 Zk

ˇ̌ kP
iD1

mi D 0;
kP

iD1

jmi j � 2n
oı
.12 : : : k/; .x;y/ 7! Œ.ıi/i �:

Here .12 : : : k/ 2Sk is the long cycle, permuting the components mi .

Because the preimages of different Œ.ıi/i � are topologically disjoint, we can define the
local section of the free path fibration over Lk separately on each preimage.

Given a pair of configurations .x;y/ 2 Lk lying in the preimage  �1
k
.Œ.ıi/i �/, we

need to construct a path between them, continuously over Lk .

If ıi D 0 for all i , we will simply move the points of x onto the points of y on each
fiber of p by linear interpolation inside the fibers.

On the other hand, if there exists an i such that ıi ¤ 0, first we need to construct a path
from x to zx such that deg.zx;y/D zk for some zk�k , and such that .zx;y/2 �1

zk
..0/i/;

then we concatenate this path with the fiberwise linear interpolation used above. The
path from x to zx will consist in an iteration of one particular deformation which we
describe in the following and which is illustrated in Figure 3.

5.3 First step

Let .x;y/ 2Lk as above and let x consist of the points xi;l 2 A for 1 � i � k and
1� l � nx;i , where for each i the points xi;l are exactly those lying over qi 2 S1 and
the indices are chosen according to the order of the points on the fiber p�1.qi/'R.

We are going to deform x into another configuration, denoted by x.1/ .

Whenever ıi > 0, we move the ıi top points of x in p�1.qi/ clockwise until they
reach p�1.qiC1/, on top of all points of x already in p�1.qiC1/ (if any). More
precisely, we move the points xi;l for ny;i C 1 � l � nx;i to p�1.qiC1/ so as to
keep their order and their pairwise distances, and such that xi;ny;iC1 reaches the
position 1Cmaxf0;xiC1;nx;iC1

g inside the fiber p�1.qiC1/ ' R. We move these
points by linear interpolation along the interval Œqi ; qiC1�� S1 and along R. We do
this simultaneously for all i for which ıi > 0. Note that the indices are considered
modulo k . This is shown in Figure 3.

It is clear from the construction that this deformation is continuous within  �1
k
.Œ.ıi/i �/.
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Figure 3: One iteration of the motion planner on the annulus. Notice that the
positions of the gray points on a given fiber are disregarded when moving
black points towards it because the points exist in two separate spaces.

5.4 Iterations of the first step

We started with a pair of configurations .x;y/ 2 Lk and in the previous subsection
we constructed a deformation of x into x.1/ . Clearly k1 D deg.x.1/;y/� k . We can
now repeat the process starting with the pair .x.1/;y/ to get a new configuration x.2/ ,
again without changing y . Iterating this, we get a sequence of configurations x.j/ and
a sequence of degrees kj D deg.x.j/;y/ which is weakly decreasing.

If this algorithm terminates after T steps, then it gives us a path from .x;y/ 2Lk to
.x.T /;y/ 2  �1

zk
..0/i/. Furthermore, because each iteration is continuous it yields a

continuous deformation of Lk into  �1
zk
..0/i/, which completes the proof.

To see that the algorithm does indeed terminate, note that there exists an N 2N such
that kj D kN for all j �N. After kN further iterations we have that ı.NCkN /

i D 0

for all 1� i � kN and we are done. This follows from the following three facts, which
are easy to check:

(1) For all j >N , if ı.j/i > 0, then ı.j�1/
i�1

> 0.

(2) For all j �N , if ı.j/i � 0, then ı.jC1/
i � 0.

(3) For all j �N we have
P

i ı
.j/
i D 0.

Indeed, if ı.NCkN /
i ¤ 0 for some i , we may assume that ı.NCkN /

i > 0 because of (3).
By (1), this would imply that ı.NCkN�l/

i�l
> 0 for all 0 � l � kN � 1 and therefore,

by (2), ı.NCkN /

i�l
� 0 for all 0� l � kN � 1.
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This would mean that
PkN�1

lD1
ı
.NCkN /

i�l
> 0, which contradicts (3). This completes

the proof of Theorem 5.3.

6 Proof of Theorems 1.3 and 1.5

Proof of Theorem 1.3 Notice that the pure braid group on the disc Pn is isomorphic
to the pure braid group Pn�1.A/ on the annulus with one less strand in the following
way. Every braid in Pn can be chosen such that the last strand does not move and that
strand is identified with the central hole in the annulus.

Consider the subgroup Zn�1ŠZn�1�Pn�1.A/ŠPn given by the braids in Pn�1.A/
in which all strands move in concentric circles around the central hole.

Recall that, for the abelianization, P ab
n Š Z.

n
2/ . The abelianization homomorphism is

given by the collection over all unordered pairs fi; j g of the maps  i;j W Pn!P2ŠZ

forgetting all strands except the i th and the j th (measuring the linking number between
the strands i and j ).

Conjugating by an element g 2 Bn is compatible, under the abelianization, with
the induced permutation of the components  i;j of P ab

n coming from the canonical
permutation in Sn associated to g .

In light of the above, it is clear that the commutator subgroup ŒPn;Pn� (the kernel of the
abelianization homomorphism) is not only normal in Pn but also in Bn . Furthermore,
it also follows that Zn�1 is mapped injectively under the abelianization homomorphism
and thus has a trivial intersection with ŒPn;Pn�. Taken together this implies that the
conjugates of a nontrivial element of ŒPn;Pn� cannot lie in Zn�1 .

The lower bound now follows from Theorem 2.3 together with Lemma 6.1 below.

Finally, the upper bound follows from Lemma 2.4 and cd.Bn/D n� 1, which can be
shown using the Fadell–Neuwirth fibrations as for the other aspherical surfaces.

Proof of Theorem 1.5 Let .p1; : : : ;pn/ 2 F.D; n/ denote an ordered configuration
of n points in the disc D and let 1 � k � n, to be chosen suitably later. Recall that
based loops in F.D; n/ represent braids in the pure braid group Pn and let A� Pn

consist of those pure braids represented by loops in which the points p1;p2; : : : ;pk

are fixed in the middle and pkC1; : : : ;pn independently rotate around this cluster in
concentric orbits. Clearly we have AŠ Zn�k .
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We now write n D mk C r for appropriate m � 0 and 1 � r � k . Notice that r is
assumed to be positive.

Divide the points p1; : : : ;pn into m clusters of k points each plus an additional cluster
of r points. Let B be the subgroup of Pn in which points of the same cluster interact
freely and such that moreover the mC1 clusters are allowed to move around each other,
so long as they don’t mix and their trajectories describe an element in ŒPmC1;PmC1�.

More formally, let E2.mC 1/ be the space of ordered configurations of mC 1 little
discs D1; : : : ;DmC1 inside the disc D. Each disc Di is uniquely determined by its
center and its (positive) radius and the little discs are required to have disjoint interiors
(see [14] for an introduction to the operad of little cubes). There is a map

E2.mC 1/�F.D; k/� � � � �F.D; k/�F.D; r/! F.D; n/

given by embedding each configuration of k or r points into the corresponding disc Di ,
using the only positive rescaling of D onto Di . Because E2.mC1/ is also a classifying
space for PmC1 , there is a homomorphism on fundamental groups

 W PmC1 �Pk � � � � �Pk �Pr ! Pn:

To show that  is injective, let � be the product of the following mC 2 maps:

� One map Pn! PmC1 given by forgetting all strands but a chosen one in each
cluster, so that exactly mC 1 strands remain.

� The maps Pn ! Pk and Pn ! Pr given by forgetting all strands outside a
given cluster.

It is easy to see that � is a retraction of  and that therefore  is injective. The subgroup
B�Pn is defined to be the image of the restriction of  to ŒPmC1;PmC1��.Pk/

m�Pr .

Next we need to check that A and B satisfy the assumptions of Theorem 2.3 as
subgroups of Bn , ie gAg�1 \ B D f1g for all g 2 Bn . For this we will use the
abelianization of the pure braid group Pn . As we saw in the proof of Theorem 1.3, the
abelianization detects the pairwise linking numbers between the braids and conjugation
by g 2 Bn permutes those numbers by the induced permutation.

The following property of an element � 2 Pn is invariant under conjugation by each
g 2 Bn :

There exists an index 1� j � n and k other indices i1; : : : ; ik such that  j ;il
.�/¤ 0

for all 1� l � k .
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Let ˛ 2 A be a nontrivial braid. In such a braid there is at least one point pj , for
kC1� j � n, which rotates a nonzero number of times around the points p1; : : : ;pk .
Therefore, the numbers  l;j .˛/ are all nonzero (and equal to each other) for 1� l � k .

However, no braid ˇ 2B has the property above. Indeed,  i;j .ˇ/ can be nonzero only
if pi and pj are in the same cluster, and every cluster contains at most k points.

Hence, we get that, for each 1� k � n,

TC.Bn/� cd.A�B/

D n� kCm.k � 1/C r � 1C cd.ŒPmC1;PmC1�/

� 2n� k �m� 1C 1
2
m� 1 .by Lemma 6.1/

D 2n� k � 1
2
m� 3

2
:

Choosing k D
�p

n=2

˘
, the inequality

nDmkC r �mkC 1

implies that

m�
n�1

k
and so

m�
j

n�1

k

k
� 2kC 4

by the choice of k . Therefore,

TC.Bn/� 2n� 2
�p

n=2
˘
� 3� 1

2

and since TC.Bn/ is an integer we can drop the term 1
2

.

Lemma 6.1 Let ŒPn;Pn� be the commutator subgroup of the pure braid group Pn .
Then

cd.ŒPn;Pn�/�
1
2
.n� 2/:

Proof Like in the previous proof, let E2.3/ denote the space of ordered configurations
of three little discs D1 , D2 and D3 inside a disc D. There exists a map

E2.3/�F.D; 3/! F.D; 5/;

given by embedding the configurations in F.D; 3/ into the first disc D1 (after the
appropriate rescaling) and by mapping the other two little discs to their center points.

Iterating this construction k � 1 times results in the map

E2.3/�E2.3/� � � � �E2.3/„ ƒ‚ …
k�1

�F.D; 3/! F.D; 2kC 1/:
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On fundamental groups this yields a homomorphism

Pk
3 ! P2kC1:(4)

Similarly to the previous proof, this homomorphism is injective. By construction the
images of the different P3 factors commute with each other.

Let Z be an infinite cyclic subgroup of ŒP3;P3�. The image of the homomorphism (4)
restricted to Zk�Pk

3
is isomorphic to Zk by the above observations and it is a subgroup

of ŒP2kC1;P2kC1�. By the well-known properties of cohomological dimension,

cd.ŒP2kC1;P2kC1�/� cd.Zk/D k:

This proves the claim for nD 2kC 1 odd. For n even the claim immediately follows
from Pn�1 � Pn .

7 Motion planner for the disc

Let D be the disc. In this section we are going to give an explicit motion planner which
will imply that TC.C.D; 3// D 3, as stated in Theorem 1.6. Observe that a motion
planner on a subset of X �X is the same as a deformation into the diagonal.

Proof of Theorem 1.6 The lower bound follows from Theorem 1.3 because

cd.ŒP3;P3��Z2/D 1C 2D 3:

We will work with the space C3 D C.C; 3/' C.D; 3/ for the remainder of the proof.

To show TC.C3/� 3, it suffices to find a decomposition of C3 �C3 into four disjoint
ENRs such that each of them can be deformed to the diagonal, by Lemma 5.2.

In the next subsections we will first decompose C3 � C3 into four disjoint ENRs
E0 , E1 , E2 and E3 and discuss some geometric properties of these; then we will
describe a motion planner on each Ei .

7.1 Decomposition of C3 � C3

First we need a notion of orientation for configurations in C3 . For this we define a
function �W C3!C� by

�.fz1; z2; z3g/D .z1� z2/
2.z2� z3/

2.z3� z1/
2;

and let ı D�=j�jW C3! S1 be its normalization.
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We say that two configurations x;y2C3 are cooriented if ı.x/Dı.y/. Let P�C3�C3

denote the closed subspace of pairs .x;y/ for which x and y are cooriented and let
N D C3 �C3 nP denote its complement.

The Lie group S1 on C3 by rotations about the origin. Given a configuration x 2 C3

and an element � 2 S1,

ı.� �x/D �6ı.x/:(5)

Let L � C3 consist of those configurations for which all three points are on a line
and let T D C3 nL be its complement. The points in a configuration in T form a
nondegenerate triangle; L� C3 is closed and T � C3 is open.

We define a deformation retraction of L onto the subspace LR containing configura-
tions of three aligned points, one at the origin and two on the unit circle and opposite
to each other. Note that LR is homeomorphic to a circle and is invariant under rotation.
Given a configuration in L, we translate it so that the central point ends up at the origin
and then slide the two outer points along the line which goes through all three points
until they are both at distance 1 from the origin. This defines a deformation retraction
rLW L!LR . The deformation preserves ı , because the direction determined by any
two points in the configuration remains the same throughout the deformation.

Similarly we define a deformation retraction of T onto the subspace TR containing
configurations of three points on the unit circle that form an equilateral triangle. Note
that TR is also homeomorphic to a circle and invariant under rotation. Given a
configuration in T , we translate it until the center of mass coincides with the origin.
Then we slide all three points simultaneously along the lines going through the origin
until the points land in the unit circle. Finally, we rotate the points until they are at
equal distance from each other on the unit circle.

More precisely, let X, Y and Z be a configuration of three points on the unit circle,
appearing in this order clockwise. Consider the lengths of the arcs XY , YZ and ZX.
If the arcs are all of the same length, then we are done. If there is precisely one arc
of minimal length, say XY , then we can slide X and Y at the same speed along the
unit circle, gradually increasing the length of XY and decreasing both YZ and ZX,
until the length of XY becomes equal to at least one of the other two arcs. Therefore,
we may assume that there are exactly two arcs of minimal length. In this case there is
one arc, say YZ , which is strictly longer than the other two arcs. Slide both Y and Z

at the same speed along the unit circle, gradually decreasing the length of YZ and
increasing the lengths of XY and ZX, until all three arcs are equal. See Figure 4.
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X

Y
Z

X

Y

Z

Figure 4: First step (left) and second step (right)

Additionally, we make sure that the above deformation preserves ı.x/ by constantly
rotating the configuration x about the origin during the whole process to compensate for
the potential change of ı.x/. More precisely, let H W T � Œ0; 1�! C3 be the homotopy
described above, with H. � ; 1/ 2 TR , and consider the function xıW T � Œ0; 1�! S1

defined by
xı.x; t/D ı.H.x; t//=ı.x/:

Then xı. � ; 0/W T ! S1 is the constant function 1 and it admits a lift to the universal
covering R! S1, namely the constant function 0. We can then extend this lift to all
positive times, obtaining a map zıW T � Œ0; 1�!R. Now let z�W T � Œ0; 1�!R be given
by

z�.x; t/D 1
6
zı.x; t/

and denote by �W T � Œ0; 1�! S1 its projection onto S1 along the universal covering
map R! S1.

Finally, consider the homotopy H W T � Œ0; 1�! C3 given by

H .x; t/D .�.x; t//�1
�H.x; t/:

Then H is a deformation retraction of T onto TR preserving ı at all times; this
follows easily from the construction and from formula (5).

Write rT DH . � ; 1/W T ! TR .

We are now ready to construct the decomposition into disjoint ENRs as follows:

� E0 D P \ .L�L/.

� E1 DN \ .L�L/tP \ .T �LtL�T /.

� E2 DN \ .T �LtL�T /tP \ .T �T /.

� E3 DN \ .T �T /.

Note that the subspaces Ei are semialgebraic sets and therefore ENRs.
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Furthermore, the disjoint unions above are topological, ie they form disconnected
components inside each Ei . This follows from the fact that the disjoint components
are relatively open inside each Ei . For example, N \.L�L/ and P \.T �L/ are the
intersections of E1 with the open sets N and T �C3 , respectively, and N \ .T �L/

is the intersection of E2 with the open set N \ .T �C3/.

7.2 Local motion planners

We show now that each Ei deformation retracts onto a disjoint union of circles. First
we notice that for A;B 2 fL;T g the intersection N \ .A�B/ can be deformed to
P \ .A�B/. Given a pair .x;y/ 2N \ .A�B/, rotate x clockwise about the origin
until x and y are cooriented. This can be done continuously thanks to formula (5).

The subspaces P \ .L�L/ and P \ .T �T / deformation retract to P \ .LR �LR/

and P \ .TR �TR/, respectively, because the retractions rL and rT commute with ı .

The subspaces P \ .LR �LR/ and P \ .TR �TR/ in turn consist of a disjoint union
of three circles and a disjoint union of two circles, respectively, where each circle is an
orbit under the diagonal action of S1 on C3�C3 . Precisely one orbit in P\.LR�LR/

and one orbit in P \ .TR �TR/ already lie in the diagonal of C3�C3 . The remaining
orbits consist of pairs of lines or pairs of triangles which are at a given angle from
each other

�
�
3

or 2�
3

in the case of lines and �
3

in the case of triangles, to be precise
�
.

See Figures 5 and 6. They can be deformed into the diagonal by rotating the first
configuration in every pair clockwise about the origin until it is equal to the second
configuration in that pair.

Similarly, the space P \ .L�T / can be deformed to P \ .LR �TR/, which consists
of one single orbit under the diagonal S1 –action; see Figure 7. Specifically, it contains
pairs of configurations .x;y/, where the points in y form an equilateral triangle
centered at the origin and the points in x lie on a line parallel to one of the sides of
said triangle and are symmetrically distributed around the origin. We move the point
in y opposite to the side parallel to x to the origin and the other two points in y to the

Figure 5: Path-components of P \ .LR �LR/ (up to rotation)
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Figure 6: Path-components of P \ .TR �TR/ (up to rotation)

corresponding outer points in x . The pair .x;x/ is obviously in the diagonal and so
we are done.

Figure 7: The subset P \ .TR �LR/ (up to rotation)

This completes the proof because the deformation can be defined separately on the
different disconnected components of each Ei .

8 Conclusions

The results in this paper can be viewed equivalently as finding the values for the
topological complexity of either full braid groups of surfaces or unordered configuration
spaces of surfaces, since, for aspherical surfaces S ,

TC.C.S; n//D TC.Bn.S//:

All the results except the ones which rely on finding explicit motion planners (or
equivalently deformations into the diagonal) extend to finite-index subgroups of Bn.S/
with the same proofs. To be precise, the results which generalize to finite-index
subgroups are the ones given in Theorems 1.3, 1.5, 4.1, 4.2 and 5.1.

In particular, those results apply to the pure braid groups Pn.S/ and the mixed braid
groups from [13]. Observe that for aspherical surfaces S the topological complexity
TC.Pn.S// of the pure braid groups of S is the same as the topological complexity
TC.F.S; n// of the ordered configuration spaces of S .

Thus, the methods in this paper yield an alternative proof for some of the results
given by Cohen and Farber in [2], in particular the topological complexity of ordered
configuration spaces for all nonclosed orientable surfaces (for the ordered configuration
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spaces of the disc one can use a slightly modified version of the proof of Theorem 5.3
to find explicit motion planners). Furthermore, it extends their results to all nonclosed
nonorientable surfaces except the Möbius band.

It is worth noting that the results in this paper taken together with the results in [2] are
consistent with the possibility that the topological complexities of the ordered and the
unordered configuration spaces of a surface coincide for all surfaces.

The only remaining aspherical surface for which the gap between the lower bound and
the upper bound for the topological complexity of its unordered configuration spaces is
still arbitrarily large is, perhaps surprisingly, the disc.

If it is in fact true that cd.ŒPn;Pn�/D n� 2, then Theorem 1.3 would imply

TC.C.D; n//� 2n� 3:

If additionally the upper bound for nD 3 given in Theorem 1.6 generalized to higher n,
this would completely determine TC.C.D; n//. We make the following:

Conjecture 8.1 If D is the disc, then

TC.C.D; n//D TC.Bn/D 2n� 3:
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Hyperbolic extensions of free groups
from atoroidal ping-pong

CAGLAR UYANIK

We prove that all atoroidal automorphisms of Out.FN / act on the space of projec-
tivized geodesic currents with generalized north–south dynamics. As an application,
we produce new examples of nonvirtually cyclic, free and purely atoroidal subgroups
of Out.FN / such that the corresponding free group extension is hyperbolic. Moreover,
these subgroups are not necessarily convex cocompact.

20F28, 20F67; 37D40

1 Introduction

Let FN be a free group of rank N � 3, and Out.FN / be its outer automorphism group.
Consider the short exact sequence

1! FN
�
�! Aut.FN /

q
�! Out.FN /! 1;

where � sends an element of FN to the corresponding inner automorphism, and q is
the natural quotient map.

Given a subgroup � < Out.FN /, the preimage E� D q�1.�/ gives an extension
of FN . In fact, any extension of FN produces an extension of this form; see Dowdall
and Taylor [16, Section 2]. Motivated by a long history of investigating hyperbolic
extensions of hyperbolic groups — see Bestvina and Feighn [1], Bestvina, Feighn and
Handel [4], Farb and Mosher [17], Hamenstaedt [20], Kent and Leininger [26] and
Mosher [31] — Dowdall and Taylor [16] initiated a systematic study of the following
question:

What conditions on the group � guarantee that the extension group E� is hyperbolic?

When the group � is infinite cyclic, generated by ' 2 Out.FN /, combined work of
Bestvina and Feighn [1] and Brinkmann [8] shows that E� is hyperbolic if and only if
' is atoroidal, meaning that no power of ' fixes a nontrivial conjugacy class in FN .
Dowdall and Taylor [16] proved that if a finitely generated subgroup � < Out.FN / is
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purely atoroidal (ie every infinite-order element is atoroidal) and the orbit map from �

into the free factor complex is a quasi-isometric embedding, then the extension E� is
hyperbolic. The second condition also implies that every infinite-order element ' 2 �
is fully irreducible, meaning that no power of ' fixes the conjugacy class of a proper
free factor; see Section 2 for definitions.

So far the only known examples of hyperbolic extensions of free groups come from
slight variations, or iterated applications of these two constructions, and Schottky-type
subgroups generated by high powers of fully irreducible and atoroidal elements. The
following subgroup alternative result allows us to produce more examples:

Theorem 1.1 Let H < Out.FN / be a subgroup that contains an atoroidal element ' .
Then one of the following occurs:

(1) There is some minimal H–invariant free factor A of FN such that the restriction
of H to A is virtually cyclic in Out.A/.

(2) There exists a subgroup � � H such that � Š F2 and that every nontrivial
element of � is atoroidal. Moreover, the corresponding extension group E� is
hyperbolic.

Remark 1.2 Theorem 1.1 generalizes a well-known result of Bestvina, Feighn and
Handel. Indeed, if the subgroup H is irreducible, namely no finite-index subgroup
of H fixes a proper free factor, then H contains a fully irreducible element by a
theorem of Handel and Mosher [21]; see also Horbez [22] for a concise and more
general proof. Since H contains an atoroidal element, then Theorem 5.4 of Uyanik [36]
implies that H contains an element which is both fully irreducible and atoroidal. In
that case, Bestvina, Feighn and Handel [4] show that either H is virtually cyclic, or
there is a nonabelian free subgroup � of H such that every nontrivial element of � is
atoroidal and the corresponding free group extension is hyperbolic. A different proof
of the aforementioned result of Bestvina, Feighn and Handel is given by Kapovich and
Lustig [25], who additionally obtained that each nontrivial element is fully irreducible.

Remark 1.3 The subgroup H isn’t necessarily irreducible or it doesn’t have to preserve
a free splitting of FN . Theorem 1.1 gives new examples of hyperbolic extensions of
free groups, which do not come from previously known constructions. In particular, they
are not necessarily convex cocompact; see Dowdall, Taylor and Tiozzo [15; 16; 34].
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The main ingredient in the proof of Theorem 1.1 is the following dynamical result. See
Section 3.1 for definitions.

Theorem 1.4 Let ' 2 Out.FN / be an atoroidal outer automorphism of a free group
of rank N � 3. Then there exist a simplex of attraction �C and a simplex of repulsion
�� in PCurr.FN / such that ' acts on PCurr.FN / with generalized north–south
dynamics from �� to �C.

The space PCurr.FN / of projectivized geodesic currents contains positive multiples
of conjugacy classes as a dense subset, and hence serves as a natural tool for detecting
atoroidal outer automorphisms; see Section 2.5 for details. The proof of Theorem 1.4
builds on our earlier results with M Lustig about dynamics of reducible substitutions [29]
and is modeled on the proof of the specific case where both ' and '�1 admit absolute
train track representatives as we treated in [28]. In this paper, we use completely split
relative train track maps (CTs), which are particularly nice topological representatives
introduced by Feighn and Handel [18]. The new key insight in the proof of Theorem 1.4
is to use the legal structure coming from the splitting units in the CT that represents
' 2 Out.FN / rather than using the classical legal structure coming from the edges.

As a byproduct of Theorem 1.4 we also obtain:

Corollary 1.5 Let ' 2 Out.FN / be a fully irreducible and atoroidal outer automor-
phism. Then, for any atoroidal outer automorphism  2 Out.FN / (not necessar-
ily fully irreducible) which is not commensurable with ' (ie 't ¤  s for any s

and t ), there exists an exponent M > 0 such that, for all n;m > M, the subgroup
� D h'n;  mi< Out.FN / is purely atoroidal and the corresponding extension E� is
hyperbolic.

Note that the subgroup � in Corollary 1.5 is irreducible, and since � is not purely fully
irreducible the orbit map to the free factor graph is not a quasi-isometric embedding [16].

Acknowledgements The author is grateful to Martin Lustig for useful discussions
that helped form the core of this paper. He is grateful to his advisors Chris Leininger
and Ilya Kapovich for support, encouragement and feedback. He also thanks Mladen
Bestvina and Spencer Dowdall for useful discussions. Finally, he thanks the anonymous
referees for useful comments and corrections.

The author gratefully acknowledges support from NSF grants DMS 1405146 and DMS
1510034.

Algebraic & Geometric Topology, Volume 19 (2019)



1388 Caglar Uyanik

2 Preliminaries

2.1 Graphs and graph maps

A graph G is a 1–dimensional cell complex, where 0–cells are called vertices and
1–cells are called topological edges. We denote the set of vertices by VG, and the
set of topological edges by EtopG. Identifying the interior of an edge with the open
interval .0; 1/ each edge admits exactly two orientations. We denote the set of oriented
edges by EG. Choosing an orientation on each edge splits the set EG into two disjoint
sets: the set ECG of positively oriented and the set E�G of negatively oriented edges.
Given an oriented edge e 2 EG, the initial vertex of e is denoted by o.e/ and the
terminal vertex of e is denoted by t.e/, and the edge with the opposite orientation is
denoted by e�1 .

An edge path  in G is a concatenation  D e1e2 � � � en of edges in G such that
t.ei�1/D o.ei/ for all i D 2; : : : ; n. An edge path  D e1e2 � � � en is called reduced
(or tight) if e�1

i ¤ eiC1 for all i D 1; : : : ; n� 1. A reduced edge path  D e1e2 � � � en

is called cyclically reduced if o. /D t. / and in addition e�1
n ¤ e1 . We call cyclically

reduced edge paths circuits.

Given an edge path  , we denote the reduced edge path obtained by a homotopy
relative to endpoints of  by Œ �.

2.2 Markings and topological representatives

Let RN denote the rose with N pedals, which is the finite graph with one vertex and N

loop edges attached to that vertex. A marking is a homotopy equivalence mW RN!G

where G is a finite graph all of whose vertices are at least valence 2.

A homotopy equivalence f W G!G is a (topological) graph map if it sends vertices to
vertices, and its restriction to the interior of an edge is an immersion. Let m0W G! RN

be a homotopy inverse to the marking mW RN! G. We say that a topological graph
map is a topological representative of an outer automorphism ' 2 Out.FN / if the
induced map satisfies .m0 ıf ım/�W FN ! FN D ' .

A filtration for a topological representative f W G! G is an ascending sequence of
f –invariant subgraphs ∅DG0 �G1 � � � � �Gk DG. The closure of Gr nGr�1 is
called the r th stratum, and is denoted by Hr .
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For each stratum Hr , there is an associated transition matrix Mr of Hr which is
a nonnegative integer square matrix. The ij th entry of Hr records the number of
times Œf .ei/� crosses ej or e�1

j . A nonnegative square matrix M is called irreducible
if for each i and j , there exists k D k.i; j / such that M k

ij > 0, the matrix M is
called primitive if k can be chosen independent of i and j . The stratum Hr is called
irreducible (resp. primitive) if and only if Mr is irreducible (resp. primitive). If Mr is
irreducible then it has a unique eigenvalue �� 1, called the Perron–Frobenius .PF/
eigenvalue, for which the associated eigenvector is positive. We say that Hr is an
exponentially growing stratum or EG stratum if � > 1 and nonexponentially growing
stratum or NEG stratum if �D 1. We say that Hr is a zero stratum if Mr is the zero
matrix.

2.3 Train track maps

We first set up the relevant terminology to define relative train track maps, and their
strengthened versions, CTs. The standard resources for this section are [6; 5; 18].

Let f W G!G be a topological graph map. A direction at a point v 2G is the germ
of an initial segment of an oriented edge. The map f W G ! G induces a natural
derivative map Df on the set of germs, and we say that a direction is fixed or periodic
if it is fixed or periodic under the derivative map. A turn in G is an unordered pair
of directions. We say that a turn is degenerate if the two directions are the same, and
nondegenerate otherwise. A turn is called illegal if its image under some iterate of Df

is degenerate, otherwise a turn is called legal. An edge path  D e1e2 � � � ek is called
legal if each turn .e�1

i ; eiC1/ is legal. We say that, a turn is contained in a stratum Hr

if both directions are contained in Hr . An edge path  is called r –legal if every turn
in  that is contained in Hr is legal. If Hr is an EG stratum, and  is a path whose
endpoints are in Hr \Gr�1 , then  is called a connecting path.

Definition 2.1 A homotopy equivalence f W G ! G representing ' 2 Out.FN / is
called a relative train track map if for every exponentially growing stratum Hr the
following hold:

(RTT-i) Df maps the set of directions in Hr to itself.

(RTT-ii) For each connecting path  for Hr , Œf . /� is a connecting path for Hr . In
particular, Œf . /� is nontrivial.

(RTT-iii) If  is r –legal, then Œf . /� is r –legal.
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Definition 2.2 (Nielsen paths) A path � is a periodic Nielsen path if there is an
exponent k � 1 such that Œf k.�/�D � . The minimal such k is called the period, and
if k D 1 then � is called a Nielsen path. A periodic Nielsen path is called indivisible if
it cannot be written as a concatenation of periodic Nielsen paths. We will denote the
(periodic) indivisible Nielsen paths by (pINPs) INPs.

Definition 2.3 (taken and exceptional paths) A path  2 G is called r –taken by
f W G ! G if  appears as a subpath of f k.e/ for some k � 1 and for some edge
e 2Hr in an irreducible stratum. We will drop r and only say taken whenever r is
irrelevant. Let ei and ej be linear edges as defined in Definition 2.10 below such that
f .ei/D eiw

mi and f .ej /D ejw
mj for some root free Nielsen path w . Then a path

of the form eiw
pe�1

j for p 2 Z is called an exceptional path.

Definition 2.4 (splittings and complete splittings) Let f W G!G be a relative train
track map. A decomposition of a path  in G into subpaths  D 1 �2 � � � m is called
a splitting if Œf k. /�D Œf k.1/�Œf

k.2/� � � � Œf
k.m/�. Namely, one can tighten the

image f k. / by tightening the images of the subpaths i . We use the “ �” notation for
splittings.

A splitting  D 1 �2 � � � m is called a complete splitting if each term i is one of the
following:

(1) an edge in an irreducible stratum;

(2) an INP;

(3) an exceptional path;

(4) a connecting path in a zero stratum that is both maximal and taken.

The paths in the above list are called splitting units.

Lemma 2.5 [5; 18] Every completely split path or circuit has a unique complete
splitting.

The properties of relative train track maps are not strong enough for our purposes.
Hence, in order to study the dynamics of atoroidal outer automorphisms, we utilize
completely split train track maps (CTs) introduced by Feighn and Handel. In what
follows, rather than giving the defining properties of CTs we will list the relevant
properties of CTs and cite the appropriate resources. We refer the reader to [18] for a
detailed discussion of CTs. We begin with two definitions:
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Definition 2.6 A subgroup F< FN is called a free factor of FN if there is another
subgroup F0 < FN such that F�F0 D FN . We denote the conjugacy class of a free
factor F with ŒF�. A free factor system is a collection F DfŒF1�; : : : ; ŒFk �g of conjugacy
classes of free factors of FN such that there exists F0 < FN (possibly trivial) with
the property that FN D F1

� � � � � Fk
�F0. There is a partial order on the set of free

factor systems as follows: given two free factor systems F D fŒF1�; : : : ; ŒFk �g and
F 0 D fŒF01�; : : : ; ŒF0l �g, we say that F @ F 0 if for each ŒFi � 2 F there exists ŒF0j � 2 F 0

such that g Fi g�1 < F 0j for some g 2 FN .

The free factor graph FF.FN / is the (infinite) graph whose vertices correspond to
conjugacy classes of proper free factors, and there is an edge between ŒF� and ŒF0� if
either F < g F0 g�1 or F0 < g F g�1 for some g 2 FN . By declaring the length of
each edge 1, FF.FN / is equipped with a path metric d , and a result of Bestvina and
Feighn says that FF.FN / is hyperbolic [2]. The group Out.FN / acts on FF.FN /

with simplicial isometries and fully irreducible elements are precisely the loxodromic
isometries [2].

Definition 2.7 For any marked graph G and a subgraph K of G, the fundamen-
tal group of the noncontractible components of K determines a free factor system
Œ�1.K/�D F of FN . We say that K realizes F . Given a nested sequence C of free
factor systems F1 @ F2 @ � � �@ Fn we say that C is realized by a relative train track
map f W G! G if there is an f –invariant filtration ∅D G0 � G1 � � � � � Gk D G

such that for all 1� i � n we have F i D Œ�1.Gk.i//� for some k.i/.

The following theorem is the main existence result about CTs:

Theorem 2.8 [18, Theorem 4.28, Lemma 4.42] There exists a uniform constant
M D M.N / � 1 such that for any 'M 2 Out.FN / and any nested sequence C of
'M –invariant free factor systems, there exists a CT f W G! G that represents 'M

and realizes C .

We now state several results about structures of paths in CTs that will be relevant in
the discussion follows.

Lemma 2.9 [18, Lemma 4.21] If f W G!G is a CT, then every NEG stratum Hr

consists of a single edge ei . Moreover, either ei is fixed, or f .ei/D ei �ui , where ui

is a nontrivial, completely split circuit in Gi�1 .
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Definition 2.10 Let e 2 G be an NEG edge. The edge e is called a fixed edge if
f .e/ D e , a linear edge if f .e/ D e�, where � is a nontrivial Nielsen path, and a
superlinear edge otherwise.

Lemma 2.11 (properties of CTs [18, Definition 4.7, Lemma 4.13, Lemma 4.15,
Corollary 4.19, Lemma 4.25]) (1) For each edge e in an irreducible stratum,
f .e/ is completely split. For each taken connecting path  in a zero stratum,
Œf . /� is completely split.

(2) For each filtration element Gr , Hr is a zero stratum if and only if Hr is a
contractible component of Gr . In particular, there are only finitely many reduced
connecting paths that are contained in some zero stratum.

(3) Every periodic indivisible Nielsen path (INP) has period one.

(4) The endpoints of all INPs are vertices. The terminal endpoint of each NEG edge
is fixed.

(5) If  is a circuit or an edge-path, then Œf k. /� is completely split for all suffi-
ciently large k .

(6) Each zero stratum Hi is enveloped by an EG stratum Hr , each edge in Hi is
r –taken, and each vertex in Hi is contained in Hr and has link contained in
Hi [Hr .

(7) If Hr is an EG stratum, then there is at most one indivisible Nielsen path �r of
height r that intersects Hr nontrivially. The initial edges of �r and ��1

r are
distinct edges in Hr .

(8) If Hr is a zero stratum or an NEG superlinear stratum, then no Nielsen path
crosses an edge of Hr .

2.4 CTs representing atoroidal automorphisms

Given an atoroidal outer automorphism ' 2 Out.FN /, let f W G! G be a CT with
filtration ∅ D G0 � G1 � � � � � Gk D G that represents a suitable power of ' as
given by Theorem 2.8. Observe that for such a CT, there are no exceptional paths
in the complete splitting of Œf n.e/� for any e 2 � as there are no linear edges in �
(since it requires a closed Nielsen path). The following is an easy consequence of the
definitions:

Fact 2.12 Let f W G! G be a CT that represents an atoroidal outer automorphism.
Then every Nielsen path is a legal concatenation of INPs and fixed edges.

Algebraic & Geometric Topology, Volume 19 (2019)



Hyperbolic extensions of free groups from atoroidal ping-pong 1393

Definition 2.13 We call a splitting unit � expanding if jŒf n.�/�j !1 as n!1 . If
f W G!G is a CT that represents an atoroidal outer automorphism, then an expanding
splitting unit is one of the following three types:

(1) an edge in an EG stratum;

(2) a superlinear edge in an NEG stratum;

(3) a maximal connecting path  in a zero stratum such that the complete splitting
of Œf k. /� contains at least one of the above two types for some k � 1.

2.5 Geodesic currents

Let @FN denote the Gromov boundary of FN . Let @2FN be the double boundary, ie
@2FN D @FN � @FN n�, where � denotes the diagonal. Let �W @2FN ! @2FN be
the flip map given by �.�1; �2/D .�2; �1/.

The group FN acts on itself by left multiplication, which induces an action of FN

on @FN and hence on @2FN . A geodesic current on FN is a locally finite (positive)
Borel measure on @2FN which is both FN –invariant and flip-invariant.

The space of geodesic currents on FN is denoted by Curr.FN /, and endowed with the
weak-� topology it is a metrizable topological space [7]. The space of projectivized
geodesic currents PCurr.FN / is the quotient of Curr.FN /, where two currents are
equivalent if they are positive scalar multiples of each other. The space PCurr.FN / is
compact; see [24].

Both Aut.FN / and Out.FN / act on the space of currents by homeomorphisms, and
these actions descend to well-defined actions on PCurr.FN /.

Let g 2 FN be an element which is not a proper power. We define the counting
current �g corresponding to g as follows: for any Borel set S �@2FN the value �g.S/

is the number of FN –translates of .g�1;g1/ or of .g1;g�1/ that are contained
in S. For any nontrivial element h 2 FN we write hD gk , where g is not a proper
power, and set �h WDk�g . A rational current is a nonnegative real multiple of a counting
current. The set of rational currents forms a dense subset of Curr.FN /; see [23; 24; 30].

3 Dynamics of atoroidal automorphisms

3.1 North–south dynamics

Let X be a compact metric space, and G be a group acting on X by homeomorphisms.
We say that g 2G acts on X with (uniform) north–south dynamics if the action of g
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on X has two distinct fixed points x� and xC and, for any open neighborhood U˙

of x˙ and a compact set K˙ �X nx� , there exists M > 0 such that

g˙nK � U˙

for all n�M.

North–south dynamics is a strong form of stability for the action of a group on a compact
metric space, and allows one to deduce various structural results about the group
itself. For example, a fully irreducible outer automorphism ' 2 Out.FN / acts on the
closure CV of the projectivized outer space with north–south dynamics [27]. Similarly,
if ' is both fully irreducible and atoroidal, then ' acts on PCurr.FN / with north–south
dynamics [30]; see also [35]. On the other hand, an atoroidal outer automorphism does
not act on PCurr.FN / with classical north–south dynamics. Existence of invariant
free factors makes them dynamically more complicated but, as we show below, they
still exhibit a strong form of stability.

Definition 3.1 (generalized north–south dynamics) Let X be a compact metric space,
and G be a group acting on X by homeomorphisms. We say that an element g 2G

acts on X with generalized north–south dynamics if the action of g on X has two
invariant disjoint sets �� , and �C (ie g��D�� and g�CD�C ) and, for any open
neighborhood U˙ of �˙ and a compact set K˙ � PCurr.FN / n�� , there exists
M > 0 such that

g˙nK˙ � U˙

for all n�M.

We restate Theorem 1.4 from the introduction for the benefit of the reader, the proof of
which is given at the end of this section.

Theorem 1.4 Let ' 2 Out.FN / be an atoroidal outer automorphism of a free group
of rank N � 3. Then there exist a simplex of attraction �C and a simplex of repulsion
�� in PCurr.FN / such that ' acts on PCurr.FN / with generalized north–south
dynamics from �� to �C.

The rest of this section is modeled on our earlier paper [28] with Lustig, and utilizes the
dynamics of reducible substitutions as treated in [29]. In what follows we explain the
subtleties that arise in this new setting carefully, while referring to [28] for arguments
that follow by straightforward modifications from the old setting.
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3.2 Symbolic dynamics and CTs

In this section we recall the relevant definitions in symbolic dynamics and results from
our earlier paper [29], that allows us to describe the simplex of attraction and simplex
of repulsion in Theorem 1.4 explicitly.

Let AD fa1; : : : ; ang be a finite alphabet, and A� denote the set of all finite words
in A. A substitution �W A!A� is a rule that assigns to each letter a 2A a nonempty
word w in A� . A substitution induces a map, which we also denote by � , on the set
of infinite words AN by concatenation:

�W AN
!AN ; x1x2 � � � 7! �.x1/�.x2/ � � � :

Given a substitution �W A! A� there is an associated transition matrix M� , where
fM�gij is the number of occurrences of aj in �.ai/. A substitution � is called
irreducible if for all 1� i; j � n, there exists an exponent k D k.i; j /� 1 such that
the letter ai appears in the word �k.aj /. The substitution � is called primitive if k can
be chosen independently. In what follows, up to passing to powers and rearranging the
letters, we will assume that each transition matrix is a lower diagonal block matrix where
each diagonal block is either primitive, or has bounded entries for all M t for all t � 1

[29, Lemma 3.1]. We refer the reader to [32; 29] for a detailed account of substitutions.

Given a nonprimitive substitution we consider maximal invariant subalphabets

0DA0 @ A1 @ A2 @ � � �@ An DA

and call AiC1 nAi the i th stratum in analogy with train tracks terminology [29, proof
of Proposition 3.5].

Given two words w1 and w2 in A� , let jw1jw2
denote the number of occurrences of

the word w2 in w1 . The following is a slight variation of Theorem 1.2 and Corollary 1.3
of [29], a detailed proof of which is given in [29, Proposition 5.4, Case 1].

Proposition 3.2 [29] Let � be a substitution on a finite alphabet A. Then there
exists a positive power � D �s such that for any nonempty word w 2A� and any letter
ai 2A, the limit frequency

lim
t!1

j�t .ai/jw

j�t .ai/j

exists. Furthermore, if ai is in a primitive stratum Hi , where the Perron–Frobenius
eigenvalue of Hi is strictly bigger than those of the dependent strata, then the limit
frequencies are independent of the chosen letter.
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The next proposition shows how one can extract dynamical information from CTs by
interpreting them as substitutions and invoking Proposition 3.2. Similar ideas were
also used in our earlier work [35; 28] in the setting of train tracks and [19] in the CT
setting for studying dynamics of relative outer automorphisms.

For any two reduced edge paths  and  0 in a graph G, define

h;  0i WD j 0j Cj
0
j�1 :

Proposition 3.3 Let f W G! G be a CT that represents an atoroidal outer automor-
phism ' 2 Out.FN /. For any splitting unit � and any reduced edge path  in G, the
limit

� WD lim
n!1

h; f t .�/i

jf t .�/j

exists. Moreover, for any expanding splitting unit � , the set of values

f� j  is a reduced edge path in Gg

defines a geodesic current �� on FN .

Proof If the splitting unit is not expanding then there is a definite bound on the length
jŒf n.�/�j for all n� 1. Hence, the image Œf n.�/� becomes periodic after sufficiently
many iterations. Since every periodic Nielsen path has period one, the sequence of
paths Œf n.�/� becomes eventually fixed, and the claim follows. For the remaining
part of the proof we assume that � is an expanding splitting unit and will prove the
claim by induction on the height of the stratum. Let r D 1. Since ' is atoroidal, H1

is necessarily an EG stratum, and the restriction of f to G1 DH1 is an absolute train
track map. Hence, the result follows from [35, Proposition 2.4 and Lemma 3.7]. Now
assume that the claim holds for r � k � 1. There are three cases to consider.

First suppose that Hk is an EG stratum. A splitting unit of height k is either an edge
e 2 Hk , or an INP intersecting Hk . Since an INP is not expanding we just need to
prove the claim for an edge e 2 Hk . Let A be the alphabet whose letters consist
of edges in irreducible strata that are in Gk , INPs contained in Gk�1 , and maximal,
taken connecting paths in a zero stratum that are in Gk�1 . The fact that this alphabet
is finite follows from the properties of the CT map that represents an atoroidal outer
automorphism. Let �W A�!A� be the substitution induced by the CT f W G!G on
the alphabet A using the following rule: �.�/D Œf .�/�. For each “letter” in the above
alphabet, the image is completely split and hence a reduced “word” in this alphabet.
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Hence, the above formula is a substitution, and Proposition 3.2 gives the required
convergence.

The latter claim that the set of values f� g2PG defines a unique geodesic current is
easy to check. They satisfy Kirchhoff conditions, ie

(1) 0� � � 2<1,

(2) � D ��1 ,

(3) � D
P

a2A �a D
P

a2A �a ,

as in [29, Proposition 3.13; 35, Lemma 3.7], and by the Kolmogorov measure extension
theorem the result follows.

Now assume that Hk is an NEG stratum. Since � is expanding it is necessarily a
superlinear edge e . By properties of CTs, f .e/D e �u, where u is a circuit in Gk�1

such that u is completely split and the turn .u;u�1/ is legal. We can similarly define
a substitution as in the EG case, where the alphabet consists of the edge e , and
splitting units appearing in u, and all of its iterates. The frequency convergence for the
corresponding substitution is now given by Proposition 3.2.

Finally, if Hk is a zero stratum, then � is a maximal connecting taken path, whose
image Œf .�/� is completely split, and has height � k � 1. Hence, the claim follows by
induction.

Remark 3.4 Proposition 3.2 together with the arguments in the proof of Proposition 3.3
reveals that, for an EG stratum Hr where the PF–eigenvalue is strictly greater than
those of the dependent strata, the currents �e are independent of the edge e chosen
from Hr . Furthermore, combined with [29, Proposition 5.4], we have that for any
other expanding splitting unit � , the current �� is a linear combination of currents
coming from edges in EG strata.

Definition 3.5 Given a CT map f W G! G that represents an atoroidal outer auto-
morphism ' 2 Out.FN /, we define the simplex of attraction as the projective class of
nonnegative linear combinations of currents obtained from Proposition 3.3. We define
the simplex of repulsion similarly, using a CT map that represents '�1 .

3.3 Goodness and legal structure

Lemma 3.6 (bounded cancellation lemma [11]) Let f W G ! G be a topological
graph map. There exists a constant Cf such that for any reduced path �D �1�2 in G
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one has

jŒf .�/�j � jŒf .�1/�jC jŒf .�2/�j � 2Cf :

That is, at most Cf terminal edges of Œf .�1/� are canceled with Cf initial edges of
Œf .�2/� when we concatenate them to obtain Œf .�/�.

Definition 3.7 (goodness) Let  be a reduced edge path in G and  D 1 �2 � � � m

be a splitting of  into edge paths i . Define gCT. / to be the proportion of the sum
of the lengths of the i that have a complete splitting to the total length of  . Define
goodness of  , denoted by g. /, as the supremum of gCT. / over all splittings of 
into edge paths. Since there are only finitely many decompositions of an edge path
into subedge paths, the value g. / is realized for some splitting of  . We will call the
splitting for which g. / is realized the maximal edge splitting of  . The subpaths that
are part of a complete splitting in the maximal edge splitting will be called good. The
subpaths in the maximal edge splitting which do not admit complete splittings will be
called bad.

Let w 2 FN be a conjugacy class in FN , and w be the unique circuit in G that
represents w2FN . We define the goodness of the conjugacy class w as g.w/ WDg.w/.

Remark 3.8 The properties of CTs — see Lemma 2.11(1) and (5) — imply that for-
ward images of good paths are always good, and forward images of bad paths are
eventually good.

Proposition 3.9 Let f W G!G be a CT representing an atoroidal outer automorphism
' 2 Out.FN /. There exists s > 0 such that for any completely split edge path � such
that j� j is sufficiently big,

total length of expanding splitting units in �
j� j

� s:

Proof Let � be a completely split edge path, and consider its complete splitting. By
properties of CTs (Lemma 2.11(6)) each maximal connecting path in a zero stratum
is necessarily followed by an edge in an EG stratum. Since zero strata are precisely
the contractible components, there is an upper bound for the length of any maximal
connecting path in a zero stratum, say Z0 . Since ' is atoroidal, there is also an upper
bound for the length of any path that is a concatenation of INPs and fixed edges, say Z1 .
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Let ZDmaxfZ0;Z1g. From these two observations it follows that for any completely
split edge path of length� 2ZC 1, we have

total length of expanding splitting units in �
j� j

�
total length of EG or superlinear edges in �

j� j

�
1

2ZC 1

Convention/Remark 3.10 The values Z0 , Z1 and hence Z are valid for all powers
of f . From now on, we will replace ' , and hence f , with a power (which we will
still denote by f ) so that each expanding splitting unit grows at least by a factor of
2.2ZC 1/.

Definition 3.11 (short and long good paths) In light of Proposition 3.9 we will call
a good segment  a long good segment if j j � 2ZC 1 and short good segment if
j j � 2Z .

Lemma 3.12 Let Cf be the bounded cancellation constant and C WDmaxfCf ;2ZC1g.
Let  D 12 be an edge path such that 1 and 2 are completely split. Then any
edge that is C away from the turn f�1

1
; 2g is good.

Proof Since any completely split path of length � 2ZC 1 grows at least by a factor
of 2, the bounded cancellation lemma dictates that reducing f .12/ will not result
in any cancellation at edges C away from the concatenation point; hence, the claim
follows.

Lemma 3.13 For any edge path  the total length of bad subpaths in Œf k. /� is
uniformly bounded by j j2C.

Proof This is an easy consequence of Lemma 3.12.

We first show that, up to passing to further powers, the goodness is monotone.

Lemma 3.14 Let f W G!G be a CT representing an atoroidal outer automorphism
' 2 Out.FN /. There exists an exponent t 0 � 1 such that for any circuit  with
1> g. / > 0 and for all t � t 0, one has

g.Œf t . /�/ > g. /:
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Proof Note, by definition, the total length of good subpaths in  is g. /j j. Under
iteration of f , each good segment remains good and the length of each good segment is
nondecreasing. Therefore, the total length of good segments in Œf k. /� is � g. /j j.

Let t 0 be an exponent such that for each edge path ˇ of length � 2C C 1, the edge
path Œf t . /� is completely split for all t � t 0. Therefore, for any bad segment ˇ such
that jˇj � 2C C 1, the path Œf t .ˇ/� is completely split, and hence contains no bad
edges. For any bad segment ˇ of length � 2C C 1, divide ˇ into subsegments ˇi of
length 2C C 1, with the exception of the last segment being of length � 2C C 1. By
the choice of t 0, each Œf t .ˇi/� is completely split, where the turns at concatenation
points are possibly illegal. The bounded cancellation lemma dictates that total length
of bad segments decreases by at least the number of subsegments, and the conclusion
of the lemma follows.

Convention/Remark 3.15 In what follows, we pass to a further power of ' and f
so that each expanding splitting unit grows at least by a factor of 2.2ZC 1/ and the
goodness function is monotone. We furthermore consider the bounded cancellation
constant for this new power, but we continue to use f and Cf .

The following is one of the key technical lemmas in this paper. It allows us to get
convergence estimates while dealing with forward iterations of CTs.

Lemma 3.16 Let ı > 0 and � > 0 be given. There exists an exponent mCDmC.ı; �/

such that for all circuits  with g. / > ı , we have g.Œf m. /�/ > 1� � for m�mC .

Proof Let  be a cyclically reduced edge path such that g. /D ı > 0. First consider
the splitting of  into maximal good segments ai and maximal bad segments bi . There
are two cases to consider:

Case 1 First assume that
total length of long good segments in 

total length of good segments in 
�

1

4ZC 1

This gives that

total length of expanding splitting units in 
total length of good segments in 

�
1

.2ZC 1/.4ZC 1/
:

Note that by Lemma 3.13 the total length of bad segments in Œf k. /� is uniformly
bounded by .1� g. //j jC. On the other hand, the assumption above together with
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Convention/Remark 3.15 implies that

total length of good segments in Œf k. /�� g. /j j
1

.2ZC 1/.4ZC 1/
.2ZC 1/k2k :

Therefore,

g.Œf k. /�/�
g. /j j 1

.2ZC1/.4ZC1/
.2ZC 1/k2k

.1� g. //j jC C g. /j j 1
.2ZC1/.4ZC1/

.2ZC 1/k2k

D
g. / 1

4ZC1
.2ZC 1/k�12k

.1� g. //C C g. / 1
4ZC1

.2ZC 1/k�12k
;

which converges to 1 as k!1; hence, the conclusion of Lemma 3.14 follows for
big enough k , say k DmC .

Case 2 Otherwise, we have

total length of long good segments in 
total length of good segments in 

<
1

4ZC 1
:

Equivalently,

(3-1)
total length of short good segments in 
total length of long good segments in 

� 4Z:

We now subdivide the path  into subpaths as follows. Consider the maximal edge
splitting of  . First subpath starts at a good edge, and it stops after tracing a total length
of 2ZC 1 good segments end at a vertex such that the next edge is good. The second
subpath starts at where the first path stops, and traces a total length of 2ZC 1 good
segments, and stops at a vertex such that the next edge is good. We inductively form
subpaths 1; 2; : : : so that each of them contains good segments of length 2ZC 1,
with the possible exception of the last subpath. Note that by construction, i � 2 � � � s

is a splitting of  .

Observe that (3-1) implies that

#fi containing bad segmentsg
#fi which are completely goodg

� 4Z;

which, in turn, implies

#fi containing bad segmentsg �
s4Z

4ZC 1
;

where s is the total number of subpaths in  in the above subdivision.
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Since
total length of good segments in  �

1� g. /

g. /
s.2ZC 1/;

each i above that contains a bad segment contains

1� g. /

g. /
s.2ZC 1/

4ZC 1

s.4Z/
D
.2ZC 1/.4ZC 1/

4Z

.1� g. //

g. /

bad edges on average.

Therefore, for each  with g. /� ı , at least half of the subpaths contain bad segments
of total length

�
.2ZC 1/.4ZC 1/

2Z

.1� ı/

ı
DW Cb

Let tb > 0 be an exponent such that for all edge paths  with j j � Cb , the path
Œf k. /� is completely split for k � tb . Therefore, at least half of the subsegments in
the subdivision will be mapped to long good segments, and the result follows from
Case 1.

Lemma 3.17 Let U a neighborhood of the simplex of attraction and a positive number
ıC> 0 be given. Then there exists an exponent N DN.ı;U / such that for any w 2FN

with g.w/ > ı ,
.'N /n.�w/ 2 U

for all n� 1.

Proof We first apply a power of f so that for every conjugacy class w with g.w/> ı ,
we have g.'.w// > 1� � for small � > 0. The rest of the proof is nearly identical
to the proof of Lemma 6.1 in [28], where edges are replaced by expanding splitting
units.

Lemma 3.18 Let f W G!G be a CT that represents an atoroidal outer automorphism.
Given 0< ı < 1, there exists an exponent T such that, for any element w 2 FN , and
for all t � T either

g.'t .w//� ı

or

total length of bad segments in f t .w/�
1
2

total length of bad segments in w;

where w is the unique circuit in G representing w .
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Proof Let w be the unique circuit in G that represents w 2 FN . Consider the
splitting of  into maximal good segments ai and maximal bad segments bi . Recall
that C D maxfCf ; 2Z C 1g. Let us call a bad segment bi a long bad segment if
jbi j> 10C, and a short bad segment otherwise.

There are two cases to consider:

Case 1 First assume that

total length of short bad segments in w
total length of bad segments in w

�
1

10
:

Since every maximal bad segment is followed by at least one good segment, we have

total length of good segments in w �
1

10C
total length of short bad segments in w

and hence

total length of good segments in w �
1

100C
total length of bad segments in w:

Therefore,

g.w/�
1

100CC1
:

Now, invoking Lemma 3.16, there is an exponent T1 such that

g.'t .w//� ı

for all t � T1 , which is clearly independent of the conjugacy class w .

Case 2 Now assume, on the other hand, that

(3-2)
total length of long bad segments in w

total length of bad segments in w
�

9

10
:

Let T2 be an exponent such that for all edge paths  with j j < 10C, Œf t . /� is
completely split for all t � T2 . Then, for any long bad segment b , the bounded
cancellation lemma implies that

total length of bad segments in Œf t .b/�� 1
5

total length of bad segments in b:

Together with (3-2), we get

total length of bad segments in f t .w/�
9

50
total length of bad segments in w

for all t � T2 . Now set T DmaxfT1;T2g, and the lemma follows.
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Lemma 3.19 Let hW G0!G0 be a CT that represents '�1 2Out.FN /. Define g0. 0/

for  0 2 G0, and g0.w/ for w 2 FN analogously. Then, given 0 < ı < 1, there is an
exponent T > 0 such that, up to replacing f and h with powers, for any element
w 2 FN either

g.'t .w//� ı or g0.'�t .w//� ı

for all t � T .

Proof Let hW G0 ! G0 be a CT that represents '�1 2 Out.FN / and g0 be the
corresponding goodness function, and we pass to appropriate powers according to
Convention/Remark 3.15. The proof is now nearly identical to that of Proposition 4.20
of [28], where the number of illegal turns is replaced by the total length of bad segments.

Proposition 3.20 [28, Proposition 3.3] Let f W X ! X be a homeomorphism of a
compact metrizable space X. Let Y �X be a dense subset of X, and let �C and ��
be two f –invariant sets in X that are disjoint. Assume that the following criterion
holds:

For every neighborhood U of �C and every neighborhood V of �� there exists an
integer m0 � 1 such that, for any m�m0 and any y 2 Y , one has either f m.y/ 2 U

or f �m.y/ 2 V .

Then f 2 has generalized uniform north–south dynamics from �� to �C .

Proposition 3.21 [28, Proposition 3.4] Let f W X ! X be a homeomorphism of a
compact space X, and let �C and �� be disjoint f –invariant sets. Assume that some
power f p with p � 1 has generalized uniform north–south dynamics from �� to �C .

Then the map f , too, has generalized uniform north–south dynamics from �� to �C .

Proof of Theorem 1.4 The theorem now follows from a combination of Lemmas 3.17
and 3.19 and Propositions 3.20 and 3.21.

4 Hyperbolic extensions of free groups

In this section we use the dynamics of atoroidal outer automorphisms to prove Theorem
1.1 from the introduction, which allows us to construct new examples of hyperbolic
extensions of free groups.
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In what follows we will utilize theory of laminations on free groups which appear as
supports of currents on FN . We refer the reader to [4; 5; 9; 12; 13; 14; 18; 21] for
detailed discussions. A lamination is a closed subset of @2FN which is FN –invariant,
and flip-invariant. We say that a free factor F carries a lamination ƒ if all lines in ƒ
are contained in @2 F.

Convention 4.1 Throughout this section we assume that we pass to the finite-index
characteristic subgroup IAN .Z3/ of Out.FN /, as in Handel–Mosher subgroup decom-
position theory [21], so that for each outer automorphism every periodic conjugacy
class is fixed, and every periodic free factor system is invariant.

Let H be a subgroup of Out.FN / and F1 @ F2 @ � � �@ Fn D FN be a maximal H–
invariant filtration of FN by free factor systems, meaning that if H.A/DA for some
F i @ A @ F iC1 , then either AD F i or AD F iC1 . Let ' 2H be an atoroidal outer
automorphism. Consider a (possibly trivial) refinement A1 @ A2 @ � � �@ Am D FN

of F1 @ F2 @ � � �@ Fn D FN which is a maximal invariant filtration for ' .

If H fixes the conjugacy class of a free factor F of FN , we will call the image of H
in Out.F/ under the natural homomorphism Stab.F/! Out.F/ the restriction of H
to F and denote it by HjF .

We say that an H–invariant free factor F is minimal if H does not fix the conjugacy
class of any proper free factor of F. Similar definition holds for ' by considering the
cyclic subgroup h'i. Observe that for ' 2H , each minimal '–invariant free factor Fi

'

is contained in a unique minimal H–invariant free factor Fi
H .

Definition 4.2 Let ' and  be two atoroidal outer automorphisms with attracting
and repelling simplices �˙.'/ and �˙. / given by Theorem 1.4. We say that '
and  are independent if �˙.'/\�˙. /D∅.

Lemma 4.3 Let ' 2H be an atoroidal outer automorphism. Suppose that the restric-
tion of H to Fi is not virtually cyclic for each minimal H–invariant free factor Fi

of FN . Then H contains two independent atoroidal outer automorphisms.

Proof Let fFi
gs
iD1

be the set of all minimal H–invariant free factors. For each
i D 1; : : : ; s the restriction of H to Fi is irreducible; hence, by [21, Theorem A;
22, Theorem 0.1], H contains an element �i whose restriction to Fi is fully irreducible,
and since H is not geometric (since it contains an atoroidal element), we can choose �i

in a way that its restriction to Fi is both fully irreducible and atoroidal [36, Theorem 5.4].
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Figure 1: Dynamics on PCurr.Fi/

Since fully irreducible and atoroidal elements are precisely the loxodromic isometries
of the cosurface graph [15], invoking [10, Theorem 5.1] we can find a single � 2H
such that for each i D 1; : : : ; s , the restriction � jFi is fully irreducible and atoroidal.
Recall that each fully irreducible and atoroidal outer automorphism acts on the space
of projectivized geodesic currents with uniform north–south dynamics [30; 35]. Let
Œ�i
�.�/�2PCurr.Fi/ and Œ�i

C.�/�2PCurr.Fi/ denote the unstable and stable currents
for the restriction � jFi . Since the stabilizer of the set fŒ�i

�.�/�; Œ�
i
C.�/�g is virtually

cyclic in Out.Fi/ [25], using the assumption on H we can furthermore assume that for
the above � 2H it holds that � jFi and 'jFi are independent.

Hence, we can find M > 0 large enough that �M .�i
˙
.'// \�i

˙
.'/ D ∅, where

�i
˙
.'/ are the attracting and repelling simplices of 'jFi in PCurr.Fi/.

More precisely, choose open neighborhoods Ui and Vi of Œ�i
C.�/� and Œ�i

�.�/� in
PCurr.Fi/ which are disjoint from �i

˙
.'/. Pick M >0 such that �m.PCurr.Fi/nVi/�

Ui for all m�M ; in particular, �M .�i
˙
/� Ui . See Figure 1. In fact, we choose M

that works for all minimal H–invariant free factors for suitable open neighborhoods of
attracting simplices as there are only finitely many minimal H–invariant free factors.

Now consider the automorphism �D�M'��M, which is atoroidal since being atoroidal
is invariant under conjugacy. Furthermore �i

C.�/ D �M .�i
C.'// and �i

�.�/ D

�M .�i
�.'// in PCurr.Fi/, and �C.�/D �M .�C.'// and ��.�/D �M .��.'// in

PCurr.FN /.
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Claim � and ' are independent.

Let Œ�k
C� be an extremal point in the attracting simplex �C.'/. We first want to show

that �M .Œ�k
C�/¤ Œ�� for any point Œ�� 2�˙.'/.

Notice that by Proposition 3.3 the point Œ�k
C� corresponds to some EG stratum Hk in

the CT map f W G!G that represents ' .

Let Fk
' be the unique (minimal) free factor carrying supp.�k

C/ (this support is the
attracting lamination corresponding to the EG stratum Hk in the sense of Bestvina,
Feighn and Handel [5]), and consider a minimal '–invariant free factor Fi

' @ Fk
' . The

free factor F i
' is contained in some minimal H–invariant free factor F i as above.

Let Œ�i
C� 2�C be the unique geodesic current whose support is carried by Fi

' . We
first observe that by definition supp.�i

C/� supp.�k
C/. Second, the subgroup H and

so the element �M preserves Fi ; therefore, supp.�M�i
C/ is carried by Fi .

Suppose, for the sake of contradiction, that �M .Œ�k
C�/ D Œ��. In that case we have

supp.�M .Œ�k
C�//D supp.Œ��/; hence,

supp.�M .Œ�i
C�//� supp.�M .Œ�k

C�//D supp.Œ��/:

Only sublaminations of supp.Œ��/ that are carried by Fi could possibly come from
supports of extremal points of �i

˙
.'/, and since .�M�i

C/ \�
i
˙
D ∅, the above

inclusion is not possible; hence, we get a contradiction.

Since the support of any point in �C.�/ is a union of supports of extremal points, we
get �C.�/\�˙.'/D∅. A symmetric argument finishes the proof.

We will prove the hyperbolicity of the extension using a classical argument of Bestvina,
Feighn and Handel [4] which originates in the work of Mosher [31] as interpreted by
Kapovich and Lustig [25].

Proposition 4.4 Let '; 2 H be two independent atoroidal outer automorphisms.
Then there exist M;N > 0 such that for any � 2 Curr.FN / and for all n � N and
m�M, for at least three out of four elements ˛ in f'n; '�n;  m;  �mg,

j˛�jG � 2j�jG :

Proof Let U be a sufficiently small open neighborhood of �C.'/, and M0 > 0 be
such that for any �2Curr.FN / such that Œ��2�C.'/ it holds that j'n.�/jG � 2j�jG
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for all n�M0 . This can be done, because of the topology of the space of currents, and
the fact that for each extremal point Œ�C� of �C.'/, '.�C/D ��C for some � > 1.
For the corresponding statement in the fully irreducible case see [25, Lemma 4.12].

We also choose a small neighborhood V of ��.'/, and M1 so that for each � 2
Curr.FN / such that Œ�� 2��.'/ it holds that j'�n.�/jG � 2j�jG for all n�M. Let
M 0 DmaxfM0;M1g.

Similarly, we choose neighborhoods U 0 and V 0 of �C. / and ��. /, respectively,
and a corresponding N 0 > 0.

By Theorem 1.4, there exists an exponent MC such that

'n.PCurr.FN / nV /� U

and
'�n.PCurr.FN / nU /� V

for all n�MC .

Similarly, there exists an exponent NC such that

 n.PCurr.FN / nV 0/� U 0

and
 �n.PCurr.FN / nU 0/� V 0

for all n�NC .

Now set M DM 0CMC and N D N 0CNC . Let � 2 V . Then the choice of M

and N guarantees that j'�n�jG � 2j�jG , j m�jG � 2j�jG and j �m�jG � 2j�jG .
The other cases can be proved similarly; hence, the proposition follows.

Proof of Theorem 1.1 Let F i be a minimal, nontrivial H–invariant free factor, and
let ' , � and � be as in Lemma 4.3. Since � is fully irreducible, for large M the free
factors F i

' and �MF i
' fill the free factor Fi . Under this assumption, based on work of

Bestvina and Feighn [3], Taylor [33, Theorem 1.3] proved that for some K > 0, the
group h'K ; �K i is isomorphic to a free group of rank 2. (He proves much more but
we don’t need that here.)

The fact that the corresponding free group extension is hyperbolic now follows from
Proposition 4.4 and the Bestvina–Feighn combination theorem; see the proof of
[4, Theorem 5.2].
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We finish the paper with Corollary 1.5 from the introduction:

Corollary 1.5 Let ' 2 Out.FN / be a fully irreducible and atoroidal outer automor-
phism. Then, for any atoroidal outer automorphism  2 Out.FN / (not necessarily
fully irreducible) which is not commensurable with ' , there exists an exponent M > 0

such that for all n;m>M, the subgroup � D h'n;  mi<Out.FN / is purely atoroidal
and the corresponding free extension E� is hyperbolic.

Proof Let ' be as above, and let Œ�C.'/� and Œ��.'/� be the corresponding stable
and unstable currents in PCurr.FN /. Since  is not commensurable with ' , the
attracting simplex �C. /, the repelling simplex ��. /, and the stable and unstable
currents Œ�C.'/� and Œ��.'/� are all disjoint.

Choose disjoint open neighborhoods of these sets, and choose high enough powers
of ' and  so that there is a uniform north–south dynamics, which is guaranteed
by Theorem 1.4. Then Proposition 4.4, together with Bestvina–Feighn combination
theorem, gives the required result.
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Symmetric spectra model global homotopy theory
of finite groups

MARKUS HAUSMANN

We show that the category of symmetric spectra can be used to model global equi-
variant homotopy theory of finite groups.
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0 Introduction

Equivariant stable homotopy theory deals with the study of equivariant spectra and
the cohomology theories they represent. While some of these equivariant theories are
specific to a fixed group, many of them are defined in a uniform way for all compact Lie
groups simultaneously, for example equivariant K–theory, Borel cohomology, equivari-
ant bordism or equivariant cohomotopy. The idea of global equivariant homotopy theory
is to view such a compatible collection of equivariant spectra — ranging through all
compact Lie groups — as one “global” object, in particular to capture its full algebraic
structure of restrictions, transfer maps and power operations. There have been various
approaches to formalizing this idea and to obtain a category of global equivariant
spectra, for example in Lewis, May and Steinberger [11, Chapter 2], Greenlees and
May [5, Section 5] and Bohmann [2]. Schwede [19; 18] introduced a new approach by
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1414 Markus Hausmann

looking at the well-known category of orthogonal spectra of Mandell, May, Schwede
and Shipley [13] from a different point of view: Every orthogonal spectrum X gives
rise to a G–orthogonal spectrum XG for any compact Lie group G by letting G act
through its orthogonal representations. The fundamental observation used in [19] is that
the G –homotopy type of XG is not determined by the nonequivariant homotopy type
of X, ie a stable equivalence of orthogonal spectra does not necessarily give rise to a
G –stable equivalence on underlying G –orthogonal spectra. Taking these G –homotopy
types for varying G into account gives rise to a much finer notion of weak equivalence
called global equivalence and thereby to the global stable homotopy category, which
splits each nonequivariant homotopy type into many global variants. A strength of
Schwede’s approach is that it on the one hand allows many examples (all the theories
mentioned above are represented by a single orthogonal spectrum in this sense) and on
the other hand is technically easy to work with, since the underlying category is just
that of orthogonal spectra.

The purpose of this paper is to show that the category of symmetric spectra introduced by
Hovey, Shipley and Smith [9] can also be used to model global equivariant homotopy
theory if one takes “global” to mean all finite groups instead of all compact Lie
groups. Symmetric spectra have the advantage that they can also be based on simplicial
sets and are generally more combinatorial, as it is sometimes easier to construct
actions of symmetric groups than of orthogonal groups. A main example is Schwede’s
construction of a model for global equivariant algebraic K–theory [16] (which we recall
in Section 6.3), whose output is a symmetric spectrum and usually not an orthogonal
spectrum.

Besides the fully global theory of orthogonal spectra, which takes into account all
compact Lie groups, Schwede [19] also provides a variant where only a fixed family of
groups is considered. In particular, there is a version for the family of finite groups Fin.
Then the main result of this paper can be stated as:

Theorem (Theorems 2.17 and 5.3) There exists a model structure on the category of
symmetric spectra of topological spaces or simplicial sets — called the global model
structure — which is Quillen equivalent to orthogonal spectra with the Fin–global
model structure of [19].

More precisely, the forgetful functor from orthogonal to symmetric spectra is the right
adjoint of a Quillen equivalence. The central notion in the global model structure
is that of a global equivalence of symmetric spectra. The basic idea is the same as

Algebraic & Geometric Topology, Volume 19 (2019)
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for orthogonal spectra: every symmetric spectrum X gives rise to a G–symmetric
spectrum XG for any finite group G by letting G act through its finite G –sets, ie the
homomorphisms G!†n . In particular, one can define its equivariant homotopy groups.
However, unlike for orthogonal spectra, equivariant homotopy groups cannot be used
to describe global equivalences — a phenomenon already present for nonequivariant
symmetric spectra and for G–symmetric spectra over a fixed finite group G. Instead
we make use of the notion of G –stable equivalence introduced in Hausmann [6] and
define a map f W X !Y of symmetric spectra to be a global equivalence if for all finite
groups G the map fG W XG! YG is a G –stable equivalence. The more complicated
definition of G –stable equivalence and hence global equivalence is the main technical
difference to orthogonal spectra. The work in this paper lies in assembling the model
structures of [6] for varying G into a global one, for which Proposition 2.13 is central.

The cofibrations in our model structure are the same as in Shipley’s flat (or S–) model
structure introduced in Shipley [21], which hence forms a left Bousfield localization
of ours. This determines the model structure completely; the fibrant objects can be
characterized as global equivariant versions of �–spectra (Definition 2.12), similarly
as for orthogonal spectra. We further show that the global model structure (or a positive
version) lifts to the categories of symmetric ring spectra and commutative symmetric
ring spectra (called “ultracommutative” in [19]), and more generally to categories of
modules, algebras and commutative algebras over a fixed (commutative) symmetric
ring spectrum.

While equivariant homotopy groups of symmetric spectra cannot be used to characterize
global equivalences, they nevertheless provide an important tool. We describe some
of their properties and their functoriality as the group varies. This functoriality turns
out to be more involved than for orthogonal spectra, as it interacts nontrivially with
the theory of (global equivariant) semistability, ie the relationship between “naive”
and derived equivariant homotopy groups of symmetric spectra. When X is globally
semistable, its equivariant homotopy groups carry restriction maps along arbitrary
group homomorphisms and transfer maps for subgroup inclusions, and the two are
related via a double coset formula. This functoriality describes a global version of
a Mackey functor that has previously been considered in an algebraic context, such
as by Webb [22] (where it is called an “inflation functor”) and Lewis [10] (“global
.∅;1/–Mackey functor”).

Throughout, we focus on the class of all finite groups, but symmetric spectra can also
be used to model global homotopy theory with respect to smaller families of groups,

Algebraic & Geometric Topology, Volume 19 (2019)
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such as abelian finite groups or p–groups for a fixed prime p . In the appendix we give
a short treatment of the modifications needed to obtain such a relative theory.

The paper is organized as follows: In Section 1 we recall the definition of symmetric
spectra, explain how to evaluate them on finite G–sets (Section 1.2) and introduce
global free spectra (Section 1.3). Section 2 starts with the construction of the global
level model structure (Proposition 2.5), introduces global equivalences (Definition 2.9)
and global �–spectra (Definition 2.12), explains the connection between the two
(Proposition 2.13) and, finally, contains a proof of the stable global model structure
(Theorem 2.17). In Section 3 we construct global model structures on module, algebra
and commutative algebra categories. Section 4 deals with equivariant homotopy groups
of symmetric spectra. Their definition is given in Section 4.1, their functoriality
is explained in Sections 4.3, 4.4 and 4.5 and the properties of globally semistable
symmetric spectra are discussed in Section 4.6. In Section 5 we prove that our model
structure is Quillen equivalent to Fin–global orthogonal spectra. Section 6 discusses
examples of symmetric spectra from the global point of view. Finally, the appendix
deals with global homotopy theory of symmetric spectra with respect to a family of
finite groups.

Acknowledgements I thank my advisor Stefan Schwede for suggesting this project
and for many helpful discussions and comments. I further thank the anonymous referee
for various suggestions for improvement. This research was supported by the Deutsche
Forschungsgemeinschaft Graduiertenkolleg 1150 Homotopy and cohomology. Final
revisions were made in Copenhagen under the support of the Danish National Research
Foundation through the Centre for Symmetry and Deformation (DNRF92).

1 Symmetric spectra

1.1 Definition

We begin by recalling the definition of a symmetric spectrum. For easier reading we
do not treat the simplicial and topological cases in parallel, but for the definitions and
the construction of the model structures concentrate on symmetric spectra of simplicial
sets. The translation to symmetric spectra of topological spaces is straightforward; see
also Remark 2.18.

We let Sn denote the n–sphere, ie the n–fold smash product of S1 WD�1=@�1.

Algebraic & Geometric Topology, Volume 19 (2019)
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Definition 1.1 (symmetric spectrum) A symmetric spectrum X of simplicial sets
consists of

� a based †n –simplicial set Xn , and
� a based structure map �nW Xn ^S1!XnC1

for all n 2N. This data has to satisfy the condition that for all n;m 2N the iterated
structure map

�m
n W Xn ^Sm

Š .Xn ^S1/^Sm�1 �n^Sm�1

�������!XnC1 ^Sm�1
�nC1^Sm�2

���������!

� � �
�nCm�1

�����!XnCm

is .†n�†m/–equivariant, with †m acting on Sm by permuting the coordinates.

A morphism of symmetric spectra f W X ! Y is a sequence of based †n –equivariant
maps fnW Xn! Yn such that fnC1 ı �

.X /
n D �

.Y /
nC1
ı .fn ^S1/ for all n 2N.

We denote the category of symmetric spectra by Sp† .

Example 1.2 (suspension spectra) Every based simplicial set A gives rise to a
suspension symmetric spectrum †1A whose nth level is A^ Sn with †n –action
through Sn and structure map the associativity isomorphism .A^Sn/^S1ŠA^SnC1 .
For AD S0 this gives the sphere spectrum S .

Remark 1.3 (G –symmetric spectra) Throughout this paper we will often make use
of the theory of G –symmetric spectra for a fixed finite group G, by which we simply
mean a symmetric spectrum with a G –action.

Definition 1.4 (underlying G–symmetric spectra) Given a symmetric spectrum X,
we write XG for the underlying G–symmetric spectrum obtained by giving X the
trivial G –action.

The fact that G acts trivially on XG means that all the G –equivariance is encoded in
the symmetric group actions on the levels of XG . The homotopical properties of XG

depend on the evaluations on finite G–sets introduced below, which will usually not
carry trivial G –action. The “exterior action” of G being trivial corresponds to saying
that G acts trivially on the evaluations of XG on trivial G –sets.

1.2 Evaluations

Let G be a finite group and M a finite G–set of cardinality m. We denote by
Bij.m;M / the discrete simplicial set of bijections between the sets mD f1; : : : ;mg

Algebraic & Geometric Topology, Volume 19 (2019)
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and M. It possesses a right †m –action by precomposition and a left G–action by
postcomposition with the action on M.

Definition 1.5 (evaluation) The evaluation of a symmetric spectrum X on M is
defined as

X.M / WDXm ^†m
Bij.m;M /C

WDXm ^Bij.m;M /C=..�x; f /� .x; f �/ j � 2†m/;

with G –action through M.

Remark 1.6 This is the special case of an evaluation of a G –symmetric spectrum Y

on a finite G –set, in which case G acts diagonally on Y .M /D Ym^†m
Bij.m;M /C .

If Y D XG for a symmetric spectrum X, ie if the exterior G–action on Y is trivial,
the two evaluations Y .M / and X.M / agree as G –simplicial sets. Hence, X.M / can
be thought of as the evaluation of the underlying G –symmetric spectrum XG on M.

The following are two examples of evaluations:

Example 1.7 Let A be a based simplicial set and M a finite G –set. We denote by SM

the smash product of M copies of S1 with permutation G–action, generalizing the
definition of the †n –permutation sphere Sn . Then the map .†1A/.M /!A^SM

that sends a class Œ.a^x/^f � to a^f�.x/ is a G –isomorphism.

Example 1.8 Let G be the symmetric group †n and M be the natural †n –set n,
with X a symmetric spectrum. Then X.n/ is canonically isomorphic to Xn with the
†n –action that is part of the data of the symmetric spectrum X. In contrast, evaluating
at f1; : : : ; ng with trivial †n –action yields Xn with trivial action.

Moreover, these evaluations are connected by so-called generalized structure maps:
Let G be a finite group, M and N two finite G–sets of cardinalities m and n,
respectively, and X a symmetric spectrum. We further choose a bijection  W n Š�!N .

Definition 1.9 (generalized structure map) The map

�N
M W X.M /^SN

!X.M tN /; .Œx ^f �^ s/ 7! Œ�n
m.x ^ 

�1
� .s//^ .f t /�;

is called the generalized structure map of M and N .

It is straightforward to check that the generalized structure map does not depend on
the choice of bijection  W n Š�!N . Furthermore, it is G –equivariant for the diagonal
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G –action on X.M /^SN. Again this is a special case of generalized structure maps
for G –symmetric spectra.

1.3 Global free symmetric spectra

For every finite group G and every finite G–set M, the above construction yields
functors

�.M /W Sp†!GS�

from symmetric spectra to the category of based G –simplicial sets GS� . These functors
have left adjoints FG

M
, which is a consequence of the existence of a left adjoint for the

analogous evaluation functor from G –symmetric spectra to based G –simplicial sets.

Here we only give the necessary definitions to construct them; more details can be
found in [6, Section 2.4]. Given a finite K–set N for another finite group K , we put

†.M;N / WD
W
˛WM ,!N injective SN�˛.M /:

This based simplicial set carries a right G–action by precomposition on the index-
ing wedge and a commuting left K–action for which an element k sends a pair
.˛;x 2 SN�˛.M // to the pair .k ı ˛; k � x 2 SN�k�˛.M //. Given another finite
K–set N 0, there is a natural .Gop�K/–equivariant map

�N 0

N W †.M;N /^SN 0
!†.M;N tN 0/; .˛;x/^y 7! .˛;x ^y/:

Definition 1.10 Let A be a based G–simplicial set and M a finite G–set. Then
the global free symmetric spectrum on A in level M is defined as .FG

M
.A//n WD

A^G †.M; n/ with structure map

A^G �
1
n W .A^G †.M; n//^S1

!A^G †.M; nC 1/:

More generally, if N is a finite K–set, the evaluation .FG
M
.A//.N / is canonically

isomorphic to A^G †.M;N / with K–action through N . The generalized structure
maps arise by smashing �N 0

N
with A^G �. Then we have:

Proposition 1.11 Let M be a finite G–set, A a based G–simplicial set and X a
symmetric spectrum. Then the assignment

mapSp† .F
G
M .A/;X / �!mapG.A;X.M //;

.f W FG
M .A/!X / 7�!

�
A

Œ�^fidM gC�
��������!A^G †.M;M /

f .M /
����!X.M /

�
;

is a natural isomorphism.
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Here, the expression mapSp† .�;�/ refers to the simplicial set of morphisms between
two symmetric spectra, which is recalled in the following subsection.

Proof This follows from [6, Proposition 2.14], since by definition FG
M
.A/ is the

G–quotient of the free G–symmetric spectrum FM .A/ and we are mapping into
spectra with trivial G –action.

1.4 Mapping spaces and spectra, smash products and shifts

In this section we quickly recall various point-set constructions for symmetric spectra,
which are all introduced in [9].

Example 1.12 ((co)tensoring over based spaces) Every based simplicial set A gives
rise to a functor A^�W Sp†!Sp† by smashing each level and structure map with A. It
is left adjoint to map.A;�/W Sp†!Sp† , defined via map.A;X /nDmap.A;Xn/ with
structure maps adjoint to map.A;Xn/

z�n
�!map.A; �.XnC1//Š�.map.A;XnC1//.

Example 1.13 (geometric realization) Symmetric spectra of simplicial sets and
topological spaces are related by the adjunction of geometric realization j � j and
singular complex S . Both functors are constructed by applying the space level version
levelwise, making use of the fact that j � j commutes with �^S1 and S commutes
with �.�/ to obtain structure maps (similarly to the previous example).

Example 1.14 (shifts) For every natural number n there is an endofunctor

shn
W Sp†! Sp†

defined by shn.X /m WD XnCm with †m –action through the last m coordinates and
structure maps shifted by n. There is a natural transformation ˛n

X
W Sn ^X ! shn.X /

given in level m by the composite

Sn
^Xm ŠXm ^Sn �m

n�!XmCn
X .�m;n/
����!XnCm D shn.X /m;

where �m;n denotes the permutation in †mCn that moves the first m elements f1; : : : ;mg
past the last n elements fmC 1; : : : ;mC ng and preserves the order of both of these
subsets.

In fact, via the same formula one can shift along arbitrary finite G–sets M, but the
result shM.X / is in general a G –symmetric spectrum with nontrivial G –action.
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Example 1.15 (mapping spaces) Given two symmetric spectra X and Y there is
a mapping simplicial set mapSp† .X;Y / whose n–simplices are given by the set of
symmetric spectra morphisms from �n

C ^X to Y .

Example 1.16 (internal Hom) Combining this with the shifts above gives internal
homomorphism spectra Hom.X;Y / defined by Hom.X;Y /n WD mapSp† .X; shn Y /

with †n –action through the first n coordinates in shn.Y / and structure map sending a
pair .f W X ! shn.Y /; x 2 S1/ to the composite

X
x^f
��! S1

^ shn.Y /
˛1

shn.Y /

�����! shnC1.Y /:

Example 1.17 (smash product) As shown in [9, Section 2], the category of sym-
metric spectra carries a symmetric monoidal smash product ^ with unit S , uniquely
characterized up to natural isomorphism by the fact that � ^ X is left adjoint to
Hom.X;�/.

2 Global model structures

In this section we construct global model structures on the category of symmetric
spectra, beginning with a level model structure which is, later, left Bousfield localized
to obtain a stable version.

2.1 Level model structure

We recall the standard model structure on equivariant simplicial sets:

Definition 2.1 A map f W A! B of based G –simplicial sets is called a

� G –weak equivalence if the map f H W X H ! Y H is a weak equivalence for all
subgroups H of G ;

� G–fibration if the map f H W X H ! Y H is a Kan fibration for all subgroups
H of G ;

� G –cofibration if it is degreewise injective.

It is well known that the above classes assemble to a proper, cofibrantly generated and
monoidal model structure on the category of based G –simplicial sets. We make use of
it to construct a global level model structure on symmetric spectra:
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Definition 2.2 A morphism f W X ! Y of symmetric spectra is called a

� global level equivalence if each level fnW Xn! Yn is a †n –weak equivalence;

� global level fibration if each level fnW Xn! Yn is a †n –fibration;

� flat cofibration if each latching map �nŒf �W Xn[Ln.X / Ln.Y /! Yn is a †n –
cofibration.

For the definition of latching spaces and maps we refer to [9, Definition 5.2.1] or
[6, Section 2.5]. The following gives a different interpretation of global level equiva-
lences and fibrations:

Lemma 2.3 A morphism f W X!Y of symmetric spectra is a global level equivalence
(resp. global level fibration) if and only if for all finite groups G and all finite G –sets M,
the map f .M /G W X.M /G ! Y .M /G is a weak equivalence (resp. Kan fibration) on
G –fixed points.

Proof Given a finite G –set M, any choice of bijection mŠM defines a homomor-
phism 'W G!†m and the G –fixed points X.M /G are naturally identified with X

'.G/
m .

This translates between the different formulations.

Remark 2.4 In [6], a morphism f W X ! Y of G–symmetric spectra is a G–level
equivalence if for all subgroups H of G and all finite H –sets M, the map

f .M /H W X.M /H ! Y .M /H

is a weak equivalence. Hence, a morphism of symmetric spectra is a global level
equivalence if and only if it induces a G –level equivalence on underlying G –symmetric
spectra for all finite groups G. Furthermore, every flat cofibration of symmetric spectra
induces a G –flat cofibration on underlying G –symmetric spectra.

Proposition 2.5 (level model structure) The global level equivalences, global level
fibrations and flat cofibrations define a proper, cofibrantly generated and monoidal
model structure on the category of symmetric spectra, called the global level model
structure.

Proof The existence of the model structure and its properness follows from [6,
Proposition 2.22] for G the trivial group, since the strong consistency condition
[6, Definition 2.21] is satisfied. Monoidality is a consequence of [6, Corollary 2.30]
for each finite group separately.
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Since the suspension spectrum functor from based simplicial sets is a strong monoidal
left Quillen functor, the monoidality of the global model structure in particular implies
that it is simplicial. Let I and J denote sets of generating cofibrations and acyclic
cofibrations, respectively, for the Quillen model structure on simplicial sets. Then sets
of generating (acyclic) cofibrations for the global level model structure are given by

I lev
gl DfF

H
n .i/ jn2N; H �†n; i 2Ig and J lev

gl DfF
H
n .j / jn2N; H �†n; j 2J g;

respectively, where in each case the maps i and j are thought of as maps of H –spaces
with trivial action and H acts on n via its embedding into †n .

In order to obtain a global model structure on commutative symmetric ring spectra we
will also need a positive version of the global level model structure. For this we call a
morphism f W X ! Y a positive global level equivalence (resp. positive global level
fibration) if fnW Xn! Yn is a †n –weak equivalence (resp. †n –fibration) for all n� 1.
Furthermore, a positive flat cofibration is a flat cofibration which is an isomorphism in
degree 0. Then we have:

Proposition 2.6 (positive level model structure) The positive global level equiva-
lences, positive global level fibrations and positive flat cofibrations define a proper and
cofibrantly generated model structure on the category of symmetric spectra, called the
positive global level model structure.

Proof As above, this model structure can be obtained via [6, Proposition 2.22].

The positive global level model structure satisfies the pushout product axiom but not
the unit axiom, so it is not quite monoidal.

2.2 Global equivalences

In order to define the global (stable) equivalences we have to recall the notions of G�–
spectrum and G –stable equivalence for a fixed finite group G. In comparing to [6], we
always use the notions formed with respect to a complete G –set universe UG . These
notions do not depend on a particular choice of such and so we omit it from the notation.

Definition 2.7 (G�–spectra) A G –symmetric spectrum X is called a G�–spectrum
if for all subgroups H of G and all finite H –sets M and N , the composite

X.M /
z̨N

M
�!�N X.M tN /!�N.X.M tN /f /

is an H –weak equivalence, where X.M tN /f is a fibrant replacement of X.M tN /

in the model structure on based H –simplicial sets.
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Here, the map �N X.M tN /!�N.X.M tN /f / is used to replace �N X.M tN /

by the derived loop space to make the property homotopically meaningful. When X

is G –level fibrant, the above condition is equivalent to the adjoint structure map z̨N
M

itself being an H –weak equivalence.

As recalled in Remark 2.4, a map f W X ! Y of G–symmetric spectra is a G–level
equivalence if for all subgroups H � G and all finite H –sets M the evaluation
f .M /H W X.M /H!Y .M /H is a weak equivalence. We denote the localization of G –
symmetric spectra at the G –level equivalences by G W GSp†!GSp†ŒG–level eq.�1�.

Definition 2.8 (G–stable equivalence) A morphism f W X ! Y of G–symmetric
spectra is a G –stable equivalence if for all G�–spectra Z the map

GSp†ŒG–level eq.�1�.Y;Z/
G.f /

�

�����!GSp†ŒG–level eq.�1�.X;Z/

is a bijection.

Now we can define:

Definition 2.9 (global equivalence) A morphism f W X ! Y of symmetric spectra
is a global equivalence if the induced morphism on underlying G –symmetric spectra
fG W XG! YG is a G –stable equivalence for all finite groups G.

Example 2.10 Every global level equivalence is a global equivalence, since it induces a
G –level equivalence on underlying G –symmetric spectra for all finite groups G. In fact,
every “eventual level equivalence”f WX!Y — in the sense that for every finite group G

there exists a finite G –set M such that f .M tN /G W X.M tN /G! Y .M tN /G is
a weak equivalence for all finite G –sets N — is a global equivalence. This is easiest to
see via Proposition 4.5, since every eventual level equivalence induces an isomorphism
on equivariant homotopy groups, which are discussed in Section 4.

We make the definition of a global equivalence more concrete and consider the (under-
lying G –symmetric spectrum/G –fixed points) adjunction

.�/G W Sp†�GSp† W.�/G :

By definition, a map f of symmetric spectra is a global equivalence if and only if fG

is a G –stable equivalence for all G. Using the global level model structure on Sp† and
the G –flat level model structure on GSp† , the adjunction forms a Quillen pair (since
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the underlying G –spectrum functor preserves all cofibrations and weak equivalences)
and so it can be derived to an adjunction between the homotopy categories

L.�/G W Sp†Œglobal level eq.�1��GSp†ŒG–level eq.�1� W.�/RG ;

where the functor .�/G does not really need to be derived as it is homotopical. Using
this adjunction and the definition of a G –stable equivalence we see:

Corollary 2.11 A map f W X ! Y of symmetric spectra is a global equivalence if
and only if for all finite groups G and all G�–spectra Z the map

Sp†Œglobal level eq.�1�.Y;ZRG/
.f /�

����! Sp†Œglobal level eq.�1�.X;ZRG/

is a bijection.

Here,  W Sp†! Sp†Œglobal level eq.�1� denotes the localization functor. This may
still be unsatisfactory, because the definition is not intrinsic to symmetric spectra as it
is not clear which symmetric spectra arise as the derived fixed points of G�–spectra.
It turns out that these fixed points are again equivariant �–spectra, in the following
global sense:

Definition 2.12 (global �–spectra) A symmetric spectrum X is called a global
�–spectrum if for all finite groups G and all finite G –sets M and N of which M is
faithful, the adjoint generalized structure map

X.M /
z�N

M
�!�N.X.M tN //!�N.X.M tN /f /

is a G –weak equivalence.

Again, the fibrant replacement is there to guarantee that the loop space is derived.
We note that every global �–spectrum is in particular a nonequivariant �–spectrum.
In general, a global �–spectrum X is not quite a G�–spectrum on underlying G–
symmetric spectra for nontrivial finite groups G, as there is no faithfulness condition in
Definition 2.7. However, every faithful finite G –set N gives rise to a G�–replacement
XG!�N.shN.XG// of XG (up to eventual G –level equivalence), but �N.shN.XG//

has nontrivial exterior G–action and thus does not underlie a symmetric spectrum.
It is usually not possible to replace a symmetric spectrum by a globally equivalent
symmetric spectrum whose underlying G –symmetric spectra are G�–spectra for all
finite groups G at once (the most prominent exception being the Eilenberg–Mac Lane
spectrum H Z for the constant global functor Z discussed in [19, Construction 5.3.8]).
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As promised, we have:

Proposition 2.13 The derived fixed points ZRG of a G�–spectrum Z form a global
�–spectrum.

Proof As remarked above, we can use a G–flat fibrant replacement Zf of Z to
compute its right derived fixed points. We now recall from [6, Section 2.6] what
it means for a G–symmetric spectrum to be G–flat fibrant. Given two groups G

and K we let FG;K denote the family of subgroups of G �K whose intersection
with feg �K is trivial. Every such subgroup is of the form f.h; '.h// j h 2H g for a
unique subgroup H of G and group homomorphism 'W H !K . Then the fact that
Zf is G–flat fibrant means that each level Z

f
n is .G�†n/–fibrant and in addition

cofree with respect to the family FG;†n , ie the map Z
f
n ! map.EFG;†n

C ;Z
f
n / is

a .G�†n/–weak equivalence, where EFG;†n is a universal space for FG;†n (see
[6, Section 1.3 and Definition 2.18]).

We now show that .Zf /G forms a global �–spectrum. Let K be a finite group and
M and N be finite K–sets of which M faithful (and of cardinality m). We consider
the evaluation Zf .M / D Z

f
m ^†m

.Bij.m;M /C/ and give it a .G�K/–action by
letting G act through Z

f
m and K through M. Likewise, we obtain a .G�K/–action

on Zf .M tN / and hence also on �N.Zf .M tN //.

We claim the following:

(i) The map z�N
M
W Zf .M /!�N.Zf .MtN // is an FG;K –weak equivalence, ie it

induces a weak equivalence on all fixed points for subgroups in the family FG;K .

(ii) Both Zf .M / and �N.Zf .M tN // are FG;K –cofree.

Together these imply that z�N
M
W Zf .M /!�N.Zf .MtN // is a .G�K/–weak equiv-

alence, as every FG;K –weak equivalence between FG;K –cofree .G�K/–simplicial
sets is a .G�K/–weak equivalence. In particular, the induced map on G –fixed points
.z�N

M
/G W .Zf /G.M /!�N..Zf /G.M tN // is a K–weak equivalence, which proves

the proposition.

Hence, it remains to show the claims; we begin with the first one. We let H be
a subgroup of G and 'W H ! K a group homomorphism. Then the composite
H !K!†M defines an H –action on M (and likewise on N ), which we denote
by '�.M /. Pulling back Zf .M / and Zf .MtN / along the graph of ' yields the H –
simplicial sets Zf .'�.M // and Zf .'�.M tN //. In other words, we have to check
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whether the adjoint structure map z�n
mW Z

f .'�.M //! �'
�.N /.Zf .'�.M tN ///

induces a weak equivalence on H –fixed points, but this is the case since Zf is a
G�–spectrum.

The second claim follows from the observation that when restricting EFG;†m along
id �  for an injective group homomorphism  W K ! †m one obtains a model
for EFG;K . This finishes the proof.

It will be a consequence of Theorem 2.17 that global �–spectra are precisely the local
objects with respect to the class of global equivalences. In other words, one could
alternatively characterize global equivalences as those morphisms that induce bijections
on all morphism sets into global �–spectra in the global level homotopy category.

2.3 Stable model structure

In this section we introduce the global stable model structure on symmetric spectra. We
begin by constructing a global �–spectrum replacement functor up to natural global
equivalence.

For this we let G be a finite group, M and N two finite G –sets and define

�N
M W F

G
MtN .S

N /! FG
M .S0/

to be adjoint to the embedding SN ,! †.M;M t N /=G D .FG
M
.S0//.M t N /

associated to the inclusion M ,!M tN (see Section 1.3 for the definition of †.�;�/
and global free symmetric spectra). Under the adjunction isomorphism, �N

M
represents

the adjoint generalized structure map on G –fixed points,

mapSp† .F
G
M .S0/;X /ŠX.M /G

.z�N
M
/G

�����! .�N X.M tN //G ŠmapSp† .F
G
MtN .S

N /;X /:

The morphisms �N
M

are usually not cofibrations, so we factor them as

FG
MtN .S

N /
x�N

M
��! Cyl.�N

M /
rN

M
�! FG

M .S0/

via the levelwise mapping cylinder Cyl.�/. It is a formal consequence, as explained
in the proof of [9, Lemma 3.4.10], that x�N

M
is a flat cofibration, since the global level

model structure is simplicial. Finally, we define

J st
gl D fi � x�

N
M j i 2 I; G finite; M and N finite G–sets with M faithfulg[J lev

gl ;
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where I is a set of generating cofibrations of the Quillen model structure on based sim-
plicial sets. The notation f �g stands for the pushout product .A^Y /[A^X .B^X /!

.B ^Y / of a map f W A!B of based simplicial sets with a morphism gW X ! Y of
symmetric spectra. More precisely, we only include i � x�N

M
for a chosen system of

representatives of isomorphism classes of triples .G;M;N / to ensure that J st
gl is a set.

Then we have:

Proposition 2.14 For a symmetric spectrum X the following are equivalent:

� X is a level fibrant global �–spectrum.

� X has the right lifting property with respect to the set J st
gl .

Proof We already know that X is global level fibrant if and only if it has the right
lifting property with respect to J st

gl . By adjunction, X has the right lifting property
with respect to fi � x�N

M
gi2I if and only if

mapSp† .
x�N

M ;X /W mapSp† .Cyl.�N
M /;X /!mapSp† .F

G
MtN .S

N /;X /

has the right lifting property with respect to the set I. Since the global level model
structure is simplicial, this map is always a Kan fibration. Hence, it has the right lifting
property with respect to I if and only if it is a weak homotopy equivalence. Since rN

M

is a homotopy equivalence of symmetric spectra, this in turn is equivalent to

mapSp† .F
G
M .S0/;X /

mapSp† .�
N
M
;X /

����������!mapSp† .F
G
MtN .S

N /;X /

being a weak homotopy equivalence. As remarked above, this map can be identified
with the G–fixed points of the adjoint generalized structure map z�N

M
of X, which

finishes the proof.

Corollary 2.15 If M is faithful, then �N
M

is a global equivalence.

Proof This follows from Propositions 2.13 and 2.14 and the fact that FG
MtN

.SN /

and FG
M
.S0/ are flat.

Since the global level model structure is simplicial, it follows that every morphism in J st
gl

is a flat cofibration. Furthermore, all domains and codomains of morphisms in J st
gl are

small with respect to countably infinite sequences of flat cofibrations. So we can apply
the small object argument (see [4, Section 7.12]) to obtain a functor QW Sp†! Sp†

with image in global �–spectra and a natural relative J st
gl –cell complex qW id!Q.

Since every morphism in J st
gl is a flat cofibration and global equivalence, it follows
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from [6, Proposition 4.2] applied to each finite group separately that every relative
J st

gl –cell complex is a global equivalence. In particular, the morphisms qX W X !QX

are always global equivalences. This also implies that Q preserves global equivalences
by 2-out-of-3. Before we use these properties to construct the global stable model
structure we need one more lemma:

Lemma 2.16 Every global equivalence between global �–spectra is a global level
equivalence.

Proof Let f W X ! Y be a global equivalence of global �–spectra. We have to show
that each fn is a †n –weak equivalence. For this we again denote by n the tautological
†n –set and consider the commutative diagram of †n –symmetric spectra

X†n

˛
n

X†n
//

f†n

��

�n.shn X†n
/

�n.shnf†n /

��

Y†n
˛

n

Y†n

// �n.shn Y†n
/

Since X and Y are global �–spectra the horizontal arrows ˛n

X†n
and ˛n

Y†n
induce

†n –weak equivalences on all evaluations at faithful †n –sets. In particular, using
Example 2.10 we see that they are both †n –stable equivalences and so �n.shnf†n

/

is also a †n –stable equivalence. Furthermore, since n is a faithful †n –set, the †n –
symmetric spectra �n.shn X†n

/ and �n.shn Y†n
/ are †n�–spectra. This implies

that �n.shnf†n
/ is even a †n –level equivalence by the Yoneda lemma. In particular,

it induces a †n –weak equivalence when evaluated on n and hence so do f†n
and f

(again using that the horizontal arrows induce †n –weak equivalences on all faithful
evaluations). This finishes the proof.

Finally, a morphism of symmetric spectra is called a (positive) global fibration if
it has the right lifting property with respect to all morphisms that are (positive) flat
cofibrations and global equivalences. Then we have:

Theorem 2.17 (global model structures) The global equivalences , (positive) global
fibrations and (positive) flat cofibrations define a proper, cofibrantly generated and
monoidal model structure on the category of symmetric spectra, called the (positive)
global stable model structure.

Moreover , the fibrant objects of the (positive) global stable model structure are precisely
the (positive) global �–spectra.
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Here, a symmetric spectrum is called a positive global �–spectrum if it satisfies the
condition of Definition 2.12 in all cases except possibly for G D feg and M D∅.

Proof Both model structures are obtained via left Bousfield localization at the re-
spective global level model structures. We apply [3, Theorem 9.3] with respect to
the global �–spectrum replacement functor Q and the natural global equivalence
qW id!Q just constructed. By Lemma 2.16, a morphism between global �–spectra
is a global equivalence if and only if it is a (positive) global level equivalence, so the
global equivalences agree with the Q–equivalences in the sense of Bousfield’s theorem.

It remains to check axioms (A1)–(A3) of [3, Section 9.2]. Axiom (A1) requires that
every (positive) global level equivalence be a global equivalence, which is Example 2.10.
For a symmetric spectrum X, the morphisms qQX ;QqX W QX !QQX are global
equivalences between global �–spectra, and hence global level equivalences by
Lemma 2.16, implying axiom (A2). For (A3) we are given a pullback square

V
k
//

g

��

X

f
��

W
h

// Y

where f is a (positive) global level fibration, h is a global equivalence and X and Y

are (positive) global �–spectra. We have to show that g is also a global equivalence.
This is even true without any hypothesis on X and Y , as follows by applying the dual
version of [6, Proposition 4.2] for every finite group G.

Monoidality of the model structures is again implied by the respective monoidality of
the G –flat model structures [6, Proposition 6.1]. Finally, the statement about the fibrant
objects is a consequence of the characterization of the fibrations in the localized model
structure given in [3, Theorem 9.3] and the fact that X is a (positive) global �–spectrum
if and only if the map qX W X !QX is a (positive) global level equivalence.

The generating cofibrations are the same as for the respective level model structures.
In the nonpositive case, the generating acyclic cofibrations are given by J st

gl ; for the
positive version one has to take out those maps that are not positive flat cofibrations (ie
those involving a spectrum of the form F

feg
∅ .�/). Finally, we note:

Remark 2.18 As written at the beginning of Section 1, analogs of all results of
this section also hold for symmetric spectra of topological spaces: There is a global
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level model structure where the weak equivalences (fibrations) are the morphisms
f W X ! Y such that f H

n W X
H
n ! Y H

n is a weak homotopy-equivalence (resp. Serre
fibration) for all n 2N and all subgroups H of †n . The global stable model structure
is obtained by left Bousfield localization at the global equivalences, which can be
defined as in Definition 2.9 or alternatively be characterized as those morphisms
which become global equivalences after applying the singular complex functor. The
geometric realization/singular complex adjunction gives a Quillen equivalence between
the topological and the simplicial version of the model structures.

3 Multiplicative properties

We have seen in Theorem 2.17 that the global model structure is monoidal, ie that it
satisfies the pushout product and unit axioms. In this section we construct global model
structures on categories of modules, algebras and commutative algebras by further
checking that the monoid and strong commutative monoid axioms hold. In all cases, the
properties follow directly from the respective ones for G –symmetric spectra, since the
functor .�/G is strong symmetric monoidal and commutes with all limits and colimits.

3.1 Model structure on module and algebra categories

Given a model structure on symmetric spectra, a map of modules or algebras is called
a weak equivalence or fibration if its underlying morphism of symmetric spectra is so.
We say that the given model structure lifts to the category of modules or algebras if
these two classes define a model structure.

Theorem 3.1 For every symmetric ring spectrum R the positive and nonpositive
global stable model structures lift to the category of R–modules. If R is commutative,
these model structures are again monoidal.

Theorem 3.2 For every commutative symmetric ring spectrum R the positive and
nonpositive global stable model structures lift to the category of R–algebras. More-
over, every cofibration of R–algebras whose source is cofibrant as an R–module is a
cofibration of R–modules.

Both theorems are obtained via the results of [20], which show that it suffices to prove
that the monoid axiom (stated below) holds. The main ingredient is the following:
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Proposition 3.3 (flatness) (i) Smashing with a flat symmetric spectrum preserves
global equivalences.

(ii) Smashing with an arbitrary symmetric spectrum preserves global equivalences
between flat symmetric spectra.

Proof This is a direct consequence of [6, Proposition 6.2].

For any symmetric spectrum Y we denote by fJ st
gl ^ Y gcell the class of morphisms

obtained via (transfinite) compositions and pushouts from morphisms of the form j ^Y ,
where j lies in J st

gl .

Corollary 3.4 (monoid axiom) Every morphism in fJ st
gl ^Y gcell is a global equiva-

lence.

Proof Again, this follows directly from the monoid axiom for the G –flat stable model
structure on G –symmetric spectra [6, Proposition 6.4].

By [20, Theorem 4.1], this implies Theorems 3.1 and 3.2.

3.2 Model structure on commutative algebra categories

The positive global model structure also lifts to the category of commutative symmetric
ring spectra (or, more generally, commutative algebras over a commutative symmetric
ring spectrum). We note that this is a very strong form of equivariant commutativity,
which induces norm maps and power operations on equivariant homotopy groups.
For this reason commutative symmetric (or orthogonal) ring spectra are called “ultra-
commutative” in [19] when they are considered from the point of view of global
homotopy.

Theorem 3.5 For every commutative symmetric ring spectrum R the positive global
model structure lifts to the category of commutative R–algebras.

Moreover , the underlying R–module map of a positive flat cofibration of commutative
R–algebras X ! Y is a positive flat cofibration of R–modules if X is (not necessarily
positive) flat as an R–module. In particular, the symmetric spectrum underlying a
positive flat commutative symmetric ring spectrum is flat.

The part about positive flat cofibrations is merely a restating of Shipley’s result
[21, Proposition 4.1], since the cofibrations in the positive flat nonequivariant and
the positive global model structure on commutative algebras are the same.
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In order to prove Theorem 3.5 we make use of results of [23]. For this we recall that
given a morphism f W X ! Y of symmetric spectra, the n–fold pushout product f �n

is defined inductively via f �n WD f � f �.n�1/ .

Proposition 3.6 (strong commutative monoid axiom) Let f W X!Y be a morphism
of symmetric spectra. Then:

(i) If f is a (positive) flat cofibration, then f �n=†n is again a (positive) flat
cofibration.

(ii) If f is a positive flat cofibration and global equivalence , then so is f �n=†n .

Proof This follows immediately from [6, Proposition 6.22].

Applying [23, Theorem 3.2] (and [21, Proposition 4.1] for the part on cofibrations), we
obtain Theorem 3.5.

4 Equivariant homotopy groups of symmetric spectra

In this section we study equivariant homotopy groups of symmetric spectra. We say
that a countable G –set for a finite group G is a complete G –set universe if it allows
an embedding of every finite G–set. Then for every symmetric spectrum X, every
finite group G, every complete G–set universe UG and every integer n, we define
an abelian group �G;UG

n .X /. Any two complete G–set universes are isomorphic,
which will imply that �G;UG

n .X / only depends on the choice of UG up to natural
isomorphism. However, unlike for orthogonal spectra this isomorphism of homotopy
groups is not canonical: it is affected by the choice of isomorphism of G –set universes.
Hence, for arbitrary symmetric spectra X it is misleading to simply write �G

n .X /. This
phenomenon also affects the functoriality of �G;UG

n .X / in group homomorphisms,
which we discuss in Section 4.3.

All this is tied to the fact that equivariant homotopy groups of symmetric spectra are
not homotopical, ie global equivalences generally do not induce isomorphisms on them.
If one works with the derived versions (ie replacing �G;UG

n .X / by �G;UG
n .QX /) these

problems disappear and one obtains the same properties as for homotopy groups of
orthogonal spectra. In Section 4.6 we discuss criteria to detect for which symmetric
spectra the “naive” equivariant homotopy groups are already derived.
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4.1 Definition and global ��–isomorphisms

Given a finite group G and a complete G –set universe UG , we denote by sG.UG/ the
poset of finite G –subsets of UG , partially ordered by inclusion.

Definition 4.1 Let n 2Z be an integer. Then the nth G –equivariant homotopy group
�

G;UG
n .X / of a symmetric spectrum of spaces X (with respect to UG ) is defined as

�G;UG
n .X / WD colim

M2sG.U/
ŒSntM ;X.M /�G :

The connecting maps in the colimit system are given by the composites

ŒSntM ;X.M /�G
.�/^SN�M

��������! ŒSntMt.N�M /;X.M /^SN�M �G

.�N�M
M

/�
�������! ŒSntN ;X.N /�G

for every inclusion M � N. The last step implicitly uses the homeomorphism
X.Mt.N�M //ŠX.N / induced from the canonical isomorphism Mt.N�M /ŠN .

To clarify what this exactly means for negative n we choose an isometric G –embedding
i W R1 ,! .R.UG//G and only index the colimit system over those G –sets M in sG.U/
for which RM contains i.R�n/. In this case the corresponding term is given by
ŒSM�i.R�n/;X.M /�G, the expression M � i.R�n/ denoting the orthogonal com-
plement of i.R�n/ in RM. Since the space of embeddings R1 ,! .R.UG//G is
contractible, the definition only depends on this choice up to canonical isomorphism
and so we leave it out of the notation. As long as SntM has at least two trivial
coordinates, the set ŒSntM ;X.M /�G carries a natural abelian group structure and
hence so does �G;UG

n .X /.

For a symmetric spectrum of simplicial sets we put �G;UG
n .X / WD �

G;UG
n .jX j/.

Definition 4.2 A morphism f W X ! Y of symmetric spectra is called a global ��–
isomorphism if for all finite groups G, all integers n 2 Z and every complete G–set
universe UG , the induced map �G;UG

n .f /W �
G;UG
n .X /!�

G;UG
n .Y / is an isomorphism.

In fact it suffices to require an isomorphism for a single choice of complete G–set
universe UG for each finite group G, since any two are noncanonically isomorphic.

Remark 4.3 The definition of �G;UG
� .X / agrees with that of �G;UG

� .XG/ in Section 3
of [6]. Hence, a morphism of symmetric spectra is a global ��–isomorphism if and
only if it is a �UG

� –isomorphism on underlying G –symmetric spectra for every finite
group G.
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The following is immediate from the definition:

Example 4.4 Every global level equivalence is a global ��–isomorphism.

Every global level equivalence is also a global equivalence, as we remarked in Example
2.10. It is not obvious from the definition that this is true for arbitrary global ��–
isomorphisms, but it follows by applying [6, Theorem 3.36] for each finite group G :

Proposition 4.5 Every global ��–isomorphism is a global equivalence.

4.2 Properties

We now collect some properties of equivariant homotopy groups and global ��–
isomorphisms, all implied by their respective versions for G –symmetric spectra. For
this we let C.f / denote the levelwise mapping cone of a morphism f W X ! Y of
symmetric spectra, i.f /W Y ! C.f / the inclusion into the cone and q.f /W C.f /!

S1 ^ X its cofiber. Dually, we let H.f / stand for the levelwise homotopy fiber,
p.f /W H.f /!X the projection and j .f /W �.Y /!H.f / its fiber.

Proposition 4.6 Let G be a finite group and UG a complete G–set universe. Then
the following hold:

(i) For every symmetric spectrum of spaces X the unit X !�.S1 ^X / and the
counit S1 ^ .�X /!X are global ��–isomorphisms. In particular, there are
natural isomorphisms

�
G;UG

nC1
.S1
^X /Š �G;UG

n .X /Š �
G;UG

n�1
.�X /:

(ii) For every morphism f W X ! Y of symmetric spectra of spaces the sequences

� � �!�G;UG
n .X /

f�
�!�G;UG

n .Y /
i.f /�
���!�G;UG

n .C.f //
q.f /�
���!�

G;UG

n�1
.X /!� � �

and

� � �!�
G;UG

nC1
.Y /

j.f /�
���!�G;UG

n .H.f //
p.f /�
���!�G;UG

n .X /
f�
�!�G;UG

n .Y /!� � �

are exact. Furthermore, the natural morphism S1 ^H.f /! C.f / is a global
��–isomorphism.

(iii) For every family .Xi/i2I of symmetric spectra, the canonical mapM
i2I

.�G;UG
n .Xi//! �G;UG

n

�W
i2I Xi

�
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is an isomorphism of abelian groups. If I is finite, the natural morphismW
i2I Xi!

Q
i2I Xi is a global ��–isomorphism.

(iv) Smashing with a flat symmetric spectrum preserves global ��–isomorphisms.

In the second item we have implicitly used the isomorphisms of item (i) to obtain the
boundary maps.

Proof These are Propositions 3.6 and 6.2 in [6].

This proposition also has a simplicial analog, for which in item (i) and the second
long exact sequence in (ii) the constructions � and H.�/ need to be replaced by their
derived versions.

4.3 Functoriality

An important feature of global homotopy theory of orthogonal spectra is that their
equivariant homotopy groups enjoy a rich functoriality in the group, they form a so-
called global functor. In short, every group homomorphism 'W G ! K induces a
restriction map '�W �K

� .X /!�G
� .X / (depending only on its conjugacy class) and for

every subgroup H � G, there is a transfer homomorphism trG
H
W �H
� .X /! �G

� .X /.
Moreover, restrictions and transfers are related by a double coset formula.

While the transfer homomorphism works similarly for symmetric spectra, a complication
arises when one tries to construct restriction maps. To explain this, we let X be a
symmetric spectrum, 'W G!K a homomorphism of finite groups and x 2�

K ;UK

0
.X /

an element represented by a K–map f W SM!X.M / for a finite K–subset M of UK .
Restricting all the actions along ' and making use of the equalities '�.SM /DS'

�.M /

and '�.X.M //DX.'�.M //, we can think of f as a G –map S'
�.M /!X.'�.M //.

In order for this to represent an element '�.x/ in �
G;UG

0
.X / we have to choose

an embedding of '�.M / into UG , but such an embedding is not canonical and —
unlike for orthogonal spectra — the outcome is in general affected by the choice one
makes. One might try to get around this by using the restricted universe '�.UK /

instead of UG , but this only works if ' is injective because otherwise '�.UG/ is not
complete.

This issue can be resolved by carrying an embedding '�.UK / ,! UG around as an
additional datum with respect to which one forms the restriction, as we now explain.
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4.4 Restriction maps

Let FinU denote the category of pairs .G;UG/ of a finite group G together with a
complete G –set universe UG , in which a morphism .'; ˛/ from .G;UG/ to .K;UK / is
a group homomorphism 'W G!K and a G –equivariant embedding ˛W '�.UK / ,!UG .

Now we let X be a symmetric spectrum and .'W G ! K; ˛W '�.UK / ,! UG/ a
morphism in FinU . Further, let x be an element of �K ;UK

0
.X / represented by a K–

map f W SM ! X.M / with M � UK . Then we define .'; ˛/�.x/ 2 �G;UG

0
.X / as

the class of the composite

S˛.M / S.˛jM /�1

�������! SM f
�!X.M /

X .˛jM /
�����!X.˛.M //:

This class does not depend on the chosen representative f and hence we obtain a
restriction map

.'; ˛/�W �
K ;UK

0
.X /! �

G;UG

0
.X /:

The following is straightforward:

Proposition 4.7 For every symmetric spectrum X the assignment

.G;UG/ 7! �
G;UG

0
.X /;�

G
'
�!K; '�.UK /

˛
,�! UG

�
7�!

�
.'; ˛/�W �

K ;UK

0
.X /! �

G;UG

0
.X /

�
;

defines a contravariant functor �0.X / from FinU to abelian groups.

Using the suspension isomorphisms �G;UG
n .X /Š �

G;UG

0
.�n.X // for n� 0 as well

as �G;UG
n .X /Š�

G;UG

0
.S�n^X / for n< 0, we obtain natural Finop

U –functors �n.X /

for all n 2 Z.

We note the following special cases of operations obtained this way:

(i) Every subgroup inclusion iG
H
W H �G gives rise to a restriction homomorphism

.iG
H /
�
W �

G;UG

0
.X /! �

H ;.iG
H
/�.UG/

0
.X /:

by applying the above construction to the morphism .iG
H
; id/W .H; .iG

H
/�.UG// !

.G;UG/ in FinU .

(ii) Every surjective group homomorphism 'W G � K gives rise to a restriction
homomorphism

.'; .�ı'//�W �
K ;NK

0
.X /! �

G;NG

0
.X /;
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where NG denotes the complete G–set universe of functions from G to the natural
numbers (and likewise for K ) and .� ı '/ denotes the induced injective map by
precomposing with ' .

(iii) Every pair of a subgroup iG
H
W H �G and an element g 2G induces a conjugation

homomorphism

c�g W �
H ;.iG

H
/�.UG/

0
.X /! �

gHg�1;.iG

gHg�1
/�.UG/

0
.X /

by applying the above construction to the morphism

.g�1.�/g;g � �/W .gHg�1; .iG
gHg�1/

�.UG//! .H; .iG
H /
�.UG//:

(iv) Every injective G –equivariant self-map ˛W UG ,! UG gives rise to an endomor-
phism

˛ � �W �
G;UG

0
.X /! �

G;UG

0
.X /

via .id; ˛/� . This defines an additive natural left action of the monoid InjG.UG ; UG/

on �G;UG

0
.X /.

Any morphism in FinU can be written as a composite of those of type (i), (ii) and (iv).
The first three should be seen as genuine global equivariant operations which survive
to the global homotopy category, whereas nontriviality of the InjG.UG ;UG/–action
implies that the morphism X !QX is not a global ��–isomorphism and hence the
�

G;UG
n .X / are not derived (see Proposition 4.13). In the nonequivariant case .feg;N/,

this action was examined in [17], the equivariant version .G;UG/ in [6].

We also included the conjugation maps above because they allow a cleaner description
of the double coset formula in Proposition 4.10. They have the following property:

Lemma 4.8 All inner conjugations c�g act as the identity on �G;UG

0
.X /.

Proof Let x2�
G;UG

0
.X / be an arbitrary element, represented by a G –map f W SM!

X.M / for some finite M � UG . Then, by definition, c�g.x/ is the class represented
by the composite

S'
�.M / g�1��

���! SM f
�!X.M /

X .g��/
����!X.M /:

The map X.g � �/W X.M /!X.M / is equal to multiplication by g . So, since f is
G –equivariant, this composite equals f and hence c�g.x/D c�g.Œf �/D Œf �D x , which
proves the claim.
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Remark 4.9 The category FinU comes with a forgetful functor to the category Fin of
finite groups. The functor is surjective on objects and morphisms, but it does not have
a section. In fact, for any nontrivial finite group G, there do not exist two lifts of the
homomorphisms i W feg!G and pW G!feg such that their composite is the identity.
This is because the second component of any preimage .pW G!feg;p�.Ufeg/ ,! UG/

is never surjective, since the G–set universe p�.Ufeg/ is trivial. Hence, the second
component of the composite is also not surjective, in particular not the identity. There
are symmetric spectra X for which .idfeg; ˛W Ufeg ,! Ufeg/ does not act surjectively
on �feg;Ufeg

0
.X / for every ˛ which is not surjective (this is the case in Section 4.7);

hence, this shows that there is in general no way to turn the Finop
U –functor �0.X / into

a Finop –functor.

4.5 Transfer maps

The assignment .G;UG/ 7!�
G;UG

0
.X / has more structure than that of a Finop

U –functor:
it also allows transfer maps of the form

trG
H W �

H ;.iG
H
/�.UG/

0
.X /! �

G;UG

0
.X /

for a subgroup H of G and the restricted (complete) H –set universe .iG
H
/�.UG/. The

construction and properties of these transfer maps are similar to those for orthogonal
spectra, so we will be brief (see [19, Constructions 3.2.7 and 3.2.22]).

Transfer maps are based on the following construction: Let M � UG be a G–subset
which contains a copy of G=H. By thickening up the embedding G=H ,!M ,!RM

we obtain another G–embedding G ËH D.RM / ,! RM, where D.�/ denotes
the closed unit disc. Collapsing everything outside the image of the interior of
GËH D.RM / to a point yields a map pG

H
W SM !GËH SM, the “Thom–Pontryagin

collapse map”.

Now let X be a symmetric spectrum of spaces and x 2 �
H ;i�.UG/
0

.X / an element
represented by an H –map f W SM ! X.M /. Without loss of generality we can
assume that M is in fact a G –subset of UG and allows a G –embedding of G=H. Then
the transfer trG

H
.x/ 2 �

G;UG

0
.X / is defined as the class of the composite

SM pG
H
�!G ËH SM GËH f

����!G ËH X.M /
�
�!X.M /;

where � is the action map (which uses that X.M / is a G –space).

Algebraic & Geometric Topology, Volume 19 (2019)



1440 Markus Hausmann

Proposition 4.10 The transfer maps trG
H

do not depend on the choice of embedding
G=H ,! UG . They are additive and functorial in subgroup inclusions. Furthermore,
they are related to the restriction maps by the following formulas:

(i) For every morphism .'W G�K; ˛W '�.UK / ,! UG/ in FinU with surjective '
and every subgroup i W L�K , the relation

.'; ˛/� ı trK
L D trG

'�1.L/
ı .'j'�1.L/W '

�1.L/!L; ˛/�

holds as maps �
L;.iK

L
/�.UK /

0
.X /! �

G;UG

0
.X /.

(ii) For every pair of subgroups H;J �G the double coset formula

.iG
J /
�
ı trG

H D

X
Œg�2J nG=H

trJ
J\gHg�1 ı c�g ı .i

H
g�1Jg\H

/�

holds.

Proof See [19, Proposition 3.2.32, Theorem 3.4.9 and Example 3.4.11] for orthogonal
spectra.

Since every morphism .'; ˛/ in FinU can be written as the composite of a morphism
of type (i) and a subgroup inclusion as in (ii), these two can be combined to give a
general formula describing the interaction between restrictions and transfers. Again, the
definition of the transfer maps is extended to �n.X / via the suspension isomorphisms.

4.6 Semistability

In these terms, a Fin–global functor in the sense of [19] (or, equivalently, an inflation
functor in the sense of [22]) can be described as a Finop

U –functor with transfers satisfying
the relations of Lemma 4.8 and Proposition 4.10 and for which the Finop

U –part factors
through Finop , ie for which the action of an element .'; ˛/ does not depend on the ˛
(see [19, Theorem 4.2.6ff]). This leads to the following definition:

Definition 4.11 (global semistability) A symmetric spectrum X is called globally
semistable if the Finop

U –functor �n.X / factors through a Finop –functor for every n2Z.

Then the previous discussion implies:

Proposition 4.12 If X is globally semistable, the homotopy groups �G;UG
� .X / only

depend on UG up to canonical isomorphism (hence they can be denoted by �G
� .X /)

and the collection ��.X /D f�G
� .X /gG finite naturally forms a Fin–global functor.
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The class of globally semistable symmetric spectra includes a lot of examples and is
closed under many operations, as the following proposition shows. For (i) we recall
from [6, Definition 3.22] (and the remark preceding it) that a G –symmetric spectrum X

is called G–semistable if the InjH .UH ;UH /–action on �H ;UH
n .X / is trivial for all

n 2 Z and all subgroups H �G.

Proposition 4.13 The following hold:

(i) A symmetric spectrum is globally semistable if and only the underlying G–
symmetric spectrum is G –semistable for every finite group G.

(ii) Global �–spectra are globally semistable.

(iii) Every symmetric spectrum underlying an orthogonal spectrum is globally semi-
stable.

(iv) Every symmetric spectrum X for which every homotopy group �G;UG
n .X / is a

finitely generated abelian group is globally semistable.

(v) A symmetric spectrum is globally semistable if and only if the morphism
qX W X!QX is a global ��–isomorphism, in other words if and only if the map
from the naive to the derived equivariant homotopy groups is an isomorphism.

(vi) A morphism between globally semistable symmetric spectra is a global equiva-
lence if and only if it is a global ��–isomorphism.

Proof For (i), the “only if” part is clear. The other direction follows from the fact that
given a group homomorphism 'W G!K and G –embeddings ˛1; ˛2W '

�.UK / ,! UG ,
there exist ˇ1; ˇ2 2 InjG.UG ;UG/ such that ˇ1 ı˛1 D ˇ2 ı˛2 .

Using (i), items (iv) and (vi) follow from [6, Corollaries 3.24 and 3.37]. Moreover,
every global �–spectrum can be replaced by a G�–spectrum up to eventual level
equivalence (as explained after Definition 2.12), in particular up to �UG

� –isomorphism.
Hence, Lemma 3.23 of [6] implies (ii). If qX W X !QX is a global ��–isomorphism,
then X is globally semistable, since we just argued that QX is globally semistable. If
in turn X is assumed to be globally semistable, we know that the global equivalence
qX W X !QX must be a global ��–isomorphism by (vi). This gives (v) and also (iii),
since every orthogonal spectrum allows a global ��–isomorphism to a global �–
spectrum (see [19]), so we are done.
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4.7 Example

We close this section with an example of a symmetric spectrum which is not globally
semistable, the free symmetric spectrum F

feg
1

S1 . There is a natural G –isomorphism
.F
feg
1

S1/.M /ŠMC ^SM, which implies that

�
G;UG

0
.F
feg
1

S1/Š colim
M�UG

ŒSM ;MC ^SM �G

Š colim
M�UG

ŒSM ; .UG/C ^SM �G

Š �
G;UG

0
.†1C .UG//;

with G acting on UG . The tom Dieck splitting shows that this is a free abelian group
with basis ftrG

H
.x/g, where .H;x/ runs through representatives of G–conjugacy

classes of pairs of a subgroup H of G and an H –fixed point x of .iG
H
/�.UG/.

Focusing on those basis elements that are not a transfer from a proper subgroup, we see:

Corollary 4.14 The Finop
U –functor �0.F

feg
1
.S1// contains the subfunctor

.G;UG/ 7! ZŒ.UG/
G �;�

'W G!K; ˛W '�.UK / ,! UG

�
7�!

�
ZŒ.UK /

K � ,!ZŒ.'�.UK //
G �

ZŒ˛�
��!ZŒ.UG/

G �
�
:

This determines the whole Finop
U –functor structure on �0.F

feg
1

S1/ via Proposition 4.10.
The action of a morphism .'; ˛/ in FinU very much depends on the ˛ and hence
F
feg
1
.S1/ is not globally semistable.

5 Comparison to orthogonal spectra

In this section we show that global homotopy theory of symmetric spectra is equivalent
to Fin–global homotopy theory of orthogonal spectra in the sense of [19]. For this we
quickly recall the relevant definitions in the orthogonal context.

Definition 5.1 (orthogonal spectra) An orthogonal spectrum is a collection of based
O.n/–spaces fXngn2N with structure maps Xn^S1!XnC1 whose iterates Xn^Sm!

XnCm are .O.n/�O.m//–equivariant.

An orthogonal spectrum X can be evaluated on G –representations V via the formula
Xn ^O.dim.V // L.Rdim.V /;V /C , with G –acting through V (where L.Rdim.V /;V / de-
notes the space of linear isometries). Again, these are connected by G–equivariant
generalized structure maps of the form X.V /^SW !X.V ˚W /.
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Every orthogonal spectrum X has an underlying symmetric spectrum of spaces U.X /

by restricting the O.n/–action on Xn to a †n –action along the embedding as permu-
tation matrices. The resulting restriction functor U W SpO

! Sp† has a left adjoint L,
formally obtained via a left Kan extension (see [13, Sections I.3 and III.23] for details).
Note that, since the “underlying G –spectrum” functors .�/G both for symmetric and
orthogonal spectra are given on the point-set level by equipping a spectrum with trivial
action, it follows that they commute with U and L.

Example 5.2 For a finite G –set M there is a natural G –homeomorphism

U.X /.M /ŠX.RM /

induced by linearizing a bijection m Š
�!M to a linear isometry Rm Š

�!RM.

The linearization R.UG/ of a complete G–set universe UG is a complete G–repre-
sentation universe. Moreover, the poset of G–subrepresentations of the form RM is
cofinal inside the poset of all finite-dimensional G –subrepresentations of R.UG/ . As a
consequence, the equivariant homotopy groups of an orthogonal spectrum as defined
in [19, Section 3.1] are isomorphic to those of the underlying symmetric spectrum
defined in Section 4. Combining this with Proposition 4.13 we see that for a morphism
of orthogonal spectra f W X ! Y the following are equivalent:

� f is a Fin–equivalence in the sense of [19, Definition 4.3.14].

� U.f / is a global ��–isomorphism of symmetric spectra.

� U.f / is a global equivalence of symmetric spectra.

Around this notion of equivalence, Schwede defines the Fin–global model structure on
orthogonal spectra [19, Theorem 4.3.17]. We have:

Theorem 5.3 The adjunction

LW Sp†� SpO
WU

is a Quillen equivalence for the global model structure on symmetric spectra of spaces
and the Fin–global model structure on orthogonal spectra.

Proof The Fin–cofibrations of orthogonal spectra are given by those morphisms
which have the left lifting property with respect to all morphisms f W X ! Y such that
f .V /G W X.V /G! Y .V /G is an acyclic Serre fibration for all inner product spaces V

and finite subgroups G of O.V /. Using the G–homeomorphism on evaluations of
Example 5.2, we see that the underlying morphism of symmetric spectra of any such f
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is an acyclic fibration in the global level model structure of Section 2. Hence, by
adjunction, L takes flat cofibrations to Fin–cofibrations. Applying [6, Theorem 7.5]
for every finite group G we see that L furthermore sends flat cofibrations which are
also global equivalences to Fin–equivalences; hence, L becomes a left Quillen functor
for the stable model structures and thus .L;U / a Quillen pair.

Hence, it remains to show that the adjunction induces an equivalence between the
homotopy categories. Since U preserves and reflects weak equivalences, it suffices
to show that for every flat symmetric spectrum X the morphism X ! U.L.X // is
a global equivalence. But, since the underlying G–symmetric spectrum XG of a flat
symmetric spectrum X is G –flat, this follows from [6, Theorem 7.5].

6 Examples

Every orthogonal spectrum can be restricted to a symmetric spectrum, so all examples
in [19] also give examples for symmetric spectra and their global behavior. In this
section we list some constructions of symmetric spectra (from the point of view of
global homotopy theory) that do not arise from orthogonal spectra.

6.1 Suspension spectra of I –spaces

There is an unstable analog of symmetric spectra, called I –spaces. Again, these were
previously considered as a model for unstable nonequivariant homotopy theory (see for
example [14; 15; 12]). They come with a Day convolution product, the commutative
monoids over which model E1–spaces.

The category of I –spaces can also be used as a model for unstable global homotopy
theory. We quickly describe this point of view without giving proofs. The resulting
homotopy theory is equivalent to the category of orthogonal spaces with the Fin–global
model structure of [19, Theorem 1.4.8].

Let I denote the category of finite sets and injective maps.

Definition 6.1 An I –space is a functor from I to the category of simplicial sets.

Let A be an I –space. By functoriality, if a finite set M comes equipped with an
action of a finite group G, the evaluation A.M / becomes a G –space. Every injection
of G–sets M ,! N induces a G–equivariant map A.M /! A.N /. Analogously
to the stable case, one can show that there is a level model structure on I –spaces,
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where the weak equivalences and fibrations are those morphisms that become G –weak
equivalences and G –fibrations on �.M / for all finite groups G and finite G –sets M,
respectively.

An I –space A is called static if for every injection M ,!N of faithful finite G –sets
the induced map A.M /G!A.N /G is a weak equivalence. A morphism of I –spaces
is a global equivalence if it induces bijections on all hom–sets into static I –spaces
in the level homotopy category. Together with the level cofibrations, these form the
global model structure for I –spaces.

For a static I –space A, the evaluation A.M / at a faithful finite G –set M should be
thought of as the G –space underlying A. By the definition of static, its G –homotopy
type does not depend on the choice of M. The G–space underlying an arbitrary
I –space A is not as easy to describe directly, but it can be defined by first replacing
by a globally equivalent static I –space QA and then taking the underlying G –space
of QA. In this sense a global equivalence can be interpreted as a morphism that induces
equivalences on all underlying G –spaces.

Every I –space A gives rise to a suspension symmetric spectrum of spaces †1CA. Its
nth level is given by A.n/C ^Sn with diagonal †n –action, the structure map

.A.n/C ^Sn/^S1
!A.nC 1/C ^SnC1

is the smash product of the induced map A.n ,! nC 1/ with the associativity isomor-
phism Sn ^S1 Š SnC1 . This construction is left adjoint to �1W Sp†T ! I–spaces
defined by .�1.X //.M / WD �M X.M /. Since �1 turns level fibrant global �–
spectra into static I –spaces, it is not hard to see that the adjunction .†1C ; �

1/ becomes
a Quillen pair for the respective global model structures.

Let A be a cofibrant static I –space. One can show that the G –homotopy type of the
underlying G –symmetric spectrum .†1CA/G is that of the suspension spectrum of the
underlying G –space of A in the sense described above. Hence, suspension spectra of
I –spaces assemble various equivariant suspension spectra into one global object.

Remark 6.2 In all of the above one can alternatively consider functors from I to the
category of topological spaces. Then the analogous statements hold.

Example 6.3 (global classifying spaces) Let G be a finite group and M a finite G –
set. This data gives rise to an I –space I.M;�/=G whose evaluation on a finite set N

is the set of injective maps from M to N , modulo the G–action by precomposition.
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Giving a morphism from I.M;�/=G to an I –space A is equivalent to picking a
G–fixed point in the evaluation A.M /. So — by definition of the notion of global
equivalence — the global homotopy type of I.M;�/=G is the same for all faithful
G–sets M. The I –spaces I.M;�/=G for faithful M are called global classifying
spaces of G . Given another finite group K , the K–space underlying I.M;�/=G is a
classifying space for principal G –bundles in K–spaces; see [19, Proposition 1.1.26].

Ranging through all finite groups G, the suspension spectra of global classifying spaces
of finite groups (which are isomorphic to global free spectra of the form FG

M
SM ) form

a set of compact generators of the triangulated Fin–global stable homotopy category.

6.2 Ultracommutative localizations

Let A � Q be a subring, M.A; 1/ a Moore space for A in degree 1 and i W S1 !

M.A; 1/ a map inducing the inclusion Z ,! A on first homology. We define a
symmetric spectrum MA via MAn DM.A; 1/^n with permutation †n –action and
structure map

M.A; 1/^n
^S1 id^i

��!M.A; 1/^.nC1/:

The associativity homeomorphisms M.A; 1/^n ^M.A; 1/^m ŠM.A; 1/^.nCm/ to-
gether with the equality S0DM.A; 1/^0 give MA the structure of an ultracommutative
symmetric ring spectrum.

To determine the global homotopy type of MA we note that the map M.A; 1/^S1 id^i
��!

M.A; 1/^2 is a weak equivalence of spaces, since A˝Z!A˝A is an isomorphism.
So, given a subgroup H �†n , the map

M.A; 1/^ .Sn/H ŠM.A; 1/^S^.n=H /

.id^i^.n=H //
���������!M.A; 1/^M.A; 1/^.n=H /

ŠM.A; 1/^ .M.A; 1/^n/H

is also a weak equivalence. In other words, the morphism †1.M.A; 1//! sh MA

adjoint to the identity of M.A; 1/ is a global level equivalence. The same argument
also shows that ˛MAW S

1 ^MA! sh MA is a positive global level equivalence. So
we find that MA is globally equivalent to a desuspension of the suspension spectrum
of M.A; 1/ and hence its global homotopy type is that of the homotopy colimit of the
sequence

S
�n1
�! S

�n2
�! S

�n3
�! � � � ;
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where the ni range through the elements of Z that become inverted in A. Thus, the
(derived) smash product �^MA computes the A–localization in the global homotopy
category. On equivariant homotopy groups it has the effect of tensoring with A.

In particular, the ultracommutative structure on MA can be used to see that arithmetic
localizations of ultracommutative symmetric ring spectra are again ultracommutative
symmetric ring spectra, which is not a priori clear and does not hold in general for
equivariant localizations (see [8], in particular Section 4.1).

Remark 6.4 The construction of MA above works more generally for any based
space X together with a based map S1!X. This gives a functor from the category
of based spaces under S1 to ultracommutative ring spectra, which is left adjoint to
sending an ultracommutative ring spectrum Z to the unit map S1!Z1 . The latter is
a right Quillen functor for the positive global model structure and the usual Quillen
model structure on spaces under S1 , turning the adjunction into a Quillen pair. In
fact, the adjunction is already a Quillen pair if one uses the nonequivariant positive
projective model structure on commutative symmetric ring spectra (as constructed in
[13, Theorem 15.1]). This implies that the ultracommutative ring spectra that arise
through this construction are multiplicatively left-induced from nonequivariant commu-
tative ring spectra in the sense of appendix.

6.3 Global algebraic K –theory

In [16] Schwede introduces a symmetric spectrum model for global (projective or free)
algebraic K–theory of a ring R. Below we summarize the free version. In fact we
give a slight variation of that of [16], as we explain in Remark 6.5.

Let R be a discrete ring. Each level is the realization of a bisimplicial set kR.M /n;m ,
which we now explain. A .0;m/–simplex of kR.M / is represented by a finite un-
ordered labeled configuration .W1; : : : ;Wk Ix1; : : : ;xk/ of the following kind:

� The xi are m–simplices of SM.

� The Wi are finitely generated free submodules of the polynomial ring RŒM � with
variable set M such that their sum is direct and the inclusion W1˚� � �˚Wk ,!

RŒM � allows an R–linear splitting.

These configurations are considered up to the equivalence relation that a labeled point
.Wi ;xi/ can be left out if either Wi is zero or xi the basepoint, and that if two xi are
equal, they can be replaced by a single one with label the sum of the previous labels.
The †M –action is the diagonal one through its actions on SM and RŒM �.
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General .n;m/–simplices are given by similar equivalence classes of configurations,
where instead of a single free submodule Wi , each m–simplex xi carries an n–chain of
R–module isomorphisms .Wi0

Š
�!Wi1

Š
�!� � �

Š
�!Win

/ such that for every 0� j �n

the tuple .W1j ; : : : ;Wkj / satisfies the conditions above. The simplicial structure maps
in the first direction are the usual ones from the nerve; the ones in the second direction
are induced by SM. The spectrum structure maps kR.M /^SN ! kR.M tN / are
given by smashing the configurations with an element of SN and leaving the labels
unchanged.

In [16] Schwede shows the following:

� The symmetric spectrum kR is globally semistable.

� Its G –fixed point spectrum represents the direct sum K–theory of RŒG�–lattices,
ie RŒG�–modules that are finitely generated free as R–modules. In particular,
the equivariant homotopy groups �G

� .kR/ are the K–groups of RŒG�–lattices.

� If R is commutative, the smash product of modules gives kR the structure of
an ultracommutative symmetric ring spectrum.

If R satisfies dimension invariance, the spectrum kR comes with a natural filtration: Let
kRn.M / be the subspace of kR.M / of those configurations .W1; : : : ;Wk Ix1; : : : ;xk/

where the sum of the R–ranks of the Wi is at most n, and similarly for higher simplices.
These subspaces are closed under the simplicial and spectrum structure and thus define
a symmetric subspectrum kRn . This gives a filtration

� D kR0
! kR1

! � � � ! kRD colim
n2N

kRn:

The underlying nonequivariant filtration is studied by Arone and Lesh in [1], where
they call it the modified stable rank filtration of algebraic K–theory. In joint work with
Dominik Ostermayr [7], we extend some of their results to the global context to show
that the subquotients kRn=kRn�1 are globally equivalent to suspension spectra of
certain I –spaces associated to the lattice of nontrivial direct sum decompositions of Rn .
This can be used to give an algebraic description of the Fin–global functors �G

0
.kRn/.

Remark 6.5 The version of kR we described here differs slightly from that in [16].
There the tuple .W1; : : : ;Wk/ has to satisfy the additional property that for every
monomial t D

Q
m2M mim 2RŒM � there is at most one i such that Wi contains an

element whose t –component is nontrivial (which in that setup in particular guarantees
that the sum of the Wi is direct). The inclusion from the kR in [16] to the one above
is a global level equivalence.
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Appendix Model structures with respect to families

In this appendix we explain how to construct model structures with respect to global
families of finite groups. For every such family we define two model structures, a
projective and a flat one, both useful for constructing derived adjunctions. In the case of
the family of trivial groups (where the homotopy category is the nonequivariant stable
homotopy category) the projective model structure equals the one in [9, Section 5.1]
and the flat model structure is the one introduced in [21]. For the global family of all
finite groups the two model structures coincide.

Definition A.1 (global family) A global family is a nonempty class of finite groups
which is closed under subgroups, quotients and isomorphism.

Let F be a global family.

Definition A.2 A morphism f W X ! Y of symmetric spectra is called

� an F –level equivalence if f H
n W X

H
n ! Y H

n is a weak equivalence for all
subgroups H �†n which lie in F ;

� a projective F –level fibration if f H
n W X

H
n ! Y H

n is a Kan fibration for all
subgroups H �†n which lie in F ;

� a projective F –cofibration if each latching map �nŒf �W Xn[Ln.X /Ln.Y /! Yn

is a †n –cofibration with relative isotropy in F ;

� a flat F –level fibration if it has the right lifting property with respect to all flat
cofibrations (as defined in Definition 2.2) that are also F –level equivalences.

Then the following two propositions can again be obtained via [6, Proposition 2.22]:

Proposition A.3 The classes of F –level equivalences, projective F –level fibrations
and projective F –cofibrations define a cofibrantly generated, proper and monoidal
model structure on the category of symmetric spectra.

Proposition A.4 The classes of F –level equivalences, flat F –level fibrations and flat
cofibrations define a cofibrantly generated, proper and monoidal model structure on the
category of symmetric spectra.

From the point of view of F –global homotopy theory we have to remember the G–
homotopy type of a symmetric spectrum for all groups G in F, which leads to the
following definition of stable equivalence:
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Definition A.5 (F –global equivalences) A morphism f W X ! Y is called an F –
global equivalence if it is a G –stable equivalence (in the sense of Definition 2.8) for
all groups G 2 F.

A morphism of symmetric spectra is called a projective ( flat) F –fibration if it has the
left lifting property with respect to all morphisms that are projective F –cofibrations
(respectively flat cofibrations) and F –equivalences. Then we have:

Proposition A.6 The classes of F –global equivalences, projective F –fibrations and
projective F –cofibrations determine a cofibrantly generated, proper and monoidal
model structure on the category of symmetric spectra, called the projective F –global
stable model structure.

Proposition A.7 The classes of F –global equivalences, flat F –fibrations and flat
cofibrations determine a cofibrantly generated, proper and monoidal model structure on
the category of symmetric spectra, called the flat F –global stable model structure.

Each of these model structures can be obtained via a left Bousfield localization of
the respective level model structure. For example, this can be done by applying the
small object argument to the subset of those maps i � x�N

M
used in Section 2.3 that

are associated to a finite group G 2 F and finite G–sets M and N (of which M

is faithful). It follows that a symmetric spectrum is fibrant in either of the F –global
model structures if and only if it is fibrant in the respective level model structure and
in addition an F –global �–spectrum, ie if it satisfies the condition in Definition 2.12
for all G 2 F (instead of for all finite G ). The flat F –global model structure can also
be obtained by left Bousfield localizing the full global model structure.

Since every projective F –cofibration is a flat cofibration, the F –global model structure
and the flat F –global model structure are Quillen equivalent via the identity adjunction.
Furthermore, the same proof as that of Theorem 5.3 applies to show that the projective
F –model structure is Quillen equivalent to the F –global model structure on orthogonal
spectra as introduced in [19, Theorem 4.3.17].

Let F 0 � F be an inclusion of global families of finite groups. Then, by definition,
every F –global equivalence is an F 0–global equivalence and hence the localization
Sp†! Sp†ŒF–global eq.�1� factors uniquely through a functor

Sp†ŒF–global eq.�1�! Sp†ŒF 0–global eq.�1�:
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This functor has both a left and a right adjoint (both fully faithful) obtained by deriving
the identity adjunction with respect to the projective and flat model structures, respec-
tively. In particular, this defines two functors from the nonequivariant stable homotopy
category to the global stable homotopy category. It can be shown [19, Example 4.5.19
and Proposition 4.5.8] that the right adjoint gives rise to Borel theories, whereas the im-
age of the left adjoint is given by symmetric spectra with constant geometric fixed points.

Finally, both the projective F –global stable model structure and the flat F –global
stable model structure lift to categories of modules over a symmetric ring spectrum and
algebras over a commutative symmetric ring spectrum. There exist positive versions
of both model structures which lift to the category of commutative algebras over a
commutative symmetric ring spectrum. These allow the construction of “multiplicative”
change-of-family functors, but there is a caveat: a positive projective F –cofibrant
commutative symmetric ring spectrum is in general not projective F –cofibrant as a
symmetric spectrum if F is not the family of all finite groups. As a consequence, the
underlying symmetric spectrum of a left-induced ultracommutative symmetric ring
spectrum is in general not left-induced.
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Representing the deformation1–groupoid

DANIEL ROBERT-NICOUD

Our goal is to introduce a smaller, but equivalent version of the deformation 1–
groupoid associated to a homotopy Lie algebra. In the case of differential graded Lie
algebras, we represent it by a universal cosimplicial object.

17B55; 18G55, 55U10

1 Introduction

The fundamental principle of deformation theory, due to Deligne, Grothendieck and
many others and recently formalized and proved in the context of 1–categories by
Pridham and Lurie, states that:

Every deformation problem in characteristic 0 is encoded in the space of
Maurer–Cartan elements of a differential graded Lie algebra.

Therefore, one is naturally led to the study of Maurer–Cartan elements of differential
graded Lie algebras and, more generally, homotopy Lie algebras.

In order to encode the Maurer–Cartan elements, gauge equivalences between them,
and higher relations between gauge equivalences, Hinich [14] introduced the Deligne–
Hinich 1–groupoid. It is a Kan complex associated to any complete L1–algebra
modeling the space of its Maurer–Cartan elements. Since it is a very big object,
E Getzler introduced in [11] a smaller but weakly equivalent Kan complex � which,
however, is more difficult to manipulate. In this paper, we introduce another simplicial
set associated to any L1–algebra, for which we prove the following nice properties:

(1) it is weakly equivalent to the Deligne–Hinich 1–groupoid,

(2) it is a Kan complex,

(3) it is contained in the Getzler 1–groupoid � , and

(4) if we restrict to the category of complete dg Lie algebras, there is an explicit
cosimplicial dg Lie algebra mc� representing this object.
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The cosimplicial dg Lie algebra mc� was already introduced in the work of Buijs, Félix,
Murillo and Tanré [4] in the context of rational homotopy theory. We show here that it
plays a key role in deformation theory.

Results coming from operad theory play a crucial role throughout the paper, especially
in the second part. In particular, we use the explicit formulas for the 1–morphisms
induced by the homotopy transfer theorem given by Loday and Valette [17] and various
theorems proven by Robert-Nicoud [18].

Shortly after the appearance of the present article, Buijs, Murillo, Félix and Tanré gave
an alternative proof of Corollary 5.3 in [5]. Their proof doesn’t rely on general operadic
results, but rather on explicit combinatorial computations.

The author was made aware by Marco Manetti in a private conversation that many of
the results of this article are already present in the unpublished PhD thesis [1] of his
student Ruggero Bandiera (now also appeared in [2]). We acknowledge this, but we
consider that the present article remains interesting in that the methods used to prove
the results are different. In particular, in view of Bandiera’s results, Sections 3 and 4
can be interpreted as an alternative construction of the Getzler 1–groupoid � with
new proofs of its properties.

Structure of the paper

In Section 2 we give a short review of the Deligne groupoid, the Deligne–Hinich
1–groupoid and the main theorems in this context. In Section 3 we state and prove
our main theorem, giving a new simplicial set encoding the Maurer–Cartan space of
L1–algebras. Next, in Section 4, we study some properties of this object. In particular,
we prove that it is a Kan complex, and that it is “small” in a precise sense. Finally,
we focus on the special case of dg Lie algebras in Section 5, showing that our Kan
complex is represented by a cosimplicial dg Lie algebra in this situation.

Notation and conventions

We work over a fixed field K of characteristic 0.

We abbreviate “differential graded” by dg, and sometimes omit it completely. All
algebras are differential graded unless stated otherwise.

Algebraic & Geometric Topology, Volume 19 (2019)



Representing the deformation 1–groupoid 1455

Since we work with differential forms, we adopt the cohomological convention. There-
fore, we work over cochain complexes, and Maurer–Cartan elements of dg Lie and L1–
algebras (ie homotopy Lie algebras) are in degree 1, not �1. All cochain complexes
are Z–graded.

We use the letter s to denote a formal element of degree 1. If C� is a cochain complex,
then sC� denotes the suspension of C� , which is sometimes written as C�Œ1�.

We sometimes denote the identity maps by 1.

By a filtered L1–algebra we mean a pair .g; F�g/ where g is an L1–algebra and
F�g is a descending filtration of g such that F1gD g and

(1) for all n� 1, we have dg.Fng/� Fng,

(2) for all k � 2 and n1; : : : ; nk � 1 we have

`k.Fn1g; : : : ; Fnkg/� Fn1C���Cnkg;

and

(3) the L1–algebra g is complete with respect to the filtration, ie

gŠ lim
 ��
n

g=Fng

as L1–algebras.

When the context is clear, we write g.n/ WD g=Fng. For details about (filtered) L1–
algebras and the definitions and basic properties about (filtered) 1–morphisms we
refer the reader to V A Dolgushev and C L Rogers [7].
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2 The deformation1–groupoid

An object of fundamental interest in deformation theory is the Deligne groupoid Del.g/
associated to a complete dg Lie algebra g. There is a higher generalization of the
Deligne groupoid in the form of the Deligne–Hinich 1–groupoid. It is a simplicial set
with nice properties and whose 1–truncation gives back the Deligne groupoid. It was
introduced in [14] and then studied in depth and further generalized in [11].

2.1 The Deligne groupoid

Let g be a dg Lie algebra. Then we can associate a groupoid Del.g/ to g, called the
Deligne groupoid, as follows. The objects of the Deligne groupoid are the Maurer–
Cartan elements of g, ie the degree 1 elements ˛ 2 g1 satisfying the Maurer–Cartan
equation

d˛C 1
2
Œ˛; ˛�D 0:

Definition 2.1 The set of Maurer–Cartan elements of g is denoted by MC.g/.

We have the set of objects of Del.g/; we still need to define its morphisms. To an
element � 2 g0 , one can associate a “vector field” by sending ˛ 2 g1 to

d�C Œ�; ˛� 2 g1:

It is tangent to the Maurer–Cartan locus, in the sense that if ˛.t/ is the flow of �, that
is,

d

dt
˛.t/D d�C Œ�; ˛.t/�

with ˛.0/ 2MC.g/, then ˛.t/ 2MC.g/ for all t , whenever it exists. We say that two
Maurer–Cartan elements ˛0; ˛1 2MC.g/ are gauge equivalent if there exists such a
flow ˛.t/ such that ˛.i/ D ˛i for i D 0; 1. The Deligne groupoid is the groupoid
associated to this equivalence relation, which means that the morphisms are

Del.g/.˛0; ˛1/ WD f� 2 g0 j the flow of � starting at ˛0 gives ˛1 at time 1g:

For further reference, see for example [13].

The assignment of the Deligne groupoid to a dg Lie algebra is functorial and has a
good homotopical behavior: it sends filtered quasi-isomorphisms to equivalences of
groupoids, as can be seen by the Goldman–Millson theorem, which was first proven
in [13], and then generalized for example in [22].

Algebraic & Geometric Topology, Volume 19 (2019)



Representing the deformation 1–groupoid 1457

2.2 Generalization: the deformation 1–groupoid

Let g be a nilpotent L1–algebra. The Maurer–Cartan equation can be generalized to

dxC
X
n�2

1

nŠ
`n.x; : : : ; x/D 0

for x 2 g1 . Again, we denote by MC.g/ the set of all elements satisfying this equation.

Remark 2.2 The condition that g be nilpotent is sufficient to make it so that the
left-hand side of the Maurer–Cartan equation is well defined.

2.2.1 The Deligne–Hinich 1–groupoid

Definition 2.3 The Sullivan algebra is the simplicial dg commutative algebra

�n WDKŒt0; : : : ; tn; dt0; : : : ; dtn�
.� nX

iD0

ti D 1;

nX
iD0

dti D 0

�
with jti j D 0 and endowed with the unique differential satisfying d.ti /D dti .

This object was introduced by Sullivan in the context of rational homotopy theory [21].
At level n, it is the algebra of polynomial differential forms on the standard geometric
n–simplex. Now let g be a nilpotent L1–algebra. Then tensoring g with �n gives us
back a nilpotent L1–algebra, of which we can consider the Maurer–Cartan elements.

Definition 2.4 The Deligne–Hinich 1–groupoid is the simplicial set

MC�.g/ WDMC.g˝��/:

This association is natural in g, and thus defines a functor

MC�W fnilpotent L1–algebrasg ! sSet:

We will rather consider the following slight generalization: Let .g; F�g/ be a filtered
L1–algebra; then

gŠ lim
 ��
n

g=Fng

is the limit of a sequence of nilpotent L1–algebras. Thus, we can define

MC�.g/ WD lim
 ��
n

MC�.g=Fng/:

Notice that the elements in MC�.g/ in this case are not polynomials with coefficients
in g anymore, but rather power series with some “vanishing at infinity” conditions. We
state all the following results in this setting.
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Theorem 2.5 Let either

� [11, Proposition 4.7] g and h be nilpotent L1–algebras and ˆW g! h be a
surjective strict morphism of L1–algebras, or

� [20, Theorem 2] g and h be filtered L1–algebras and ˆW g h be a filtered
1–morphism that induces a surjection at every level of the filtrations.

Then
MC�.ˆ/W MC�.g/!MC�.h/

is a fibration of simplicial sets. In particular, for any filtered L1–algebra g, the
simplicial set MC�.g/ is a Kan complex.

This result was originally proven by Hinich [14, Theorem 2.2.3] for strict surjections
between nilpotent dg Lie algebras concentrated in positive degrees, and then generalized
by Getzler and by Rogers to the version stated above.

Generalizing the Goldman–Millson theorem, Dolgushev and Rogers [7, Theorem 2.2]
proved that the Deligne–Hinich 1–groupoid behaves well with respect to homo-
topy theory: it sends filtered quasi-isomorphisms of filtered L1–algebras to weak
equivalences.

2.2.2 Basic forms, Dupont’s contraction and Getzler’s functor � The Sullivan
algebra has a subcomplex C� linearly spanned by the basic forms

!I WD kŠ

kX
jD1

.�1/j tij dti0 � � �
�dt ij � � � dtik 2�n

for I D fi0 < i1 < � � �< ikg � f0; : : : ; ng. This is in fact the (co)cellular complex for
the standard geometric n–simplex �n . In order to prove a simplicial version of the de
Rham theorem, J L Dupont [10] introduced a homotopy retraction

�� C�
p�

i�

h�

where all the maps are simplicial. Homotopy retraction means that we have

p�i� D 1 and 1� i�p� D dh�C h�d:

Moreover, the maps satisfy the side conditions

h�i� D 0; p�h� D 0 and h2
�
D 0:
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A homotopy retraction satisfying the side conditions is called a contraction.

This contraction will be a fundamental ingredient in the rest of the paper. As the
Deligne–Hinich 1–groupoid is always a big object, Getzler defined the following
subobject:

Definition 2.6 The Getzler1–groupoid is the subsimplicial set �.g/ of the Deligne–
Hinich 1–groupoid MC�.g/ given by

n.g/ WD f˛ 2MCn.g/ j hn˛ D 0g:

Theorem 2.7 [11] The simplicial set �.g/ is a Kan complex, and it is weakly
equivalent to the Deligne–Hinich 1–groupoid MC�.g/.

A part of the definition of h� and p� which we will need in what follows is the (formal)
integration of a form in the Sullivan algebra over a simplex, which is given byZ

�n
t
a1
1 � � � t

an
n dt1 � � � dtn WD

a1Š � � � anŠ

.a1C � � �C anCn/Š
:

It corresponds to the usual integration when working over KDR.

Remark 2.8 We have Z
�p
!I D 1

for pC 1D jI j, where �p is the subsimplex of �n with vertices indexed by I.

Definition 2.9 A form ˛ 2 n.g/ is said to be thin ifZ
�n
˛ D 0:

Theorem 2.10 [11] For every horn in �.g/, there exists a unique thin simplex filling
it.

Remark 2.11 The existence of a set of thin simplices such that every horn has a unique
thin filler is what is meant by Getzler when he speaks of an 1–groupoid. We use the
term simply to mean Kan complex (for example when speaking of the Deligne–Hinich
1–groupoid).
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3 Main theorem

In this section, we give a reminder on the homotopy transfer theorem for commutative
and for L1–algebras, before going on to state and prove the main theorem of the
article.

3.1 Reminder on the homotopy transfer theorem

Let V and W be cochain complexes, and suppose that we have a retraction

V W;
p

i

h

that is, we have
ip� 1D dhC hd

and pi D 1. Furthermore, we can always suppose that

h2 D 0; hi D 0 and phD 0I

see for example [15, page 365]. The homotopy transfer theorem tells us that we can
coherently transfer algebraic structures from V to W . More precisely, the specific
cases of interest to us are the following ones:

Theorem 3.1 (homotopy transfer theorem for commutative algebras) Suppose V
is a commutative algebra. There is a C1–algebra structure on W such that p and i

extend to 1–quasi-isomorphisms p1 and i1 of C1–algebras between V and W

endowed with the respective structures.

Theorem 3.2 (homotopy transfer theorem for L1–algebras) Suppose V is an L1–
algebra. There is an L1–algebra structure on W such that p and i extend to 1–
quasi-isomorphisms p1 and i1 of L1–algebras between V and W endowed with
the respective structures.

For details on this theorem, see for example [17, Section 10.3], where it is proven in
the general context of algebras over operads. See also [17, Sections 10.3.5–10.3.6] for
the explicit formulas for the 1–morphisms p1 and i1 .

3.2 Statement of the main theorem

Let g be a complete L1–algebra. The Dupont contraction induces a contraction

g˝�� g˝C�
1˝p�

1˝ i�

1˝h�

Algebraic & Geometric Topology, Volume 19 (2019)
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of g˝�� to g˝C� . Applying the homotopy transfer theorem to this contraction, we
obtain a simplicial L1–algebra structure on g˝C� . We also know that we can extend
the maps 1˝p� and 1˝ i� to simplicial 1–morphisms of simplicial L1–algebras
.1˝ p�/1 and .1˝ i�/1 . Notice that these 1–morphisms are indeed simplicial
because they are given by sums of compositions of copies of 1˝ i� , 1˝p� , 1˝h�
and the brackets of g˝�� , all of which respect the simplicial structure. We denote by
P� and I� the induced maps on Maurer–Cartan elements. We will also use the notation

.1˝ r�/1 WD .1˝ i�/1.1˝p�/1;

and we dub R� the map induced by .1˝ r�/1 on Maurer–Cartan elements.

Theorem 3.3 Let g be a filtered L1–algebra. The maps P� and I� are inverse to
each other in homotopy, and thus provide a weak equivalence

MC�.g/'MC.g˝C�/

of simplicial sets which is natural in g.

Remark 3.4 The simplicial L1–algebra g˝C� has the advantage of being quite a
bit smaller than g˝�� , since Cn is finite-dimensional for each n. The price to pay is
that the algebraic structure is much more convoluted.

3.3 Proof of the main theorem

The rest of this section is dedicated to the proof of this result. We begin with the
following lemma:

Lemma 3.5 We have
P�I� D idMC.g˝C�/:

Proof This is because .1˝p�/1.1˝i�/1 is the identity — see for example Theorem 5
of [9] — and the functoriality of the Maurer–Cartan functor MC.

Therefore, it is enough to prove that the map

R� D I�P�W MC�.g/!MC�.g/

is a weak equivalence. The idea is to use the same methods as in [7]. The situation
is however slightly different, as the map R� is not of the form ˆ˝ 1�� , and thus
Theorem 2.2 of [7] cannot be directly applied. The first, easy step is to understand
what happens at the level of the zeroth homotopy group.
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Lemma 3.6 The map

�0.R�/W �0MC�.g/! �0MC�.g/

is a bijection.

Proof We have �0 D C0 DK, and the maps i0 and p0 both are the identity of K.
Therefore, the map R0 is the identity of MC0.g/, and thus obviously induces a bijection
on �0 .

For the higher homotopy groups, we start with a simplified version of Proposition 2.4
of [7], which gives in some sense the base for an inductive argument. If the L1–
algebra g is abelian, ie all of its brackets vanish, then so do the brackets at all levels
of g˝�� . In this case, the Maurer–Cartan elements are exactly the cocycles of the
underlying cochain complex, and therefore MC�.g/ is a simplicial vector space.

Lemma 3.7 If the L1–algebra g is abelian, then R� is a weak equivalence of simpli-
cial vector spaces.

Proof Recall that the Moore complex of a simplicial vector space V� is defined by

M.V�/n WD s
nVn

endowed with the differential

@ WD

nX
iD0

.�1/idi ;

where the maps di are the face maps of the simplicial set V� . It is a standard result that

�0.V�/DH0.M.V�//; �i .V�; v/Š �i .V�; 0/DHi .M.V�//

for all i �1 and v2V0 , and that a map of simplicial vector spaces is a weak equivalence
if and only if it induces a quasi-isomorphism between the respective Moore complexes
[12, Corollary 2.5, Section III.2].

In our case,
V� WDMC�.g/D Z1.g˝��/

is the simplicial vector space of 1–cocycles of g˝�� . As in [7], it can be proven that
the map

M.1˝p�/WM.Z1.g˝��//!M.Z1.g˝C�//
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is a quasi-isomorphism. But, as the bracket vanishes, this is exactly P� . Now

M.1˝p�/M.1˝ i�/D 1M.Z1.g˝��//;

which implies that M.1˝ i�/ also is a quasi-isomorphism. It follows that R� is a weak
equivalence, concluding the proof.

Now we basically follow the structure of [7, Section 4]. We define a filtration of g˝��
by

Fk.g˝��/ WD .Fkg/˝��:

We write

.g˝��/
.k/
WD g˝��=Fk.g˝��/D g.k/˝��:

The composite .1˝ i�/.1˝p�/ induces an endomorphism .1˝ i�/
.k/.1˝p�/

.k/ of
.g˝��/

.k/ . All the 1–morphisms coming into play obviously respect this filtration,
and moreover 1˝ h� passes to the quotients, so that we have

1.g˝��/.k/ � .1˝ i�/
.k/.1˝p�/

.k/
D d.1˝ h�/

.k/
C .1˝ h�/

.k/d

for all k , which shows that .1˝ r�/1 is a filtered 1–quasi-isomorphism.

The next step is to reduce the study of the homotopy groups with arbitrary basepoint to
the study of the homotopy groups with basepoint 0 2MC0.g/.

Lemma 3.8 Let ˛ 2MC.g/, and let g˛ be the L1–algebra obtained by twisting g

by ˛ , that is, the L1–algebra with the same underlying graded vector space, but with
differential

d˛.x/ WD dxC
X
n�2

1

.n�1/Š
`n.˛; : : : ; ˛; x/

and brackets

`˛.x1; : : : ; xm/ WD
X
n�m

1

.n�m/Š
`n.˛; : : : ; ˛; x1; : : : ; xm/:

Let

Shift˛W MC�.g˛/!MC�.g/

be the isomorphism of simplicial sets induced by the map given by

ˇ 2 g 7! ˛Cˇ 2 g˛:
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Then the following diagram commutes:

MC�.g˛/
Shift˛

//

R˛�
��

MC�.g/

R�
��

MC�.g˛/
Shift˛

// MC�.g/
where

R˛
�
.ˇ/ WD

X
k�1

.1˝ r�/
˛
k.ˇ
˝k/

and

.1˝ r�/
˛
k.ˇ1˝ � � �˝ˇk/ WD

X
j�0

1

j Š
.1˝ r�/kCj .˛

˝j
˝ˇ1˝ � � �˝ˇk/

is the twist of .1˝ r�/1 by the Maurer–Cartan element ˛ . Here, we identified ˛ 2 g
with ˛˝ 1 2 g˝�� .

Proof The proof in [8, Lemma 4.3] goes through mutatis mutandis.

Remark 3.9 The L1–algebra g˛ in Lemma 3.8 is endowed with the same filtration
as g.

Now we proceed by induction to show that R.k/ is a weak equivalence from MC�.g.k//
to itself for all k � 2. As the L1–algebra .g˝��/.2/ is abelian, the base step of the
induction is given by Lemma 3.7.

Lemma 3.10 Let m� 2. Suppose that

R.k/
�
W MC.g.k//!MC.g.k//

is a weak equivalence for all 2� k �m. Then R.mC1/
�

is also a weak equivalence.

Proof The zeroth homotopy set �0 has already been taken care of in Lemma 3.6.
Thanks to Lemma 3.8, it is enough to prove that R.mC1/

�
induces isomorphisms of

homotopy groups �i based at 0 for all i � 1.

Consider the commutative diagram

0 // Fm.g˝��/
FmC1.g˝��/

��

// .g˝��/
.mC1/

.1˝r�/
.mC1/
1

��

// .g˝��/
.m/

.1˝r�/
.m/
1

��

// 0

0 // Fm.g˝��/
FmC1.g˝��/

// .g˝��/
.mC1/ // .g˝��/

.m/ // 0
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where the leftmost vertical arrow is given by the linear term .1 ˝ i�/.1 ˝ p�/ of
.1 ˝ r�/1 since all higher terms vanish, as can be seen by the explicit formulas
for the 1–quasi-isomorphisms induced by the homotopy transfer theorem given in
[17, Sections 10.3.5–10.3.6]. Therefore, it is a weak equivalence as the L1–algebras
in question are abelian. The first term in each row is the fiber of the next map, which
is surjective. By Theorem 2.5, we know that applying the MC functor makes the
horizontal maps on the right into fibrations of simplicial sets, while the objects we
obtain on the left are easily seen to be the fibers. Taking the long sequence in homotopy
and using the five lemma, we see that all we are left to do is to prove that R.mC1/

�

induces an isomorphism on �1 . Notice that it is necessary to prove this, as the long
sequence is exact everywhere except on the level of �0 .

The long exact sequence of homotopy groups (truncated on both sides) reads

�2MC�.g.m//
@
�! �1MC�

�
Fmg

FmC1g

�
! �1MC�.g.mC1//

! �1MC�.g.m//
@
�! �0MC�

�
Fmg

FmC1g

�
;

where in the higher homotopy groups we left the basepoint implicit (as it is always 0).
The map

@W �1MC�.g.m//! �0MC�

�
Fmg

FmC1g

�
DH 1.FmC1g=Fmg/

is seen to be the obstruction to lifting an element of �1MC�.g.m// to an element of
�1MC�.g.mC1// (for example [12, Lemma 7.3]).

The map �1.R
.mC1/
� / is surjective Let y 2 �1MC�.g.mC1// and denote by xy

its image in �1MC�.g.m//. By the induction hypothesis, there exists a unique xx 2
�1MC�.g.m// which is mapped to xy under R.m/

�
. As xy is the image of y , we

have @.xy/ D 0, and this implies that @.xx/ D 0, too. Therefore, there exists x 2
�1MC�.g.mC1// mapping to xx . Denote by y0 the image of x under R.mC1/

�
. Then

y0y�1 is in the kernel of the map

�1MC�.g.mC1//! �1MC�.g.m//:

By exactness of the long sequence and the fact that R� induces an automorphism of
�1MC�.FmC1g=Fmg/, there exists an element z 2 �1.MC�.FmC1g=Fmg// mapping
to y0y�1 under the composite

�1MC�

�
FmC1g

Fmg

�
R�
�! �1MC�

�
FmC1g

Fmg

�
! �1MC�.g.mC1//:
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Let x0 be the image of z in �1MC�.g.mC1//; then .x0/�1x maps to y under R.mC1/
�

.
This proves the surjectivity of the map �1.R.mC1/�

/.

The map �1.R
.mC1/
� / is injective Assume x; x0 2�1MC�.g.mC1// map to the same

element under R.mC1/
�

. Then x.x0/�1 maps to the neutral element 0 under R.mC1/
�

.
It follows that there is a z 2 �1MC�.FmC1g=Fmg/ mapping to x.x0/�1 , which must
be such that its image w is itself the image of some zw 2 �2MC�.g.m// under the
map @. But, by the induction hypothesis and the exactness of the long sequence, this
implies that z is in the kernel of the next map, and thus that x.x0/�1 is the identity
element. Therefore, the map �1.R.mC1/�

/ is injective.

This ends the proof of the lemma.

Finally, we can conclude the proof of Theorem 3.3.

Proof of Theorem 3.3 Lemma 3.10, together with all that we have said before, shows
that R.m/

�
is a weak equivalence for all m� 2. Therefore, we have the commutative

diagram
:::

��

:::

��

MC�.g.4//

��

� // MC�.g.4//

��

MC�.g.3// � //

��

MC�.g.3//

��

MC�.g.2// � // MC�.g.2//

where all objects are Kan complexes, all horizontal arrows are weak equivalences and
all vertical arrows are (Kan) fibrations by Theorem 2.5. It follows that the collection
of horizontal arrows defines a weak equivalence between fibrant objects in the model
category of towers of simplicial sets; see [12, Section VI.1]. The functor from towers of
simplicial sets to simplicial sets given by taking the limit is right adjoint to the constant
tower functor, which trivially preserves cofibrations and weak equivalences. Thus, the
constant tower functor is a left Quillen functor, and it follows that the limit functor is
a right Quillen functor. In particular, it preserves weak equivalences between fibrant
objects. Applying this to the diagram above proves that R� is a weak equivalence.
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Remark 3.11 As an anonymous referee pointed out, there is an alternative, shorter
proof of the fact that the map R� induces a bijection on all higher homotopy groups:
A Berglund [3, Theorem 1.1] gave an explicit group isomorphism

BW Hn.g/! �nC1MC�.g/; n� 0;

for any complete L1–algebra g. One can use this map together with the explicit
formula for the map R� derived from the homotopy transfer theorem to immediately
derive the result.

In [19] an alternative proof of Berglund’s theorem will be given which relies on the
results of the present article. It is therefore important to have a demonstration of
Theorem 3.3 which does not depend on it.

4 Properties and comparison

Theorem 3.3 shows that the simplicial set MC.g˝C�/ is a new model for the Deligne–
Hinich 1–groupoid. This section is dedicated to the study of some properties of this
object. We start by showing that it is a Kan complex, then we give some conditions on
the differential forms representing its simplices. We show how we can use it to rectify
cells of the Deligne–Hinich 1–groupoid, which provides an alternative, simpler proof
of [7, Lemma B.2]. Finally we compare it with Getzler’s functor � , proving that our
model is contained in Getzler’s. Independent results by Bandiera [1; 2] imply that the
two models are actually isomorphic.

4.1 Properties of MC�.g˝C�/

The following proposition is the analogue to Theorem 2.5 for our model:

Proposition 4.1 Let g; h be two filtered L1–algebras and suppose that �W g! h is a
morphism of L1–algebras inducing a fibration of simplicial sets under the functor MC�
(see for example Theorem 2.5 for possible sufficient conditions). Then the induced
morphism

MC.�˝ idC�/W MC.g˝C�/!MC.h˝C�/

is also a fibration of simplicial sets. In particular, for any filtered L1–algebra g, the
simplicial set MC.g˝C�/ is a Kan complex.

Proof By assumption, the morphism

MC�.�/W MC�.g/!MC�.h/
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is a fibration of simplicial set, and by Lemma 3.5 the following diagram exhibits
MC.�˝ idC�/ as a retract of MC�.�/:

MC.g˝C�/ MC�.g/ MC.g˝C�/

MC.g˝C�/ MC�.g/ MC.g˝C�/

I� P�

I� P�

MC.�˝idC� / MC�.�/ MC.�˝idC� /

As the class of fibrations is closed under retracts, this concludes the proof.

We consider the composite R� D I�P� , which is not the identity.

Definition 4.2 We call the morphism

R�W MC�.g/!MC�.g/

the rectification map.

The following result is a wide generalization of [7, Lemma B.2], as well as a motivation
for the name “rectification map” for R� :

Proposition 4.3 We consider an element

˛ WD ˛1.t0; : : : ; tn/C � � � 2MCn.g/;

where the dots indicate terms in g1�k˝�kn with 1�k�n. Then ˇ WDR�.˛/2MCn.g/
is of the form

ˇ D ˇ1.t0; : : : ; tn/C � � �C �˝!0:::n;

where the dots indicate terms in g1�k ˝ �kn with 1 � k � n � 1, where � is an
element of g1�n , and where ˛1 and ˇ1 agree on the vertices of �n . In particular, if
˛ 2MC1.g/, then ˇ D F.˛/ 2MC1.g/ is of the form

ˇ D ˇ1.t/C�dt

for some � 2 g0 , and satisfies

ˇ1.0/D ˛1.0/ and ˇ1.1/D ˛1.1/;

so that � gives a gauge equivalence between ˛1.0/ and ˛1.1/.

Remark 4.4 As R� is a projector, this proposition in fact gives information on the
form of all the elements of MC.g˝C�/.
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Proof First notice that the map R� commutes with the face maps and is the identity
on 0–simplices, thus evaluation of the part of ˇ in g1˝�0n at the vertices gives the
same result as evaluation at the vertices of ˛1 . Next, we notice that ˇ is in the image
of I� . We use the explicit formula for .1˝ in/1 of [17, Section 10.3.5]: the operator
acting on arity k � 2 is given, up to signs, by the sum over all rooted trees with 1˝ in
put at the leaves, the brackets `n of the corresponding arity at all vertices, and 1˝ h
at the inner edges and at the root. But the 1˝ h at the root lowers the degree of the
part of the form in �n by 1, and thus we cannot get something in g1�n˝�nn from
these terms. The only surviving term is therefore the one coming from .1˝ in/.P�.˛//,
given by �˝!0:::n for some � 2 g1�n .

4.2 Comparison with Getzler’s 1–groupoid �

Finally, we compare the simplicial set MC.g˝C�/ with Getzler’s Kan complex �.g/.
We start with an easy result that follows directly from our approach, before presenting
Bandiera’s result that these two simplicial sets are actually isomorphic.

Lemma 4.5 We have
I�MC.g˝C�/� �.g/:

Proof We have h�i� D 0. Therefore, by the explicit formula for .i�/1 given in
[17, Section 10.3.5], we have h�.ˇ/D 0 for any ˇ 2 g˝�� in the image of I� . Thus,

h�.MC.g˝C�//D h�I�P�.MC�.g//D 0;

which proves the claim.

In his thesis [1], Bandiera proves the following:

Theorem 4.6 [1, Theorem 2.3.3 and Proposition 5.2.7] The map

.P�; 1˝ h�/W MC�.g/!MC.g˝C�/� .Im.1˝ h�/\ .g˝��/1/

is bijective. In particular, its restriction to �.g/ D ker.1˝ h�/ \MC�.g/ gives an
isomorphism of simplicial sets

P�W �.g/!MC.g˝C�/:

Remark 4.7 Thanks to our approach, we immediately have an inverse for the map P� :
it is of course the map I� .
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As a consequence of Bandiera’s result and of Proposition 4.3, we can partially charac-
terize the thin elements of �.g/.

Lemma 4.8 For each n� 1, the thin elements contained in n.g/ are those with no
term in g1�n˝�nn .

Proof By Proposition 4.3 and Theorem 4.6, we know that if ˛ 2 n.g/, then ˛ is of
the form

˛ D � � �C �˝!0:::n

for some � 2 g1�n , where the dots indicate terms in g1�k ˝�kn for 0 � k � n� 1,
which will give zero after integration. Integrating, we getZ

�n
˛ D �˝

Z
�n
!0:::n D �˝ 1:

Therefore, ˛ is thin if and only if � D 0.

5 The case of Lie algebras

In this section, we focus on the case where g is actually a dg Lie algebra. In this
situation, we are able to represent the functor MC.g˝C�/ by a cosimplicial dg Lie
algebra. The main tools used here are results from [18].

5.1 Reminder on the complete cobar construction

What we explain here is a special case of [17, Sections 11.1–11.3], namely where we
take P D Lie and only consider the canonical twisting morphism � W BLie! Lie,
where BLie is the bar construction of the operad Lie encoding Lie algebras. In
fact, we consider a slight variation on the material presented there, as we remove the
conilpotency condition on coalgebras but additionally add the requirement that algebras
be complete. See also [18, Section 6.2].

Let X be a dg BLie–coalgebra. The complete cobar construction of X is the complete
dg Lie algebra

y��X WD .cLie.X/; d WD d1C d2/;

where cLie.X/ WD
Y
n�1

Lie.n/˝Sn X
˝n

and where the differential d is composed by the following two parts:
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(1) The differential �d1 is the unique derivation extending the differential dX of X.

(2) The differential �d2 is the unique derivation extending the composite

X
�X
�! bBLie.X/ �ı1X���! cLie.X/:

Notice that as X is not assumed to be conilpotent, the decomposition map �X
really lands in the product

bBLie.X/ WD
Y
n�0

.BLie.n/˝X˝n/Sn

and not the direct sum. Thus, it is necessary to consider the free complete Lie
algebra over X. Also, there is a passage from invariants to coinvariants that is left
implicit here, as the decomposition map lands in invariants, but the elements of
the complete free Lie algebra bLie.X/ are coinvariants. This introduces factors
of the form 1=nŠ when computing explicit formulas for d2 .

The complete cobar construction y�� defines a functor from dg BLie–coalgebras to
complete dg Lie algebras.

5.2 Representing MC.g˝C�/

Using the Dupont contraction, the homotopy transfer theorem produces the structure
of a simplicial C1–algebra to C� . As the underlying cochain complex Cn is finite-
dimensional for each n, it follows that its dual is a cosimplicial B.S ˝Lie/–coalgebra.
Therefore, the desuspension sC_

�
is a cosimplicial BLie–coalgebra, and we can take

its complete cobar construction.

Definition 5.1 We denote this cosimplicial dg Lie algebra by mc� WD y��.sC
_
�
/.

Theorem 5.2 Let g be a complete dg Lie algebra. There is a canonical isomorphism

MC.g˝C�/Š homdgLie.mc�; g/:

It is natural in g.

Proof By [18, Theorem 5.1], the L1–algebra structure we have on g˝C� is the
same as the structure that we obtain on the tensor product of the dg Lie algebra g

with the simplicial C1–algebra C� by using [18, Theorem 3.4] with P DQ D Lie
and ‰ D idLie . Therefore, we can apply [18, Corollary 6.6], which gives the desired
isomorphism.
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With this form for MC.g˝C�/, Theorem 3.3 reads as follows:

Corollary 5.3 Let g be a complete dg Lie algebra. There is a weak equivalence of
simplicial sets

MC�.g/' homdgLie.mc�; g/;

natural in g.

We can completely characterize the first levels of the cosimplicial dg Lie algebra mc� .
Recall from [16] the Lawrence–Sullivan algebra: it is the unique free complete dg Lie
algebra generated by two Maurer–Cartan elements in degree 1 and a single element
in degree 0 such that the element in degree 0 is a gauge between the two generating
Maurer–Cartan elements.

Proposition 5.4 The first two levels of the cosimplicial dg Lie algebra mc� are as
follows:

(1) The dg Lie algebra mc0 is isomorphic to the free dg Lie algebra with a single
Maurer–Cartan element as the only generator.

(2) The dg Lie algebra mc1 is isomorphic to the Lawrence–Sullivan algebra.

Proof For (1), we have �0 ŠKŠ C0 , both p0 and i0 are the identity, and h0 D 0.
It follows that, as a complete graded free Lie algebra, mc0 is given by

mc0 D cLie.sK/:

We denote the generator by ˛ WD s1_ . It has degree 1. Let g be any complete dg Lie
algebra; then a morphism

�W mc0! g

is equivalent to the Maurer–Cartan element

�.˛/˝ 1 2MC.g˝C�/ŠMC.g/:

Conversely, through P0 , every Maurer–Cartan element of g induces a morphism
mc0! g. As this is true for any dg Lie algebra g, it follows that ˛ is a Maurer–Cartan
element.

To prove (2), we start by noticing that

C1 WDK!0˚K!1˚K!01
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with !0 and !1 of degree 0 and !01 of degree 1. Writing ˛i WD s!_i and � WD s!_01 ,
we have

mc1 D cLie.˛0; ˛1; �/

as a graded Lie algebra. Let g be any dg Lie algebra; then a morphism

�W mc1! g

is equivalent to a Maurer–Cartan element

�.˛0/˝!0C�.˛1/˝!1C�.�/˝!01 2MC.g˝C1/I

see [18, Sections 6.3–6.4]. Applying I1 , as in the proof of Proposition 4.3 we obtain

I1.�.˛0/˝!0C�.˛1/˝!1C�.�/˝!01/D a.t0; t1/C�.�/˝!01 2MC1.g/

with a.1; 0/D �.˛0/ and a.0; 1/D �.˛1/. The Maurer–Cartan equation for

a.t0; t1/C�.�/˝!01

then shows that �.�/ is a gauge from �.˛0/ to �.˛1/. Conversely, if we are given
the data of two Maurer–Cartan elements of g and a gauge equivalence between them,
then this data gives us a Maurer–Cartan element of g˝�1 . Applying P1 then gives
back a nontrivial morphism mc1! g. As this is true for any g, it follows that mc1 is
isomorphic to the Lawrence–Sullivan algebra.

Remark 5.5 Alternatively, one could write down explicitly the differentials for
both mc0 (which is straightforward) and mc1 (with the help of [6, Proposition 19]).
An explicit description of mc� is made difficult by the fact that one needs to know the
whole C1–algebra structure on C� in order to write down a formula for the differential.

5.3 Relations to rational homotopy theory

The cosimplicial dg Lie algebra mc� has already made its appearance in the literature
not long ago, in [4], in the context of rational homotopy theory, where it plays the role
of a Lie model for the geometric n–simplex. With the goal of simplifying comparison
and interaction between our work and theirs, we provide here a short review and a
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dictionary between our vocabulary and the notation used in [4]:

This paper [4]

mc� L� or L��
�� APL.�

�/

B� Quillen functor C
homdgLie.mc�;�/ h�i

homdgCom.�; ��/ h�iS

Remark 5.6 The fact that the cosimplicial dg Lie algebra mc� is isomorphic to L� is
immediate from [4, Definition 2.1 and Theorem 2.8].

The following theorem has nonempty intersection with our results. We say a dg Lie
algebra is of finite type if it is finite-dimensional in every degree and if its degrees are
bounded either above or below.

Theorem 5.7 [4, Theorem 8.1] Let g be a dg Lie algebra of finite type with
Hn.g; d / D 0 for all n > 0. Then there is a homotopy equivalence of simplicial
sets

homdgLie.mc�; g/' homdgCom.B�.sg/_; ��/:

We can easily recover an analogous result, which works on complete dg Lie algebras
of finite type such that g�1 D 0, but without restrictions on the cohomology, using our
main theorem and some results of [18].

Proposition 5.8 Let g be a complete dg Lie algebra of finite type such that g�1 D 0.
Then there is a weak equivalence of simplicial sets

homdgLie.mc�; g/' homdgCom.B�.sg/_; ��/:

Proof The proof is given by the sequence of equivalences

homdgCom.B�.sg/_; ��/Š homdgCom. y��.s
�1g_/;��/

ŠMC.g˝��/

' homdgLie.mc�; g/:

In the first line we used the natural isomorphism

B�.sg/_ Š y��.s�1g_/:
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Notice that the assumptions on g make it so that g_ is a Lie_–coalgebra. In the second
line we used a slight generalization of [18, Corollary 6.6] for Q DP D Com and ‰
the identity morphism of Com. Notice that here the assumption that g�1 D 0 makes it
so that

homdgCom. y��.s
�1g_/;��/Š hom.s�1g_; ��/0

even though �� is not complete. Finally, in the third line we used our Corollary 5.3.
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Classifying spaces from Ore categories with Garside families

STEFAN WITZEL

We describe how an Ore category with a Garside family can be used to construct
a classifying space for its fundamental group(s). The construction simultaneously
generalizes Brady’s classifying space for braid groups and the Stein–Farley complexes
used for various relatives of Thompson’s groups. It recovers the fact that Garside
groups have finite classifying spaces.

We describe the categories and Garside structures underlying certain Thompson
groups. The indirect product of categories is introduced and used to construct new
categories and groups from known ones. As an illustration of our methods we
introduce the group braided T and show that it is of type F1 .
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There are many results establishing finiteness properties of Thompson groups. The
proofs typically follow the same blueprint, due to Brown, Stein and Farley, to reduce
the problem to its technical core, which is then solved individually; examples are due
to Brown [16], Stein [36], Farley [23], Bux, Fluch, Marschler, Witzel and Zaremsky
[24; 18; 43], Martínez-Pérez, Matucci and Nucinkis [31] and Belk and Forrest [3]. This
fact is well known to experts but it is not apparent when looking at the articles. The
reason is that the proofs are phrased using very different language. The present article
provides a uniform formalization of the common (“blueprint”) part of the mentioned
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proofs. The result is a theorem that reduces a statement about finiteness properties of
Thompson groups to its technical core, which is about connectivity of certain complexes.

In formalizing the blueprint it is fruitful to employ the language of categories, not
because any sophisticated category theory would be used, but because categories are
flexible enough to model posets, monoids, complexes and other objects that occur in
the constructions. A single category encodes at the same time the Thompson group
(its fundamental group) as well as the complex for it to act on (a subcomplex of the
realization).

In formulating the proof categorically we find that the assumptions that make it work
are established concepts in the (recent) literature — see Dehornoy, Digne, Godelle,
Krammer and Michel [22]; the key notions are those of an Ore category and of a Garside
family (see Section 1 for definitions). An Ore category not only has the property that
elements of its fundamental group can be written as a fraction of two morphisms (eg
“tree diagrams”), it also gives rise to a contractible space for it to act on. A Garside
family of morphisms (eg “elementary splits”) is what is needed to make the Quillen
trick work and reduce to the smaller Stein–Farley complex. In the abstract formulation
our results apply not only to Thompson groups but also to Garside groups such as the
braid groups BRAIDn and possibly to entirely different examples.

The main results are given in Section 3 in greater generality (see Observation 1.7 for
the relationship between a Garside map and a Garside family).

Theorem A Let C be a small right-Ore category that is factor-finite and admits a
right-Garside map �, and let � 2Ob.C/. There is a contractible simplicial complex X

on which G D �1.C;�/ acts. The space is covered by the G–translates of compact
subcomplexes Kx for x 2 Ob.C/. Every stabilizer is isomorphic to a finite-index
subgroup of the automorphism group C�.x;x/ for some x 2 Ob.C/.

Taking C to be a Garside monoid and � to be the Garside element, one immediately
recovers the known fact that Garside groups, and braid groups in particular, have finite
classifying spaces; see Charney, Meier and Whittlesey [20]. In fact, if C is taken to be
the dual braid monoid, the quotient GnX is precisely Brady’s classifying space for
BRAIDn [10].

In the case of Thompson’s group F the complex in Theorem A is the Stein–Farley com-
plex. The action is not cocompact in this case because C has infinitely many objects. In
order to obtain cocompact actions on highly connected spaces, we employ Morse theory.
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Theorem B Let C , �, � be as in Theorem A and let �WOb.C/! N be a height
function such that fx 2 Ob.C/ j �.x/� ng is finite for every n 2N. Assume that

(STAB) C�.x;x/ is of type Fn for all x ,

(LK) there exists an N 2N such that jE.x/j is .n�1/–connected for all x with
�.x/�N .

Then �1.C;�/ is of type Fn .

The complexes jE.x/j depend on C and � and are described in Section 3.4. Estab-
lishing condition (LK) is what we referred to as the technical core of the problem in
the beginning.

Theorem B provides a general scheme for proving that an (eligible) group is of type F1 :
first describe the category, second analyze the complexes jE.x/j, and then apply the
theorem. This scheme will be illustrated in Section 5 (describe the category) and
Section 6 (analyze the complexes, apply the theorem) on the examples of Thompson’s
groups F, T and V , their braided versions and some other groups. To our knowledge
this is the first time that Garside structures are studied in connection with Thompson
groups. In the process we define the Thompson group BT, braided T , and prove (see
Theorem 6.7):

Theorem C The braided Thompson group BT is of type F1 .

Although braided versions of V — see Dehornoy [21] and Brin [15] — and F — see
Brady, Burillo, Cleary and Stein [11] — exist in the literature, our main merit is to be
able to define braided T . The fact that it is F1 then follows from Theorem B and
results from [18]. To explain the issue of defining BT we need to digress a bit (see also
Remark 5.11). The category underlying Thompson’s group F is the category of forests,
where a morphism m n is a rooted forest with m roots and n leaves (see Section 2).
The categories underlying Thompson’s groups T and V are obtained by adding in
the cyclic groups .Z=nZ/n2N respectively the symmetric groups .SYMn/n2N . The
categories underlying the braided groups BF, BT and BV are obtained from the forest
category by adding in, for each n, the preimage under the map BRAIDn! SYMn of
the trivial group, the cyclic group and the full symmetric group, respectively.

When Brin first introduced BV, he avoided using categories by starting with the monoid
of forests with infinitely many roots and leaves and added in the braid group on infinitely
many strands limn BRAIDn . He then described which elements of the resulting infinite-
strand group should belong to BV by hand. The reason that this workaround is not
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viable for BT, or actually even for T , is simply that the finite cyclic groups .Z=nZ/n2N

do not have enough inclusions into each other and therefore no limiting object (nor do
their preimages in BRAIDn ).

Formally, the process of adding groups to the forest monoid mentioned in the last
paragraph is formation of the indirect product (or Zappa–Szép product) F‰G , where F
is the forest category and G is the category containing the groups in question. We
introduce the indirect product of categories in Section 4.

The applications of Theorem B are somewhat similar to those of Thumann’s results [37],
so we should clarify how they compare. Basically, Theorem B applies to more general
situations but has less power built in. Thumann’s framework is restricted to symmetric
or braided operads but the connectivity proofs from [18] verifying condition (LK) are
already included. Our results apply to more general settings such as the ones discussed
in Sections 5.3 and 5.5, and in particular to groups that are not of type F1 , but leave
the work of checking (LK) to the user.

The article is organized as follows. The basic notions are introduced in Section 1.
The underlying structures for braid groups and Thompson’s group F are described
in Section 2. Section 3 contains the main construction and the proofs of Theorems A
and B. The indirect product of categories is introduced in Section 4 and is used in
Section 5 to construct the categories underlying Thompson’s groups and their braided
versions. In Section 6, Theorem B is applied to the examples from Section 5 to deduce
finiteness properties, among them Theorem C. In Section 7 we briefly sketch how
further Thompson groups fit into our framework. Since the results about finiteness
properties and the indirect product may be of independent interest, we include the
following leitfaden:

Section 1

Section 2 Section 4 Section 3

Section 5
Section 6

Section 7

This article arose out of the introduction to the author’s Habilitation thesis [40], which
in addition covers Thompson groups arising from matrix groups via cloning systems;
see [43] and Section 5.3. More recently our results were used in proving that for every n
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there exists a simple group that is of type Fn�1 but not of type Fn ; see Skipper, Witzel
and Zaremsky [35].

1 Categories generalizing monoids

We start by collecting basic notions of categories regarding them as generalizations of
monoids. Our exposition is based on [22, Chapter II], where the perspective is similar.
The main difference is notational; see Remark 1.1 below.

A monoid may be regarded as (the set of morphisms) of a category with a single object.
For us categories will play the role of generalized monoids where the multiplication
is only partially defined. In particular, all categories in this chapter will be small. The
requirement that they be locally small is important and taking them to be small is con-
venient; for example, it allows us to talk about morphisms of categories as maps of sets.

Let C be a category. Notationally, we follow [22] in denoting the set of morphisms of C
by C as well (thinking of them as elements), while the objects are denoted by Ob.C/.
The identity at x will be denoted by 1x . If f is a morphism from y to x , we call y

the source and x the target of f . Our notation for composition is the familiar one for
functions, that is, if f is a morphism from y to x and g is a morphism from z to y , then
fg exists and is a morphism from z to x . If x;y 2 Ob.C/ then the set of morphisms
from y to x is denoted by C.x;y/, the set of morphisms from y to any object is denoted
by C.�;y/ and the set of morphisms from any object to x is denoted by C.x;�/. This
may be slightly unusual but renders the following intuitive expression valid:

f 2 C.x;y/; g 2 C.y; z/ D) fg 2 C.x; z/.

The corresponding diagram is

x y z
f g

fg

When we write an expression involving a product of morphisms, the requirement that
this product exists is usually an implicit condition of the expression. Thus, fg D h

means that the source of f is the target of g and that the equality holds.

Remark 1.1 The net effect of the various differences in notation is that our formalism
is consistent with [22], only the meaning of source/target, from/to and the direction of
arrows are switched. The reason for this decision is that some of our morphisms will
be group elements which we want to act from the left.
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1.1 Groupoids

A morphism f 2 C.x;y/ is invertible if there is an inverse, namely a morphism
g 2 C.y;x/ such that fg D 1x and gf D 1y . The set of invertible morphisms in
C.x;y/ is denoted by C�.x;y/ and the set of all invertible morphisms by C� . A
groupoid is a category G in which every morphism is invertible: G D G� . Just as every
monoid naturally maps to a group, every category naturally maps to a groupoid; see
[22, Section 3.1]:

Theorem 1.2 For every category C there is a groupoid Gpd.C/ and a morphism
�W C! Gpd.C/ with the following universal property: if 'W C! G is a morphism to a
groupoid then there is a unique morphism y'W Gpd.C/! G such that ' D y' ı �.

The groupoid Gpd.C/ and the morphism � are determined by C uniquely up to unique
isomorphism.

We call Gpd.C/ the enveloping groupoid of C . The morphism � is a bijection on objects
but it is not typically injective (on morphisms). One way to think about the enveloping
groupoid is as the fundamental groupoid of C :

The nerve of C is the simplicial set whose k –simplices are diagrams

x0
f1
 � x1

f2
 � x2 � � �  xk�1

fk
 � xk

in C . The i th face is obtained by deleting xi and replacing fi and fiC1 by fifiC1

and the j th degenerate coface is obtained by introducing 1xj
between fj and fjC1 .

Proposition 1.3 [33, Proposition 1] The groupoid Gpd.C/ is canonically isomorphic
to the fundamental groupoid of the realization of the nerve of C .

In particular, the fundamental group of C in an object x is just the set of endomorphisms
of Gpd.C/ in x : �1.C;x/D Gpd.C/.x;x/.

1.2 Noetherianity conditions

If fg D h then we say that f is a left-factor of h and that h is a right-multiple of f .
It is a proper left-factor or proper right-multiple if g is not invertible. We say that f
is a (proper) factor of h if efg D h (and one of e and g is not invertible).

The category C is Noetherian if there is no infinite sequence f0; f1; : : : such that fiC1 is
a proper factor of fi . It is said to be strongly Noetherian if there exists a map ıW C!N
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that satisfies ı.fg/� ı.f /C ı.g/ and, for f 2 C noninvertible, ı.f /� 1. Clearly, a
strongly Noetherian category is Noetherian. See [22, Sections II.2.3 and II.2.4] for a
detailed discussion.

We call a height function a map �W Ob.C/! N such that �.x/ D �.y/ if C.x;y/
contains an invertible morphism and �.x/ < �.y/ if C.x;y/ contains a noninvertible
morphism. Note that the existence of a height function implies strong Noetherianity by
taking ı.f /D �.y/� �.x/ if f 2 C.x;y/.

We say that C is factor-finite if every morphism in C has only finitely many factors up
pre- and postcomposition by invertibles. This condition implies strong Noetherianity
(see [22, Proposition 2.48]).

1.3 Ore categories

Two elements g; h 2 C.x;�/ have a common right-multiple d if there exist elements
e; f 2 C with geD hf D d . It is a least common right-multiple if every other common
right-multiple is a right-multiple of d . We say that C has common right-multiples if any
two elements with the same target have a common right-multiple. We say that it has
conditional least common right-multiples if any two elements that have a common right-
multiple have a least common right-multiple. We say that it has least common right-
multiples if any two elements with the same target have a least common right-multiple.
We say that C is left-cancellative if ef D eh implies f D h for all e; f;g 2 C . All of
these notions have obvious analogues with left and right interchanged. A category is
cancellative if it is left-cancellative and right-cancellative.

Lemma 1.4 If C is cancellative and f 2 C has a left-inverse or right-inverse then it is
invertible.

Proof Let f 2 C.x;y/ and assume that there is an e 2 C.y;x/ that is a left-inverse
for f , that is, ef D 1y . Then fef D f and canceling f on the right shows that e is
also a right-inverse. The other case is symmetric.

Lemma 1.5 Let C be strongly Noetherian. Then C has least common right-multiples
if and only if it has greatest common left-factors.

Proof Suppose that C has least common right-multiples and let f;g 2 C.x;�/. Let s

and t be common left-factors of f and g and let r be a least common right-multiple
of s and t . Then, since f and g are common right-multiples of s and t , they are
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right-multiples of r , meaning that r is a common left-factor. If s and t are not right-
multiples of each other then ı.r/ > ı.s/; ı.t/ and an induction on ı.r/� ı.f /; ı.g/
over the common left-factors of f and g produces a greatest common left-factor. The
other direction is analogous.

We say that C is right/left-Ore if it is cancellative and has common right/left-multiples.

Theorem 1.6 A category C that is right-Ore embeds in a groupoid G such that every
element h 2 G can be written as hD fg�1 with f;g 2 C .

The groupoid G in the theorem is called the Ore localization Ore.C/ of C . Using the
universal property, it is not hard to see that it coincides with the enveloping groupoid
of C .

The fundamental group of an Ore category has a particularly easy description. In
general, an element of �1.C;x/ is represented by a sequence f0g�1

1
f1 � � � fn�1g�1

n

with fi ;gi 2 C.xi ;�/ and fj ;gjC1 2 C.�;yj /. But if C has common right-multiples,
then g�1

1
f1 can be rewritten as f 0

1
g0

1
�1 and so the sequence can be shortened to

.f0f
0

1
/.g2g0

1
/�1f2 � � � fn�1g�1

n . Iterating this argument, we find that every element
of �1.C;x/ is of the form fg�1 with f;g 2 C.x;�/.

1.4 Presentations

We introduce presentations for categories. This is analogous to the situation for monoids
and we will be brief. See [22, Section II.1.4] for details.

A (small) precategory S consists of a set of objects Ob.S/ and a set of morphisms S .
As for categories, each morphism has a source and a target that are objects and it is a
morphism from the source to its target. The set of morphisms from y to x is denoted
by S.y;x/. The monoidal aspects of a category are missing in a precategory: it does
not have identities or a composition.

Given a precategory S there exists a free category S� generated by S . It has the
universal property that if �W S! C is a morphism of precategories and C is a category,
then � uniquely factors through S ! S� . One can construct S� to have the same
objects as S and have morphisms finite words in S that are composable.

A relation is a pair r D s of morphisms in S� with the same source and target. If
�W S� ! C is a morphism, the relation holds in C if �.r/ D �.s/. A presentation
consists of a precategory S and a family of relations R in S� . The category it presents
is denoted by hS jRi.
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It has the universal property that if �W S! C is a morphism of precategories and C is a
category in which all relations in R hold then � uniquely factors through S!hS jRi.
One can construct hS jRi by quotienting S� by the symmetric, transitive closure of
the relations.

1.5 Garside families

The following notions are at the core of [22]. We will sometimes be needing the
notions with the reverse order. What in [22] is referred to as a Garside family in a
left-cancellative category will be called a left-Garside family here to avoid confusion
in categories that are left- and right-cancellative.

Let C be a left-cancellative category and let S � C be a set of morphisms. We
denote by S] the set C� [SC� of morphisms that are invertible or left-multiples of
invertibles by elements of S . We say that S] is closed under (left/right-)factors if every
(left/right-)factor of an element in S] is again in S] . An element s 2 S is an S–head
of f 2 C if s is a left-factor of f and every left-factor of f in S is a left-factor
of s [22, Definition IV.1.10]. The set S is a left-Garside family if S] generates C , is
closed under right-factors and every noninvertible element of C admits and S–head
[22, Proposition IV.1.24]. If S is a left-Garside family then C�S � S] , so in fact
S] D C�[ C�SC� [22, Proposition III.1.39].

All notions readily translate to right-Garside families, except that the head is called an
S–tail if S is a right-Garside family. Note that S] is defined as C�[ C�S when S is
(regarded as) a right-Garside family.

We will be interested in Garside families that are closed under factors. We describe
two situations where this is the case.

Let C be left-cancellative and consider a map �W Ob.C/! C with �.x/ 2 C.x;�/.
We write

Div.�/D fg 2 C j ghD�.x/ for some x 2 Ob.C/; h 2 Cg;
eDiv.�/D fh 2 C j ghD�.x/ for some x 2 Ob.C/; g 2 Cg;

for the families of left- and right-factors of morphisms in the image of �. Such a map
is a right-Garside map if Div.�/ generates C , if eDiv.�/� Div.�/, and if, for every
g 2 C.x;�/, the elements g and �.x/ admit a greatest common left-factor. If � is a
right-Garside map then Div.�/ is a left-Garside family closed under left-factors and
thus under factors [22, Proposition V.1.20]. We note the following for future reference:
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Observation 1.7 Let C be a left-cancellative, factor-finite category and let � be a
right-Garside map. Then S WDDiv.�/ is a left-Garside family closed under factors and
S.x;�/ is finite for every x 2 Ob.C/.

Let C be right-Ore. A right-Garside family is strong if for s; t 2S] there exist s0; t 0 2S]

such that st 0 D ts0 is a least common right-multiple of s and t [22, Definition 2.29].
If S is a strong right-Garside family then S] is also closed under left-factors and thus
is closed under factors [22, Proposition 1.35].

2 Fundamental examples

2.1 Thompson’s group F and the category F

Our description of Thompson’s groups is not the standard one, which can be found
in [19]. An element of Thompson’s group F is given by a pair .TC;T�/ of finite
rooted binary trees with the same number of leaves, say n. If we add a caret to the i th

leaf (1� i � n) of TC , that is we make it into an inner vertex with two leaves below
it, we obtain a tree T 0C on nC 1 vertices. If we also add a caret to the i th leaf of T�

we obtain another tree T 0� . We want to regard .T 0C;T
0
�/ as equivalent to .TC;T�/ so

we take the reflexive, symmetric, transitive closure of the operation just described and
write the equivalence class by ŒTC;T��. Thompson’s group F is the set of equivalence
classes ŒTC;T��.

In order to define the product of two elements ŒTC;T�� and ŒSC;S��, we note that
we can add carets to both tree pairs to get representatives ŒT 0C;T

0� D ŒTC;T�� and
ŒT 0;T 0�� D ŒSC;S��, where the second tree of the first element and the first tree of
the second element are the same. Therefore, multiplication is completely defined by
declaring that ŒT 0C;T

0� � ŒT 0;T 0��D ŒT
0
C;T

0
��. It is easy to see that ŒT;T � is the neutral

element for any tree T and that ŒTC;T���1 D ŒT�;TC�.

We have defined the group F in such a way that a categorical description imposes itself;
see [2]. We define F to be the category whose objects are positive natural numbers and
whose morphisms m n are binary forests on m roots with n leaves. Multiplication
of a forest E 2 F.`;m/ and a forest F 2 F.m; n/ is defined by identifying the leaves
of E with the roots of F and taking EF to be the resulting tree. Pictorially this
corresponds to stacking the two forests on top of each other (see Figure 1).

Proposition 2.1 The category F is strongly Noetherian and right-Ore. In fact, it has
least common right-multiples and greatest common left-factors.

Algebraic & Geometric Topology, Volume 19 (2019)



Classifying spaces from Ore categories with Garside families 1487

: : :

: : :

D

: : :

Figure 1: Multiplication of forests (taken from [42])

Proof The identity map �W N D Ob.F/!N is a height function on F. Thus, F is
strongly Noetherian.

The least common right-multiple of two forests in F.m;�/ is their union (regarding
both forests as subforests of the leafless binary forest on m roots). The greatest common
left-factor is their intersection. Left-cancellativity means that given a forest f 2F.m; `/
and a left-factor a 2F.m; n/, the forest in b 2F.n; `/ with f D ab is unique. Indeed,
it is the forest obtained from f by removing a and turning the leaves of a into roots.
Right-cancellativity means that a is uniquely determined if f D ab . To see this, we
identify the leaves of f with the leaves of b . Now the common predecessor in f of a
set of leaves of a tree of b is a leaf of a and every leaf of a arises in that way.

The proposition together with the remark at the end of Section 1.3 shows that every
element of �1.F ; 1/ is represented by fg�1 where f;g 2 F.1;�/ are binary trees.
Cancellativity ensures that fg�1 D f 0g0

�1 if and only if there exist h and h0 such
that f hD f 0h0 and ghD g0h0. Comparing this description with our definition of F

we see:

Proposition 2.2 Thompson’s group F is isomorphic to �1.F ; 1/.

Later on it will be convenient to have a presentation for F. The shape of the relations
will not come as a surprise to the reader familiar with Thompson’s groups. A proof
can be found in [40].

Proposition 2.3 The category F has a presentation with morphisms �n
i W n nC 1

for 1� i � n as generators subject to the relations

(2-1) �n
i �

nC1
j D �n

j �
nC1
iC1

for 1� j < i � n.

Every morphism in F.m; n/ can be written in a unique way as �m
im
� � ��n�1

in�1
with .ij /j

nondecreasing.

Algebraic & Geometric Topology, Volume 19 (2019)



1488 Stefan Witzel

Remark 2.4 The relations (2-1) reflect a commutation phenomenon: for any forest,
adding a caret to the i th leaf and then to the j th leaf has the same effect as doing it the
other way around. That it does not algebraically look like a commutation relation is
due to the fact the index of the right one of the two leaves has changed when adding the
left caret. This is inevitable in the present setup because the i th leaf has no identity as
a particular vertex in the infinite rooted binary tree but simultaneously represents all i th

leaves of trees with n leaves. A larger category in which the relations are algebraically
commutation relations will appear in Section 5.5.

Note that since F is connected, the fundamental groups at different objects are isomor-
phic. This corresponds to the elementary fact that the tree pair .TC;T�/ representing
an element of F can always be chosen so that TC and T� contain an arbitrary fixed
subtree.

The most convenient way to exhibit a Garside family in F is by describing a right-
Garside map: for every n 2N D Ob.F/ let �.n/ be the forest where every tree is a
single caret.

Proposition 2.5 The map �W Ob.F/! F is a right-Garside map.

Proof The family Div.�/ consists of morphisms where every forest is either a single
caret or trivial. Every forest can be built of from these, for example by adding one
caret at a time. This shows that Div.�/ generates F. The family eDiv.�/ also consists
of morphisms where every forest is either a single caret or trivial with the additional
condition that the total number of leaves is even and the left leaf of every caret has an
odd index. In particular, eDiv.�/� Div.�/. If g 2 F.x;�/ then g and �.x/ have a
greatest common left-factor by Proposition 2.1.

With Observation 1.7 we get:

Corollary 2.6 The category F admits a left-Garside family S that is closed under
factors such that S.x;�/ is finite for every x 2 F.

Remark 2.7 The family Div.�/ is in fact a right- as well as a left-Garside family. It
is strong as a right-Garside family but not as a left-Garside family.

If instead of rooted binary trees one takes rooted n–ary trees (n� 2) in the description
above, one obtains the category Fn . Everything is analogous to F but the new aspect
that occurs for n> 2 is that the category is no longer connected: the number of leaves
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of an n–ary tree with r roots will necessarily be congruent to r modulo n� 1; hence,
there is no morphism in Fn connecting objects that are not congruent modulo n�1. As
a consequence, the point at which the fundamental group is taken does matter and we
obtain n�1 different groups for each category. It turns out, however, that the fundamen-
tal groups are in fact isomorphic independently of the basepoint [16, Proposition 4.1]
and are denoted by

Fn;1 D �1.Fn; 1/.

The groups Fn;1 are the smallest examples of the Higman–Thompson groups intro-
duced by Higman [27]. As we will see later, the fundamental groups of the different
components are nonisomorphic in the categories for the larger Higman–Thompson
groups.

2.2 Braid groups

The braid group on n strands, introduced by Artin [1], is the group given by the
presentation

(2-2) BRAIDn D
˝
�1; : : : ; �n�1 j �i�j D �j�i if ji � j j � 2;

�i�iC1�i D �iC1�i�iC1 if 1� i � n� 2
˛
.

Its elements, called braids, can be conveniently depicted as braid diagrams as in
Figure 2, illustrating a physical interpretation as braids on n strands. The first relations
are commutation relations; the second are braid relations. The group BRAIDn arise as
the fundamental group of the configuration space of n unordered points in the disc and
as the mapping class group of the n–punctured disc; see [7; 29] for more details.

What is known as Garside theory today arose out of Garside’s study of braid groups [25].
In this classical case, the category C has a single object and thus is a monoid. Specif-
ically, a Garside monoid is a monoid M with an element � 2M, called a Garside
element, such that:

D

Figure 2: Diagrams illustrating the braid relation
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(i) M is cancellative and has least common right- and left-multiples and greatest
common right- and left-factors.

(ii) The left- and right-factors of � coincide, they are finite in number, and they
generate M.

(iii) There is a map ıW M ! N such that ı.fg/ � ı.f /C ı.g/ and ı.g/ > 0 if
g ¤ 1.

A Garside group is the group of fractions of a Garside monoid. Among the main
features of Garside groups is that they have solvable word problem and conjugacy
problem.

Note that a Garside monoid, regarded as a category with one object is, by definition,
left- and right-Ore and strongly Noetherian. Moreover, the family of factors of � is a
left- and right-Garside family.

To see that braid groups are in fact Garside groups, consider the braid monoid BRAIDCn .
It is obtained by interpreting the presentation (2-2) as a monoid presentation. It is a
nontrivial consequence of Garside’s work that the obvious map BRAIDCn ! BRAIDn

is injective, so that the braid monoid can be regarded as a subset of the braid groups.
Its elements are called positive braids and are characterized by the property that left
strands always overcrosses the right strand. The element � in BRAIDCn is the braid
that performs a full half twist and is characterized by the fact that every strand crosses
every other strand precisely once; see Figure 3. Its (left- or right-) factors are the
braids where every strand crosses every other strand at most once. The function ı is
simply the number of crossings, which is the same as length as a word in the generators.
Now BRAIDCn is a Garside monoid with Garside element �; see [22, Section I.1.2,
Proposition IX.1.29]. Its group of fractions is BRAIDn , which is therefore a Garside
group.

It was noted by Birman, Ko and Lee [8] that there is in fact another monoid BRAID�Cn ,
called the dual braid monoid, that also admits a Garside element �� and has BRAIDn

as its group of fractions; see also [22, Section I.1.3]. This monoid is in many ways
better behaved than BRAIDCn . Brady [10] used the dual braid monoid to construct a
finite classifying space for the braid group.

Note that adding the relations �2
i to the presentation (2-2) results in a presentation

for the symmetric group SYMn . In particular, there is a surjective homomorphism
� W BRAIDn! SYMn that takes �i to the transposition si WD .i iC1/.
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Figure 3: The element � in BRAIDC
7

The symmetric group is a finite Coxeter group and the braid group is its corresponding
Artin group. For every Coxeter system .W;S/ there exists an Artin group AW obtained
analogously and a morphism � W AW !W . Whenever W is finite, the Artin group AW

again contains a Garside monoid and a dual Garside monoid; see [12; 5].

3 Finiteness properties of fundamental groups of Ore
categories

A classifying space for a group G is a CW complex B whose fundamental group is G

and whose universal cover X D zB is contractible. Since G acts freely on X with
quotient B DGnX, one can equivalently say that a classifying space is the quotient
of a contractible CW complex by a free G–action. Our goal in this section is to
construct “good” classifying spaces for fundamental groups of Ore categories. The
best classifying spaces are compact ones; they have finitely many cells so we also refer
to them as finite. If G admits a finite classifying space, we say that it is of type F.
If a finite classifying space does not exist, we aim at classifying spaces with weaker
finiteness properties. We start by constructing an action on a contractible space.

3.1 Contractible spaces from Ore categories with Garside families

Let C be a category that is right-Ore and strongly Noetherian. Let S be a left- or right-
Garside family such that S] is closed under factors. Let � 2 Ob.C/ be a base object.
Our goal is to construct a contractible space X on which �1.C;�/ acts with good
finiteness properties of the stabilizers as well as the quotient. In the whole discussion C
can be replaced by the component of � in C , so all assumptions only need to be made
for objects and morphisms in that component.
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We put E D S] and recall that E D C�[C�SC� . We call the elements of E elementary.
Let ıW C!N be a map that witnesses strong Noetherianity. Note that if f 2 C.x;y/
and g 2 C�.�;x/ and h 2 C�.y;�/ are invertible then

�ı.g�1/C ı.f /� ı.h�1/� ı.gf h/� ı.g/C ı.f /C ı.h/;

so ı.f /D ı.gf h/ and ı is invariant under pre- and postcomposition by invertibles.

We define the set P DOre.C/.�;�/=C� , that is, elements of P are equivalence classes
xa of elements a 2Ore.C/.�;�/ modulo the equivalence relation that xaD Na0 if there
exists a g 2 C� with agD a0. We define a relation � on P by declaring xa� xb if there
exists an f 2 C with af D b .

Lemma 3.1 The relation � is a partial order on P in which any two elements have a
common upper bound. In particular, the realization jP j is contractible.

Proof Note first that whether f D a�1b lies in C is independent of the representatives.
Reflexivity and transitivity are clear. If xa� xb � xa then there exist f; h 2 C and g 2 C�

such that af D b and bh D ag , showing that f h is a unit. In particular, f has a
right-inverse and h has a left-inverse, so f and h are units by Lemma 1.4. This
shows xaD xb .

For any a 2 Ore.C/ there is an f 2 C such that af 2 C . Since C has common right-
multiples, it follows that for any two elements a1; a2 2Ore.C/ there exist f1; f2 2 C
with a1f1 D a2f2 .

We define a second, more restrictive relation � on P by declaring that xa� xb if there
exists an e 2 E with ae D b . Note that this relation will typically not be transitive.
However, if xa � xb and xa � xc � xb then xa � xc � xb because E is closed under factors.
The complex X � jP j consists of those chains in jP j that are chains with respect to �.
In particular, P is the vertex set of X.

Proposition 3.2 The complex X is contractible.

Proof Note that X is a subspace of jP j containing all the vertices. One can obtain jP j
from X by gluing in (realizations of) intervals Œxa; xb� not yet contained in X. To
organize the gluing, note the following: if Œxc; xd � is a proper subinterval of Œxa; xb� with
f D a�1b 2 C and h D c�1d 2 C , then h is a proper factor of f . To an interval
Œxa; xb� with f D a�1b we assign the height yı.Œxa; xb�/ D ı.f /. Note that this is well
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defined, because any other representative f 0 will differ from f only by invertibles
and ı is invariant under pre- and postcomposition by invertibles. Note also that proper
subintervals have strictly smaller yı–value. We can therefore glue in the intervals
with increasing value of yı and be sure that when we glue in an interval, any proper
subinterval is already glued in.

For any n 2N let jP jyı<n
be the subcomplex of jP j consisting of X and intervals of

yı–value < n. If X was not contractible, there would be a sphere in X that could not
be contracted in X but in jP j. The contraction would be compactly supported, and
hence use simplices supported on finitely many simplices. It therefore suffices to show
that the inclusion X ! jP jyı<n

is a homotopy equivalence for all n 2N.

For nD 0 this is clear, so assume n> 0. Then

jP jyı<n
D jP jyı<n�1

[

[
yı.Œxa;xb�/Dn�1

jŒxa; xb�j.

The intervals that are glued in meet only in jP jyı<n�1
and they are glued in along

jŒxa; xb/j [ j.xa; xb�j. This is a suspension of j.xa; xb/j and so it suffices to show that the
open interval is contractible.

If S is a left-Garside family, every element h of C , and every left-factor of f in partic-
ular, has an S–head head.g/. We define the map � W Œxa; xb�! Œxa; xb� by ah 7! a head.h/.
Note that �.xb/ < xb because otherwise Œxa; xb� is already contained in jP j. Note also
that �.xc/ > xa for xc > xa because the head of a noninvertible is not invertible. This
shows that � restricts to a map .xa; xb/! .xa; xb/ with xc � �.xc/� �.xb/ and we can apply
[34, Section 1.5] to see that j.xa; xb/j is contractible.

If S is a right-Garside family, � is defined by bh�1 7! b tail.h/�1 . For the same
reasons as above, � restricts to a map .xa; xb/! .xa; xb/ with xc � �.xc/ � �.xa/ and we
can again apply [34, Section 1.5].

There is an obvious action of �1.C;�/ on X which is given by precomposition: if
g 2 �1.C;�/DOre.C/.�;�/ and a 2Ore.C/.�;�/ then gxaD ga and the relations �
and � are clearly preserved under this action.

Next we want to look at stabilizers and weak fundamental domains. These will be partic-
ularly well behaved with an additional assumption. We say that S is (right-)locally finite
if for every object x 2 Ob.C/ the set S.x;�/ is finite up to pre- and postcomposition
by invertibles. Local finiteness of S does not imply that X is locally finite but does
imply:
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Observation 3.3 Assume that S is locally finite. For every xa 2 P there are only
finitely many xb 2 P with xa� xb . In particular, there are only finitely many simplices
for which xa is �–minimal.

Lemma 3.4 Every simplex-stabilizer of the action of �1.C;�/ on X is isomorphic to
a subgroup of C�.x;x/ for some x 2 Ob.C/. If S is locally finite, the subgroup has
finite index.

Proof Let xa be a vertex in X with a 2Ore.C/.�;x/ and suppose that g 2 �1.C;�/
fixes xa, that is, xaD gxaD ga. Then a�1ga 2 C�.x;x/. This shows that the stabilizer
of xa is conjugate to C�.x;x/. If S is locally finite then Observation 3.3 implies that
the stabilizer of an arbitrary simplex has finite index in a vertex stabilizer.

Corollary 3.5 If C�.x;x/ D f1xg for every object x 2 Ob.C/ then the action of
�1.C;�/ on X is free. If C�.x;x/ is finite then the action is proper.

Now let us pick, for every x 2 Ob.C/, a morphism fx 2Ore.C/.�;x/ arbitrarily and
let Kx �X be the union of the realizations of the intervals Œ xfx; fxe� with e 2 E.x;�/.

Lemma 3.6 The complex X is covered by the �1.C;�/–translates of the complexes
Kx for x 2 Ob.C/. If S is locally finite then each Kx is compact.

Proof If � D ff � fe1 � � � � � fekg is a simplex in X with f 2Ore.C/.�;x/ and
e1; : : : ; ek 2 E.x;�/, then fxf

�1 2 �1.C;�/ and fxf
�1Kx contains � . The second

statement is clear.

The ideal special case is:

Corollary 3.7 If C has no nonidentity invertible morphisms and has only finitely
many objects and if S is locally finite, then �1.C;�/ has a finite classifying space.

Proof Under the assumption, the action of �1.C;�/ is free by Corollary 3.5 and
cocompact by Lemma 3.6. The quotient is then a finite classifying space.

In particular, we recover the main result of [20]:

Corollary 3.8 Every Garside group G has a finite classifying space.

In the case of the dual braid monoid, the complex we constructed is precisely the dual
Garside complex constructed by Brady [10].
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3.2 Finiteness properties

Topological finiteness properties of a group G were introduced by Wall [38; 39] and are
conditions on how finite a classifying space for G can be chosen. A group is said to be
of type Fn if it admits a classifying space B whose n–skeleton B.n/ has finitely many
cells. Equivalently a group is of type Fn if it acts freely on a contractible space X

such that the action on X .n/ is cocompact. It is clear that type Fn implies type Fm

for m< n and one defines the finiteness length �.G/ to be the supremal n for which
G is of type Fn . If �.G/D1 then G is said to be of type F1 .

In low dimensions, these properties have familiar descriptions: a group is of type F1

if and only if it is finitely generated, and it is of type F2 if and only if it is finitely
presented.

Given a group G, in order to study its finiteness properties, one needs to let G act on
a highly connected space X. If the action is free, then the low-dimensional skeleta
of GnX are those of a classifying space. A useful result is Brown’s criterion, which
says that one does not have to look at free actions; see [16, Propositions 1.1, 3.1]:

Theorem 3.9 Let G act cocompactly on an .n�1/–connected CW complex X. If the
stabilizer of every p–cell of X is of type Fn�p then G is of type Fn .

The full version of Brown’s criterion also gives a way to decide that a group is not of
type Fn . We formulate it here only to explain why we will not be able to apply it:

Theorem 3.10 Let G act on an .n�1/–connected CW complex X and assume that
the stabilizer of every p–cell of X is of type Fn�p . If G is of type Fn then, for every
cocompact subspace Y and any basepoint � 2 Y , there exists a cocompact subspace
Z � Y such that the maps �k.Y;�/! �k.Z;�/ induced by inclusion have trivial
image for k � n� 1.

Theorem 3.10 can be used to show that a group is not of type Fn if this is visible in
the topology of X. On the other hand, if the stabilizers have bad finiteness properties,
we cannot decide whether G has good finiteness properties or not: in that case we are
looking at the wrong action.

3.3 Combinatorial Morse theory

In order to study connectivity properties of spaces and apply Brown’s criterion we will
be using combinatorial Morse theory as introduced by Bestvina and Brady [6]. Here
we give the most basic version used in Section 3.4.
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Let X be the realization of an abstract simplicial complex, regarded as a CW complex.
A Morse function is a function �W X .0/!N with the property that �.v/¤ �.w/ if v
is adjacent to w . For n 2N the sublevel set X�<n is defined to be the full subcomplex
of X supported on vertices v with �.v/< n. The descending link lk# v of a vertex v is
the full subcomplex of lk v of those vertices w with �.w/� �.v/ and the descending
star st# is defined analogously. That � is a Morse function implies that the inequality
�.w/� �.v/ is strict for the descending link and for the descending star is not strict
only when w D v . In particular, the descending star is the cone over the descending
link.

The goal of combinatorial Morse theory is to compare the connectivity properties of
sublevel sets to each other and to those of X. The tool to do so is a basic lemma, called
the Morse lemma:

Lemma 3.11 Let � be a Morse function on X. Let m� n�1 and assume that for
every vertex v with m� �.v/ < n the descending link of v is .d�1/–connected. Then
the pair .X�<n;X�<m/ is d –connected, that is, �k.X�<m!X�<n/ is an isomorphism
for k < d and an epimorphism for k D d .

Proof The basic observations are that

X�<mC1 DX�<m[

[
�.v/Dm

st# v,

that st# v \ st# v0 � X�<m for �.v/ D m D �.v0/, and that st# v \X�<m D lk# v .
As a consequence (using compactness of spheres) it suffices to study the extension
Y WDX�<m[lk# v st# v for an individual vertex v with �.v/Dm.

In this situation, �k.Y;X�<m/ Š �k.st# v; lk# v/ for k � d . This can be seen by
separately looking at �1 and H� (where excision holds) and applying Hurrewicz’s
theorem [26, Theorem 4.37]. The statement now follows from the long exact homo-
topy/homology sequence for the pair .st# v; lk# v/.

3.4 Finiteness properties of fundamental groups of Ore categories

We take up the construction from Section 3.1. So C is again a right-Ore category, S is a
left- or right-Garside family closed under factors, and �2Ob.C/ is a base object. More
than requiring strong Noetherianity, we now need a height function �W Ob.C/!N.

We use these data and assumptions to provide a criterion to prove finiteness properties
for the fundamental group.
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We need to introduce one further space construction. It is another variant of the
nerve construction. For x 2 Ob.C/ let E.x/ be the set of equivalence classes in
a 2 E.�;x/X E�.x;x/ modulo the equivalence relation that xaD Na0 if there exists a
g 2 C� with ga D a0. We define a relation � on E.x/ by declaring xa � xb if there
is an f 2 C with faD b . Note that if g and f as above exist, they lie in E , so the
description can be formulated purely in terms of E . As in Lemma 3.1 one sees that �
is a partial order on E.x/; however, it is usually not contractible.

Theorem 3.12 Let C be a right-Ore category and let � 2 Ob.C/. Let S be a locally
finite left- or right-Garside family that is closed under factors. Let �W Ob.C/!N be a
height function such that fx 2 Ob.C/ j �.x/� ng is finite for every n 2N. Assume

(STAB) C�.x;x/ is of type Fn for all x ,

(LK) there exists an N 2N such that jE.x/j is .n�1/–connected for all x with
�.x/�N .

(If � is unbounded on the component of � then it suffices if (STAB) holds for every x

with �.x/ beyond a fixed bound.)

Then �1.C;�/ is of type Fn .

Remark 3.13 Recall that C can be replaced by the component of � in C , so all
assumptions need to be made only for that component.

Proof We take X to be the complex constructed in Section 3. Assume first that (STAB)
holds for all x 2 Ob.C/.

For a vertex xa 2X with a 2Ore.C/.�;x/ we define �.xa/D �.x/. This is a �1.C;�/–
invariant Morse function, which we think of as height. For n 2 N we consider the
subcomplex X�<n supported on vertices of height < n.

We want to see that every X�<n is �1.C;�/–cocompact. To do so we note that �1.C;�/
acts transitively on vertices xa with a 2Ore.C/.�;x/: indeed, if xb is another such then
ba�1 2 �1.C;�/ takes xa to xb . It follows from the assumption on � that there are only
finitely many vertices xa with �.xa/ < n up to the �1.C;�/–action. Cocompactness now
follows from Observation 3.3.

Stabilizers are of type Fn by Lemma 3.4 because finiteness properties are inherited by
finite-index subgroups.

Let N be large enough that all the x 2 Ob.C/ for which the nerve of jE.x/j is not
.n�1/–connected have �.x/ <N . We have just seen that �1.C;�/ acts on X�<N co-
compactly with stabilizers of type Fn , so once we show that X�<N is .n�1/–connected,
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we are done by Theorem 3.9. We want to apply the Morse lemma (Lemma 3.11), so let
us look at the descending link of a vertex xb of X, where b 2 C.�;x/. The vertices in
the descending link are the xa that are comparable with xb and have �.xa/ < �.xb/. The
condition on the height shows that a cannot be a right-multiple of b but has to be a
left-factor. Thus, a�1b 2 E.�;x/ and the descending link of xb is the realization of
fxa j a� bg. We see that the map E.�;x/XE.x;x/!fxa j a� bg that takes f to af �1

is an order-reversing surjection. The definition of E.x/ is made so that the induced
map E.x/!fxa j a� bg is well defined and an order-reversing bijection. Since jE.x/j
is .n�1/–connected by assumption, this completes the proof in the case that (STAB)
holds for all x .

If (STAB) only holds for x with �.x/�M, let �0 be in the component of � satisfying
�.�0/ >M. Since C is Ore, one sees that

�1.C;�/D �1.C;�0/D �1.C��M ;x0/;

where C��M is obtained from C by removing objects y with �.y/ <M. Moreover,
local finiteness of S implies that the complexes E.y/ for C and for C��r are the same
for y in the component of �0 once �.y/ is large enough. One can therefore consider
C��M instead of C , with the effect that the groups C�.x;x/ only need to be of type Fn

when �.x/�M.

Corollary 3.14 Let C , S , � and � be as in the theorem. If C�.x;x/ is of type F1

for every x and the connectivity of jE.x/j tends to infinity for �.x/ ! 1, then
�1.C;�/ is of type F1 .

The construction of X uses two important ideas. One is the passage from jP j to X,
which is due to Stein; see [36, Theorem 1.5]. The other is to take P to consist of C�–
equivalence classes and goes back to [18]. Apart from these ideas the main difficulty in
proving that �1.C;�/ is of type Fn lies in establishing the connectivity properties of
the complexes jE.x/j. This problem depends individually on the concrete setup and
we will see various examples later.

3.5 Example: F is of type F1

As a first illustration of the results in this section we reprove a result due to Brown and
Geoghegan [17]:

Proposition 3.15 Thompson’s group F is of type F1 .
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We have seen in Proposition 2.1 that F is right-Ore and admits a height function and
by Corollary 2.6 it has a locally finite left-Garside family that is closed under factors.
Moreover, F�.x;x/Df1xg for every x , so (STAB) is satisfied as well. It only remains
to verify (LK). Although things are not always as easy, we remark that this is the typical
situation: property (LK) is where one actually needs to show something.

To understand the complexes jE.n/j we first need to unravel the definition. Recall
that a matching of a graph � is a set of edges M �E.�/ that are pairwise disjoint.
Matchings are ordered by containment and we denote the poset of matchings by M.�/.
In fact, since every subset of a matching is again a matching, M.�/ is (the face poset
of) a simplicial complex, the matching complex. We denote by Ln the linear graph on
n vertices f1; : : : ; ng, so its edges are fi; i C 1g for 1� i < n.

Lemma 3.16 The poset EF .n/ is isomorphic to M.Ln/.

Proof Let f 2 EF .�; n/, so f is an element of EF .n/. We identify the roots of f
with the vertices of the linear graph Ln on the vertices f1; : : : ; ng. Every caret of f
connects two of these roots and thus corresponds to an edge of Ln . All these edges are
disjoint, so the resulting subgraph Mf of Ln is a matching. It is clear that, conversely,
every matching of Ln arises in a unique way from an elementary forest.

If h� f then h is a left-multiple of f , that is, f can be obtained from h by adding
carets to some roots of h that do not have carets yet. On the level of graphs this means
that Mf is obtained from Mh by adding edges so that Mh � Mf in the poset of
matchings.

Remark 3.17 In particular, EF .n/ is (the face poset of) a simplicial complex. The
realization as a poset is the barycentric subdivision of the realization as a simplicial
complex, and in particular both are homeomorphic. So there is no harm in working with
the coarser cell structure where elements of EF .n/ are simplices rather than vertices.
This fact applies in most of our cases.

Matching complexes of various graphs have been studied intensely and their connectivity
properties can be verified in various ways [9]. In fact, for linear and cyclic graphs the
precise homotopy type is known [30, Proposition 11.16].

Rather than using the known optimal connectivity bounds we use the opportunity to
introduce a criterion due to Belk and Forrest [3, Theorem 4.9] that is particularly well
suited to verifying that the connectivity of the spaces E.x/ tends to infinity in easier
cases. We need to introduce some notation.
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An abstract simplicial complex X is flag if every set of pairwise adjacent vertices forms
a simplex. A simplex � in a simplicial flag complex is called a k –ground for k 2N

if every vertex of X is connected to all but at most k vertices of � . The complex is
said to be .n; k/–grounded if there is an n–simplex that is a k –ground.

Theorem 3.18 [3, Theorem 4.9] For m; k 2N every .mk; k/–grounded flag com-
plex is .m�1/–connected.

The reference requires m; k�1 but it is clear that every .0; k/–grounded flag complex is
nonempty, and every .0; 0/–grounded flag complex is a cone and therefore contractible.

Using Theorem 3.18 we verify:

Lemma 3.19 For every n 2 N let �n be a subgraph of Kn containing Ln . The
connectivity of M.�n/ goes to infinity as n goes to infinity.

Proof Consider the matchings of Ln that use only the edges f2i � 1; 2ig for 1 �

i �
�

n
2

˘
. They form an

��
n
2

˘
�1
�
–simplex � in M.�n/. If v D fj ; kg is any edge

of �n , so a vertex of M.�n/, then there are at most 2 vertices of � that v is not
connected to: one is fj � 1; j g or fj ; j C 1g, the other is fk � 1; kg or fk; k C 1g.
This shows that M.�n/ is

��
n
2

˘
�1; 2

�
–grounded, so by Theorem 3.18 it is

��
n
4

˘
�1
�
–

connected.

Proof of Proposition 3.15 We want to apply Corollary 3.14. The only thing left to
check is condition (LK). This follows from Lemmas 3.16 and 3.19.

4 The indirect product of two categories

The construction introduced in this section will help us to produce more interesting
examples. It is usually called the Zappa–Szép product in the literature of groups
and monoids; see [14]. The Zappa–Szép product naturally generalizes the semidirect
product in the same way as the semidirect product generalizes the direct product. We
think that such a basic construction should have a simpler name and therefore call it
the indirect product.

For motivation, let M be a monoid (or group) whose multiplication we denote by ı
and suppose that M decomposes uniquely as M DAıB . By this we mean that A and
B are submonoids of M such that every element m 2M can be written in a unique
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way as m D a0 ı b0 with a0 2 A and b0 2 B . In particular, if b 2 B and a 2 A, the
product mD b ıa can be rewritten as b ıaD a0 ıb0. This allows us to formally define
maps B �A!A, .b; a/ 7! b � a WD a0, and B �A! B , .b; a/ 7! ba WD b0, so that

b ı aD .b � a/ ı ba.

These maps turn out to be actions of monoids on sets. If both actions are trivial then
M is a direct product, if one of the actions is trivial then M is a semidirect product,
and in general it is an indirect product.

We therefore start by introducing the appropriate notion of actions of categories.

4.1 Actions

Let C be a category and let .Xm/m2Ob.C/ be a family of sets, one for each object of C .
We say that a left action of C on .Xm/m is a family of maps

C.n;m/�Xm!Xn; .f; s/ 7! f � s;

satisfying 1m � s D s for all m 2 Ob.C/ and s 2Xm and fg � s D f � .g � s/ whenever
fg is defined. A right action is defined analogously. An action is said to be injective if
f �x D f �y implies x D y . Note that actions of groupoids are always injective.

In our examples the family .Xm/m itself will consist of morphisms of a category with
the same objects as C . We have to bear in mind, however, that the action is on these as
sets and does not preserve products.

4.2 The indirect product

Let C be a category and let F and G be subcategories. We say that C is an internal
indirect product F ‰ G if every h 2 C can be written in a unique way as hD fg with
f 2 F and g 2 G . Note that this means in particular that Ob.C/D Ob.F/D Ob.G/.
Given elements f 2F.x;�/ and g 2 G.�;x/ there exist then unique elements f 0 2F
and g0 2 G such that gf D f 0g0 ; see Figure 4 (left). In this situation we define g � f

to be f 0 and gf to be g0.

The following properties are readily verified — see Figure 4 (center and right) — the
last four hold whenever one of the sides is defined:

(IP1) 1x �f D f for f 2 F.x;�/.

(IP2) g1y D g for g 2 G.�;y/.
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f

g
f

2
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Figure 4: The indirect product

(IP3) .g1g2/ �f D g1 � .g2 �f /.

(IP4) gf1f2 D .gf1/f2 .

(IP5) 1
f
x D 1y for f 2 F.x;y/.

(IP6) g � 1y D 1z for g 2 G.z;x/.

(IP7) .g1g2/
f D g

.g2�f /
1

g
f
2

.

(IP8) g � .f1f2/D .g �f1/.g
f1

2
�f2/.

The first four relations say that the map .g; f / 7! g �f is an left action of G on the sets
.F.x;�//x and that .g; f / 7! gf is a right action of F on the sets .G.�;y//y . The
next two relations say that identity elements are taken to identity elements, while the
last two are cocycle conditions. We call actions satisfying (IP1)–(IP8) indirect product
actions.

Now assume that conversely categories F and G with Ob.F/ D Ob.G/ are given
together with indirect product actions of F and G on each other. Then the external
indirect product C D F ‰ G is defined to have objects Ob.C/D Ob.F/D Ob.G/ and
morphisms

C D
[

x2Ob.C/

f.f;g/ j f 2 F.�;x/;g 2 G.x;�/g.

Composition is defined by

(4-1) .f1;g1/.f2;g2/D .f1.g1 �f2/;g
f2

1
g2/.

Lemma 4.1 The external indirect product F ‰ G is well defined. It is naturally
isomorphic to the internal indirect product of the copies of F and G inside F ‰ G .

Proof That the identity morphisms .1x; 1x/ behave as they should is easily seen
using relations (IP1), (IP2), (IP5) and (IP6). To check associativity we verify the four
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g1

f2

g2

f3

f1

g3

g1 �f2

g
f2

1

g2 �f3

g
f3

2

g
f2

1
� .g2 �f3/

.g
f2

1
/g2�f3

g1 � .f2.g2 �f3//

.g
f2

1
g2/

f3

.g
f2

1
g2/ �f3

g
f2.g2�f3/

1

Figure 5: Associativity in F ‰ G . The thick dashed and gray paths are the
components of .f1;g1/..f2;g2/.f3;g3// and ..f1;g1/.f2;g2//.f3;g3/ ,
respectively.

equations

g
f2.g2�f3/
1

(IP4)
D .g

f2

1
/g1�f3 ;(4-2)

.g
f2

1
g2/ �f3

(IP3)
D g

f2

1
� .g2 �f3/;(4-3)

g
f2.g2�f3/
1

g
f3

2

(4-2)
D .g

f2

1
/g1�f3g

f3

2

(IP7)
D .g

f2

1
g2/

f3 ;(4-4)

.g1 �f2/..g
f2

1
g2/ �f3/

(4-3)
D .g1 �f2/.g

f2

1
� .g2 �f3//

(IP8)
D g1 � .f2.g2 �f3//I(4-5)

see Figure 5.

The categories F and G naturally embed into the external indirect product F ‰ G
as f 7! .f; 1y/ for f 2 F.�;y/ and g 7! .1x;g/ for g 2 G.x;�/. Any morphism
of F ‰ G decomposes as .f;g/ D .f; 1y/.1y ;g/ and it is clear from (4-1) that the
respective actions on each other are the ones used to define F ‰ G .

If the action of G on F is trivial then the indirect product is a semidirect product F ËG .
Similarly, if the action of F on G is trivial then it is a semidirect product FÌG . Finally,
if both actions are trivial then the indirect product is in fact a direct product F �G .
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We close the section by collecting facts that ensure that an indirect product is Ore.

Lemma 4.2 If F and G are right-cancellative and the action of F on G is injective
then F ‰ G is right-cancellative. Symmetrically, if F and G are left-cancellative and
the action of G on F is injective, then F ‰ G is left-cancellative.

Proof If f1g1fgD f2g2fg then f1.g1 �f /D f2.g2 �f / and g
f
1

gD g
f
2

g . Since G
is right-cancellative the latter equation shows that g

f
1
Dg

f
2

and injectivity of the action
then implies g1D g2 . Putting this in the former equation and using right-cancellativity
of F gives f1 D f2 .

Observation 4.3 Let F have common right-multiples and let G be a groupoid. Then
F ‰ G has common right-multiples.

Proof Let fg 2 F ‰ G with f 2 F and g 2 G . Since G is a groupoid, f is both a
left-factor and a right-multiple of fg . It follows that common right-multiples exist in
F ‰ G because they exist in F.

Observation 4.4 Let F have no nontrivial invertible morphisms and let G be a
groupoid. Then .F ‰ G/� D G .

Proposition 4.5 Let C D F ‰ G , where F has no nontrivial invertibles and G is a
discrete groupoid.

(i) If F is right-Ore and the action of F on G is injective, then C is right-Ore.

(ii) If F is strongly Noetherian then so is C .

(iii) If � is a height function on F then it is a height function on C .

(iv) If S is a left-Garside family in F then it is a left-Garside family in C .

(v) If S is a right-Garside family in F then SG is a right-Garside family in C .

Proof Property (i) follows from Lemma 4.2 and Observation 4.3. Properties (ii)
and (iv) follow from the fact that for f 2 F and g 2 G the morphisms f and fg

are right-multiples by invertibles of each other. Property (iii) follows from G being
discrete (ie every morphism being an endomorphism). Toward (v), it is clear that every
right-factor of SG is contained in SG . Moreover, if t is an S–tail for f then tg is a
S–tail for fg .
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5 Examples: categories constructed by indirect products

In this section we show how the indirect product can be used to construct new groups.
The basic examples are Thompson’s groups T and V as well as the braided Thompson
groups, which all arise as fundamental groups of categories of the form F ‰ G where
G is an appropriate groupoid. More generally, the groups studied in joint work with
Zaremsky [43] are essentially by definition groups that can be obtained in this form.
Later we also describe other groups obtained via indirect products.

We will sometimes draw pictures to motivate our definition. In these pictures the up
direction always corresponds to left in our notation and down corresponds to right.
This is especially relevant for group elements. For example, a permutation X  X ,
g.x/ 7!x , will be depicted by connecting the point x at the bottom to the point g.x/

at the top.

5.1 Thompson’s groups T and V

In this section we introduce Thompson’s groups T and V as fundamental groups of
categories T and V . The categories will be obtained from F as indirect products with
groupoids and we start by introducing these.

We define GT and GV to be groupoids whose objects are positive natural numbers
with GT .m; n/D∅ for m¤ n. We put GT .n; n/DZ=nZ and GV .n; n/D SYMn . We
want to define T D F ‰ GT and V D F ‰ GV and have to specify the actions that
define these indirect products. That is, given a forest f 2F.m; n/ and a group element
g 2 G.m;m/ we need to specify how the product gf should be written as .g �f /gf

with g �f 2 F.m; n/ and gf 2 G.n; n/ (for G one of GT and GV ).

Since GT is contained in GV , it would suffice to only define the actions for GV , but
we look at the simpler case of GT first.

=

Figure 6: Defining F‰GT . The picture shows how to write gf as .g �f /gf

in the case where f is the caret �3
3
2 F.3; 4/ and gD 1CZ=3Z 2 GT .3; 3/ .

The dashed strand gets doubled under the action of f . As a result, g �f D

�3
1
2 F.3; 4/ and gf D 2CZ=4Z 2 GT .4; 4/ .
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We need to rewrite a cyclic permutation followed by a tree as a tree followed by a cyclic
permutation. This is illustrated in Figure 6. For f 2 F.m; n/ and g D `CZ=mZ 2

GT .m;m/ the forest g � f is just f with the trees rotated by ` to the right. The
definition of gf is more subtle: looking at the figure we see that we have to define
it to be k CZ=nZ, where k is the number of leaves of the first ` trees of g � f , or
equivalently, to be the number leaves of the last ` trees of f . Note that this number
does not depend on the chosen representative `: if we replace ` by `Cm, instead of k

we get k C n, because we counted every leaf once more. If k` denotes the number
of leaves of the last ` trees of f , the sequence .k`/0�`<m is strictly increasing. This
shows:

Observation 5.1 The action of F on GT is injective.

Lemma 5.2 The actions of F and GT on each other are indirect product actions.

Proof Conditions (IP1), (IP2), (IP3), (IP4), (IP5) and (IP6) are clear.

The condition (IP7) in our setting follows from the fact that the last kC ` trees of f
are the last ` trees of f plus the last k trees of .`CmZ/ �f . Condition (IP8) can be
verified by drawing a picture.

The lemma allows us to define T D F ‰ GT . Combining Observation 5.1 with
Proposition 2.1 and Corollary 2.6 and applying Proposition 4.5 we find:

Corollary 5.3 The category T is right-Ore and admits a height function and a left-
Garside family S that is closed under factors such that S.x;�/=S� is finite for every x .

The fundamental group �1.T ; 1/ is Thompson’s group T .

Now we want to define the actions of F and GV on each other. So let f 2F.m; n/ and
let g 2 GV .m;m/. The action of GV on F is again as expected: the forest f 0D .g �f /
is given by the relationship that the g.j /th tree of f 0 is the j th tree of f . The
permutation g0 D gf 2 GV .n; n/ has the following description. Identify f1; : : : ; ng
with the leaves of f and with the leaves of .g �f /. If i is the k th leaf of the j th tree
of f then g0.i/ is the k th leaf of the g.j /th tree of g �f ; see Figure 6.

At this point it becomes clear that working with the actions as described above is
virtually impossible. To obtain a more explicit algebraic description, we make use of
the presentation of F. Property (IP4) tells us that we know how any element of F acts
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as soon as we know how the generators act and property (IP8) tells us that we know how
GV acts on any element once we know how it acts on the generators of F. It therefore
suffices to specify both actions for generators of F. Checking well-definedness then
means to check various conditions coming from the relations in F.

So now we consider g 2 GV .m;m/ and �m
i 2 F.m;mC 1/ and define the actions on

each other. We start again with the easy case,

(5-1) g ��i D �g.i/.

Working out g�i we have to distinguish four cases depending on the position of a point
relative to i and relative to g.i/:

(5-2) g�i .j /D

8̂̂̂<̂
ˆ̂:

g.j / if j � i; g.j /� g.i/;

g.j � 1/ if j > i; g.j � 1/� g.i/;

g.j /C 1 if j � i; g.j / > g.i/;

g.j � 1/C 1 if j > i; g.j � 1/ > g.i/.

Since i D j if and only if g.i/D g.j /, the inequalities in the second and third case
can be taken to be strict.

Lemma 5.4 The formulas (5-1) and (5-2) define well-defined indirect product actions
of F and GV on each other.

Proof The conditions that involve only the action of GV , namely (IP1), (IP3) and (IP6),
are clear. Condition (IP2) is defined to hold. Verifying conditions (IP5) and (IP7) on
the �i is straightforward, although in the second case tedious.

Conditions (IP4) and (IP8) should also be defined to hold, but in order for this to be
well defined, we need to check them on relations. That is, we need to verify that

.g�i /�j D g�i�j D g�j�iC1 D .g�j /�iC1

and
.g ��i/.g

�i

2
��j /D g � .�i�j /D g � .�j�iC1/D .g ��j /.g

�j

2
��iC1/

for j < i . These are again not difficult but tedious and we skip them here. See
[43, Example 2.9] for a detailed verification.

Thus, we can define V D F ‰ GV .

Lemma 5.5 The action of F on GV defined by (5-2) is injective.
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Proof Since by definition g�i1
����in D .� � � .g�i1 / � � � /�in , we only need to check that

the map g 7! g�i defined in (5-1) is injective. But g can be recovered from g�i as
follows. Let �i ; �i W N!N be given by

�i.j / WD

�
j if j � i;

j C 1 if j > i;
�i.j / WD

�
j if j � i;

j � 1 if j > i:

Then g.j /D �i.g
�i .�i.j ///.

Proposition 2.1, Corollary 2.6 and Proposition 4.5 now imply:

Corollary 5.6 The category V is right-Ore and admits a height function and a left-
Garside family S that is closed under factors such that S.x;�/=S� is finite for every x .

The fundamental group �1.V; 1/ is Thompson’s group V .

5.2 The braided Thompson groups

The group BV, called braided V , was introduced independently by Brin [15] and
Dehornoy [21]. We describe it using our framework, which is similar to Brin’s approach.

To define the categories underlying the braided Thompson groups, we define the
groupoid GBV to have as objects natural numbers, and to have morphisms GBV.m; n/D∅
for m¤ n, and GBV.n; n/D BRAIDn . Note that the morphisms � W BRAIDn! SYMn

define a morphism GBV ! GV , which we denote by � as well. We want to define a
indirect product F‰ GBV and need to define actions of F and GBV on each other. Our
guiding picture is Figure 7.

We define the action of GBV on F simply as the action of GV composed with � . In
particular, �i ��i D �iC1 , �i ��iC1 D �i and �i ��j D �j for j ¤ i; i C 1. The action

D

Figure 7: Defining F ‰ GBV
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of F on GBV we only define for generators acting on generators by

�
�j

i WD

8̂̂̂<̂
ˆ̂:
�iC1 if j < i;

�i�iC1 if j D i;

�iC1�i if j D i C 1:

�i j > i C 1.

Lemma 5.7 The formulas above define well-defined indirect product actions of F
and GBV on each other.

In the proof we will use the fact that there is a set-theoretic splitting �W SYMn! BRAIDn

that takes a reduced word w.s1; : : : ; sn�1/ to the braid w.�1; : : : ; �n�1/. This map is
not multiplicative but if ˇ is a positive word (meaning involving no inverses) of length
at most 3 in the �i then ��.ˇ/D ˇ .

Proof As in the proof of Lemma 5.4 most conditions hold by definition but we need
to check well-definedness on relations. Namely,

.�i�iC1�i/ ��k D �i � .�iC1 � .�i ��k//D �iC1 � .�i � .�iC1 ��k//(5-3)

D .�iC1�i�iC1/ ��k ;

.�i�iC1�i/
�k D �

.�iC1�i /��k

i �
�i ��k

iC1
�
�k

i D �
.�i�iC1/��k

iC1
�
�iC1��k

i �
�k

iC1
(5-4)

D .�iC1�i�iC1/
�k ;

.�i�j / ��k D �i � .�j ��k/D �i � .�j ��k/D .�j�i/ ��k ;(5-5)

.�i�j /
�k D �

�j ��k

i �
�k

j D �
�i ��k

j �
�k

i D .�j�i/
�k ;(5-6)

�i � .�`�k/D .�i ��`/.�
�`

i ��k/D .�i ��k/.�
�k

i ��`C1/(5-7)

D �i � .�k�`C1/;

�
�`�k

i D .�
�`

i /�k D .�
�k

i /�`C1 D �
�k�`C1

i(5-8)

for i � j � 2, ` > k .

Relations (5-3) and (5-5) follow from Lemma 5.4. For the remaining relations note
that �.ˇ�k /D �.ˇ/�k . Now (5-7) follows from Lemma 5.4 as well because

(5-9) �.�
�`

i / ��k D �
�`

i ��k and �.�
�k

i / ��`C1 D �
�k

i ��`C1.

Relation (5-8) follows from Lemma 5.4 by noting that both sides are positive words of
length at most 3 and applying �.
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We verify (5-4) by distinguishing cases. The cases k < i and k > i C 2 are clear. If
k D i C 1 then the left-hand side equals .�iC1�i/�iC2.�iC1�i/ and the right-hand
side equals .�iC1�iC2/�i.�iC1�iC2/. Both are equivalent through two braid relations
with intermediate commutator relations. The cases k D i and k D iC2 are symmetric
and we only verify k D i . The left-hand side equals �i.�iC1�iC2/.�i�iC1/ while the
right-hand side equals .�iC1�iC2/.�i�iC1/�iC2 . Again these are equivalent through
two braid relations with intermediate commutator relations.

Relation (5-6) is left to the reader.

For future reference we record (5-9), which in the presence of Lemma 5.7 can be
formulated as:

Observation 5.8 The morphism � W GBV ! GV is equivariant with respect to the
F –action in the sense that

�.ˇf /D �.ˇ/f

for ˇ 2 GBV and f 2 F.

We define the category BV to be F ‰ GBV with the above indirect product actions.

Lemma 5.9 The action of GBV on F is injective.

Proof We only need to check that ˇ 7! ˇ�i is injective. But ˇ can be recovered
from ˇ�i by removing the .iC1/st strand.

Corollary 5.10 The category BV is right-Ore.

The fundamental group �1.BV; 1/ is the braided Thompson group BV.

It is now easy to define braided versions of T and F. We let GBT and GBF be the
inverse image under � W GBV! GV of GT and GF , respectively. Both of these act on F
by restricting the action of GBV , which is the same as to say that they act through � .

The action of F of GBV leaves GBT and GBF invariant and restricts to actions on these,
thanks to Observation 5.8: we know from Section 5.1 that F leaves GT invariant and it
is axiomatically required that it leaves the trivial groupoid invariant. Hence, if ˇ 2 GBT

and f 2F then �.ˇf /D �.ˇ/f 2 GT , so that ˇf 2 GBT , and an analogous reasoning
applies for ˇ 2 GBF .

As a consequence we can define the categories BT D F ‰ GBT and BF D F ‰ GBF ,
which are right-Ore. The group BF D �1.BF ; 1/ is called braided F and was first
introduced in [11]. We call the group BT D �1.BT ; 1/ braided T .
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Remark 5.11 The group BT was not introduced before for the following technical
reason. Instead of our category BV, Brin [15] used a monoid that can be thought of as
a category with a single object ! which represents countably infinitely many strands.
This is possible because splitting one of countably infinitely many strands leads to
countably infinitely many strands and because braid groups BRAIDn are contained in
a braid group lim

��!
BRAIDn on infinitely many strands. A practical downside of that

approach is that the group of fractions of that monoid is too big, so one needs to
describe which elements should be elements of BV. A formal downside is that groups
like BT or even T cannot be described because Z=nZ is not contained in Z=.nC1/Z,
so that the needed limit does not exist.

Despite this formal problem, the main topological ingredient to establishing the finite-
ness properties of BT has been verified in [18, Section 3.4].

Remark 5.12 Since braid groups are themselves groups of fractions, one can also
obtain BV as the fundamental group of the category F ‰ GC

BV
, where GC

BV
.n; n/ is

the monoid of positive (or dual positive) braids rather than the full braid group (and
analogous statements hold for BF and BT ). This possibility has been noted by several
people; see for example the last paragraph of Section 3.1 in [28]. When applying
Theorem 3.12, condition (STAB) would become trivial, so verifying condition (LK) will
presumably be accordingly harder.

5.3 Groups arising from cloning systems

In [43] Zaremsky and the author have defined (filtered) cloning systems to be the data
needed to define indirect product actions of F and a groupoid on each other. Thus, the
groups considered there are by definition fundamental groups of categories F ‰ G ,
where G is a groupoid. However, the approach follows Brin [15] to construct the groups
as subgroups of an indirect product of monoids F1‰ G1 . As a consequence it has
to deal with technical complications such as the notion of being properly graded, as
well as practical shortcomings such as being unable to construct (braided) T .

Our categorical approach removes the necessity that the groups .Gn/n fit into a directed
system of groups and therefore the whole discussion goes through without that assump-
tion. Thus, a cloning system is given by a sequence .Gn/n2N of groups, a sequence
.�n/n2N W Gn! Sn of morphisms and a family of maps .�n

k
/k�nW Gn!GnC1 such

that the following hold for all k � n, k < ` and g; h 2Gn :
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(CS1) Cloning a product .gh/�n
k
D .g/�n

�.h/k
.h/�n

k
.

(CS2) Product of clonings �n
`
ı �nC1

k
D �n

k
ı �nC1
`C1

.

(CS3) Compatibility �nC1..g/�
n
k
/.i/D .�n.g//&

n
k
.i/ for all i ¤ k; kC 1.

Here &n
k

describes the action of F on GV , so that .g/&n
k
.j /D g�k .j / as in (5-1).

Given a cloning system, a groupoid G is defined by setting G.m; n/D∅ if m¤ n and
setting G.n; n/DGn . Indirect product actions of F and G on each other are defined by
g ��n

k
D �nC1

�n.g/k
and g�

n
k D .g/�n

k
for g 2Gn . The axioms (CS1), (CS2) and (CS3)

ensure that these indeed define indirect product actions.

5.4 The Higman–Thompson groups

In total analogy to Section 5.1 one can define Tn D Fn‰ GT and Vn D Fn‰ GV . As
mentioned in Section 2 the category Fn is not connected for n> 2 and neither are the
categories Tn and Vn . Thus, it makes sense to define the groups

Tn;r D �1.Tn; r/; Vn;r D �1.Vn; r/

and, unlike the situation of Fn , these groups are generally nonisomorphic for different r ;
see [27; 32] for a precise statement concerning the Vn;r . They are the remaining
Higman–Thompson groups.

5.5 Groups from graph rewriting systems

We now look at indirect products that do not involve F. The corresponding groups
have been introduced and described in some detail in [3]. In this section, when we
talk about graphs we will take their edges to be directed and allow multiple edges and
loops. In particular, every edge has an initial and a terminal vertex. The edge set of a
graph G is denoted by E.G/ and the vertex set by V .G/.

An edge replacement rule e ! R consists of a single directed edge e and a finite
graph R that contains the two vertices of e (but not e itself). If G is any graph and "
is an edge of G, the edge replacement rule can be applied to G at " by removing "
and adding in a copy of R while identifying the initial/terminal vertex of " with the
initial/terminal vertex of e in R. The resulting graph is denoted by G C ". If ı is
another edge of G, then it is also an edge of G C " and so the replacement rule can be
applied to G C " at ı . We regard G C "C ı and G C ı C " as the same graph.
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The vagueness inherent in the last sentence can be remedied by declaring that a graph ob-
tained from G by applying the edge replacement rule (possibly many times) has as edges
words in E.G/�E.R/� and as vertices words in V .G/[ .E.G/�E.R/� �V .R//.
For example, the graph G C "C ı would have edges � 2E.G/X f"; ıg as well as "�
and ı� for � 2E.R/ and vertices v 2 V .G/ as well as "w and ıw for w 2 V .R/.

For every edge replacement rule e!R we define a category Re!R whose objects
are finite graphs. In order for the category to be small we will take the graphs to have
vertices and edges coming from a fixed countable set, which in addition is closed under
attaching words in E.R/ and V .R/. The category is presented by having generators

�G
" 2Re!R.G;G C "/ for G a graph and " an edge of G

subject to the relations

(5-10) �G
ı �

GCı
" D �G

" �
GC"
ı

for G a graph and ı and " distinct edges of G.

Lemma 5.13 For any edge replacement rule e!R the category Re!R is right-Ore.

Proof Thanks to the relations (5-10) a morphism �"1
� � ��"k

in Re!R is uniquely
determined by its source, its target and the set f"1; : : : ; "kg. The claim now follows by
taking differences and unions of these sets of edges.

As in previous sections, the second ingredient will be a groupoid. Its definition does
not depend on the edge replacement rule, except possibly for the foundational issues of
choosing universal sets of vertices and edges. We define Ggraph to have as objects finite
graphs and as morphisms isomorphisms of graphs.

We define actions of Re!R and Ggraph on each other as follows. If gW G!G0 is an
isomorphism of graphs and " 2E.G/ is an edge, then

g ��G
" D �

G0

g."/

and g�" is the isomorphism G C "!G0C g."/ that takes ı to g.ı/ for ı2E.G/Xf"g

and that takes "� to g."/� for � 2 V .R/[E.R/. The following is easy to verify:

Observation 5.14 The actions of Re!R and Ggraph on each other defined above are
well-defined indirect product actions. The action of Re!R on Ggraph is injective.

As a consequence we obtain a right-Ore category RGe!R WDRe!R ‰ Ggraph and for
every finite graph G we obtain a potential group �1.RGe!R;G/.
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Example 5.15 If we consider the edge replacement rule

e D DL2

v

w

v

w

!

and take L1 to be the graph consisting of a single edge, then �1.RGe!L2
;L1/

is isomorphic to F. Similarly, if C1 is the graph consisting of a single loop then
�1.RGe!L2

;C1/ is isomorphic to T . Finally, V arises as �1.RGe!D2
;L1/, where

the rule e!D2 replaces an edge by two disconnected edges.

Various fundamental groups of categories arising from graph rewriting systems are
described in [3]. Here we will only mention the Basilica–Thompson group, introduced
by them in [4].

We consider the replacement rule

e D DR

v

w

v

w

!

and the graph

G D

The Basilica–Thompson group is TB WD �1.RGe!R;G/.

6 Examples: finiteness properties

In this section we give various examples of applications of Theorem 3.12 and Corollary
3.14. In most cases these finiteness properties are known and the proofs involve proving
that certain complexes are highly connected. We will see that these complexes always
coincide with the complexes jE.x/j. As a consequence the connectivity statement
from the literature together with Theorem 3.12 gives the result.
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6.1 Finiteness properties of Thompson’s groups

We start with the categories T and V . The conditions needed to apply the results from
Section 3 have been verified in Corollaries 5.3 and 5.6.

In order to apply Corollary 3.14 two more things are left to verify: that automorphism
groups are of type F1 and that the connectivity of the simplicial complexes jE.n/j goes
to infinity with n. The groups F.n; n/D f1g, T .n; n/D Z=nZ and V.n; n/D SYMn

are all finite and therefore of type F1 .

In order to describe the complexes E.n/, we need to talk about further graphs. The
cyclic graph is denoted by Cn , it has the same edges as Ln and additionally f1; ng.
The complete graph Kn has all edges fi; j g for 1 � i < j � n. We describe the
complexes E.n/ in the case of V and leave T to the reader.

Lemma 6.1 The poset ET .n/ is isomorphic to M.Cn/.

Lemma 6.2 There is a poset morphism EV.n/ ! M.Kn/ whose fibers over k –
simplices are k –spheres.

Proof Every element of .E ‰ GV /.�; n/ can be written as a product fg of an
elementary forest f 2 E.�; n/ and a permutation g 2 GV .n; n/. By definition the
vertices of E.n/ are these products modulo multiplication by permutations from
the left. As in Lemma 3.16 an elementary forest can be interpreted as a matching
on Ln . Under this correspondence, the group GV .n; n/D SYMn acts on the vertices
of Ln and the permutations from the left act on components of the matching. Thus,
elements of .E ‰ GV /.�; n/ can be described by matchings on the linear graph on
g�1.1/; : : : ;g�1.n/ modulo reordering the components of the matching.

The possibility of reordering the vertices of the matching means that any two elements
of f1; : : : ; ng can be connected and so we obtain a map jE.n/j !M.Kn/ to the
matching complex of the complete graph on f1; : : : ; ng. This map is clearly surjective.

It is not injective because in E.n/ the order of two matched vertices matters while in
M.Kn/ it does not. For example, �i and �i.i iC1/ map to the same vertex in M.Kn/.
As a result the fiber over a k –simplex is a join of k C 1 many 0–spheres, ie a k –
sphere.

The fact that the morphism in Lemma 6.2 is not an isomorphism means that we have to
do one extra step, namely to apply the following result by Quillen [33, Theorem 9.1].
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Rather than giving the general formulation for posets we restrict to face posets of
(n–skeleta of) simplicial complexes, to save us some notation.

Theorem 6.3 Let n 2N and let f W X ! Y be a simplicial map. Assume that Y is
.n�1/–connected and that for every k –simplex � of Y the link lk � is .n�dim ��2/–
connected and the fiber jf �1.�/j is .k�1/–connected. Then X is .n�1/–connected.

Theorem 6.4 Thompson’s groups T and V are of type F1 .

Proof Using Corollary 3.14 we need to show that the connectivity of the complexes
jE.n/j goes to infinity as n goes to infinity. We work with the simplicial complexes
E.n/ instead. In the case of T the complexes are matching complexes by Lemma 6.1
whose connectivity goes to infinity by Lemma 3.19. In the case of V the complexes
map to matching complexes with good fibers by Lemma 6.2. Noting that the link of a
k –simplex in M.Kn/ is isomorphic to M.Kn�2.kC1//, we can apply Theorem 6.3 to
see that the connectivity of EV goes to infinity as well.

The proof for the Higman–Thompson groups is completely analogous.

6.2 Finiteness properties of braided Thompson groups

We have already seen that BF, BT and BV are right-Ore. That they admit a height
function and a left-Garside family follows via Proposition 4.5, just as it did for T
and V . The braid groups BV�.n; n/D GBV.n; n/ are of type F by Corollary 3.8 (and
hence of type F1 ). Consequently the finite-index subgroups of pure braids BF�.n; n/
and of cyclically permuting braids BT �.n; n/ are of type F as well.

It remains to understand the complexes jE.n/j. For that purpose, we will want to think
of braid groups as mapping class groups. Let D be a closed disc with n punctures
p1; : : : ;pn , which we can think of as distinguished points in the interior of D. The
mapping class group of the n–punctured disc is

HomeoC.D X fp1; : : : ;png; @D/=HomeoC
0
.D X fp1; : : : ;png; @D/;

where HomeoC.D X fp1; : : : ;png; @D/ is the group of orientation-preserving homeo-
morphisms of D X fp1; : : : ;png that fix @D and HomeoC

0
.D X fp1; : : : ;png; @D/ is

the subgroup of homeomorphisms that are isotopic to the identity. It is well known
that the mapping class group of the n–punctured disc is isomorphic to the braid group;
see for example [29].
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With this description in place, we can start to look at the complexes jE.n/j. Let
fg 2E.n/ with f 2 E.�; n/ and g 2 GBV.n; n/. Regard the n punctures p1; : : : ;pn

as the vertices of an Ln embedded into D. As we have seen before, f corresponds
to a matching Mf on Ln , which we now regard as a disjoint selection of the fixed
arcs connecting pairs of adjacent punctures. The element g , regarded as a mapping
class, acts on Mf and we obtain a set Mf g of disjoint arcs connecting some pairs
of punctures. Such a collection of arcs is called an arc matching in [18]. Note that if
f 2 E.k; n/, so that the arc matching consists of n� k arcs, then removing the arcs
from the punctured disc results in a k –punctured disc. The action of GBV.k; k/ from
the left is just the action of the mapping class group of that k –punctured disc and in
particular does nothing to Mf .

For a subgraph � of Kn the arc matching complex MA.�/ is the simplicial complex
whose k –simplices are sets of pairwise disjoint arcs connecting punctures with the
condition that an arc can only connect two punctures if they are connected by an edge
in � .

Proposition 6.5 There exist surjective morphisms of simplicial complexes

(i) EBF .n/!MA.Ln/,

(ii) EBT .n/!MA.Cn/,

(iii) EBV.n/!MA.Kn/,

whose fiber over any k –simplex is the join of k countable infinite discrete sets.

Proof The product fg 2 E.n/ is taken to the arc matching Mf g as described
above. Since GBF.n; n/ takes every puncture to itself, the map (i) maps onto MA.Ln/.
Similarly, since GBT.n; n/ cyclically permutes the punctures, the map (ii) maps into
MA.Cn/. Surjectivity is clear.

To describe the fibers consider a disc D0 containing pi and piC1 but none of the other
punctures and let ˇ be a braid that is arbitrary inside D0 but trivial outside. Then �iˇ

maps to the same arc (D vertex of MA.Kn/) irrespective of ˇ . Thus, the fiber over
this vertex is the mapping class group of D0 X fpi ;piC1g in the case of BV and is the
pure braid group of D0 X fpi ;piC1g in the cases of BF and BT . In either case it is a
countable infinite discrete set.

The connectivity properties of arc matching complexes have been studied in [18]. We
summarize Theorem 3.8, Corollary 3.11 and the remark in Section 3.4 from there in

Algebraic & Geometric Topology, Volume 19 (2019)



1518 Stefan Witzel

the following theorem. It applies to arc matching complexes not only on disks but on
arbitrary surfaces with (possibly empty) boundary.

Theorem 6.6 (i) MA.Kn/ is .�.n/�1/–connected,

(ii) MA.Cn/ is .�.n�1/�1/–connected,

(iii) MA.Ln/ is .�.n/�1/–connected,

where �.n/D
�

n�1
3

˘
and �.n/D

�
n�1

4

˘
.

Theorem 6.7 The braided Thompson groups BF, BT and BV are of type F1 .

Proof We want to apply Corollary 3.14. By Proposition 6.5 the complexes E.n/ map
onto arc matching complexes and we want to apply Theorem 6.3. To do so, we need to
observe that the link of a .kC1/–simplex on an arc matching complex on a surface
with n punctures is an arc matching complex with n� 2k punctures, where the k arcs
connecting two punctures have been turned into boundary components. Putting these
results together shows that the connectivity properties of E.n/ go to infinity with n by
Theorem 6.6.

6.3 Absence of finiteness properties

Theorem 3.12 gives a way to prove that certain groups are of type Fn . If the group is
not of type Fn , one of the hypotheses fails. We will now discuss to what extent the
construction is (un)helpful in proving that the group is not of type Fn , depending on
which hypothesis fails.

In the first case the groups C�.x;x/ are not of type Fn (even for �.x/ large). In
this case the general part of Brown’s criterion, Theorem 3.10, cannot be applied.
Thus, the whole construction from Section 3.4 is useless for showing that �1.GC;�/

is not of type Fn . An example of this case are the groups T .B�.OS // treated in
[43, Theorem 8.12]. The proof redoes part of the proof that the groups C�.x;x/,
which are the groups in Bn.OS / in this case, are not of type Fn D FjS j .

In the second case the complexes E.x/ are not (even asymptotically) .n�1/–connected.
In this case Brown’s criterion, Theorem 3.10, can in principle be applied, but not by
using just Morse theory. An example of this case is the Basilica–Thompson group
from Section 5.5, which is not finitely presented [41], so n D 2. A morphism in
RGe!R DRe!R‰ Ggraph is declared to be elementary if there are edges fe1; : : : ; ekg
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� � �

Figure 8: Arbitrarily large graphs H with E.H / not simply connected

of G such that f D �e1
� � ��ek

. The function �W Re!R!N is the number of edges
of a graph. The basepoint � is the Basilica graph G.

The connectivity assumption of Theorem 3.12 is violated because the RGe!R –compo-
nent of G contains graphs H with arbitrarily many edges for which E.H / is not simply
connected. Examples of such graphs are illustrated in Figure 8. In these examples
E.H / has four vertices: two vertices vll , vul corresponding to the loops on the left and
two vertices vlr and vur corresponding to the loops on the right. The left vertices are
connected to the right vertices but not to each other and neither are the right vertices.
Thus, E.H / is a circle vll; vlr; vul; vur and is not simply connected.

Looking into the proof of Theorem 3.12 we can compare directly what the non-
simple connectedness of E.H / tells us and what is needed to apply Brown’s crite-
rion (Theorem 3.10) in order to prove that the group is not of type Fn . To apply
Theorem 3.10, one needs to show that for every m there is an arbitrarily large n such
that, passing from X�<m to X�<nC1 , a nontrivial 1–sphere in X�<m is filled in. The
assumption that E.H / is not simply connected for �.H /D n translates via the Morse
argument to the statement that when passing from X�<n to X�<nC1 either a nontrivial
1–sphere in X�<n is filled in, or a nontrivial 2–sphere is created. The proof in [41] that
the Basilica–Thompson group TB is not finitely presented therefore needs to rule out
the second possibility and also show that the 1–sphere that is filled in was nontrivial
already in X�<m .

7 Sketch of further examples

In this final section we sketch two further examples of categories associated to Thomp-
son groups that fit in our framework. This is aimed mainly at experts who already know
the groups and we will be brief.
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7.1 Brin–Thompson groups

The higher-dimensional versions of V , denoted by sV for s � 1, were introduced
by Brin [13]. If C D f0; 1g! denotes Cantor space, a morphism in V.m; n/ can be
interpreted as a homeomorphism (subject to conditions)

f1; : : : ;mg �C  f1; : : : ; ng �C

that represents subdividing m copies of C into n copies. The category sV similarly
consists of homeomorphisms

f1; : : : ;mg �C s
 f1; : : : ; ng �C s

that represent subdividing m copies of C s into n copies. See Figure 9 for an example
illustrating composition. The Brin–Thompson groups are the groups sV D �1.sV; 1/.

1
2

3

1
23

4
5

f

g

1

2
3

4 5

fg

Figure 9: Composition of two morphisms in 2V

If one wants to obtain a presentation for sV whose objects are the natural numbers,
one always needs to pick an order for the copies of C s and the order is changed under
relations. The presentation will therefore involve GV from the start. Besides that, we
take generators

�n
a;i 2 sV.n; nC 1/ for 1� a� s; 0� i < n

representing the subdivision of the .iC1/st of n copies of C s in the ath direction. For
each direction these satisfy the familiar relations

(7-1) �n
a;i�

nC1
a;j D �

n
a;j�

nC1
a;iC1

for 1� a� s; 0� j < i < n.

In addition, for two distinct directions we have the relations

(7-2) �n
a;i�

nC1
b;iC1

�nC2
b;i
D �n

b;i�
nC1
a;iC1

�nC2
a;i siC1 for 1� a< b � s; 0� i < n

(recall that siC1 is the transposition .iC1 iC2/).
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D

Figure 10: A relation in F2;3 , also depicted in [36, page 485]

We claim without proof that sV has the presentation

sV D hGV ; �
n
a;i j relations in GV ; (7-1); (7-2)i.

To apply Theorem B to this setup one needs to verify condition (LK). This verification
is the essence of [24].

7.2 Stein–Thompson groups

The idea underlying the Stein–Thompson groups is to allow carets with different arity
chosen from a finite set S D fn1; : : : ; nkg; see [36]. Thus, the underlying category FS

may be thought of as generated by Fn1
; : : : ;Fnk

. There are number-theoretic relations,
however. For instance, a tree that has a full layer of n1 –carets followed by a full layer
of n2 –carets is the same as one with a full layer of n2 –carets followed by a full layer
of n1 –carets; see Figure 10. We refrain from writing down a presentation but we
should point out that the perspective taken in [36] is fairly close to ours. This does not
include the F1–proof as Stein’s space is carefully tailored to provide more precise
homological information.

The categories TS D FS ‰ GT and VS D FS ‰ GV arise as indirect products in a
straightforward manner.

It is clear that the categories are right-Ore and admit a height function.

A Garside family consists of the family of forests S where along any path from root to
leaf at most one ni –caret is met for any i . The maximal such tree �.x/ 2 FS .x;�/

is the one that has a full layer of ni –carets for each i . Any two elements in S.x;�/
have a least common right multiple by [36, Proposition 1.2]. This together with the
height function implies the existence of S–heads.

The rest of the proof that the groups are of type F1 is completely analogous to that
for Thompson’s groups and the Higman–Thompson groups in Section 5.1.
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The Lannes–Zarati homomorphism
and decomposable elements

NGÔ A TUẤN

Let X be a pointed CW–complex. The generalized conjecture on spherical classes
states that the Hurewicz homomorphism H W ��.Q0X /! H�.Q0X / vanishes on
classes of ��.Q0X / of Adams filtration greater than 2 . Let 'M

s W ExtsA.M;F2/!

.F2˝A RsM /� denote the sth Lannes–Zarati homomorphism for the unstable A–
module M. When M D zH�.X / , this homomorphism corresponds to an associated
graded of the Hurewicz map. An algebraic version of the conjecture states that the
sth Lannes–Zarati homomorphism, 'M

s , vanishes in any positive stem for s > 2 and
for any unstable A–module M.

We prove that, for M an unstable A–module of finite type, the sth Lannes–Zarati
homomorphism, 'M

s , vanishes on decomposable elements of the form ˛ˇ in positive
stems, where ˛ 2 ExtpA.F2;F2/ and ˇ 2 ExtqA.M;F2/ with either p � 2 , q > 0

and p C q D s , or p D s � 2 , q D 0 and stem.ˇ/ > s � 2 . Consequently, we
obtain a theorem proved by Hưng and Peterson in 1998. We also prove that the fifth
Lannes–Zarati homomorphism for zH�.RP1/ vanishes on decomposable elements
in positive stems.

55P47, 55Q45, 55S10, 55T15

1 Introduction and statement of results

Let X be a pointed CW–complex. Let Q0X D�1
0

S1X be the basepoint component
of QX D�1S1X. It is a classical unsolved problem to compute the image of the
Hurewicz homomorphisms

H W �S
� .X /D ��.Q0X /!H�.Q0X /:

Here and throughout the paper, homology and cohomology are taken with coefficients
in F2 , the field of two elements. The classical conjecture on spherical classes for
X D S0 states that the Hopf invariant-one and the Kervaire invariant-one classes are
the only elements in �S

� .S
0/Š ��.Q0S0/ detected by the Hurewicz homomorphism.

Nguyễn H V Hưng states the generalized conjecture on spherical classes as follows
(see Hưng and Tuấn [14]).
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1526 Ngô A Tuấn

Conjecture 1.1 Let X be a pointed CW–complex. Then the Hurewicz homomorphism
H W ��.Q0X / ! H�.Q0X / vanishes on classes of ��.Q0X / of Adams filtration
greater than 2.

(See Curtis [4], Snaith and Tornehave [21] and Wellington [22] for a discussion with
X D S0 .)

An algebraic version of this problem goes as follows.

Let Ps D F2Œx1; : : : ;xs � be the polynomial algebra on s indeterminates x1; : : : ;xs ,
each of degree 1. Let the general linear group GLsDGL.s;F2/ and the mod 2 Steenrod
algebra A both act on Ps in the usual way. The Dickson algebra of s variables, Ds , is
the algebra of invariants

Ds WD F2Œx1; : : : ;xs �
GLs :

As the action of A and that of GLs on Ps commute with each other, Ds is an algebra
over A.

Let M be an unstable A–module. The Singer construction RsM of M is the
Ds –submodule of Ps ˝M generated by Sts M, where Sts denotes the Steenrod
homomorphism defined as follows. Given a homogeneous element z 2M of degree
jzj, we set for convention St0.z/D z , and define by induction

St1.xI z/D
jzjX

iD0

xjzj�i
˝Sqi.z/;

Sts.x1; : : : ;xsI z/D St1.x1ISts�1.x2; : : : ;xsI z//:

Note that RsM is an A–submodule of Ps˝M. (See Lannes and Zarati [16, Definition-
Proposition 2.4.1].)

Let us denote by

'M
s W Exts;sCi

A .M;F2/! .F2˝A RsM /i
�

the sth Lannes–Zarati homomorphism for an unstable A–module M, defined in [16].
Here .F2˝A RsM /i

� is the F2 –dual of .F2˝A RsM /i . When M D zH�.X /, this
homomorphism corresponds to an associated graded of the Hurewicz map. The proof
of this assertion is unpublished, but it is sketched by Lannes [15] and by Goerss [7].

The Hopf invariant-one and the Kervaire invariant-one classes are represented by
certain permanent cycles in Ext1;�A .F2;F2/ and Ext2;�A .F2;F2/, respectively, on which

Algebraic & Geometric Topology, Volume 19 (2019)
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the Lannes–Zarati homomorphisms are nonzero (see Adams [1], Browder [3] and
Lannes and Zarati [16]). Hưng stated the so-called algebraic version of the generalized
conjecture on spherical classes for M D zH�.S0/ D F2 in [9] and for any unstable
A–module M in [14].

Conjecture 1.2 (the generalized algebraic spherical class conjecture) The Lannes–
Zarati homomorphism

'M
s W Exts;sCi

A .M;F2/! .F2˝A RsM /i
�

vanishes in any positive stem i for s > 2, and for any unstable A–module M.

The conjecture was established for the case M D zH�.S0/ with s D 3, 4 and 5,
respectively, in Hưng [10; 11] and Hưng, Quỳnh and Tuấn [13]. That the Lannes–Zarati
homomorphism for M D zH�.S0/ vanishes for s > 2 on decomposable elements in
ExtsA.F2;F2/ was proved in [12]. The conjecture was also established for the case
M D zH�.RP1/ with s D 3; 4 in [14].

One of the main results of the paper is the following theorem:

Theorem 1.3 Let M be an unstable A–module of finite type. Then the sth Lannes–
Zarati homomorphism for M,

'M
s W Exts;sCi

A .M;F2/! .F2˝A RsM /�i ;

vanishes on the elements of the form ˛ˇ in any positive stem i , where ˛ 2ExtpA.F2;F2/

and ˇ 2 ExtqA.M;F2/ with either p � 2, q > 0 and pC q D s , or p D s � 2, q D 0

and stem.ˇ/ > s� 2.

Theorem 1.3 gives evidence supporting Conjecture 1.2, in particular providing a result
valid for all unstable A–modules of finite type M.

Using Theorem 1.3 for the case M D F2 , we obtain the following theorem, which was
first proved in [12]:

Theorem 1.4 (Hưng and Peterson [12]) The sth Lannes–Zarati homomorphism
for F2 ,

'F2
s W Exts;sCi

A .F2;F2/! .F2˝A Ds/
�
i ;

vanishes on the decomposable elements in any positive stem i for s � 3.

Algebraic & Geometric Topology, Volume 19 (2019)
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In [12], Hưng and Peterson proved Theorem 1.4 by showing that '� D
L

s '
F2
s is a

homomorphism of algebras and, more importantly, that the product of the nonunital
algebra

L
s>0.F2˝ADs/

� is trivial, except for the case .F2˝AD1/
�˝.F2˝AD1/

�!

.F2˝A D2/
� . The methods used to prove Theorem 1.3 are different from the methods

of Hưng and Peterson. The important new ingredient is the usage of the chain level
representation of the dual of the Lannes–Zarati homomorphism (see Theorem 2.1).
Moreover, the advantage of using the chain level representation of the dual of the
Lannes–Zarati homomorphism is that the proof of Theorem 1.3 is short and elementary.
The proof of Theorem 1.3 is based upon the key Lemma 3.3.

Hưng and the author [14] established a relation between the Lannes–Zarati homo-
morphisms for zH�.RP1/ and for zH�.S0/. The relation comes from the so-called
algebraic Kahn–Priddy theorem (see [17, Theorem 1.1]). By using the algebraic Kahn–
Priddy theorem, Hưng and Tuấn showed that if ' zH

�.RP1/
s�1

vanishes in positive stems,
then so does ' zH

�.S0/
s , for s � 1 (see [14, Proposition 10.2]). So, Conjecture 1.2 with

M D zH�.RP1/ is interesting. In this paper, by using Theorem 1.3 and the fact that
'

F2

5
and ' zH

�.RP1/
4

vanish in positive stems (see [13, Theorem 1.4; 14, Theorem 1.8]),
we obtain the following proposition:

Proposition 1.5 The fifth Lannes–Zarati homomorphism for zH�.RP1/,

'
zH �.RP1/

5
W Ext5;5Ci

A . zH�.RP1/;F2/! .F2˝A R5
zH�.RP1//�i ;

vanishes on the decomposable elements in any positive stem i .

Note that Ext�A.M;F2/ is a module over Ext�A.F2;F2/ (see Section 2); the notation of
the submodule of decomposables is the usual one.

The paper is divided into three sections and organized as follows. Background and
references are provided in Section 2. Theorems 1.3 and 1.4 and Proposition 1.5 are
proved in Section 3.

2 Background

We start this section by sketching briefly Singer’s invariant-theoretic description of the
lambda algebra.

Let Ts be the Sylow 2–subgroup of GLs consisting of all upper triangular s � s

matrices with 1 on the main diagonal. The Ts –invariant ring, Ms D P
Ts
s , is called the

Algebraic & Geometric Topology, Volume 19 (2019)
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Mùi algebra. In [19], Mùi shows that P
Ts
s is a polynomial algebra

PTs
s D F2ŒV1; : : : ;Vs �;

on elements Vk of degree 2k�1 , where

Vi D Vi.x1; : : : ;xi/D
Y

aj2F2

.a1x1C � � �C ai�1xi�1Cxi/:

Recall that the Dickson algebra Ds was computed in [5]:

Ds D F2ŒQs;0; : : : ;Qs;s�1�:

Here the Dickson invariant Qs;i of degree 2s � 2i can inductively be defined by

Qs;i DQ2
s�1;i�1CQs�1;iVs;

where, by convention, Qs;s D 1 and Qs;i D 0 for i < 0 (see [5; 19]). (For the action
of Steenrod algebra on Vi and Qs;i , see [8].)

Let L.s/� Ps be the multiplicative subset generated by all the nonzero linear forms
in Ps . Let .Ps/L.s/ be the localization given by inverting all the nonzero linear forms
in Ps . Using the results of Dickson [5] and Mùi [19], Singer notes in [20] that

�s WD ..Ps/L.s//
Ts D F2ŒV

˙1
1 ; : : : ;V ˙1

s �;

�s WD ..Ps/L.s//
GLs D F2ŒQs;s�1; : : : ;Qs;1;Q

˙1
s;0 �:

Further, he sets

v1 D V1; vk D Vk=V1 � � �Vk�1 .k � 2/;

so that

Vk D v
2k�2

1 v2k�3

2 � � � vk�1vk .k � 2/:

Then, he obtains

�s D F2Œv
˙1
1 ; : : : ; v˙1

s �;

with deg vi D 1 for every i .

Singer defines �Cs to be the F2 –subspace of �s DDs ŒQ
�1
s;0
� spanned by all monomials

 DQ
is�1

s;s�1
� � �Q

i0

s;0
with is�1; : : : ; i1 � 0; i0 2Z, and i0Cdeg  � 0. He also shows

in [20] that the homomorphism

@sW �s˝N !�s�1˝N; @s.v
j1

1
� � � vjs

s ˝ z/D v
j1

1
� � � v

js�1

s�1
˝SqjsC1 z;

Algebraic & Geometric Topology, Volume 19 (2019)
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maps �Cs ˝N to �C
s�1
˝N . Here N is an arbitrary left A–module. Moreover, it is a

differential on �CN D
L

s.�
C
s ˝N /. He also proves that

Hs.�
CN /Š TorAs .F2;N /:

Let ƒ be the (opposite) lambda algebra, in which the product in lambda symbols is writ-
ten in the order opposite to that used in [2]. It is bigraded by putting bideg.�i/D .1; i/,
where �i 2ƒ

1;i . Singer proves in [20] that the F2 –linear map

`sW �
C
s ! .ƒs/�; v

j1

1
� � � vjs

s 7! .�j1
� � ��js

/�;

is an isomorphism for each s � 0. Here the duality � is taken with respect to the basis
of admissible monomials of ƒ. Recall that for each s � 1, a basis for ƒs is given by
the set of admissible monomials

f�j1
�j2
� � ��js

j 0� j1; j1 � 2j2; : : : ; js�1 � 2jsg;

while ƒ0 is spanned by the unit (see [20]).

Suppose N is a left A–module which is finitely generated in every degree. Let N �

be the F2 –dual of N which is a right A–module by transposing the left A–module
on N . The tensor product ƒ˝N � is bigraded by

.ƒ˝N �/s;t D
X

k

ƒs;t�k
˝N �k :

For any sequence I D .i1; : : : ; is/ of nonnegative integers, we write �I to denote
�i1
� � ��is

2ƒ. For m� 2N � , we write �I m� to denote �I ˝m� 2ƒ˝N � and let
m� D 1m� . So ƒ˝N � is a bigraded differential left ƒ–module with the action of ƒ
on it given by

�J .�I m�/D �J �I m�;

where J is a sequence of nonnegative integers. Moreover, the differential of ƒ˝N �

is given by

ı.�I m�/D ı.�I /m
�
C

X
j�0

�I�j m� SqjC1 :

(For the differential ı on the lambda algebra, see [2; 18].) Then Exts;sCt
A .N;F2/D

H s;t .ƒ˝N �; ı/ (see [2; 18]). By means of the differential, one recognizes that the
left action of ƒ on ƒ˝N � induces a left action of Ext�;�A WD Ext�;�A .F2;F2/ on
Ext�;�A .N;F2/. Hence, the latter becomes a left Ext�;�A –module.

Algebraic & Geometric Topology, Volume 19 (2019)
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In the remaining part of this section, we recall some results used to prove the main
results in this paper.

Theorem 2.1 (Hưng and Tuấn [14]) Let M be an unstable A–module. Then, for
any s � 0, the map

.e'M
s /�W RsM ! �Cs M; c Sts.z/ 7! cQ

jzj
s;0
˝ z;

for c 2Ds and a homogeneous element z of degree jzj in M, is a chain-level represen-
tation of the dual of the Lannes–Zarati homomorphism

.'M
s /�W .F2˝A RsM /i! TorAs;sCi.F2;M /:

This map is natural with respect to A–homomorphisms of unstable A–modules.

As RsM is a free Ds –module (see [16, Definition-Proposition 2.4.1]), the map is well
defined.

An element in Ds is called A–decomposable if it is in xADs , where xA denotes the
augmentation ideal of the Steenrod algebra A.

Giambalvo and Peterson showed in [6] a sufficient condition for a monomial in Ds to
be A–decomposable as follows:

Theorem 2.2 (see [6, Corollary 4.8]) Let s � 2 and assume that I D .i0; : : : ; is�1/

is a s–tuple of nonnegative integers and QI DQ
i0

s;0
� � �Q

is�1

s;s�1
2Ds with i0 > s� 2.

Then QI is A–decomposable.

3 On the vanishing of the Lannes–Zarati homomorphism on
decomposable elements

The goal of this section is to prove Theorems 1.3 and 1.4 and Proposition 1.5.

In [20], Singer defines an algebra isomorphism  p;qW �s!�p˝�q by

 p;q.vi/D

�
vi ˝ 1 if 1� i � p;

1˝ vi�p if pC 1� i � s;

for any pair of nonnegative integers p and q for which pCqD s . Here we understand
�0 D F2 ,  s;0.x/D x˝ 1 and  0;s.x/D 1˝x . Then, he shows that

(3.0.1)  p;q.Qs;i/D
X
j�0

Q2q�2j

p;0 Q2j

p;i�j ˝Qq;j

Algebraic & Geometric Topology, Volume 19 (2019)
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for each i with 0� i < s . Suppose c DQ
t0

s;0
� � �Q

ts�1

s;s�1
2Ds ; then

 p;q.c/D

s�1Y
iD0

 p;q.Qs;i/
ti (since  p;q is an algebra isomorphism)

D

s�1Y
iD0

�minfi;qgX
jD0

Q2q�2j

p;0 Q2j

p;i�j ˝Qq;j

�ti

.by (3.0.1)/

D

s�1Y
iD0

X
j˛i jDti

diD1

Q˛i .by the binomial theorem/;

where

di D
ti !

k
.i/
0

! � � � k
.i/

minfi;qg!
; ˛i D .k

.i/
0
; : : : ; k

.i/

minfi;qg/; j˛i j D k
.i/
0
C � � �C k

.i/

minfi;qg

and

Q˛i D

minfi;qgY
jD0

.Q2q�2j

p;0 Q2j

p;i�j ˝Qq;j /
k

.i/

j :

So, for c 2Ds , we have  p;q.c/D
P

QI ˝QJ with QI 2Dp and QJ 2Dq .

Lemma 3.1 Suppose c 2Ds and  p;q.c/D
P

QI ˝QJ , pCqD s . Then each QI

has the form Q
i0

p;0
� � �Q

ip�1

p;p�1
, where i1 D n1C 2m1; : : : ; ip�1 D np�1C 2mp�1 and

i0 � .2
q � 1/.n1C � � �C np�1/ for n1; : : : ; np�1;m1; : : : ;mp�1 nonnegative integers.

Proof Suppose c DQ
t0

s;0
� � �Q

ts�1

s;s�1
2Ds . From the above calculation, we see that

each QI has the form Qi0
p;0
� � �Qip�1

p;p�1
with

i0 � .2
q
� 1/.k

.0/
0
C k

.1/
0
C � � �C k

.s�1/
0

/;

i1 D k
.1/
0
C 21k

.2/
1
C � � �C 2qk.qC1/

q ;

i2 D k
.2/
0
C 21k

.3/
1
C � � �C 2qk.qC2/

q ;
:::

ip�1 D k
.p�1/
0

C 21k
.p/
1
C � � �C 2qk.s�1/

q :

Set niDk
.i/
0

and miD
Pq

jD1
2j�1k

.iCj/
j for 1� i �p�1. Then i1Dn1C2m1 , : : : ,

ip�1 D np�1C 2mp�1 and i0 � .2
q � 1/.n1C � � �C np�1/.

The lemma follows.
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Suppose N is an A–module of finite type. By ambiguity of notation, the following F2 –
linear map is also denoted by the same notation as the isomorphism `sW �

C
s ! .ƒs/�

(see [20, page 689]):

`sW �
C
s ˝N ! .ƒs

˝N �/�; v
j1

1
� � � vjs

s ˝ z 7! hz; � ih`s.v
j1

1
� � � vjs

s /; � i:

This map is an F2 –isomorphism for each s � 0.

The following lemma was first proved for N D F2 by Singer in [20, page 689].

Lemma 3.2 The diagram

�Cs ˝N
`s

//

@
��

.ƒs˝N �/�

ı�

��

�C
s�1
˝N

`s�1
// .ƒs�1˝N �/�

commutes for s � 1. Here, N is an A–module of finite type.

Proof Use an argument similar to the proof of [20, Proposition 8.2].

Suppose N is an A–module of finite type. Let h � ; � i be the usual dual paring
TorAs .F2;N /˝ExtsA.N;F2/!F2 . We note that this dual paring is induced in homology
by the dual paring .�Cs ˝N /˝ .ƒs˝N �/! F2 that allows us to identify �Cs ˝N

with the dual of ƒs˝N � , as mentioned in Lemma 3.2. We also denote by h � ; � i the
dual paring .F2˝A RsM /˝ .F2˝A RsM /�! F2 for M an unstable A–module.

Let N be an A–module. Suppose ˛ is an element in Exts;tA .N;F2/. Then, stem.˛/ is
given by stem.˛/D t � s .

Lemma 3.3 Let M be an unstable A–module of finite type. Let c Sts.z/ be an
element of RsM for c 2Ds and a homogeneous element z of degree jzj in M. Then,
for ˛ 2 ExtpA.F2;F2/ and ˇ 2 ExtqA.M;F2/, p > 0, q � 0 and pC q D s ,

hŒc Sts.z/�; 'M
s .˛ˇ/i D

X
jQIQ

2q jzj

p;0
jDstem.˛/

jQJ Stq.z/jDstem.ˇ/

hŒQIQ
2q jzj
p;0

�; 'F2
p .˛/ihŒQJ Stq.z/�; 'M

q .ˇ/i:

Here QI and QJ appear in  p;q.c/D
P

QI ˝QJ .
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Proof Suppose ˛ D Œx� 2 ExtpA.F2;F2/ and ˇ D Œy� 2 ExtqA.M;F2/, where x is a
cycle in ƒp and y is a cycle in ƒq˝M � . Then we have

hŒc Sts.z/�; 'M
s .˛ˇ/i

D h.'M
s /�.Œc Sts.z/�/; ˛ˇi

D hŒcQ
jzj
s;0
˝ z�; ˛ˇi .by Theorem 2.1/

D hcQ
jzj
s;0
˝ z;xyi

D h p;q.cQ
jzj
s;0
/˝ z;x˝yi .see [20, page 688]/

D

DX
QIQ

2q jzj
p;0
˝QJQ

jzj
q;0
˝ z;x˝y

E
.since  p;q.Qs;0/DQ2q

p;0˝Qq;0/

D

X
hQIQ

2q jzj
p;0

;xihQJQ
jzj
q;0
˝ z;yi:

We note that QIQ
2q jzj
p;0

and QJQ
jzj
q;0
˝ z are cycles in �Cp and �Cq ˝M, respectively.

So, we get

hŒc Sts.z/�; 'M
s .˛ˇ/i

D

X
hŒQIQ

2q jzj
p;0

�; ˛ihŒQJQ
jzj
q;0
˝ z�; ˇi

D

X
h.'F2

p /�ŒQIQ
2q jzj
p;0

�; ˛ih.'M
q /�ŒQJ Stq.z/�; ˇi .by Theorem 2.1/

D

X
jQIQ

2q jzj

p;0
jDstem.˛/

jQJ Stq.z/jDstem.ˇ/

h.'F2
p /�ŒQIQ

2q jzj
p;0

�; ˛ih.'M
q /�ŒQJ Stq.z/�;ˇi

D

X
jQIQ

2q jzj

p;0
jDstem.˛/

jQJ Stq.z/jDstem.ˇ/

hŒQIQ
2q jzj
p;0

�; 'F2
p .˛/ihŒQJ Stq.z/�; 'M

q .ˇ/i:

We recall the following lemma, which was first proved in [12]. We give a proof to
make the paper self-contained.

Lemma 3.4 (Hưng and Peterson [12]) Let c DQ
i0

p;0
� � �Q

ip�1

p;p�1
2Dp with i0 > 0.

If im � 0 .mod 2/ for some m> 0, then c is A–decomposable.

Proof We prove this by induction on the smallest m > 0 with im � 0 .mod 2/. If
mD 1, then Sq1.Q

i0�1
p;0

Q
i1C1
p;1
� � �Q

ip�1

p;p�1
/D c . For the induction step,

Sq2m�1

.Q
i0

p;0
� � �Q

im�1�1
p;m�1

QimC1
p;m � � �Q

ip�1

p;p�1
/D cC

X
QK ;

where each QK has the form Q
k0

p;0
� � �Q

kp�1

p;p�1
with km�1� 0 .mod 2/ and k0> 0.
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The following repeats Theorem 1.3 from the introduction:

Theorem 3.5 Let M be an unstable A–module of finite type. Then the sth Lannes–
Zarati homomorphism for M

'M
s W Exts;sCi

A .M;F2/! .F2˝A RsM /�i

vanishes on the elements of the form ˛ˇ in any positive stem i , where ˛2ExtpA.F2;F2/

and ˇ 2 ExtqA.M;F2/ with either p � 2, q > 0 and pC q D s , or p D s � 2, q D 0

and stem.ˇ/ > s� 2.

Proof We will show that 'M
s .˛ˇ/D 0, where ˛ 2 ExtpA.F2;F2/; ˇ 2 ExtqA.M;F2/

with either p � 2, q > 0 and pC q D s , or p D s � 2, q D 0 and stem.ˇ/ > s� 2.

Case 1 (p � 2, q > 0) By Lemma 3.3, for any c Sts.z/ 2 RsM with c 2 Ds , a
homogeneous element z 2M of degree jzj and  p;q.c/D

P
QI˝QJ with QI 2Dp

and QJ 2Dq , we have

hŒc Sts.z/�; 'M
s .˛ˇ/i D

X
jQIQ

2q jzj

p;0
jDstem.˛/

jQJ Stq.z/jDstem.ˇ/

hŒQIQ
2q jzj
p;0

�; 'F2
p .˛/ihŒQJ Stq.z/�; 'M

q .ˇ/i:

We see that  p;q.cQ
jzj
s;0
/D

P
QIQ

2q jzj
p;0
˝QJQ

jzj
q;0

. So, by Lemma 3.1, QIQ
2q jzj
p;0

has
the form Qi0

p;0
� � �Qip�1

p;p�1
, where i0� .2

q�20/.n1C� � �Cnp�1/, i1D n1C2m1 , : : : ,
ip�1 D np�1C 2mp�1 . We will prove that QIQ

2q jzj
p;0

is A–decomposable.

If i0D 0, then 0� .2q�20/.n1C� � �Cnp�1/. So, it implies that n1D � � � D np�1D 0.
We get

QIQ
2q jzj
p;0
DQ

2m1

p;1
� � �Q

2mp�1

p;p�1
D Sq.2

p�21/m1C���C.2
p�2p�1/mp�1.Q

m1

p;1
� � �Q

mp�1

p;p�1
/:

Hence, QIQ
2q jzj
p;0
2 xADp

If i0 > 0 and one of the nonnegative integers n1; : : : ; np�1 is even, then by Lemma 3.4
we have QIQ

2q jzj
p;0
DQ

i0

p;0
� � �Q

ip�1

p;p�1
2 xADp .

If i0 > 0 and all of the nonnegative integers n1; : : : ; np�1 are odd, then

i0 � .2
q
� 20/.n1C � � �C np�1/� p� 1> p� 2:

Hence, by Theorem 2.2, we obtain QIQ
2q jzj
p;0
DQ

i0

p;0
� � �Q

ip�1

p;p�1
2 xADp .

So, we get hŒQIQ
2q jzj
p;0

�; '
F2
p .˛/i D hŒ0�; '

F2
p .˛/i D 0. We conclude that 'M

s .˛ˇ/D 0.
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Case 2 (p D s � 2, q D 0 and stem.ˇ/ > s� 2) By Lemma 3.3, for any c Sts.z/ 2
RsM with c 2Ds , a homogeneous element z 2M of degree jzj and  s;0.c/D c˝1,
we have

hŒc Sts.z/�; 'M
s .˛ˇ/i D hŒcQ

jzj
s;0
�; 'M

s .˛/ihŒz�; ˇi:

If jzj ¤ stem.ˇ/, then hŒz�; ˇi D 0. So hŒc Sts.z/�; 'M
s .˛ˇ/i D 0.

If jzj D stem.ˇ/, then jzj > s � 2 (since stem.ˇ/ > s � 2). By Theorem 2.2, we
have cQ

jzj
s;0
2 xADs . We conclude that hŒcQ

jzj
s;0
�; 'M

s .˛/i D hŒ0�; 'M
s .˛/i D 0. Hence,

hŒc Sts.z/�; 'M
s .˛ˇ/i D 0.

The theorem is proved.

Consequently, when M D F2 , we obtain the following theorem, which was first proved
by Hưng and Peterson in [12]. Recall that Hưng and Peterson proved this theorem by
showing that '� D

L
s '

F2
s is a homomorphism of algebras and, more importantly,

that the product of the nonunital algebra
L

s>0.F2˝A Ds/
� is trivial, except for the

case .F2˝A D1/
�˝ .F2˝A D1/

�! .F2˝A D2/
� .

The following repeats Theorem 1.4 from the introduction:

Theorem 3.6 (Hưng and Peterson [12]) The sth Lannes–Zarati homomorphism

'F2
s W Exts;sCi

A .F2;F2/! .F2˝A Ds/
�
i

vanishes on the decomposable elements in any positive stem i for s � 3.

Proof We must show that 'F2
s .˛ˇ/D0, where ˛2ExtpA.F2;F2/ and ˇ2ExtqA.F2;F2/

with p > 0, q > 0 and pC q D s . Since the algebra Ext�;�A .F2;F2/ is commutative,
we have left to consider the case p � 2 and q > 0. In this case, by Theorem 3.5, we
have 'F2

s .˛ˇ/D 0.

The theorem is proved.

For brevity, zH�.RP1/ will be denoted by zP. The following repeats Proposition 1.5
from the introduction:

Proposition 3.7 The fifth Lannes–Zarati homomorphism for zP,

'
zP

5 W Ext5;5Ci
A . zP ;F2/! .F2˝A R5

zP /�i ;

vanishes on the decomposable elements in any positive stem i .
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Proof We must prove that ' zP
5
.˛ˇ/D0, where ˛2ExtpA.F2;F2/ and ˇ2ExtqA. zP ;F2/

with p > 0, q � 0 and pC q D 5. We will consider the following three cases:

Case 1 (p � 2, q > 0) By Theorem 3.5, we have ' zP
5
.˛ˇ/D 0.

Case 2 (pD5, qD0) Then, for any c St5.z/2R5
zP with c2D5 and a homogeneous

element z 2 zP of degree jzj, we have  5;0.c/D c˝ 1, and

hŒc St5.z/�; '
zP

5 .˛ˇ/i D hŒcQ
jzj
5;0
�; '

F2

5
.˛/ihŒSt0.z/�; '

zP
0 .ˇ/i (by Lemma 3.3)

D 0;

where the last equality follows from the fact that 'F2

5
.˛/D 0 (see [13, Theorem 1.4]).

Case 3 (pD 1, qD 4) Then, for any c St5.z/ 2R5
zP with c 2D5 , a homogeneous

element z 2 zP of degree jzj and  1;4.c/D
P

QI˝QJ with QI 2D1 and QJ 2D4 ,
we have

hŒc St5.z/�; '
zP

5 .˛ˇ/i D
X

jQIQ
24jzj

1;0
jDstem.˛/

jQJ St4.z/jDstem.ˇ/

hŒQIQ
24jzj
1;0

�; '
F2

1
.˛/ihŒQJ St4.z/�; '

zP
4 .ˇ/i

(by Lemma 3.3)

D 0;

where the last equality follows from the fact that ' zP
4
.ˇ/D 0 (see [14, Theorem 1.8]).

The proposition is completely proved.

Remark 3.8 From the proof of Proposition 3.7, and Theorem 3.5, we can see that for
s � 3, and for any unstable A–module M of finite type, if 'F2

s and 'M
s�1

vanish in
positive stems, then 'M

s vanishes on the decomposable elements in positive stems.
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Homotopy theory of unital algebras

BRICE LE GRIGNOU

We provide an extensive study of the homotopy theory of types of algebras with
units, for instance unital associative algebras or unital commutative algebras. To this
purpose, we endow the Koszul dual category of curved coalgebras, where the notion
of quasi-isomorphism barely makes sense, with a model category structure Quillen
equivalent to that of unital algebras. To prove such a result, we use recent methods
based on presentable categories. This allows us to describe the homotopy properties
of unital algebras in a simpler and richer way. Moreover, we endow the various model
categories with several enrichments which induce suitable models for the mapping
spaces and describe the formal deformations of morphisms of algebras.
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Introduction

Among the various types of algebras, some of them include units, like the ubiquitous
unital associative algebras and unital commutative algebras or the unital Batalin–
Vilkovisky algebras, which arose in mathematical physics. When working with a chain
complex carrying such an algebraic structure, like the de Rham algebra of differential
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manifolds, one would like to understand the properties that this algebraic data satisfies
up to quasi-isomorphisms. The purpose of the present paper is to develop a framework
which allows one to prove the homotopical properties carried by types of algebras with
units, that is, their properties up to quasi-isomorphisms.

In order to work with types of algebras in a general way, one needs a precise notion
which encodes these ones. This is achieved by the concept of an operad. Operads are
generalizations of associative algebras which encode some types of algebras (associa-
tive, commutative, Lie, Batalin–Vilkovisky, . . . ) in a way that a representation of an
operad P is a chain complex together with a structure of algebra of the type encoded
by P.

Further, one of the most common and powerful tool to study homotopical algebra —
that is to study categories with a notion of weak equivalences — is the model category
structure introduced by Daniel Quillen, which makes the manipulation of weak equiva-
lences easier by means of other maps, called cofibrations and fibrations, respectively.
Hinich proved in [15] that the category of algebras over an operad carries a model
structure whose weak equivalences are quasi-isomorphisms and whose fibrations are
surjections. In a purely theoretical perspective, this model structure describes all the
homotopical data of this category. However, the cofibrant objects are not easy to handle;
they are the retracts of free algebras whose generators carry a particular filtration.

Hinich [16] embedded the category of differential graded (dg) Lie algebras into the
category of dg cocommutative coalgebras. From the model structure of the category of
dg Lie algebras he obtained a model structure on the category of dg cocommutative
coalgebras which is Quillen equivalent to the first one. In this new model category, any
object is cofibrant. Moreover, this context allows one to build an obstruction theory for
the existence of the algebra structures and the algebra morphisms. So this new context
of dg cocommutative coalgebras is more suitable to study the homotopy theory of dg
Lie algebras than the category of dg Lie algebras itself. With a similar perspective,
Lefevre and Hasegawa embedded the category of nonunital dg associative algebras into
the category dg coassociative coalgebras, shown to be Quillen equivalent to the first
one; see [18]. Vallette generalized these results to all types of algebras encoded by any
operad satisfying a technical condition: that it is an augmented operad. Augmented
operads are related to the dual notion of conilpotent cooperads by an adjunction called
the operadic bar–cobar adjunction � a B . Vallette embedded the category of algebras
over an augmented operad P into category of coalgebras over a cooperad P ¡ called the
Koszul dual of P. He transferred the model structure on the category of P –algebras

Algebraic & Geometric Topology, Volume 19 (2019)
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to the category of P ¡ –coalgebras and got again a Quillen equivalence between these
two model categories; see [26].

However the operads describing types algebras with units do not satisfy the technical
condition to be augmented. To extend the result of Vallette to categories of algebras
over any operad, one first needs to modify the operadic bar–cobar adjunction. Inspired
by the work of Hirsh and Millès [17], we introduce an adjunction à la bar–cobar relating
dg operads to curved conilpotent cooperads:

curved conilpotent cooperads
�u // dg operads:
Bc

oo

Moreover, any morphism of dg operads f from a cobar construction �uC of a curved
conilpotent cooperad C to an operad P comes equipped with an adjunction �f aBf

relating P –algebras to C –coalgebras,

C –coalgebras
�f //

P–algebras:
Bf

oo

The model structure of P –algebras can be transferred to the category of C –coalgebras
along this adjunction.

Theorem 82 Let ˛W C !P be an operadic twisting morphism and let �˛ a B˛ be
the bar–cobar adjunction between P –algebras and C –coalgebras induced by ˛ . There
exists a model structure on the category of C –coalgebras whose cofibrations (resp.
weak equivalences) are morphisms whose image under �˛ is a cofibration (resp. weak
equivalence). With this model category structure, the adjunction �˛ aB˛ is a Quillen
adjunction.

To prove this theorem, we use new techniques coming from category theory. Specifically,
we utilize a theorem of Bayeh, Hess, Karpova, Kędziorek, Riehl and Shipley [3]
involving presentable categories.

We study in detail the particular case where the morphism of operads f from �uC

to P is a quasi-isomorphism, for instance if f is the identity � of �uC. In this
case, the Quillen adjunction �� a B� is a Quillen equivalence. We show that the
fibrant C –coalgebras are the images of the �uC –algebras under the functor B� . So,
switching from the category of �uC –algebras to the category of C –coalgebras by the
functor B� amounts to introducing new morphisms between �uC –algebras. These
new morphisms can be built using obstruction methods. Moreover, any �uC –algebra
becomes cofibrant in this new context.
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This article also deals with enrichments of the category of P –algebras for any differen-
tial graded operad P, and of the category of C –coalgebras for any curved cooperad C.
These two categories are enriched in simplicial sets in a way that recovers the mapping
spaces. Further, they are tensored, cotensored and enriched in cocommutative coalge-
bras. These cocommutative coalgebras encode the formal deformations of morphisms of
algebras over an operad. Indeed, for any two algebras A and A0 over an operad P, the
atoms of their mapping cocommutative coalgebra fA;A0g— that is, the closed elements
e 2 fA;A0g0 such that �.e/ D e˝ e — are exactly the morphisms of P –algebras
from A to A0. Moreover, if A is cofibrant, the maximal coaugmented conilpotent
subcoalgebra of fA;A0g that contains an atom f is the bar construction of the Lie
algebra that controls the formal deformations of the morphism f . In the context of
nonsymmetric operads and nonsymmetric cooperads, this enrichment can be extended
to all coassociative coalgebras. These coassociative coalgebras encode in single objects
both the mapping spaces and the deformation of morphisms.

Finally, we apply the framework developed here to concrete operads like the operad
uAs of unital associative algebras and the operad uCom of unital commutative algebras.
For these two operads, the process of curved Koszul duality developed in [17] relates
the curved cooperads uAs ¡ and uCom ¡ to the operads uAs and uCom , respectively.
We show that the category of uAs ¡ –coalgebras and the category of uCom ¡ –coalgebras
are equivalent to the category of curved conilpotent coassociative coalgebras and the
category of curved conilpotent Lie coalgebras, respectively.

Layout

The article is organized as follows. In Section 1, we recall several notions about
category theory, and homological algebra. In Section 2, we recall the notions of
operads, cooperads, algebras over an operad and coalgebras over a cooperad. We also
prove some results, as the presentability of the category of coalgebras over a curved
cooperad, that we will need in the sequel. Section 3 deals with enrichments of the
category of algebras over an operad and of the category of coalgebras over a curved
cooperad; specifically, we study enrichments over simplicial sets, cocommutative
coalgebras and coassociative coalgebras. In Section 4, we introduce an adjunction à
la bar–cobar between operads and curved cooperads related to a notion of twisting
morphism. We use it to define an adjunction between P –algebras and C –coalgebras
for a twisting morphism from a curved cooperad C to an operad P. In Section 5,
we recall the projective model structure on the category of algebras over an operad.
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We describe models for the mapping spaces and we show that the enrichment over
cocommutative coalgebras encodes deformations of morphisms. Section 6 transfers the
projective model structure on P –algebras along the previous adjunction to obtain a
model structure on C –coalgebras and a Quillen adjunction. Section 7 deals with these
model structures in the case where the operad P is the cobar construction �uC of C.
In particular, the adjunction induced is a Quillen equivalence. Finally, in Section 8, we
apply the formalism developed in the previous sections to study the examples of unital
associative algebras and unital commutative algebras.
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Conventions and notation

� We work over a field K. Note that no further assumption is needed when working
with nonsymmetric operads. However, when dealing with homotopy results that
concern all operads and cooperads and their algebras and coalgebras, we will assume
the characteristic of the field to be zero.

� The category of Z–graded K–modules, that is, functors from the discrete category Z

to the category of K–vector spaces, is denoted by gMod. The category of chain
complexes, that is, Z–graded K–modules equipped with a degree �1 square-zero map,
is denoted by dgMod. They are endowed with their usual closed symmetric monoidal
structures. The internal hom is denoted by Œ ; �. The category of chain complexes is
also endowed with its projective model structure, where the weak equivalences are
the quasi-isomorphisms and where the fibrations are the degreewise surjections. The
degree of a homogeneous element x of a graded K–module or a chain complex is
denoted by jxj.

� For any integer n, let Dn be the chain complex generated by one element in
degree n and its boundary in degree n� 1. Let Sn be the chain complex generated by
a cycle in degree n.
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� The category of simplicial set is denoted by sSet. It is endowed with its Kan–Quillen
model structure; see Goerss and Jardine [13, I.11.3].

� A diagram of the form

C
L // D
R
oo

means that the functor R is right adjoint to the functor L.

� For any graded K–module V endowed with a filtration .FnV/n2N , the graded
complex associated to this filtration is denoted by GV. In other words,

GV D
M

n

GnV

where GnV DFnV=Fn�1V. If V is a chain complex such that .FnV/n2N is a filtration
of chain complexes, that is, d.FnV/ � FnV for any integer n, then GV inherits the
structure of a chain complex.

1 Preliminaries

In this first section, we recall some categorical concepts like the presentability and
the notions of enrichment, tensoring and cotensoring. Moreover, we describe several
notions of coalgebras, like coassociative coalgebras and cocommutative coalgebras,
that have been extensively studied in [11] and [16], respectively. More specifically,
the category of coassociative coalgebras admits a model structure related by a Quillen
adjunction to the category of simplicial sets; the category of conilpotent cocommutative
coalgebras admits a model structure Quillen equivalent to the projective model structure
on Lie algebras. Finally, we describe the Sullivan polynomial algebras.

1.1 Presentable categories

Definition 1 (presentable category) Let C be a cocomplete category. An object X

of C is called compact if for any filtered diagram F W I ! C the map

colim.homC.X;F //! homC.X; colim F /

is an isomorphism. The category C is said to be presentable if there exists a set of
compact objects such that any object of C is the colimit of a filtered diagram involving
only these compact objects.
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The following proposition is a classical result of category theory:

Proposition 2 [1] A functor LW C ! D between presentable categories is a left
adjoint if and only if it preserves colimits.

1.2 Tensoring, cotensoring and enrichment

In this section, we recall the definition of tensored-cotensored-enriched category over a
monoidal category. See [5] for the original reference.

Definition 3 (action, coaction) Let .E;˝; I/ be a monoidal category and let C be a
category.

� An enrichment of C over E is a bifunctor Œ�;��W Cop � C! E together with
functorial morphisms

X ;Y;Z W ŒY;Z�˝ ŒX;Y �! ŒX;Z�; �X W I! ŒX;X �

for any objects X, Y and Z of C and which are composition and unit in terms
of the commutative diagrams

ŒY;Z�˝ ŒX;Y �˝ ŒV;X �
X;Y;Z˝Id

//

Id˝V;X;Y˝Id

��

ŒX;Z�˝ ŒV;X �

V;X;Z

��

ŒY;Z�˝ ŒV;Y �
V;Y;Z

// ŒV;Z�

ŒX;Y �˝ ŒX;X �

((

ŒX;Y �
�Y˝Id

//
Id˝�X
oo

Id
��

ŒY;Y �˝ ŒX;Y �

ww

ŒX;Y �

� A right action of E on C is a functor

�G�W C�E! C

together with functorial isomorphisms�
X G .A˝B/' .X GA/GB;
X G I 'X;
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for any X 2C and any A;B2E; these functors are compatible with the monoidal
structure of E in terms of the commutative diagrams

..X GA/GB/G C //

��

.X G .A˝B//G C // X G ..A˝B/˝ C/

��

.X GA/G .B˝ C/ // X G .A˝ .B˝ C//

.X G I/GA

&&

// X G .I˝A/

xx

X GA

� A left coaction of E on C is a functor

h�;�iW Eop
�C! C

together with functorial isomorphisms�
hA˝B;X i ' hAhB;X ii;
hI;X i 'X;

which satisfy the commutative duals of the diagrams above.

Definition 4 (category tensored-cotensored-enriched over a monoidal category) Let
E be a monoidal category and let C be a category. We say that C is tensored-cotensored-
enriched over E if there exist three functors

f�;�gW Cop
�C! E; �G�W C�E! C; h�;�iW Eop

�C! C;

together with functorial isomorphisms

homC.X GA;Y /' homE.A; fX;Y g/' homC.X; hA;Y i/

for any X;Y 2 C, any A;B 2 E and where I is the monoidal unit of E, such that
�G� defines a right action of E on C.

The axioms and terminology of these notions are justified by the following proposition:

Proposition 5 If the category C is tensored-cotensored-enriched over E, then it is
enriched in the usual sense and the functor h�;�i is a left coaction in the sense of
Definition 3.

Proof Suppose that the category C is tensored-cotensored-enriched over E. On the one
hand, let us define the composition relative to the enrichment f�;�g. For any objects
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X and Y of C, the identity morphism of fX;Y g defines a morphism X GfX;Y g! Y .
So, for any objects X, Y and Z , we have a map

X G .fX;Y g˝ fY;Zg/' .X G fX;Y g/G fY;Zg ! Y G fY;Zg !Z

and hence a map fX;Y g˝ fY;Zg ! fX;Zg. Thus is defined the composition. The
coherence diagrams of Definition 3 ensure us that the composition is associative and
gives us a unit. On the other hand, let us show that the functor h�;�i is a left coaction.
For any X;Y 2 C and any A;B 2 E, we have functorial isomorphisms

homC.X; hA˝B;Y i/' homC.X G .A˝B/;Y /' homC..X GA/GB;Y /

' homC.X GA; hB;Y i/' homC.X; hAhB;Y ii/:

By the Yoneda lemma, this gives us a functorial isomorphism hA˝B;Y i' hAhB;Y ii.
This functorial isomorphism satisfies the coherence conditions of Definition 3 because
the functorial isomorphism X G.A˝B/' .X GA/GB satisfies the coherence conditions
of the same definition.

Proposition 6 Let E be a presentable monoidal category and let C be a presentable
category.

� Suppose that there exists a right action �G� of E on C and that for any A 2 E

and for any X 2 C, the functors X G �W E! C and � GAW C! C preserve
colimits. Then C is tensored-cotensored-enriched over E.

� Suppose that there exists a left coaction h�;�i of E on C and that there exists a
functor

�G�W C�E! C

together with a functorial isomorphism

homC.X GA;Y /' homC.X; hA;Y i/:

Suppose moreover that the functor h�;Y iW Eop! C sends colimits in E to limits.
Then C is tensored-cotensored-enriched over E.

Proof The first point is a direct consequence of Proposition 2. Let us prove the second
point. Since E left coacts on C, by the same arguments as in the proof of Proposition 5
we can show that the bifunctor �G� is a right action of E on C. Moreover, since the
functors h�;Y i preserve limits, any functor of the form X G� preserves colimits. The
result is then a direct consequence of the first point.
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Definition 7 (homotopical enrichment) Let M be a model category and let E be a
model category with a monoidal structure. We say that M is homotopically enriched
over E if it is enriched over E and if for any cofibration f W X ! X 0 in M and any
fibration gW Y ! Y 0 in M, the morphism in E

fX 0;Y g ! fX 0;Y 0g �fX ;Y 0g fX;Y g

is a fibration. Moreover, we require this morphism to be a weak equivalence whenever
f or g is a weak equivalence.

This definition implies in particular that the homotopy category Ho.M/ is enriched
over the monoidal category Ho.E/.

1.3 Coalgebras

Definition 8 (coalgebras) A coassociative coalgebra C D .C; �; �/ is a chain com-
plex C equipped with a coassociative coproduct �W C! C˝ C and a counit �W C!K

such that IdC D .IdC˝ �/�D .�˝ IdC/�. The kernel of the map � is denoted by C .
The coalgebra C is called cocommutative if �D ��, where

�.x˝y/D .�1/jxjjyjy˝x:

A graded atom is a nonzero element 1 2 C such that �1D 1˝ 1. In this context, let
us define the map x�W C! C˝ C by

x�x WD�x� 1˝x�x˝ 1 2 C˝ C:

A graded atom 1 is called a dg atom if d1D0. A conilpotent coalgebra C D .C; �; �; 1/
is the data of a coassociative coalgebra .C; �; �/ together with a graded atom such that,
for any x 2 C , there exists an integer n such that

x�nx WD .Id˝n�1
C ˝ x�/ � � � .IdC˝ x�/x�.x/D 0:

A conilpotent cocommutative coalgebra C is said to be a Hinich coalgebra if 1 is
a dg atom. We denote by uCog be the category of coassociative coalgebras and by
uCocom the category of cocommutative coalgebras. Let uNilCocom (resp. Hinich–cog)
be the category whose objects are conilpotent cocommutative coalgebras (resp. Hinich
coalgebras) and whose morphisms are morphisms of coalgebras.

Remark 9 The reader may be familiar with the notion of a coaugmented coalgebra.
This is actually exactly the data of a coassociative coalgebra together with a dg atom.
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Indeed, the data of a dg atom of a coalgebra C is equivalent to the data of a morphism
of dg coalgebras from K to C.

Any conilpotent coalgebra C has a canonical filtration, called the coradical filtration,

F rad
n C WDK � 1˚fx 2 C j x�nC1x D 0g;

which is not necessarily stable under the codifferential d .

Proposition 10 Let f be a morphism of coalgebras between two conilpotent coalge-
bras C D .C; �; �; 1/ and D D .D; �0; �0; 10/. Then f .1/D 10.

Proof Let x 2 D be such that f .1/D 10C x . Since �f .1/D .f ˝ f /�.1/, then
x�x D x˝x . Since there exists an integer n such that x�n.x/D x˝� � �˝x D 0, then
x D 0.

Proposition 11 The categories uCog , uCocom, uNilCocom and Hinich–cog are pre-
sentable. The forgetful functor from uCog to the category of chain complexes has a
right adjoint called the cofree counital coalgebra functor. The same statement holds
for the category uCocom. The functor C 7! C from the category Hinich–cog to the
category of chain complexes has a right adjoint. The tensor product of the category of
chain complexes induces closed symmetric monoidal structures on the categories uCog

and uCocom.

Proof The results are proven in [2, Sections 2.1, 2.2 and 2.5] for the category uCog .
The methods used apply mutatis mutandis for the other categories.

Theorem 12 [11] The full subcategory uCog�0 of uCog made up of nonnegatively
graded coalgebras admits a model structure whose cofibrations are the monomorphisms
and whose weak equivalences are the quasi-isomorphisms.

The category Hinich–cog is related to the category of Lie-algebras by an adjunction,
described in [24],

Hinich–cog
L // Lie–alg:
C
oo

Theorem 13 [16] Suppose the characteristic of the base field K is zero. Then there
exists a model structure on the category Hinich–cog whose cofibrations are monomor-
phisms and whose weak equivalences are morphisms whose image under the functor L
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is a quasi-isomorphism. The class of weak equivalences is contained in the class of
quasi-isomorphisms. Moreover, the adjunction La C is a Quillen equivalence when the
category of Lie algebras is equipped with its projective model structure whose fibrations
(resp. weak equivalences) are surjections (resp. quasi-isomorphisms) (see [15]).

Definition 14 (deformation problems) Let Artin–alg be the category of nonpositively
graded local finite-dimensional dg commutative algebras. A deformation problem is a
functor from the category Artin–alg to the category of simplicial sets.

Lurie showed in [20] that a suitable infinity-category of deformation problems (called
formal moduli problems) is equivalent to the infinity-category of Lie algebras if the
characteristic of the base field K is zero. Therefore, it is equivalent to the infinity-
category of Hinich coalgebras. In that perspective, any Hinich coalgebra C induces a
deformation problem as follows:

R 7!MapHinich–cog.R
�;C / for R 2 Artin–alg:

Remark 15 We use Hinich’s definition of a deformation problem given in [16]. We
do not describe here the homotopy theory of such deformation problems nor a precise
link with the work of Lurie, who uses the framework of quasicategories (see [20]). In
the sequel, we will only use the fact that, for any morphism of deformation problems
f W X ! Y , if f .R/ is a weak equivalence of simplicial sets for any algebra R 2

Artin–alg , then f is an equivalence of deformation problems.

1.4 Coalgebras and simplicial sets

In this subsection, we describe a Quillen adjunction between the category of sim-
plicial sets and the category of coassociative coalgebras. This adjunction is part of
the Dold–Kan correspondence. From a simplicial set X, one can produce a chain
complex DK.X /, called the normalized Moore complex. In degree n, DK.X /n is
the subvector space of K �Xn which is the intersection of the kernels of the faces
d0 , . . . , dn�1 . The differential is .�1/ndn . Moreover, the Alexander–Whitney map
makes the functor DK comonoidal. Then the diagonal map X ! X �X gives to
DK.X / a structure of coalgebras. Thus, we have a functor DKc from simplicial sets
to the category uCog of coassociative coalgebras. This functor DKc admits a right
adjoint N defined by

N.C/n WD homuCog.DKc.�Œn�/; C/:
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Actually, we have the sequence of adjunctions

sSet
DKc
// uCog�0

N
oo

in // uCog;
tr
oo

where in is the embedding of uCog�0 into uCog and where tr is the truncation.

Proposition 16 The above adjunction between uCog�0 and sSet is a Quillen adjunc-
tion.

Proof The functor DKc carries monomorphisms to monomorphisms and weak homo-
topy equivalences to quasi-isomorphisms; see [13, III.2].

1.5 The Sullivan algebras of polynomial forms on standard simplices

Definition 17 (Sullivan polynomial algebras [25]) For any integer n 2 N , the nth

algebra of polynomial forms is the differential graded unital commutative algebra

�n WDKŒt0; : : : ; tn; dt0; : : : ; dtn�=.†ti D 1/;

where the degree of ti is zero and where d�n
.ti/D dti . In particular,

P
dti D 0.

Any map of finite ordinals �W Œn�! Œm� defines a morphism of differential graded
unital commutative algebra

�.�/W �m!�n; ti 7!
X
�.j/Di

tj :

Therefore, the collection f�ngn2N defines a simplicial differential graded commutative
algebra. Moreover, one can extend this construction to a contravariant functor �� from
simplicial sets to differential graded unital commutative algebras such that ��Œn�D�n .
This functor is part of an adjunction

sSet
�� // uCom � algop:oo

Proposition 18 [6, Chapter 8] When the characteristic of the field K is zero, the cat-
egory uCom–alg of differential graded unital commutative algebras admits a projective
model structure where fibrations (resp. weak equivalences) are degreewise surjections
(resp. quasi-isomorphisms). In that context, the adjunction between simplicial sets and
uCom–alg is a Quillen adjunction.
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2 Operads, cooperads, algebras and coalgebras

The purpose of this section is to recall the definitions of operads, cooperads, algebras
over an operad and coalgebras over a cooperad that we will use in the sequel; we refer
the reader to [19]. Moreover, we prove that the category of coalgebras over a curved
cooperad is presentable.

2.1 Operads and cooperads

We recall here the definitions of operads and cooperads. We refer to [19; 17].

Definition 19 (symmetric modules) Let S be the groupoid whose objects are integers
n 2N and whose morphisms are�

homS.n;m/D∅ if n¤m;

homS.n; n/D Sn otherwise.

A graded S–module (resp. dg S–module) is a presheaf on S valued in the category
of graded K–modules (resp. chain complexes). The name S–module will refer both
to graded S–modules and dg S–modules. We say that a S–module V is reduced if
V.0/D f0g.

The category of S–modules has a monoidal structure which is as follows: for any
S–modules V and W, and for any n� 1,

.V ıW/.n/ WD
M
k�1

V.k/˝Sk

� M
X1t���tXkDf1;:::;ng

W.#X1/˝ � � �˝W.#Xk/

�
;

where #Xi is the cardinal of the set Xi . For nD 0,

.V ıW/.0/ WD V.0/˚
�M

k�1

V.k/˝Sk
.W.0/˝ � � �˝W.0//

�
:

The monoidal unit is given by the S–module I which is K in arity 1 and f0g in other
arities.

Notation � For any dg S–module V, we will denote by Vgrad the underlying
graded S–module.

� Let f W V ! V 0 and gW W !W 0 and hW W !W 0 be three morphisms of S–
modules. Then we denote by f ı .gI h/ the map from V ıW to V 0 ıW 0 defined
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as follows:

f ı .gI h/ WD
X

iCjDn�1

f ˝Sn
.g˝i

˝ h˝g˝j /:

In the case where g is the identity, we use the notation f ı0 h:

f ı0 h WD f ı .IdI h/:

� For any two graded S–modules (resp. dg S–modules) V and W, we denote by
ŒV;W � the graded K–module (resp. chain complex)

ŒV;W �n WD
Y
k�0
l2N

homKŒSn�.V.k/l ;W.k/lCn/:

In that context morphisms of chain complexes from X to ŒV;W � are in one-to-
one correspondence with morphisms of S–modules from the aritywise tensor
product X ˝V to W.

Proposition 20 [19, Chapter 6] If the characteristic of the field K is zero, then the
operadic Künneth

H.V ıW/'H.V/ ıH.W/

holds for any dg S–modules V and W, where H denotes the homology.

Definition 21 (operads) A graded operad PD .P; ; 1/ (resp. dg operad) is a monoid
in the category of graded S–modules (resp. dg S–modules). We denote by Operad the
category of dg operads.

Example 22 For any graded K–module (resp. chain complex) V, EndV is the graded
operad (resp. dg operad) defined by

EndV.n/ WD hom.V˝n;V/:

The composition in the operad EndV is given by the composition of morphisms of
graded K–modules (resp. chain complexes).

A degree k derivation d on a graded operad P D .P; ; 1/ is the data of degree k

maps d W P.n/! P.n/ which commute with the action of Sn and such that

d D  .d ı IdC Id ı0 d/:
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Proposition 23 [19, Chapter 5] The forgetful functor from operads to S–modules
has a left adjoint called the free operad functor and denoted by T . For any S–module V,
TV is the S–module made up of trees whose vertices are filled with elements of V
with coherent arity. The composition is given by the grafting of trees.

There is a one-to-one correspondence between the degree k derivation on the graded
free operad TV and the degree k maps from V to TV. Indeed, from such a map u

one can produce the derivation Du such that, for any tree T labeled by elements of V,

Du.T / WD
X
v

Id˝ � � �˝u.v/˝ � � �˝ Id;

where the sum is taken over the vertices of the tree T .

Definition 24 (cooperads) A cooperad C D .C; �; �/ is a comonoid in the category
of S–modules. We denote by C the kernel of the morphism � W C! I . A cooperad C is
said to be coaugmented if it is equipped with a morphism of cooperads I! C. In this
case, we denote by 1 the image of the unit of K into C.1/. A coaugmented cooperad C

is said to be conilpotent if the process of successive decomposition stabilizes in finite
time for any element. A precise definition is given in [19, Section 5.8.6].

The forgetful functor from conilpotent cooperads to S–modules which sends C to C
has a right adjoint sending V to the tree module T .V/ with the decomposition given
by the degrafting of trees. We denote it by T c.V/. We also denote by ıW C ! T c.C/
the counit of the adjunction. Any conilpotent cooperad is equipped with a filtration,
called the coradical filtration,

F rad
n C.m/ WD fp 2 C.m/ j ı.p/ 2 T�n.C/.m/g;

where the symbol T�n denotes the trees with at most n vertices. In particular,
F rad

0
C D I .

Notation Let C be coaugmented cooperad and m be an integer. We denote by �m

the composite map
�mW C �

�! C ı C! T .C/� Tm.C/:

A degree k coderivation on a cooperad C D .C; �; �/ is a degree k map d of S–
modules from C to C such that

�d D .d ı IdC Id ı0 d/�:
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If the cooperad is coaugmented, we also require that d.1/ D 0. Let T c.V/ be a
cofree conilpotent cooperad. There is a one-to-one correspondence between degree k

coderivations on T c.V/ and degree k maps from T .V/ to V. Indeed, such a map u is
uniquely extended by the following coderivation Du , defined on any tree T labeled by
elements of V as follows:

Du.T / WD
X

T 0�T

Id˝ � � �˝u.T 0/˝ � � �˝ Id;

where the sum is taken on the subtrees T 0 of T .

Definition 25 (curved cooperads) A curved cooperad C D .C; �; �; 1; d; �/ is a
coaugmented graded cooperad equipped with a degree �2 map of graded S–modules
� W C! I and a degree �1 coderivation d such that

d2
D .� ˝ Id� Id˝ �/�2; �d D 0:

A morphism of curved cooperads is a morphism of cooperads �W C ! D which
commutes with the coderivations and such that �C D �D� . We denote by cCoop the
category of curved conilpotent cooperads.

The coradical filtration of a conilpotent cooperad has the following property with
respect to the decomposition map:

Lemma 26 Let C D .C; �; �; 1/ be a conilpotent cooperad. Then

�.F rad
n C/�

X
p0C���Cpk�n

.F rad
p0

C/.k/˝Sk
.F rad

p1
C˝ � � �˝F rad

pk
C/:

Proof It suffices to prove the result for cofree cooperads. Indeed, any conilpotent
cooperad C is equipped with a map ıW C!T c.C/ such that F rad

n CD ı�1.F rad
n T c.C//.

Lemma 27 Let C D T c.V/ be a cofree conilpotent graded cooperad equipped with
a degree �2 map � W T .V/.1/ � V.1/! K. Let �W TV ! V be a degree �1 map
and let D� be the corresponding coderivation on C. Then the triple .T cV;D� ; �/ is a
curved cooperad if and only if � satisfies the equation

�D� D .� ˝�V ��V ˝ �/�2;

where �V is the projection T .V/! V.
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Proof If .T cV;D� ;�/ is a curved cooperad, then �D�D�VD2
�
D.�˝�V��V˝�/�2 .

Conversely, suppose that �D� D .� ˝�V ��V ˝ �/�2 . For any tree T labeled by
elements of V, one can prove that

D2
�.T /D

X
T 0�T

Id˝ .�D�.T
0//˝ Id:

Actually, it is the sum over every arity 1 vertex v of

� ˙�.v/.T � v/ if v is the bottom vertex or a top vertex;

� ˙.�.v/.T � v/� �.v/.T � v//D 0 otherwise.

Hence, .T cV;D� ; �/ is a curved cooperad.

There exist notions of N –modules, nonsymmetric operads, nonsymmetric cooperads
and their morphisms, defined for instance in [19, Section 5.9]. We will speak about the
nonsymmetric context to refer to these ones. Notice that the operadic Künneth formula
holds in the nonsymmetric context without the assumption that the characteristic of the
field K is zero.

2.2 Modules and algebras over an operad

Definition 28 (algebras over an operad) Let P D .P; ; 1/ be an operad. A P –
module A D .A; A / is a left module in the category of S–module, that is, an S–
module A equipped with a map A W P ıA! A such that the following diagrams
commute:

P ıP ıA
IdıA

//

ıId
��

P ıA
A

��

P ıA
A

// A

I ıA 1ıId
//

Id

<<
P ıA

A
// A

A morphism of P –modules from A to B D .B; B/ is a morphism of S–modules
f W A!B such that B.Idıf /Df A . A P –algebra is a P –module A concentrated
in arity 0. We denote by P–alg the category of P –algebras.

The forgetful functor from the category of P –modules to the category of S–modules
has a left adjoint given by

V 7! P ıV:

The images of this left adjoint functor are called the free P –modules.
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Definition 29 (ideal) An ideal of a P –module A is a sub-S–module B �A such
that, for any p 2 P.n/ and .xi/

n
iD1
2A.ki/ with n� 1,

A .p˝Sn
.x1˝ � � �˝xn// 2 B.k1C � � � kn/

whenever one of the xi is in B (for n � 1). Then the quotient A=B has an induced
structure of P –module.

Definition 30 (derivation) Let P be a graded operad and let A be a P –module.
Suppose that the graded operad P is equipped with a degree k derivation dP . Then a
derivation of A is a degree k map dA from A to A such that

dA A D A .dP ı IdA C Id ı0 dA /:

Let P be a graded operad equipped with a degree k derivation dP . There is a one-to-
one correspondence between the derivations of a free P –module A D P ıV and the
degree k maps V! P ıV. Indeed, any such map uW V! P ıV is uniquely extended
by the derivation

Du D dP ı IdC Id ı .i Iu/;

where i denotes the canonical inclusion map V! P ıV.

2.3 Comodules and coalgebras over a cooperad

Definition 31 (comodules and coalgebras over a cooperad) Let C D .C; �; �/ be
a cooperad. A C –comodule D D .D; �D/ is a left C –comodule in the category of
S–modules, that is a S–module D together with a morphism �D W D! C ıD such
that the following diagrams commute:

D
�D

//

�D
��

C ıD

Idı�D
��

C ıD
�CıId

// C ı C ıD

D
�D

//

Id

;;
C ıD �ıId

// D

A C –coalgebra is a C –comodule concentrated in arity 0.

Remark 32 Our notion of C –coalgebra actually recovers a notion sometimes called
in the literature conilpotent C –coalgebra; see [19, 5.4.8].
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Let C be a coaugmented cooperad. Then the forgetful functor from the category of
C –comodules to the category of S–modules has a right adjoint which sends V to C ıV.
The images of the right adjoint are called the cofree C –comodules.

Definition 33 (coderivation) Let C be a graded cooperad and let D D .D; �D/ be
a C –comodule. Suppose that C is equipped with a degree k coderivation dC. A
coderivation on D is a degree k map dD from D to D such that

�DdD D .dC ı IdC Id ı0 dD/�D :

Let C be a cooperad equipped with a degree k coderivation and let V be a graded
K–module. Then there is a one-to-one correspondence between the coderivations on
the C –coalgebra C ıV and the degree k maps C ıV! V. Indeed, any such map u

induces the coderivation

Du WD .dC ı IdV/C .Id ı .� Iu//.�C ı IdV/;

where � D � ı IdW C ıV! V.

Definition 34 (comodules and coalgebras over a curved cooperad) Let C be a curved
cooperad. A C –comodule is a graded C grad –comodule D D .D; �D/ together with a
coderivation dD such that

d2
D D .�C ı Id/�D :

Moreover, a C –coalgebra is a C –comodule concentrated in arity 0.

Proposition 35 Let C D .C; �; �; 1; d; �/ be a conilpotent curved cooperad and let
V be a graded S–module. There is a one-to-one correspondence between the degree
�1 maps �W C ıV! V such that

�D� WD �.Id ı .� I�//.�C ı IdV/C�.dC ı IdV/D � ı IdV

and the structures of C –comodule (where C is considered as a curved cooperad) on
the graded cofree comodule C grad ıV.

Proof A structure of C –comodule on C grad ıV amounts to the data of a degree �1

coderivation D� such that D2
�
D .� ı IdC ı IdV/.�C ı IdV/. Given this equality,

�D� D � ı IdV. Conversely, suppose that �D� D � ı Id. We have

D2
� D .d

2
C ı IdC/C .Id ı .� I�//.� ı Id/.dC ı IdV/C .dC ı .� I�//.� ı Id/

C .Id ı .� I�//.� ı Id/.Id ı .� I�//.� ı Id/:
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On the one hand,

.Id ı .� I�//.� ı Id/.Id ı .� I�//.� ı Id/C .Id ı .� I�//.� ı Id/.dC ı IdC/

C .dC ı .� I�//.� ı Id/

D .Id ı .� I�//.Id ı0D�/.� ı Id/

D .Id ı .� I�D�//.� ı Id/

D
�
.Id ı .�I �//�

�
ı Id:

On the other hand,

.d2
C ı Id/D ..� ı Id/�/ ı IdC

��X
Id˝S .�

˝i
˝ � ˝ �˝j /

�
�
�
ı Id:

Hence, D2
�
D ..� ı Id/�/ ı IdV.

Definition 36 (coradical filtration) Any C –coalgebra D D .D; �D/ over a conilpo-
tent cooperad C admits a filtration called the coradical filtration and defined as follows:

F rad
n D WD fx 2 D j�D.x/ 2 .F

rad
n C/ ıDg:

Proposition 37 Let C be a conilpotent cooperad and let D be a C –coalgebra. For
any integer n,

�D.F
rad
n D/�

X
i0Ci1C���CikDn

.F rad
i0

C/.k/˝Sk
.F rad

i1
D˝ � � �˝F rad

ik
D/:

Lemma 38 Let V and W be two graded K–modules equipped with filtrations
.FnV/n2N and .FnW/n2N , and let �W V ! W be an injection such that FnV D
��1.FnW/ for any integer n. Then there exists a map  W W! V such that  � D Id
and  .FnW/D FnV for any n 2N .

Proof For an integer n� �1, suppose that we have built a subgraded K–module Un

of FnW such that FmW D �.FmV/˚ .Un \ FmW/ for any m � n. Let U 0n be a
subgraded K–module of FnC1W that is an algebraic complement to �.FnC1V/˚Un .
Then let UnC1 WD Un˚U 0n . Finally, let U WD colimUn . We define  by

 D

�
��1 on �.V/;
0 on U :

Proof of Proposition 37 The map �D W D ! C ıD is actually a morphism of C –
coalgebras such that ��1

D .F
rad
n C ıD/D F rad

n D. By Lemma 38, there exists a map of
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graded K–modules rW C ıD! D such that r�D D IdD and r.FnC ıD/ D FnD.
Then the following diagram is commutative:

D �
//

�
��

C ıD

�ıId
��

C ıD
Idı�

//

Id

::
C ı C ıD

Idır
// C ıD

By Lemma 26, we know that

.� ı Id/�.F rad
n D/�

X
i0C���CikDn

F rad
i0

C.k/˝Sk
.F rad

i1
C ıD˝ � � �˝F rad

ik
C ıD/:

Moreover, we know that

.Idır/.F rad
i0

C.k/˝Sk
.F rad

i1
CıD˝� � �˝F rad

ik
Cı//�F rad

i0
C.k/˝Sk

.F rad
i1

D˝� � �˝F rad
ik

D/:

So, we have

�.F rad
n D/D .Id ır/.� ı Id/�.F rad

n D/

�

X
k

X
i0C���CikDn

F rad
i0

C.k/˝Sk
.F rad

i1
D˝ � � �˝F rad

ik
D/:

2.4 Presentability

This subsection deals with the presentability of the category of algebras over an operad
and the presentability of the category of coalgebras over a conilpotent curved cooperad.

Theorem 39 [8, Lemma 5.2] Let P be a dg-operad. Then the category P–alg of
P –algebras is presentable.

The essence of the last theorem is that any P –algebra is the colimit of a filtered
diagram of finitely presented P –algebras.

Theorem 40 Let C be a conilpotent curved cooperad. The category C –cog of C –
coalgebras is presentable.

The essence of this theorem is that any C –coalgebra is the colimit of a filtered diagram
of finite-dimensional C –coalgebras. Since the category of C –coalgebras does not
seem to be comonadic over a known presentable category, we cannot use the same kind
of arguments as in the proof of [8, Lemma 5.2].
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Lemma 41 The category C –cog is cocomplete.

Proof The colimit of a diagram of C –coalgebras is its colimit in the category of
graded K–modules, together with the obvious decomposition map and coderivation
map.

Lemma 42 For any C –coalgebra D D .D; �D/ and any finite-dimensional subgraded
K–module V � C , there exists a finite-dimensional sub-C –coalgebra E of D which
contains V.

Proof Let us prove the result by induction on the coradical filtration of D . Suppose
first that V � F0D. Then V C dV is a sub-C –coalgebra of D . Then suppose that,
for any finite-dimensional subgraded K–module W 2 F rad

n D, there exists a finite-
dimensional sub-C –coalgebra E of F rad

n D which contains W. Consider now a finite-
dimensional subgraded K–module V � FnC1D. By Proposition 37, for any element
x 2 F rad

nC1
D, �D.x/ � 1˝ x 2 C ı F rad

n D. Since we are working with conilpotent
C –coalgebras, there exists a finite-dimensional subgraded K–module V.x/ of F rad

n D
such that �D.x/� 1˝x 2 C ıV.x/. Let .ei/

k
iD1

be a linearly free family of elements
of V such that V D V \F rad

n D˚
Lk

iD1 K:ei . By the induction hypothesis, let E be a
finite-dimensional sub-C –coalgebra of D which contains

V \F rad
n D˚

X
V.ei/CV.dDei/:

Then the sum
E C

X
i

.K:ei ˚K:dDei/

is a finite-dimensional sub-C –coalgebra of D which contains V.

Finally, we show that a finite-dimensional C –coalgebra is a compact object.

Proposition 43 A finite-dimensional C –coalgebra is a compact object.

We need the following technical lemma:

Lemma 44 Let DW I ! C –cog be a filtered diagram. Let x 2D.i/ for an object i

of I. If the image of x in colim D is zero, then there exists an object i 0 of I and a
map �W i ! i 0 such that D.�/.x/D 0.
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Proof The colimit of the diagram D is the cokernel of the map

gW
M

f W j!j 0

D.j /!
M

i2Ob.I /

D.i/

such that for any morphism f W j ! j 0 of I, the morphism g sends x 2 D.j / to
x �D.f /.x/. Let x 2 D.i/ whose image in colim D is zero. Then there exists an
element y D

P
yf of

L
f W j!j 0 D.j / such that g.y/D x . Let i 0 be a cocone in I

of the finite diagram made up of the morphisms f such that yf ¤ 0. Then the image
in D.i 0/ of

P
yf is the same as the image in D.i 0/ of

P
D.f /.yf /. Hence, the

image of x in D.i 0/ is zero.

Proof of Proposition 43 Let DW I ! C –cog be a filtered diagram and let D D

.D; �D/ be a finite-dimensional C –coalgebra. We have to show that the canonical
map

colim.homC –cog.D ;D//! homC –cog.D ; colim D/

is bijective.

� Let us first show that it is surjective. Let f W D! colim D be a map of C –coalgebra
and let D0 be the image of f inside colim D which is also a sub-C –coalgebra of
colim D. Let feag

n
aD1

be a basis of the graded K–module D0. Since the diagram D is
filtered, there exists an object i of I and for each a an element xa 2D.i/ whose image
in colim D is ea . Let E be the smallest sub-C –coalgebra of D.i/ which contains all
the xa and let E 0 be the image of E in colim D. Notice that E 0 contains D0 and that
the map E ! E 0 is surjective. By Lemma 44 and since E is finite-dimensional, there
exists an object i 0 and a map �W i ! i 0 such that the map E 00 WD D.�/.E /! E 0 is
an isomorphism of C –coalgebras. So let D 00 be the sub-C –coalgebra of E 00 which
is the image of D0 through the inverse isomorphism E 0 ! E 00. Hence, the map
D ! D 0 ! colim D factors through the map D ! D 0 ' D 00 ! D.i 0/ and so the
canonical map colim.homC –cog.D ;D//! homC –cog.D ; colim D/ is surjective.

� Let us show that it is injective. Let

f 2 homC –cog.D ;D.i// and g 2 homC –cog.D ;D.j //

be two maps whose images in homC –cog.D ; colim D/ are the same; it is denoted
by h. Since the category I is filtered, there exists an object k together with maps
�W i ! k and  W j ! k . Then D.�/f .D/CD. /g.D/ is a finite-dimensional
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sub-C –coalgebra of D.k/ whose image in colim D is h.D/. As in the previous point
(by Lemma 44), there exists a map �W k! k 0 in I such that the map

uW D.�/.D.�/f .D/CD. /g.C//! h.D/

is an isomorphism. Since the dimension (as a graded K–module) of D.�/D.�/f .D/

and the dimension of D.�/D. /g.D/ are both greater than the dimension of h.D/,
we must have

D.�/.D.�/f .D/CD. /g.D//DD.�/D.�/f .D/DD.�/D. /g.D/:

In this context, we have

D.�/D.�/f D u�1hDD.�/D. /g:

Hence, f and g represent the same element of colim.homC –cog.D ;D//.

Proof of Theorem 40 The isomorphisms classes of finite-dimensional C –coalgebras
form a set. By Proposition 43, any finite-dimensional C –coalgebra is a compact object
of the category C –cog . Moreover, any C –coalgebra is the colimit of the diagram of its
finite-dimensional sub-C –coalgebras (with inclusions between them); this is a filtered
diagram (and even a directed set). Hence, the category C –cog is presentable.

3 Enrichment

This section deals with several enrichments of the category of algebras of an operad and
of the category of coalgebras of a curved conilpotent cooperad. Specifically, we prove
that both the category of algebras over an operad and the category of coalgebras over a
curved conilpotent cooperad are tensored, cotensored and enriched over cocommutative
coalgebras and enriched over simplicial sets. In the nonsymmetric context, algebras over
an operad and coalgebras over a curved conilpotent cooperad are tensored, cotensored
and enriched over coassociative coalgebras.

3.1 Enrichment over coassociative coalgebras and cocommutative
coalgebras

We show in this subsection that the category of algebras over an operad and the category
of coalgebras over a curved conilpotent cooperad are tensored-cotensored-enriched
(see Definition 4) over the category uCocom of counital cocommutative coalgebras.
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Moreover, in the nonsymmetric context, they are tensored-cotensored-enriched over
the category uCog of coassociative coalgebras. We will use these enrichments in the
sequel to describe deformations of morphisms and mapping spaces, respectively.

3.1.1 Enrichment of P –algebras over coalgebras Let P D .P; ; 1/ be a dg
operad. For any counital cocommutative coalgebra C D .C; �C ; �/ and any P –algebra
A D .A; A /, the chain complex ŒC;A� has a canonical structure of P –algebra as
follows.

� For any p 2 P.n/ (n� 1), and for any f1 , . . . , fn 2 ŒC;A� and any x D C ,

ŒC;A�.p˝Sn
.f1˝ � � �˝fn//.x/D A .p˝�/.f1˝ � � �˝fn/�

n�1
C .x/

� For any p 2 P.0/,
ŒC;A�.p/D A .p/�C

The chain complex ŒC;A� together with its structure of P –algebra is denoted by ŒC ;A �.

Lemma 45 The assignment C ;A 7! ŒC ;A � defines a left coaction (see Definition 3)
of the category uCocom of counital cocommutative coalgebras on the category P–alg
of P –algebras.

Proof The construction is functorial covariantly with respect to P –algebras and
contravariantly with respect to counital cocommutative coalgebras. Moreover, for
any counital cocommutative coalgebras C and D , and any P –algebra A there is an
isomorphism of chain complexes

�C ;D;A W ŒC˝D;A�! ŒC; ŒD;A��

such that �C ;D;A .f /.x/.y/D f .x˝y/. This is a morphism of P –algebras which is
functorial in C, D and A , and it satisfies the coherence conditions of Definition 3.

One can define a left adjoint to the functor ŒC ;�� as follows. Let A GC be the quotient
of the free P –algebra P ı .A˝ C/ by the ideal I generated by the relations

A .p˝Sn .y1˝� � �˝yn//˝x�
X

.�1/
P

i<j jx.i/jjyj jp˝Sn ..y1˝x.1//˝� � �˝.yn˝x.n///;

A .p/˝x � �.x/p for any p 2 P.0/;

with �n�1.x/D
P

x.1/˝ � � �˝x.n/ .
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Theorem 46 The category of P –algebras is tensored-cotensored-enriched over the
category uCocom of counital cocommutative coalgebras. The right action is given by
the functor �G� and the left coaction is given by the functor Œ�;��. We denote the
enrichment by f�;�g.

Proof Since the functor Œ�;�� defines a coaction of the category of counital cocom-
mutative coalgebras on the category of P –algebras, since the functor Œ�;A� sends
colimits to limits and since the functor ŒC ;�� is left adjoint to the functor �GC, we
can conclude by Proposition 6.

Let us describe fA ;A 0g for two P –algebras A and A 0. This is the maximal sub-
coalgebra of the cofree cocommutative coalgebra F.ŒA;A0�/ such that the following
diagram commutes:

fA;A 0g //

.�;Id;�;:::/
��

ŒA;A0�

ŒA;Id�
��Q

n�0fA;A
0g˝n=Sn

//
Q

n�0ŒA;A0�˝n=Sn
// ŒP ıA;P ıA0�

ŒId;A0 �
// ŒP ıA;A0�

where the map
Q

n�0ŒA;A0�˝n=Sn! ŒP ıA;P ıA0� sends f1˝ � � �˝fn to

IdP.n/˝Sn
.f1˝ � � �˝fn/;

and where the map fA ;A 0g ! ŒA;A0� is the composition

fA ;A 0g ! F.ŒA;A0�/! ŒA;A0�:

3.1.2 Enrichment of C –coalgebras over coalgebras Let C D .C; �; �; 1; d; �/ be
a curved conilpotent cooperad.

For any C –coalgebra D D .D; �D/ and any counital cocommutative coalgebra E D

.E ; �E ; �/, the tensor product D˝ E has a structure of C –coalgebra given by

D˝ E
L

n�n˝�
n�1

����������!

M
n

.C.n/˝Sn
D˝n/˝ E˝n

!

M
n

C.n/˝Sn
.D˝ E/˝n:

Theorem 47 The category C –cog of C –coalgebras is tensored-cotensored-enriched
over the category of cocommutative counital coalgebras. The right action is given by
the construction �˝�. We denote the left coaction by h�;�i and the enrichment by
f�;�g.
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Proof The assignment D ; E 7!D˝E defines a right action of the category of counital
cocommutative coalgebras on the category of C –coalgebras. Moreover, the functor
D ˝� and the functor �˝ E preserve colimits. We conclude by Proposition 6.

If D and D 0 are two C –coalgebras, then the cocommutative counital hom coalgebra
fD ;D 0g is the final subcoalgebra of the cofree counital cocommutative coalgebra
F.ŒD;D0�/ over the chain complex ŒD;D0� such that the following diagram, built in a
similar way as its counterpart for algebras, commutes:

fD ;D 0g //

.�;Id;�;:::/
��

ŒD;D0�

��Q
n�0fD ;D

0g˝n=Sn
//
Q

n�0ŒD;D0�˝n=Sn
// ŒC ıD; C ıD0� // ŒD; C ıD0�

3.1.3 Morphisms are atoms

Proposition 48 For any two P –algebras A and A 0, the dg atoms of the cocommuta-
tive coalgebra fA ;A 0g are the morphisms of P –algebras from A to A 0. Similarly,
for any two C –coalgebras D and D 0, the dg atoms of the cocommutative coalgebra
fD ;D 0g are the morphisms of C –coalgebras from D to D 0.

Proof We have

homuCocom.K; fA ;A
0
g/' homP–alg.A GK;A 0/' homP–alg.A ;A

0/:

3.1.4 Nonsymmetric context In the nonsymmetric context, we can get rid of the
cocommutativity condition.

Proposition 49 � If P is a nonsymmetric operad, then the category of P –
algebras is tensored-cotensored-enriched over the category uCog of counital
coassociative coalgebras.

� If C is a nonsymmetric conilpotent curved cooperad, then the category of C –
coalgebras is tensored-cotensored-enriched over the category uCog of counital
coassociative coalgebras.

We denote by f�;�gns these two enrichments over counital coassociative coalgebras.

Proof The proof is similar to the proofs of Theorems 46 and 47.
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The inclusion functor uCocom ,! uCog is a left adjoint (since it preserves colimits).
Let R be its right adjoint. It sends any counital coassociative coalgebra to its final
cocommutative subcoalgebra.

Proposition 50 For any P –algebras A and A 0, the cocommutative coalgebra fA;A 0g
is the final cocommutative subcoalgebra R.fA ;A 0gns/ of fA ;A 0gns . Similarly, for
any C –coalgebras D and D 0, the cocommutative coalgebra fD ;D 0g is the final cocom-
mutative subcoalgebra R.fD ;D 0gns/ of fD ;D 0gns .

Proof For any cocommutative coalgebra E , we have

homuCocom.E ; fA ;A
0
g/' homP–alg.A G E ;A 0/' homuCog.E ; fA ;A

0
g

ns/

' homuCocom.E ;R.fA ;A
0
g

ns//:

Since these isomorphisms are functorial, R.fA ;A 0gns/ is isomorphic to fA ;A 0g.

3.2 Simplicial enrichment

In this section, we recall the fact that the Sullivan polynomials forms algebras allow
one to enrich the category of algebras over an operad. See for instance [16].

3.2.1 General case Let A be a differential graded unital commutative K–algebra.
The category of dg A–modules is equipped with a tensor product

M ˝A N D colim.M ˝A˝N � M ˝N /;

where the two maps are given by the action of A on M and on N , respectively. The
functor A˝�W dgMod! dgModA is strong symmetric monoidal. Hence, it induces
several functors:

� from operads to operads enriched in A–modules,

� from cooperads to cooperads enriched in A–modules,

� from P –algebras (in the category of K–modules) to A˝P –algebras (in the
category of A–modules),

� from C –coalgebras (in the category of K–modules) to A˝C –coalgebras (in
the category of A–modules).

Applying this to the case of the Sullivan algebras of polynomial forms on standard
simplices leads us to the following proposition:
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Proposition 51 Let P be a dg operad and let C be a curved conilpotent cooperad. The
category of P –algebras and the category of C –coalgebras are enriched in simplicial
sets as follows:

HOM.A ;A 0/n WD homP–alg.A ; �n˝A 0/' hom�n˝P–alg.�n˝A ; �n˝A 0/;

HOM.D ;D 0/n WD hom�n˝C –cog.�n˝D ; �n˝D 0/:

Proof The only point that needs to be cleared up is the simplicial structure on
HOM.D ;D 0/. Let �W Œm�! Œn� be a map between finite ordinals. We want to define
��W HOM.D ;D 0/n!HOM.D ;D 0/m . An element of HOM.D ;D 0/n is a morphism of
graded K–modules f from D to �n˝D0 such that fdDD .d�n

˝IdD0CId�n
˝dD0/

and such that the following diagram commutes:

D

�

��

f
// �n˝D0

Id˝�
��

C ıD
Idıf

// C ı .�n˝D0/ // �n˝ .C ıD0/

where the map C ı .�n˝D0/!�n˝ .C ıD0/ is the map

x˝Sk
..a1˝x1/˝ � � �˝ .ak ˝xk//

7! .�1/jxj.
P
jai j/.�1/

P
i>j jai jjxj j.a1 � � � ak/˝ .x˝Sk

.x1˝ � � �˝xk//:

Then ��.f /D .�Œ��˝ Id/f where �Œ��W �n!�m is the structural map induced
by � .

Proposition 52 For any simplicial set X which is the colimit of a finite diagram of
simplices �Œn� and for any P –algebras A and A 0, we have

homsSet.X;HOM.A ;A 0//' homP–alg.A ; �X ˝A 0/:

Proof It suffices to notice that the functor from commutative algebras to R˝P –
algebras R 7!R˝A 0 preserves finite limits.

Remark 53 The enrichment of the category of P –algebras and of the category of
C –coalgebras over simplicial sets that we described above is a part of a more general
enrichment over functors from the category of unital commutative algebras to simplicial
sets:

R 7! .homP–alg.A ; �n˝R˝B//n2N ;

R 7! .hom�n˝R˝C –cog.�n˝R˝D ; �n˝R˝D 0//n2N :
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3.2.2 Nonsymmetric context In the nonsymmetric context, we can use some asso-
ciative algebras instead of the commutative Sullivan algebras to define a simplicial
mapping spaces. However, this does not define an enrichment any more. Let ƒn be
the linear dual of the Dold–Kan coalgebra over the standard simplex,

ƒn WD DKc.�Œn�/�:

This defines a simplicial unital associative algebra.

Further, let P be a nonsymmetric dg operad. For any P –algebra A D .A; A /, and
for any associative algebra A, A˝A has a canonical structure of a P –algebra.

Definition 54 (nonsymmetric simplicial mapping spaces of algebras over an operad)
For any two P –algebras A and B , let HOMns.A ;B/ be the simplicial set

HOMns.A ;B/n WD homP–alg.A ; ƒn˝B/:

Let C be a nonsymmetric curved conilpotent cooperad. For any associative algebra
A and for any two C –coalgebras D D .D; �D/ and E D .E ; �E/, we denote by
homA;C .D ; E / the set of morphisms of graded K–modules f from D to A˝E which
commute with the coderivations and such that the following diagram commutes:

D
f

//

�
��

A˝ E

IdA˝�E

��

C ıns D // C ıns .A˝ E/ // A˝ .C ıns E/

Definition 55 (nonsymmetric simplicial mapping spaces of coalgebras over a curved
cooperad) For any two C –coalgebras D and D 0, let HOMns.D ;D 0/n be the simplicial
set

HOMns.D ;D 0/n WD homƒn;C .D ;D
0/:

These simplicial sets are related to the enrichments over coassociative coalgebras that
we described above.

Proposition 56 For any two P –algebras A and B and for any two C –coalgebras
D and D 0, we have isomorphisms

HOMns.A ;B/'N.fA ;Bgns/;

HOMns.D ;D 0/'N.fD ;D 0gns/:
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Proof The proof for P –algebras is straightforward. Let us prove the result for the C –
coalgebras. A morphism of graded K–modules f from D to ƒn˝D0 is equivalent to a
morphism from D˝DKc.�Œn�/ to D0. In that context, f belongs to homƒn;C .D ;D

0/

if and only if the corresponding morphism from D˝DKc.�Œn�/ to D0 is a morphism
of C –coalgebras. So

HOMns.A ;B/n WD homƒn;C .D ;D
0/' homC –cog.D ˝DKc.�Œn�/;D 0/

' homuCog.DKc.�Œn�/; fD ;D 0gns/

' homsSet.�Œn�;N.fD ;D
0
g

ns//:

Remark 57 Beware! The construction A ;B 7! HOMns.A ;B/ does not define an
enrichment. This comes from the fact that the nerve functor N W uCog! sSet is not
monoidal.

4 Bar–cobar adjunctions

The usual bar–cobar adjunction relates nonunital algebras to noncounital conilpotent
coalgebras; see [19, Chapter 2]. It can be extended to nonunital operads and conilpotent
cooperads; see [12]. Further, as a direct consequence of work of Hirsh and Millès [17],
there exists an adjunction à la bar–cobar relating unital algebras with curved conilpotent
coalgebras. We extend it to operads and curved conilpotent cooperads.

The bar–cobar adjunction �u a Bc is a tool to compute resolutions of operads. But
it has other aspects: any morphism of operads from the cobar construction �uC of a
curved conilpotent cooperad C to an operad P gives rise to a new adjunction à la bar
cobar between C –coalgebras and P –algebras.

4.1 Operadic bar–cobar construction

The usual operadic bar–cobar adjunction (see [19, Chapter 6]) relates augmented
operads to differential graded conilpotent cooperads. The bar construction BP of
an operad P does use the augmentation of P as it is the graded cofree cooperad on
the suspension of P. If P is not augmented, one can try to add an element to P

whose boundary is the unit of P and try the same computation. This is the new
bar construction; its output is no longer a differential graded cooperad but a curved
cooperad.
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The new curved bar functor Bc has also a left adjoint �u whose formula looks like
the usual operadic cobar functor. Again, as in [19, Chapter 6], this adjunction is related
to a notion of twisting morphism.

Definition 58 (operadic bar construction) The operadic bar construction of a dg op-
erad PD .P; P ; 1/ is the curved conilpotent cooperad BcPD .T c.sP˚K�v/;D; �/,
where sP is the suspension of the S–module P and where v is an arity 1, degree 2

element. It is equipped with the coderivation D which extends the following map from
T .sP˚K � v/ to sP˚K � v :

T .sP˚ v/! T�2.sP˚ v/! sP˚ v;
sx 7! �sdPx;

sx˝ sy 7! .�1/jxjsP.x˝y/;

v 7! s1:

It has the curvature map

� W T .sP˚ v/! sP˚K � v!K � v!K; v 7! 1:

Proposition 59 The map � is actually a curvature for the coderivation, that is, D2 D

.� ˝ Id� Id˝ �/�2 .

Proof Let � be the projection from BcP to sP. By Lemma 27, it suffices to prove
that �D2 D .� ˝� �� ˝ �/�2 . This is a straightforward calculation.

Definition 60 (operadic cobar construction) The operadic cobar construction of a
curved conilpotent cooperad C D .C; �; �; 1; �/ is the dg operad �uC D .Ts�1C;D/,
where D is the degree �1 derivation

s�1x 7! �.x/1� s�1dx�
X

.�1/jx.1/js�1x.1/˝ s�1x.2/;

where �2.x/D
P

x1˝x2 .

Proposition 61 The derivation D squares to zero.

Proof It suffices to prove the result for any element of the form s�1x , which is a
straightforward calculation.

Definition 62 (operadic twisting morphism) Let C D .C; �; �; 1; d; �/ be a curved
conilpotent cooperad and let PD .P; P ; 1P ; d/ be a dg operad. An operadic twisting
morphism from C to P is a degree �1 map of S–modules (or N –modules in the
nonsymmetric case)

˛W C! P
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such that
@.˛/C  .˛˝˛/�2 D‚;

where ‚.x/D �.x/1P for any x 2 C. We denote by Tw.C ;P/ the set of operadic
twisting morphisms from C to P.

Proposition 63 We have the functorial isomorphisms

homOperad.�uC ;P/' Tw.C ;P/' homcCoop.C ;BcP/:

Proof Proving the existence of the functorial isomorphism homOperad.�uC ;P/'

Tw.C ;P/ is similar to the proof of [17, Theorem 3.4.1]. Let us show that we have
a functorial isomorphism Tw.C ;P/ ' homcCoop.C ;BcP/. Let ˛W C ! P be an
operadic twisting morphism. We obtain a degree zero map from C to sP ˚K � v as
follows:

C! sP˚K � v; c 7! s˛.x/C �C .x/:

This induces a morphism of graded cooperads f˛W C !BcP D T c.sP˚K � v/ such
that �C D �BcPf˛ . Since @.˛/C P.˛˝ ˛/�2 D ‚, the morphism f˛ commutes
with the coderivations and so is a morphism of curved cooperads. Conversely, from any
morphism of curved cooperads f from C to BcP, one obtains a twisting morphism
as follows:

C
f
�! BcP � sP!P:

The two constructions that we described are inverse one to another.

Hence, the functors �u and Bc realize an adjunction between the category of dg
operads and the category of curved conilpotent cooperads,

cCoop
�u // Operad:
Bc

oo

4.2 Twisted products

Let ˛W C !P be an operadic twisting morphism.

Definition 64 (twisted P –module) For any C –comodule D , let P ı˛D be the free
Pgrad –module P ıD equipped with the unique derivation which extends the map

D! P ıD; x 7! dD.x/� .˛ ı Id/�.x/:
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Definition 65 (twisted C –comodule) For any P –module A , let C ı˛ A be the
cofree C grad –comodule C ıA equipped with a unique coderivation which extends the
map

C ıA!A; x 7! .dA.�C ı Id/C A .˛ ı Id//.x/:

Proposition 66 The derivation of P ı˛ D squares to zero. Hence, P ı˛ D is a dg
P –module. Similarly, the coderivation of C ı˛A squares to .� ıId/�. Hence, C ı˛A

is a C –comodule.

Proof To prove the first point, it suffices to show that �D2 D 0, which is a straight-
forward calculation. To prove the second point, it suffices to show that �D2D .� ı Id/,
which is a straightforward calculation.

Definition 67 (twisting morphism relative to an operadic twisting morphism) For
any C –comodule D D .D; �D/ and any P –module A D .A; A / an ˛–twisting
morphism from D to A is a degree 0 map �W D!A such that

@.�/C A.˛ ı�/�C D 0:

We denote by Tw˛.D ;A / the set of ˛–twisting morphisms from D to A .

Proposition 68 There are functorial isomorphisms

homP–mod.P ı˛ D ;A /' Tw˛.D ;A /' homC –comod.D ;C ı˛ A /

for any C –comodule D and any P –module A .

Proof The proof is similar to [19, Proposition 11.3.2].

4.3 Bar–cobar adjunction for algebras over an operad and coalgebras
over a cooperad

Following [19, Chapter 11], we call the previous functors the bar construction for
P –algebras and the cobar construction for C –coalgebras, respectively.

Definition 69 (bar construction and cobar construction relatives to an operadic twisting
morphism) Let ˛W C!P be an operadic twisting morphism. The ˛–bar construction
is the functor from P –algebras to C –coalgebras defined by

B˛A WD C ı˛ A :
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The ˛–cobar construction is the functor from C –coalgebras to P –algebras defined by

�˛D WDP ı˛ D :

We already know, by Proposition 68, that �˛ is left adjoint to B˛ . Moreover, this
adjunction is enriched over cocommutative coalgebras and simplicial sets.

Proposition 70 The functors �˛ and B˛ induce functorial isomorphisms of counital
cocommutative coalgebras and of simplicial sets

f�˛D ;A g ' fC;B˛A g; HOM.�˛D ;A /' HOM.D ;B˛A /

for any C –coalgebra D and any P –algebra A ;

Lemma 71 We have a functorial isomorphism

Tw˛.D ˝ E ;A /' Tw˛.D ; ŒE ;A �/

for any C –coalgebra D , any P –algebra A and any counital cocommutative coalge-
bra E .

Proof The set of morphisms of graded K–modules from D˝ E to A is in bijection
with the set of morphisms of graded K–modules from D to ŒE ;A�. This bijection and
its inverse preserve ˛–twisting morphisms.

Lemma 72 We have a functorial isomorphism

Tw˛.D ;R˝A /' homR˝C –cog.R˝D ;R˝B˛A /

for any C –coalgebra D , any P –algebra A and any dg unital commutative algebra R.

Proof Let us first denote by � the map from R˝ .C ıA/ to R˝A defined by the
formula

� D Id˝ .� ı Id/:

As we have already seen, a morphism in homR˝C –cog.R˝D ;R˝B˛A / is equivalent
to the data of a map f W D! R˝ .C ıA/ which satisfies some conditions; see the
proof of Proposition 51. On the one hand, the following diagram commutes:

D

�

��

f
// R˝ .C ıA/

Id˝�
��

C ıD
Idıf

// C ı .R˝ .C ıA// // R˝ .C ı C ıA/
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This implies that f is the composition

D �
�! C ıD Idıf

��! C ı .R˝ .C ıA//!R˝ .C ı C ıA/
Id˝.Idı�ıId/
��������!R˝ .C ıA/:

Then, exchanging the action of � with the exchange between C and R, we see that f
is the composition

D �
�! C ıD

Idı.�f /
�����! C ı .R˝A/!R˝ .C ıA/:

On the other hand, @.f / D 0. Given the relation between f and �f just above, a
straightforward calculation shows that this is equivalent to the fact that �f is a twisting
morphism.

Proof of Proposition 70 On the one hand, for any cocommutative coalgebra E , we
have

homuCocom.E ; f�˛D ;A g/' homP–alg.�˛D ; ŒE ;A �/

' Tw˛.D ; ŒE ;A �/' Tw˛.D ˝ E ;A /

' homC –cog.D ˝ E ;B˛A /

' homuCocom.E ; fD ;B˛A g/:

On the other hand, by Lemma 72 and Proposition 68 we have functorial isomorphisms

homP–alg.�˛D ;R˝A /' Tw˛.D ;R˝A /' homR˝C –cog.R˝D ;R˝B˛A /

for any dg unital commutative algebra R. Taking RD�n gives us a natural isomor-
phism of simplicial sets HOM.�˛D ;A /' HOM.D ;B˛A /.

5 Homotopy theory of algebras over an operad

In this section, we recall a result of Hinich, stating that for any dg operad P, the
category of P –algebras admits a projective model structure whose weak equivalences
are quasi-isomorphisms (see [15; 4]). Moreover, we show that the simplicial enrichment
of the category of P –algebras that we described above gives models for the mapping
spaces. Finally, we show that the enrichment over cocommutative coalgebras introduced
in Section 3 encodes deformation of morphisms of P –algebras.

5.1 Model structure on algebras over an operad

We recall here results about model structures on the category of algebras over an operad.
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Definition 73 (right induced model structures) Consider the adjunction

C
L // D
R
oo

Suppose that C admits a cofibrantly generated model structure. We say that D admits
a model structure right induced by the adjunction L aR if it admits a model structure
whose weak equivalences (resp. fibrations) are the morphisms f such that R.f / is a
weak equivalence (resp. a fibration) and whose generating cofibrations (resp. generating
acyclic cofibrations) are the images under L of the generating cofibrations (resp.
generating acyclic cofibrations) of C.

Definition 74 (admissible operad) An operad P is said to be admissible if the
category of P –algebras admits a projective model structure, that is, a model structure
right induced by the adjunction

dgMod
Pı� //

P–algoo

whose right adjoint is the forgetful functor.

Theorem 75 [15] Any nonsymmetric operad is admissible. When the characteristic
of the field K is zero, any operad is admissible.

5.2 Mapping spaces

The simplicial enrichments of the category of P –algebras described above give us
models for the mapping spaces.

Proposition 76 Suppose that the characteristic of the field K is zero. Let P be a dg
operad. The assignment A ;A 0 7! HOM.A ;A 0/ defines a homotopical enrichment
of the category of P –algebras over the category of simplicial sets. Moreover, for any
cofibrant P –algebra A and any P –algebra A 0, the simplicial set HOM.A ;A 0/ is a
model of the mapping space Map.A ;A 0/.

Remark 77 The characteristic zero assumption is not necessary in the nonsymmetric
context.

Proof Let f W A ! A 0 and gW B ! B0 be a cofibration and a fibration of P –
algebras, respectively. Let hW X ! Y be a monomorphism of simplicial sets which
is a generating cofibration or acyclic cofibration for the Kan–Quillen model structure.
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Then X and Y are colimits of finite diagrams made up of simplices �Œn�. Consider a
square

X //

��

HOM.A 0;B/

��

Y // HOM.A 0;B0/�HOM.A ;B0/ HOM.A ;B/

By Proposition 52, it induces the square

A //

��

�Y ˝B

��

A0 // �Y ˝B0 ��X˝B0 �X ˝B

which has a lifting whenever f , g or h is a weak equivalence; indeed, by Proposition 18,
the map �Y !�X is a fibration and it is an acyclic fibration whenever h is an acyclic
cofibration. Further, to prove that HOM.A ;A 0/ is a model of the mapping space
Map.A ;A 0/, it suffices to notice that f�n˝A 0gn2N is a Reedy fibrant resolution of
the constant simplicial P –algebra A 0.

5.3 Deformation theory of morphisms of algebras over an operad

We know that the category of P –algebras is enriched over the category uCocom of
cocommutative coalgebras. In this subsection, we show that for any P –algebras
A and B , the cocommutative coalgebra fA ;Bg encodes the deformation theory of
morphisms from A to B . We suppose in this subsection that the field K is algebraically
closed.

Any morphism of P –algebras f W A !B defines a deformation problem Def.f /.

Artin–alg! sSet;

R 7!Map.A ;B˝R/�h
Map.A ;B/ ff g ' HOM.A ;B˝R/�HOM.A ;B/ ff g:

The following theorem is a direct consequence of a result by Chuang, Lazarev and
Mannan [7, Theorem 2.9]. It is proven in the appendix.

Theorem 78 Suppose that the base field K is algebraically closed and that its charac-
teristic is zero. Let C D .C; �; �/ be a dg cocommutative coalgebra and let A be its
set of graded atoms. There exists a unique decomposition C '

L
a2A Ca , where Ca is

a subcoalgebra of C which contains a and which belongs to the category uNilCocom.
Moreover, a morphism of dg cocommutative coalgebras f W

L
a2A Ca!

L
b2B Db is

the data of a function �W A! B and of a morphism faW Ca! D�.a/ for any a 2A.

Algebraic & Geometric Topology, Volume 19 (2019)



1580 Brice Le Grignou

We know from Proposition 48 that a morphism f of P –algebras from A to B is
a dg atom of the cocommutative coalgebra fA ;Bg. Applying Theorem 78 to the
cocommutative coalgebra fA ;Bg, we obtain the conilpotent cocommutative coalgebra
fA ;Bgf . This is in particular a Hinich coalgebra which encodes a deformation problem
R 7! Map.R�; fA ;Bgf /. We show in the next proposition that this deformation
problem is Def.f /.

Theorem 79 Suppose that A is a cofibrant P –algebra. Then the deformation problem
induced by the conilpotent cocommutative coalgebra fA ;Bgf is Def.f /.

Lemma 80 If A is a cofibrant P –algebra, the simplicial Hinich coalgebra

fA ; �n˝Bgf

is a Reedy fibrant replacement of the constant simplicial Hinich coalgebra fA ;Bgf .

Proof Let gW X ! Y be a monomorphism of simplicial sets which are finite colimits
of standard simplices �Œn�. Let hW C1! C2 be a monomorphism of Hinich coalgebras.
Consider the square

C1

��

// fA ; �Y ˝Bgf

fA ;�Œg�˝Bg

��

C2
// fA ; �X ˝Bgf

Any morphism of cocommutative coalgebras from a conilpotent cocommutative coalge-
bra C to fA ;Bg such that the atom of C targets the atom f of fA ;Bg is a morphism
from C to fA ;Bgf . So, lifting the previous square amounts to lifting the square of
P –algebras

∅ //

��

ŒC2; �Y ˝B�

��

A // ŒC1; �Y ˝B��ŒC1;�X˝B� ŒC2; �Y ˝B�

This is possible whenever, g or h is a weak equivalence, since any weak equivalence of
Hinich coalgebras is in particular a quasi-isomorphism. So, in particular, any face map
fA ; �nC1˝Bg ! fA ; �n˝Bg is an acyclic fibration of Hinich coalgebras and, for
any integer n 2N , the morphism fA ; �n˝Bg! fA ; �@�Œn�˝Bg is a fibration.
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Proof of Theorem 79 By Lemma 80, the deformation problem induced by the Hinich
coalgebra fA ;Bgf is equivalent to the deformation problem

R 2 Artin–alg 7! .homHinich–cog.R
�; fA ; �n˝Bgf //n2N :

We have

homHinich–cog.R
�; fA ; �n˝Bgf /

' homuCocom.R
�; fA ; �n˝Bg/�homuCocom.K;fA ;�n˝Bg/ ff g

' homP–alg.A GR�; �n˝B/�homP–alg.A ;�n˝B/ ff g

' homP–alg.A ;R˝�n˝B/�homP–alg.A ;�n˝B/ ff g:

Since the simplicial sets

.homP–alg.A ;R˝�n˝B//n2N and .homP–alg.A ; �n˝B//n2N

are Kan complexes and models of Map.A ;R˝B/ and Map.A ;B/, respectively, and
since the map between them is a fibration, the simplicial set

.homP–alg.A ;R˝�n˝B/�homP–alg.A ;�n˝B/ ff g/n2N

is a model of the homotopy pullback Map.A ;R˝B/�h
Map.A ;B/ ff g.

6 Model structures on coalgebras over a cooperad

In this section, we show that, for any operadic twisting morphism ˛W C ! P, the
projective model structure on the category of P –algebras can be transferred through
the cobar construction functor �˛ to the category of C –coalgebras. This result is in
the vein of similar results by Hinich [16], Lefevre and Hasegawa [18], Vallette [26] and
Positselski [23]. However, we use a new method for the proof that uses the presentability
of the category of algebras over an operad and of the category of coalgebras over a
curved conilpotent cooperad; specifically, we use a theorem proved by Bayeh, Hess,
Karpova, Kedziorek, Riehl and Shipley [3; 14].

6.1 Model structure induced by a twisting morphism

Definition 81 (left induced model structures) Consider the adjunction

C
L // D
R
oo
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Suppose that D admits a model structure. We say that C admits a model structure left
induced by the adjunction LaR if it admits a model structure whose weak equivalences
(resp. cofibrations) are the morphisms f such that L.f / is a weak equivalence (resp.
a cofibration).

Here is the main theorem of the present article:

Theorem 82 Let P be a dg operad, let C be a curved conilpotent cooperad and
let ˛ be an operadic twisting morphism between them. Suppose that the characteristic
of the base field K is zero. We know that the category of P –algebras admits a
projective model structure. Then the category of C –coalgebras admits a model structure
left induced by the adjunction �˛ a B˛ . We call it the ˛–model structure. In the
nonsymmetric context, we can drop the assumption that the characteristic of the field K

is zero.

To prove this theorem, we will use the following result:

Theorem 83 [3, Theorem 2.23; 14, Theorem 2.2.1] Consider an adjunction

C
L // M
R
oo

between presentable categories. Suppose that M is endowed with a cofibrantly gen-
erated model structure. Then there exists a left induced model structure on C if the
morphisms which have the right lifting property with respect to left induced cofibrations
are left induced weak equivalences. In particular, this is true if the category C has a
cofibrant replacement functor, and if any cofibrant object has a cylinder.

From now on, a weak equivalence (resp. cofibration) of C –coalgebras is a morphism
whose image under �˛ is a weak equivalence (resp. cofibration). An acyclic cofibration
is a morphism which is both a cofibration and a weak equivalence. A fibration is a
morphism which has the right lifting property with respect to all acyclic cofibrations
and an acyclic fibration is a morphism which is both a fibration and a weak equivalence.
Here is the proof.

Proof of Theorem 82 Proposition 84 ensures us that the cofibrations of the category
of C –coalgebras are the monomorphisms. Hence, any object is cofibrant. Then
Proposition 90 provides us with a cylinder for any object if the characteristic of K is
zero. In the nonsymmetric context, Proposition 93 provides us with a cylinder. We
conclude by Theorem 83.
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6.2 Cofibrations

Proposition 84 The class of cofibrations of C –coalgebras is the class of monomor-
phisms.

Lemma 85 Let f W D! E be a monomorphism of C –coalgebras such that �.E/�
C ıf .D/. Then f is a cofibration.

Proof We can decompose the graded K–module E as EDD˚F. The coderivation dE

corresponds then to the matrix �
dD �

0 dF

�
Consider the diagram of P –algebras

P ı .s�1F/ //
� _

��

�˛D

P ı .s�1F ˚F/

where the horizontal map sends s�1x to �.x/ C .˛ ı Id/�.x/. The fact that it
commutes with derivations is given by the fact that the derivation of �˛E squares
to zero. Moreover, s�1F ˚ F is endowed with the differential d.s�1x C y/ D

�s�1dFxC s�1yCdFy . The vertical map is a cofibration since it is the image under
the left Quillen functor P ı .�/ of a cofibration, and f is the pushout of this vertical
map along the horizontal map. Hence, f is a cofibration.

Proof of Proposition 84 Let f W D! E be a cofibration. Then �˛.f / is a monomor-
phism. Since the following square is commutative, f is a monomorphism:

�˛D // �˛E

D

OO

// E

OO

Conversely, if f is a monomorphism, then, it can be decomposed into the transfinite
composition of the maps fn D D CF rad

n�1
E ! D CF rad

n E . Since the maps fn satisfy
the conditions of Lemma 85, they are cofibrations. So f is a cofibration.
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6.3 Filtered quasi-isomorphism

Definition 86 (filtered quasi-isomorphism) Let D and E be two C –coalgebras. A
morphism of C –coalgebras f from D to E is said to be a filtered quasi-isomorphism
if the induced morphisms between the graded complexes relative to the coradical
filtrations are quasi-isomorphisms, that is, if for any integer n, the morphism from
Grad

n D to Grad
n E is a quasi-isomorphism.

Proposition 87 If the characteristic of K is zero, a filtered quasi-isomorphism is a
weak equivalence of C –coalgebras. The characteristic zero assumption is not necessary
in the nonsymmetric context.

We will use the following classical result:

Theorem 88 [21, Theorem XI.3.4] Let f W A ! B be a map of filtered chain
complexes. Suppose that the filtrations are bounded below and exhaustive. If, for
any integer n, the map GnA ! GnB is a quasi-isomorphism, then f is a quasi-
isomorphism.

Proof of Proposition 87 Consider the filtration on �˛D (resp. �˛E )

Fn�˛D D P.0/˚
X
k�1

p1C���CpkDn

P.k/˝Sk
.F rad

p1
D˝ � � �˝F rad

pk
D/:

It is clear that �˛.f / sends Fn�˛D to Fn�˛E for any integer n. Moreover, we have

Gn�˛D D
X
k�1

p1C���CpkDn

P.k/˝Sk
.Grad

p1
D˝ � � �˝Grad

pk
D/:

Then, by the operadic Künneth formula, Gn.�˛.f //W Gn�˛D!Gn�˛E is a quasi-
isomorphism for any n2N . Hence, by Theorem 88, �u.f / is a quasi-isomorphism.

Remark 89 The coradical filtration is not the only filtration whose notion of filtered
quasi-isomorphism gives us weak equivalences. An exhaustive filtration .FnD/n2N is
called admissible if

�.FnD/�
X

p0Cp1C���CpkDn

F rad
0 C˝Sk

.Fp1
D˝ � � �˝Fpk

D/;

d.FnD/� FnD;

d2.FnD/� Fn�1D:
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Using similar arguments as in the proof just above, we can prove that a filtered quasi-
isomorphism with respect to two admissible filtrations is a weak equivalence.

6.4 Cylinder object

Proposition 90 Let D D .D; �D/ be a C –coalgebra. Let A D .A; A / be a cylinder
of �˛.D/ such that the structural map pW A ! �˛.D/ is an acyclic fibration. The
diagram

B˛�˛.D ˚D/ // B˛.A /
B˛p

// B˛�˛.D/

D ˚D

OO

// E

OO

// D

OO

where E WD B˛.A / �B˛.�˛D/ D provides us with a cylinder E D .E ; �E / for the
C –coalgebra D .

Lemma 91 The pullback E is the final subgraded C grad –coalgebra of B˛A whose
image in B˛�˛D is in the image of the morphism D! B˛�˛D .

Proof Let F D .F ; �F / be the final subgraded C grad –coalgebra of B˛A whose
image in B˛�˛D is in the image of the morphism D! B˛�˛D . Proving that F is
the underlying C grad –coalgebra of E amounts to proving that F is stable under the
coderivation D of B˛A . We prove it by induction on the coradical filtration of F.
First, by the maximality property of F, F rad

0
F is stable under D. Then suppose that

F rad
n F is stable under D for an integer n� 0. Let x be an element of F rad

nC1
F. On the

one hand, B˛.p/D.x/DD.B˛.p/.x//. Since B˛.p/.x/ is in the image of D and
since this image is stable under the coderivation of B˛�˛D , then B˛.p/D.x/ is in
the image of D . On the other hand, we have

�.D.x//D .dC ı IdC Id ı0D/�.x/:

So, since �.x/� 1C ˝ x 2 C ı .F rad
n F/, and since F rad

n F is stable under D by the
inductivity assumption,

�.D.x//� 1C ˝D.x/D .dC ı IdC Id ı0D/.�.x/� 1C ˝x/ 2 C ı .F rad
n F/:

By these two points, F CK �D.x/ is a subgraded C grad –coalgebra of B˛.A / whose
image in B˛�˛D is in the image of D . By the maximality property of F, then,
D.x/2F. So, F rad

nC1
F is stable under D. Hence, by induction F is stable under D.
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To prove Proposition 90, we will show that the pullback map E ! D is a filtered
quasi-isomorphism. Since �˛D is a cofibrant P –algebra, there exists a right inverse
qW �˛D ! A to the acyclic fibration pW A ! �˛D . Then let us decompose A as
A D �˛D ˚K . The chain complex K is acyclic. So let hW K! K be a degree 1

map such that @.h/D IdK . It can be extended to a map

B˛A � A � K!A; x 7! h.x/:

The zero map is a coderivation on the graded cooperad C grad . Then let Dh be the
degree 1 coderivation of .B˛A /grad relative to the zero coderivation on C grad whose
projection on A is h. In other words, Dh D IdC ı

0 h.

Lemma 92 The sub-C –coalgebra E of B˛A is stable under Dh .

Proof By Lemma 91, it suffices to prove that the final subgraded C grad –coalgebra
of B˛A whose image in B˛�˛D lies inside D is stable under Dh . To that purpose, we
use the same arguments as in the proof of Lemma 91 and the fact that B˛.p/DhD 0.

Proof of Proposition 90 Since the map D ˚D ! E is a monomorphism and so a
cofibration, it suffices to show that the map E ! D is a weak equivalence. We show
that it is a filtered quasi-isomorphism. Let n2N ; let us show that the map GnE!GnD
is a quasi-isomorphism. To that purpose, consider the filtration on B˛A

F 0kB˛A WD
X
i�k

C˝S .K
˝i
˝ .�˛D/˝j /:

This filtration is stable under the coderivations d and Dh and it induces a filtration
on Grad

n E . It is clear that the morphism G0
0
Grad

n E!Grad
n D is an isomorphism. More-

over, for any integer k � 1, @.Dh/ D k:Id on G0
k
Grad

n E . Since the characteristic
of K is zero, G0

k
Grad

n E is acyclic. By Theorem 88, the map GnE!GnD is a quasi-
isomorphism.

Proposition 93 In the nonsymmetric context, D ˝ DKc.�Œ1�/ provides us with a
cylinder for the C –coalgebra D .

Proof Since Grad
n .D ˝ DKc.�Œ1�// D Grad

n .D/ ˝ DKc.�Œ1�/ and since the map
DKc.�Œ1�/! K is a quasi-isomorphism, D ˝ DKc.�Œ1�/! D is a filtered quasi-
isomorphism and so a weak equivalence.

Algebraic & Geometric Topology, Volume 19 (2019)



Homotopy theory of unital algebras 1587

6.5 Enrichment in coalgebras the nonsymmetric context

Proposition 94 In the nonsymmetric context, the assignment D ;D 0 7! fD ;D 0gns

defines a homotopical enrichment of the category of C –coalgebras together with its
˛–model structure over the category of counital coassociative coalgebras.

Proof Let f W D!D 0 be a cofibration of C –coalgebras, let gW E ! E 0 be a fibration
of C –coalgebras and let hW X ! Y be a cofibration (ie a monomorphism) of counital
coassociative coalgebras. Consider the square

X //

��

fD 0; E gns

��

Y // fD 0; E 0g �fD;E 0g fD ; E g

It induces a square

D 0˝X qD˝X D ˝Y //

��

E

��

D 0˝Y // E 0

The left vertical map is a monomorphism and so a cofibration.

� If the morphism gW E ! E 0 is an acyclic fibration, then the square has a lifting.

� Suppose that the morphism hW X ! Y is an acyclic cofibration. Then the
morphism D˝X !D˝Y is a filtered quasi-isomorphism and a cofibration, so
it is an acyclic cofibration. Hence, its pushout D 0˝X !D 0˝X qD˝X D˝Y

is also an acyclic cofibration. Moreover, the map D 0˝X !D 0˝Y is a filtered
quasi-isomorphism and so a weak equivalence. So, by the 2-out-of-3 rule, the
morphism D 0˝X qD˝X D˝Y !D 0˝Y is a weak equivalence. Since it is a
cofibration, it is an acyclic cofibration and the square has a lifting.

� Suppose that the morphism f W D ! D 0 is an acyclic cofibration. Then the
morphism D˝X!D 0˝X is an acyclic cofibration. This is a consequence of the
fact that �˛.D˝X /D.�˛D/GX, and that for any fibration of P –algebras A !

A 0, the morphism ŒX;A �! ŒX;A 0� is also a fibration. Then the same arguments
as in the previous point show us that the morphism D 0˝XqD˝X D˝Y !D 0˝Y

is an acyclic cofibration and so the square has a lifting.
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6.6 Changing operads and cooperads

In this subsection, we explore how the left induced model structure on coalgebras over
a curved conilpotent cooperad is modified when we change the underlying operadic
twisting morphism. This is inspired by [8], where a similar study is done in the context
of augmented dg operads and dg conilpotent cooperads.

Recall first that a morphism of dg operads f W P!Q induces an adjunction between
their categories of algebras

P–alg
f! //

Q–alg
f �
oo

whose right adjoint f � sends a Q–algebra A to the same underlying chain complex.
This adjunction is a Quillen adjunction with respect to the projective model structures;
see [4]. Similar things happen for coalgebras over curved conilpotent cooperads.

Proposition 95 Let f W C ! D be a morphism of curved conilpotent cooperads. It
induces an adjunction between their categories of coalgebras,

C –cog
f� //

D–cog;
f !

oo

whose left adjoint f� sends a C –coalgebra E to the same underlying graded K–
module.

Proof Let E D .E ; �; d/ be a C –coalgebra. It has a structure of D –coalgebra defined
by the composite map

E �
�! C ı E f ıId

��! D ı E :

This defines the functor f� . Since it preserves colimits and since the category of
C –coalgebras and the category of D –coalgebras are presentable, f� has a right adjoint
by Proposition 2.

Further, let us fix a dg operad P. The canonical operadic twisting morphism � W BcP!

P is universal in the sense that any operadic twisting morphism ˛ from a curved
conilpotent cooperad C to P is equivalent to a morphism of curved cooperads f from
C to BcP ; then ˛D�f . In that context, the cobar functor �˛ can be decomposed as
�˛ D��f� , and the ˛–model structure on the category of C –coalgebras is the model
structure left induced by the � –model structure on the category of BcP –coalgebras.

On the other hand, let us fix a curved conilpotent cooperad C. The canonical operadic
twisting morphism �W C !�uC is universal in the sense that any operadic twisting
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morphism ˛W C !P is equivalent to the data of a morphism of operads f from �uC

to P ; then ˛ D f �. A direct consequence of the following proposition is that the
model structure on C –coalgebras induced by the universal operadic twisting morphism
�W C !�uC is universal in the sense that any ˛–model structure is a left Bousfield
localization of this �–model structure.

Proposition 96 Let ˛W C !P be an operadic twisting morphism and let f W P!Q

be a morphism of dg operads. The .f ˛/–model structure on the category of C –
coalgebras is the left Bousfield localization of the ˛–model structure with respect to
.f ˛/–weak equivalences. Moreover, if the Quillen adjunction f! a f

� is a Quillen
equivalence, the .f ˛/–model structure coincides with the ˛–model structure.

Proof The cofibrations of the ˛–model structure and the cofibrations of the .f ˛/–
model structure are both the monomorphisms. Moreover, the functor f! is a left Quillen
adjoint functor. So, for any ˛–weak equivalence g , since �˛.g/ is a weak equivalence
between cofibrant objects, �.f ˛/.g/Df!�˛.g/ is a weak equivalence. So the ˛–weak
equivalences are in particular .f ˛/–weak equivalences. So is proven the fact that
the .f ˛/–model structure is a left Bousfield localization of the ˛–model structure.
Suppose now that the adjunction f! a f

� is a Quillen equivalence. Then, for any
C –coalgebra E , the morphism

�˛E ! f �f!�˛E D f ��f ˛E

is a quasi-isomorphism. Since the functor f � is the identity on the underlying chain
complexes, the commutative square

f ��.f ˛/E
f ��.f ˛/.g/

// f ��.f ˛/E
0

�˛E

OO

�˛.g/

// �˛E 0

OO

ensures that a morphism gW E ! E 0 of C –coalgebras is a ˛–weak equivalence if and
only if it is an .f ˛/–weak equivalence.

7 The universal model structure

In the previous section, we studied model structures on categories of coalgebras over a
curved conilpotent cooperad which are induced by an operadic twisting morphism ˛ .
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In this section, we investigate the particular case where the operadic twisting morphism
is the universal twisting morphism �W C !�uC for any curved conilpotent cooperad C.
This model structure is universal in the sense that, for any operadic twisting morphism
˛W C !P, the ˛–model structure on the category of C –coalgebras is obtained from
the �–model structure by Bousfield localization. We will show that the adjunction
�� aB� is a Quillen equivalence, that the fibrant C –coalgebras in the �–model structure
are the images of the �uC –algebras under the functor B� , and we will describe the
cofibrations, the weak equivalences and the fibrations between them. Moreover, we
will prove that the enrichment of C –coalgebras over simplicial sets that we described
above computes the mapping spaces expected by the model structure.

We suppose here that the characteristic of the field K is zero. This assumption is not
necessary in the nonsymmetric context.

7.1 Quillen equivalence

Theorem 97 The adjunction �� a B� relating C –coalgebras to �uC –algebras is a
Quillen equivalence.

Proof Let us show that for any �uC –algebra A D .A; A /, the map ��B�A D
�uC ı� C ı�A ! A is a quasi-isomorphism. The coradical filtration of C induces a
filtration on �uC,

F0�uC WDK:1;

Fn�uC WDK:1˚
X

i1C:::CikDn

k�1

s�1F rad
i1

C˝ � � �˝ s�1F rad
ik

C for n� 1:

It induces a filtration on �uC ı� C and on �uC ı� C ı�A ,

Fn.�uC ı�C / WD Fn�uC .0/˚
X

i0C���CikDn

k�1

Fi0
.�uC /.k/˝Sk

.F rad
i1

C˝� � �˝F rad
ik

C/;

Fn.�uC ı�C ı�A / WD Fn.�uC ı�C /ıA:

Then G.�uC ı� C /D�u.GC / ıG�GC. By [19, Lemma 6.5.14], the map

�u.GC / ıG�GC ! I

is a quasi-isomorphism. So, the map

G.�uC ı� C ı�A/!GA
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is a quasi-isomorphism (here GA is the graded complex corresponding to the constant
filtration FnA D A). Hence, by Theorem 88, the map �uC ı� C ı� A ! A is a
quasi-isomorphism. Since the model structure on C –coalgebras is transferred from
the model structure on �uC –algebras, then the fact that the counit ��B�A ! A is a
weak equivalence for any algebra A ensures us that the Quillen adjunction �� aB� is
a Quillen equivalence.

7.2 Fibrant objects

The purpose of this subsection is to describe the fibrant objects of the �–model structure.

Definition 98 (quasicofree C –coalgebras) A C –coalgebra is said to be quasicofree
if its underlying C grad –coalgebra is cofree, that is, isomorphic to a coalgebra of the form
C grad ıV. A morphism of quasicofree C –coalgebras F W C ıV! C ıW (together with
choices of cogenerators V and W ) is said to be strict if there exists a map f W V!W
such that F D Id ıf .

Proposition 99 The functor B� is an embedding of the category of �uC –algebras
into the category of C –coalgebras whose essential image is spanned by quasicofree C –
coalgebras. Moreover, a morphism of C –coalgebras B�A DC ı�A !B�A

0DC ı�A
0

is in the image of B� if and only if it is strict.

Proof It is straightforward to prove that the functor B� is faithful and conservative.
Moreover, it is clear that the images of the functor B� are in particular quasicofree
C –coalgebras and strict morphisms. Conversely, let D WD C ıA be a quasicofree
C –coalgebra. Its coderivation extends the degree �1 map dA˚  W A˚ C ıA! A.
The map  gives us a degree �1 map from C to the operad EndA , that we denote
by ˛ . The coderivation which extends dA˚ squares to .� ı Id/�, so ˛ is a twisting
morphism and so induces a morphism of operads from �uC to EndA , which is an
�uC –algebra structure on A. Then D ' B�A. Further, let F D Id ı f be a strict
morphism from B�A to B�B . Since F commutes with the coderivations, f is a
morphism of �uC –algebras.

Theorem 100 The fibrant C –coalgebras in the �–model structure are the quasicofree
C –coalgebras (and so the objects in the essential image of the functor B� ).
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Proof Let D be a fibrant object. Since the morphism D ! B���D is an acyclic
cofibration, the following square has a lifting:

D
Id

//

��

D

��

B���D // �

Hence, D is a retract of a quasicofree C –coalgebra. By Lemma 101, it is a quasicofree
C –coalgebra. Conversely, a quasicofree C –coalgebra is fibrant since it is isomorphic
to the image under B� of an �uC –algebra which is fibrant.

Lemma 101 A retract of a cofree graded C grad –coalgebra is a cofree graded C grad –
coalgebra.

Proof Let D D .D; �D/ be a graded C grad –coalgebra which is a retract of C ı V.
On the one hand, the following diagram is a retract, that is, the compositions of the
horizontal maps give the identity on the bottom and on the top:

Grad
n D //

��

Grad
n .C ıV/

��

// Grad
n D

��

.Grad
n C/ ıF rad

0
D // .Grad

n C/ ıF rad
0
.C ıV/ // .Grad

n C/ ıF rad
0

D

Since the middle vertical map is an isomorphism, all the vertical maps are isomorphisms.
On the other hand, the map � ı IdW C ıV! V D F rad

0
C ıV gives us a map D! F0D

and hence a morphism of graded C –coalgebras f W D! C ıF0D. Let us show that f
is an isomorphism. It is clear that the map F0D! F0.C ıF0D/ is an isomorphism.
For any integer n� 1, the following diagram is commutative:

Gn.D/
f

//

�
��

Gn.C ıF0D/

�
��

.GnC/ ıF0D
Idıf

// .GnC/ ıF0.C ıF0D/D .GnC/ ıF0D

Since the vertical maps are isomorphisms and since the bottom horizontal map is
an isomorphism, the top horizontal map is also an isomorphism. Hence, the map
Gf W GD!G.C ıF0D/ is an isomorphism. By Theorem 88, f is an isomorphism.
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7.3 Cofibrations, fibrations and weak equivalences between fibrant
objects

We show here that cofibrations, weak equivalences and fibrations between fibrant
C –coalgebras are easily characterized.

Proposition 102 Let A D .A; A / and B D .B; B/ be two �uC –algebras and
let F W B�A ! B�B be a morphism between their bar constructions. We denote by
f W B�A ! B its projection f D �BF on B .

� The morphism F is a cofibration if and only if the restriction f jA is a monomor-
phism.

� The morphism F is a weak equivalence if and only f jA is a quasi-isomorphism.

� The morphism F is a fibration if and only if f jA is an epimorphism.

Lemma 103 The morphism of chain complexes A!��B�A which is the restriction
to A of the canonical morphism B�A ! B���B�A is a quasi-isomorphism.

Proof It is a right inverse of the canonical morphism of �uC –algebras ��B�A !A ,
which is a quasi-isomorphism.

Proof of Proposition 102 Note first that f jA D F jA .

� Suppose that F is a cofibration, ie a monomorphism. Then its restriction F jA is
also a monomorphism. Conversely, suppose that the map f jA is a monomorphism.
We can prove by induction that, for any integer n, the map F W F rad

n B�A ! F rad
n B�B

is a monomorphism.

� By Lemma 103, the maps A!��B�A and B!��B�B are quasi-isomorphisms.
Consider the diagram

��B�A
��F

// ��B�B

A
f jA

//

OO

B

OO

It ensures that f jA is a quasi-isomorphism if and only if ��F is a quasi-isomorphism,
that is, if and only if F is a weak equivalence.

� Suppose that F is a fibration. Notice first that any chain complex can be considered
as a C –coalgebra whose decomposition is given by the map with �x D 1C ˝x (it is
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a coalgebra since �C .1C /˝x D 1C ˝ 1C ˝x D 1C ˝�x ; the commutation with the
derivations and the curvature condition are straightforward to check). Then any square
of C –coalgebras as follows has a lifting:

0 //

��

B�A

��

Dn // B�B

This ensures that the map f jA is an epimorphism. Conversely, suppose that f jA is an
epimorphism. By Lemma 104, there exists an isomorphism GW B�A

0! B�A such
that FG is in the image of the functor B� . If we denote by g the map from A0 to A
which underlies G, then g is an isomorphism by Lemma 105. Then fg is a fibration
of �uC –algebras and so FG DB�.fg/ is a fibration. Since G is an isomorphism, F

is a fibration.

Lemma 104 Let F W B�A ! B�B be a morphism of C –coalgebras such that the
underlying morphism f W A! B is surjective. Then there exists an �uC –algebra A 0

and an isomorphism of C –coalgebras GW B�A
0 ! B�A such that FG is a strict

morphism, that is, in the image of the functor B� .

Proof We build an isomorphism of graded C grad –coalgebras GW C ı A ! C ı A
such that FG is a strict morphism, that is, of the form IdC ı h. To that purpose we
define inductively maps gnW F

rad
n C ıA!A such that gn�1 is the restriction of gn to

F rad
n�1

C ıA and such that we have the equality between maps from F rad
n C ıA to A

(1) fgnCf .Id ıgn�1/.x� ı Id/D f �A;

where �AD �ıId is the projection of C ıA on A. First, let us choose g0D IdA . Then
suppose that we have built gn satisfying (1). The map f W A! B and the injection of
F rad

n C ıA into F rad
nC1

C ıA give us the square

homgMod.F
rad
nC1

C ıA;A/ //

��

homgMod.F
rad
nC1

C ıA;B/

��

homgMod.F
rad
n C ıA;A/ // homgMod.F

rad
n C ıA;B/

The following map is surjective:

homgMod.F
rad
nC1C ıA;A/

! homgMod.F
rad
n C ıA;A/�homgMod.F

rad
n CıA;B/ homgMod.F

rad
nC1C ıA;B/:
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So there exists an element of homgMod.F
rad
nC1

C ıA;A/ whose image under this map is
the pair .gn; f �A�fnC1.Id ıgn/.x� ı Id//. We can choose this element to be gnC1 .
Thus, let g be the map from C ıA to A whose restriction to F rad

n C ıA is gn for any n.
Let G be the map of graded C grad –coalgebras which extends g . By Lemma 105, the
map G is an isomorphism. Let us transfer the coderivation of B�A to C ıA along the
isomorphism G. This gives us a new �uC –algebra structure on the chain complex A,
which we denote by A 0. Finally, the morphism FG is the image under the functor B�

of the morphism of �uC –algebras fg0W A
0!B0.

Lemma 105 Let F W D D C ı V ! E D C ıW be a morphism of quasicofree C –
coalgebras. Then F is an isomorphism if and only if its underlying map f W V!W is
an isomorphism.

Proof Suppose first that F is an isomorphism with inverse G. Let us denote by
gW W ! V the map underlying G. Then the map g is inverse to f and so f is
an isomorphism. Conversely, suppose that f is an isomorphism. A straightforward
induction shows that F is both injective and surjective.

7.4 Mapping spaces and deformation theory

Proposition 106 For any cofibrant C –coalgebra D and any fibrant C –coalgebra E ,
the simplicial set HOM.D ; E/ is a Kan complex and is a model for the mapping space
Map.C;D/ expected by the �–model structure.

Proof Any fibrant C –coalgebra E is isomorphic to the image under B� of an �uC –
algebra A . So we have

HOM.D ; E /'HOM.D ;B�A /'HOM.��D ;A /'Map.��D ;A /'Map.D ;B�A /:

Further, we know from Proposition 76 that HOM.��D ;A / is a Kan complex.

Corollary 107 Let ˛W C !P be an operadic twisting morphism. Let us endow the
category of C –coalgebras with the ˛–model structure. For any cofibrant C –coalgebra
D and any fibrant C –coalgebra E , the simplicial set HOM.D ; E / is a Kan complex
and is a model for the mapping space Map.D ; E /.

Proof It suffices to notice that fibrations and acyclic fibrations in the ˛–model structure
are in particular fibrations and acyclic fibrations in the �–model structure. Then we can
conclude by Proposition 106.
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Let f W D ! B�A be a morphism of C –coalgebras. We know from Proposition 48
that it is a dg atom of the cocommutative coalgebra fD ;B�A g. Consider the Hinich
coalgebra fD ;B�A gf that appears from the decomposition described in Theorem 78.

Proposition 108 The deformation problem induced by fD ;B�A gf is equivalent to
the deformation problem

R 2 Artin–alg 7! .homR˝�n˝C –cog.R˝�n˝C ;R˝�n˝B�A //n2N :

Proof This is a direct consequence of Proposition 70 and Theorem 79.

7.5 Algebras of the operad �uC

We have shown above that the adjunction �� a B� is a Quillen equivalence. Moreover,
in Proposition 99, we have shown that fibrant C –coalgebras are �uC –algebras. So
switching from the model category of �uC –algebras to the model category of C –
coalgebras amounts to add new morphisms between any two �uC –algebras. The
weak equivalences and the fibrations of �uC –algebras remain weak equivalences and
fibrations, respectively, under this embedding but, in the category of C –coalgebras,
any monomorphism is a cofibration. In particular, any object is cofibrant. Subsequently,
C –coalgebras provide a convenient framework to study the homotopy theory of �uC –
algebras. For instance, the following proposition provides a tool to decide whether or
not two �uC –algebras are equivalent.

Proposition 109 Let A and B be two �uC –algebras. There exists a chain of weak
equivalences of �uC –algebras between A and B

A D A0

o�! A1

o � � � � o�! An�1

o � An DB

if and only if there exists a weak equivalence of C –coalgebras between B�A and B�B .

Proof Suppose that there exists a chain of weak equivalences from A to B . Then
there exists a chain of weak equivalences between B�A and B�B . Moreover, the
objects of this chain are fibrant and cofibrant. So any morphism of this chain has a
homotopical inverse. So there exists a weak equivalence from B�A to B�B . Conversely,
consider a weak equivalence F from B�A to B�B . Then the following chain of weak
equivalences of �uC –algebras links A to B :

A o ���B�A
��.F /
���!��B�B

o�!B:
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7.6 Koszul morphisms

In this subsection, we study the operadic twisting morphisms ˛W C !P such that
the ˛–model structure on the category of C –coalgebras coincides with the universal
�–model structure that we described above. Let ˛W C !P be an operadic twisting
morphism. We denote by �W �u.C /!P the morphism of operads induced by ˛ .

Theorem 110 The following assertions are equivalent:

(1) The adjunction

�u.C /–alg
�!
//
P–alg

��
oo

is a Quillen equivalence.

(2) The morphism of operads �W �u.C /!P is a quasi-isomorphism.

(3) The ˛–model structure coincides with the �–model structure and �˛ a B˛ is a
Quillen equivalence.

(4) For any P –algebra A , the map P ı˛ C ı˛A !A is a quasi-isomorphism, and
for any C –coalgebra D , the morphism D! C ı˛P ı˛ D is a �–equivalence (it
is the case if, for instance, it is a filtered quasi-isomorphism).

(5) The morphisms of S–modules �u.C / ı� C ı� �u.C / ! P ı˛ C ı˛ P and
P ı˛ C ı˛ P!P are quasi-isomorphisms.

Lemma 111 Let f W V! V 0 be a morphism of dg S–modules. Suppose that, for any
chain complex W (that is, an S–module concentrated in arity zero), the morphism
V ıW! V 0 ıW is a quasi-isomorphism. Then f is a quasi-isomorphism.

Proof By the operadic Künneth formula, for any graded K–module W, the map
H.V/ ıW!H.V 0/ ıW is an isomorphism. So, for any integer n, the map

fnW H.V/.n/˝Sn
Kn
!H.V 0/.n/˝Sn

Kn

is an isomorphism. Let .ei/
n
iD1

be a basis of Kn . The map

p 2H.V/.n/ 7! p˝ .e1˝� � �˝ en/ 7! fn.p/˝ .e1˝� � �˝ en/ 7! fn.p/ 2H.V 0/.n/

is an isomorphism. So, the morphism H.V/!H.V 0/ is an isomorphism.
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Proof of Theorem 110 � Let us first prove the equivalence between (1) and (2).
Suppose (2). Let A be a cofibrant �uC –algebra and let B be a P –algebra. Consider
a map f W �!.A /!B and its adjoint map gW A ! ��.B/. The following diagram of
�uC –algebras is commutative:

��B�A

��

// ���!��B�A

��

A //

g

88
���!A

��.f /
// ��B

The left vertical map is a quasi-isomorphism. Since a left Quillen functor preserves weak
equivalences between cofibrant objects and since �� preserves quasi-isomorphisms,
the right vertical map is a quasi-isomorphism. Further, �!��B�A is actually �˛B�A .
Since the morphism � is a quasi-isomorphism, the map ��B�A ! ���˛B�A is a
filtered quasi-isomorphism with respect to the filtrations

Fn��B�A D
M

k

�uC .k/˝Sn

� X
i1C���CikDn

F rad
i1

B�A ˝ � � �˝F rad
ik

B�A

�
;

Fn�
��˛B�A D

M
k

P.k/˝Sn

� X
i1C���CikDn

F rad
i1

B�A ˝ � � �˝F rad
ik

B�A

�
:

Indeed, the resulting map on the graded object G.��B�A / D �uC ı G.B�A / is
actually � ı IdG.B�A / . So the map ��B�A ! ���˛B�A is a quasi-isomorphism.
So, by the 2-out-of-3 rule, the map A ! ���!A is a quasi-isomorphism. Hence, f
is a quasi-isomorphism if and only if ��.f / is a quasi-isomorphism, if and only if
g is a quasi-isomorphism. So assertion (1) is true. Conversely, suppose (1). Then,
for any chain complex (considered as a C –coalgebra) V, the map ��V ! �˛V is
a quasi-isomorphism. Since the coaction of C on V is trivial, we have canonical
isomorphisms of chain complexes

��V '�uC ıV; �˛V ' P ıV:

We can thus apply Lemma 111 which shows that (2) is true.

� Suppose (1) and let us show (3). By Proposition 96, the ˛–model structure coincides
with the �–model structure. Moreover, since the adjunctions �! a �

� and �� a B�

are both Quillen equivalences, the adjunction �!�� a B��
� , which is �˛ a B˛ , is a

Quillen equivalence.
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� Suppose (3) and let us show (4). Since �˛ a B˛ is a Quillen equivalence,
�˛B˛A ! A is a quasi-isomorphism for any P –algebra A and D ! B˛�˛D

is an ˛–weak equivalence for any C –coalgebra D . Since the ˛–model structure
coincides with the �–model structure, D! B˛�˛D is a �–weak equivalence. So (4)
is true.

� Suppose (4) and let us show (5). For any P –algebra A , the morphism �˛B˛A !

A is a quasi-isomorphism. In particular, this is true for any free P –algebras. So, for
any chain complex V, the map �˛B˛.P ıV/!P ıV is a quasi-isomorphism. This
map is actually the morphism of chain complexes

.P ı˛ C ı˛ P/ ıV!P ıV:

Using Lemma 111, we conclude that the map Pı˛C ı˛P!P is a quasi-isomorphism.
Moreover, for any P –algebra A , the following diagram commutes:

�u.C / ı� C ı�A //

))

P ı˛ C ı˛ A

��

A

Since the composite map and the vertical map are quasi-isomorphisms (because ��aB�

and �˛ a B˛ are Quillen equivalences), by the 2-out-of-3 rule the horizontal map is
a quasi-isomorphism. Applying this to free P –algebras and using Lemma 111, we
conclude that the map �u.C / ı� C ı˛ P ! P ı˛ C ı˛ P is a quasi-isomorphism.
Further, for any C –coalgebra D the following diagram commutes:

D //

&&

C ı��u.C / ı�D

��

C ı˛ P ı˛ D

By the 2-out-of-3 rule, the vertical map is a �–weak equivalence. So the map

�u.C / ı� C ı��u.C / ı�D!�u.C / ı� C ı˛ P ı˛ D

is a quasi-isomorphism. Applying this for C –coalgebras which are just chain complexes
and using Lemma 111, we obtain that the map �u.C /ı�C ı��u.C /!�u.C /ı�C ı˛P

is a quasi-isomorphism.
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� Suppose (5) and let us show (2). Using the previous point in the case P D�uC

gives us the fact that the map of dg S–modules

�u.C / ı� C ı��u.C /!�u.C /

is an aritywise quasi-isomorphism. Then the following square of S–modules is com-
mutative:

�u.C / ı� C ı��u.C / //

��

�u.C /

��

P ı˛ C ı˛ P // P

Since the left vertical map and the horizontal maps are quasi-isomorphisms, the right
vertical map is also a quasi-isomorphism.

Definition 112 (Koszul morphisms) An operadic twisting morphism ˛W C ! P

satisfying the properties of Theorem 110 is called a Koszul morphism.

In the next section, we will explore Koszul duality, which is a method to produce
Koszul morphisms from a presentation of an operad.

8 Examples

The purpose of this section is to apply the general framework described in the previous
sections to the case of common nonaugmented operads like the operads uAs and uCom ,
whose algebras are the unital associative algebras and the unital commutative algebras,
respectively. So, for any of these operads P, one looks after a curved conilpotent
cooperad C together with an operadic twisting morphism ˛ from C to P such that
the induced morphism of operads from �uC to P is a quasi-isomorphism; that is,
˛ is a Koszul morphism. One can use the universal twisting morphism BcP !P.
However, the bar construction is always very big. Instead, one usually tries to produce
a subcooperad of BcP whose cobar construction will be a resolution of P. The
Koszul duality theory is a way to produce such a subcooperad when the operad P

has a quadratic presentation or a quadratic-linear presentation. This construction has
been extended to quadratic-linear-constant presentations by Hirsh and Millès in [17],
generalizing to operads the curved Koszul duality of algebras developed by Polishchuk
and Positselski [22].
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8.1 Koszul duality

Koszul duality is a way to build a cooperad P ¡ together with a canonical operadic
twisting morphism from P ¡ to P out of an operad P which has a “nice enough”
presentation P D T .V/=.R/. Here, we present the construction of Hirsh and Millès
in [17].

Let P be a graded operad equipped with a presentation P D T .V/=.R/, where V
is a graded S–module and where .R/ is the operadic ideal generated by a subgraded
S–module R of T�2.V/ such that

R\ .I˚V/D f0g;

.R/\T�2.V/DR:

We denote by qR the projection of R� T�2.V/ onto T2.V/ along I˚V. Moreover,
let qP be the operad

qP WD T .V/=.qR/:

This is a quadratic operad. The condition R \ .I ˚ V/ D f0g induces a function
� D .�0; �1/W qR! I˚V.

Definition 113 (curved cooperad Koszul dual of an operad [17, Section 4.1]) The
Koszul dual cooperad P ¡ of P associated to the presentation P D T .V/=.R/ is the
following curved conilpotent cooperad. The underlying graded cooperad is the final
graded subcooperad of T c.sV/ such that the composition

P ¡
! T c.sV/! T2.sV/=s2qR

is zero. It is equipped with the unique coderivation which extends the map

P ¡ � s2qR! sV; sx˝ sy 7! .�1/jxjs�1.x˝y/:

Its curvature is the degree �2 map

� W P ¡ � s2qR!K; sx˝ sy 7! .�1/jxjs�0.x˝y/:

Moreover, the map
�W P ¡ � sV! V ,!P;

is an operadic twisting morphism which induces both a morphism of operads �uP ¡!

P and a morphism of curved conilpotent cooperads P ¡! BcP.

Algebraic & Geometric Topology, Volume 19 (2019)



1602 Brice Le Grignou

Remark 114 The coherence of the above definition is proven in [17, Section 4.1].

Definition 115 (Koszul operad) The operad P (together with the presentation P D

T .V/=.R/) is said to be Koszul if the twisting morphism �W P ¡!P is Koszul, that
is, if the map �cP ¡!P is a quasi-isomorphism.

The following theorem is a powerful tool to show that an operad is Koszul:

Theorem 116 [17, Theorem 4.3.1] Suppose that the canonical morphism

qP ı� qP ¡
! I

is a quasi-isomorphism. Then P is Koszul.

8.2 Coalgebras over a Koszul dual

In this subsection, we describe the category of P ¡ –coalgebras, where P ¡ is the Koszul
dual of the “quadratic-linear-homogeneous operad” P defined above. We will need
the following definition:

Definition 117 (precoradical filtration) Let W be a graded S–module and let C be
a graded K–module equipped with a map �.1/W C!W ı C . We define .F prad

n C/n2N

to be the following (nonnecessarily exhaustive) filtration on C , called the precoradical
filtration:

F
prad
0 .C/ WD ker.�.1//;

F prad
n .C/ WD .�.1//�1

�
W.0/˚

X
i1C���CikDn�1

k�1

W.k/˝Sk
.F

prad
i1

C˝ � � �˝F
prad
ik

C/
�

if n� 1:

Lemma 118 Consider a cofree graded conilpotent cooperad T c.W/. The category of
graded coalgebras over T c.W/ is equivalent to the category of graded K–modules C
equipped with a map �.1/W C!W ıC such that the precoradical filtration .F prad

n C/n2N

is exhaustive. Moreover, under this equivalence, the coradical filtration coincides with
the precoradical filtration.

Proof Let C be a graded K–module with a map �.1/W C ! W ı C such that the
precoradical filtration .F prad

n C/n2N is exhaustive. Then let us define �C W C!T .W/ıC
by induction as follows:�

�C.x/ WD 1˝x if x 2 F
prad
0

C;
�C.x/ WD 1˝xC .Id ı�C/�

.1/.x/ if x 2 F
prad
n C:
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This defines a structure of T c.W/–coalgebra on C . Conversely, let .C; �/ be a graded
T c.W/–coalgebra. We obtain a map �.1/W C ! W ı C by composing � with the
projection of T c.W/ onto W. Then the construction we just described recovers �
from �.1/ .

Theorem 119 Suppose that the characteristic of the field K is zero (this assumption
is not necessary in the nonsymmetric context). The category of P ¡ –coalgebras is
equivalent to the category of graded T c.sV/–coalgebras (that is graded K–modules C
equipped with a map �.1/W C! sV ıC such that the precoradical filtration .F prad

n C/n2N

is exhaustive) such that the composite map

C
�2D.Idı0�.1//�.1/
������������! T2.sV/ ı C � .T2.sV/=s2qR/ ı C

is zero, together with a degree �1 map dC W C! C such that

d2
C D .� ı Id/�2; �.1/dC D .dP¡ ı Id/�2C .Id ı0 dC/�

.1/:

Proof Let C be a graded T c.sV/–coalgebra together with a degree �1 map dC W C!
C satisfying the conditions of Theorem 119. For any x 2 C , let C.x/ be a finite-
dimensional sub-T c.sV/–coalgebra of C which contains x . By Lemma 120, the map
�C.x/W C.x/! T c.sV/ ı C.x/ factorizes through a unique map C.x/!P ¡ ı C.x/.
Hence, C has a structure of graded .P ¡/grad –coalgebra. Moreover, we can prove by
induction on the coradical filtration of C that dC is a coderivation.

Lemma 120 Let C.x/ be the graded T c.sV/–coalgebra defined in the proof of
Theorem 119. Then C.x/ is a graded P ¡ –coalgebra.

Proof Remember that C.x/ is a finite-dimensional subgraded T c.sV/–coalgebra of C .
Let .ei/

m
iD1

be a basis of C.x/. Then, for any i 2 f1; : : : ;mg, let pi;0 2 T .sV/.0/,
and for any integer k � 1 and for any nondecreasing function s from f1; : : : ; kg to
f1; : : : ;mg, let pi;k;s 2 T .sV/.k/ be such that

�.ei/D 1˝ ei Cpi;0C

1X
kD0

X
s

pi;k;s˝Sk
.es.1/˝ � � �˝ es.k//:

For any nondecreasing function s from f1; : : : ; kg to f1; : : : ;mg and for any � 2 Sk ,
let �.s; �/ be the element of Z=2Z such that the structural action of � on C˝k sends
es.1/˝ � � � ˝ es.k/ to .�1/�.s;�/es��1.1/˝ � � � ˝ es��1.k/ . Further, let Inv.s/ be the
subgroup of Sk of permutations � such that s D s��1 . Then we can choose pi;k;s
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such that p�
i;k;s
D .�1/�.s;�/pi;k;s for any � 2 Inv.s/. Indeed, if it is not the case, we

can replace pi;k;s by
1

# Inv.s/

X
�2Inv.s/

.�1/�.s;�/p�i;k;s:

Let D be the subgraded S–module of T .sV/ generated by 1 and the elements pi;k;s .
Since .� ı Id/�.ei/ D .Id ı�/�.ei/ for any i , there exists an element of qi;k;s 2

.D ıD/.k/ such that

�.pi;k;s/˝Sk
.es.1/˝ � � �˝ es.k//D qi;k;s˝Sk

.es.1/˝ � � �˝ es.k//:

Since p�
i;k;s
D .�1/�.s;�/pi;k;s for any � 2 Inv.s/,

�.pi;k;s/D
1

# Inv.s/

X
�2Inv.s/

.�1/�.s;�/q�i;k;s:

So, �.pi;k;s/ 2 D ıD . Hence, D is a subgraded cooperad of T c.sV/. Moreover, for
any i , .� ı Id/�.ei/D 0, where � is the projection of T .sV/ onto T2.sV/=s2qR.
So, �.pi;k;s/ D 0 for any 3–tuple .i; k; s/ and �.pi;0/ D 0 for any i ; so �jD D 0.
Hence, D �P ¡ .

8.3 Unital associative algebras up to homotopy

Notation Let V and W be two N –modules, and n, p , i1 , : : : , ip natural integers
such that i1C � � �C ip D n. We will usually denote the image of an element

x˝y1˝ � � �˝yp 2 V.p/˝W.i1/˝ � � �˝W.ip/

under the inclusion

V.p/˝W.i1/˝ � � �˝W.ip/! .V ıns W/.n/

by x˝ns .y1˝ � � �˝yp/.

8.3.1 A presentation of the operad uAs Let uAs be the nonsymmetric operad
defined by the presentation uAs WDT .K ��˚K ��/=.R/, where � is an arity 2 element
and � is an arity 0 element. The nonsymmetric module R� I˚T2.K ��˚K � �/ is
made up of the relations8<:

�˝ns .�˝ 1/� 1;

�˝ns .1˝ �/� 1;

�˝ns .�˝ 1/��˝ns .1˝�/:
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Remark 121 Here, the symbol ns stands for the composition product of nonsymmetric
modules.

Given this presentation, the Koszul dual uAs ¡ is a nonsymmetric curved conilpotent co-
operad whose underlying graded cooperad is the final subcooperad of T c.K �s�˚K ��/

such that

uAs ¡
\T2.K � s�/DK � .s�˝ns .s�˝ 1/� s�˝ns .1˝ s�//:

The coderivation of uAs ¡ is zero and the curvature is given by

�.s�˝ns .s�˝ 1//D �.s�˝ns .1˝ s�//D�1:

Remark 122 The Koszul dual curved cooperad uAs ¡ of the operad uAs is described
in detail in [17].

8.3.2 Coalgebras over uAs ¡

Proposition 123 The endofunctor of the category of graded K–modules V 7! sV
induces an equivalence between the category of uAs ¡ –coalgebras and the category of
noncounital curved conilpotent coassociative coalgebras.

Proof The proof relies on the same arguments as the proof of Proposition 129, which
will be detailed.

Remark 124 The map V!sV also induces an equivalence between graded .uAs ¡/grad–
coalgebras and graded noncounital conilpotent coassociative coalgebras C equipped
with a degree �2 map C ! K. Moreover, this equivalence sends a cofree graded
.uAs ¡/grad –coalgebra uAs ¡

ıV to the cofree conilpotent coalgebra T .V˚K �v/, where
jvj D 2 with the degree �2 map

T .V˚K � v/� K � v!K; v 7! 1:

Notation We denote the category of curved conilpotent coassociative coalgebras
by cCog . Moreover, we denote the operad �uuAs ¡ by uA1 .

8.3.3 The bar–cobar adjunction and uA1 –algebras On the one hand, there exists
an adjunction relating uAs –algebras to uAs ¡ –coalgebras which is induced by the
operadic twisting morphism ˛W uAs ¡

! uAs . On the other hand, the category of
uAs ¡ –coalgebras is equivalent to the category cCog of curved conilpotent coalgebras.
Thus, we obtain a bar–cobar adjunction between unital associative algebras and curved
conilpotent coalgebras which is the restriction to arity 1 of the operadic bar–cobar
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adjunction described in Section 4.1 (with the exception that we can consider noncounital
coalgebras instead of coaugmented counital coalgebras). For this reason, we denote
this adjunction using the same symbols as in the operadic context, that is, �u a Bc .
So we have

�uC WD T .s�1C /; BcA WD T .sA ˚K � v/

for any curved conilpotent coalgebra C and for any unital algebra A . The derivation
of �u.C / and the coderivation of Bc.A / are defined as in Section 4.1.

The adjunction �u a Bc is part of a larger picture,

cCog
��
//
uA1–alg

B�

oo

�!
// uAs–alg;

��
oo

where the adjunction �! a �
� is induced by the morphism of operads �W uA1! uAs

and where �u D �!�� and Bc D B��
� . We know that a uA1–algebra A D .A;  /

is the data of a chain complex A together with a coderivation on the cofree graded
.uAs ¡/grad –coalgebra uAs ¡

ıA, so that it becomes a uAs –coalgebra. Equivalently, it
is the data of a chain complex together with a coderivation on the cofree conilpotent
coassociative coalgebra T .sA˚K�v/, so that it becomes a curved conilpotent coalgebra
whose curvature � is given by

T .sA˚K � v/� K � v!K; v 7! 1:

By Lemma 27, this is equivalent to a degree �1 map

 W T .sA˚K � v/!A;

such that, for any x1; � � � ;xn 2 .sA˚K � v/,X
0�i�j�n

.�1/jx1jC���Cjxi�1j .x1˝ � � �˝  .xi ˝ � � �˝xj /˝ � � �xn/

D

�
0 if n¤ 2;

�.x1/x2� �.x2/x1 if nD 2:
In particular, we have the following:

� A degree zero product
2W A˝A!A:

� A degree 1 map
3W A˝A˝A!A;

whose boundary is the associator of 2 , that is,

@.3/D 2.Id˝ 2/� 2.2˝ Id/:
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� An element 1A defined by  .v/D s1A .

� Maps 1;l W A!A and 1;r W A!A of degree 1 which make 1A a unit up to
homotopy, that is,

@.1;l/D 2.1A ˝ Id/� Id;

@.1;l/D 2.Id˝ 1A /� Id:

8.3.4 The Koszul property and the infinity category of uA1 –algebras

Proposition 125 [17, Theorem 6.1.8] The operad uAs is Koszul.

Remark 126 The model structure on curved conilpotent coalgebras that we get by
transfer along the adjunction �u aBc is the model structure that Positselski described
in [23].

There are several ways to describe the infinity-category of uAs –algebras:

� One can take the Dwyer–Kan simplicial localization of the category of uAs –
algebras with respect to quasi-isomorphisms as described in [10; 9].

� One can take the simplicial category whose objects are cofibrant-fibrant uAs –
algebras and whose spaces of morphisms are

Map.A ;B/n WD HOMuAs�alg.A ;B/:

� One can also take the simplicial category whose objects are all uAs –algebras
and whose spaces of morphisms are

Map.A ;B/ WD HOMuAs�alg.�uBcA ;B/' HOMcCog.BcA ;BcB/:

8.4 Unital commutative algebras up to homotopy

In this section, we assume that the characteristic of the base field K is zero.

8.4.1 A presentation of the operad uCom Let uCom be the operad defined by the
presentation uCom WD T .K ��˚K � �/=.R/, where � is an arity 2 element such that
�.1;2/ D � and � is an arity 0 element. The S–module R� I˚T2.K ��˚K � �/ is
generated by the elements

�˝S2
.�˝ 1/��˝S2

.1˝�/; �˝S2
.�˝ 1/� 1:
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Remark 127 � Since the action of S2 on � is trivial, we have

�˝S2
.1˝�/D .�˝S2

.�˝ 1//.132/:

� The element �˝S2
.�˝1/��˝S2

.1˝�/ is a generator of the S3 –module R.3/.
However, it is not a generator of R.3/ as a K–module; one needs to add the
element �˝S2

.�˝ 1/� .�˝S2
.�˝ 1//.2;3/ .

Given this presentation, the Koszul dual uCom ¡ is a curved conilpotent cooperad whose
underlying graded cooperad is the final subcooperad of T c.K � s�˚K � �/ such that

uAs ¡.3/\T2.K � s�/.3/DKŒS3� � .s�˝S2
.s�˝ 1/� s�˝S2

.1˝ s�//:

The coderivation of uCom ¡ is zero and the curvature is given by

�.s�˝S2
.s�˝ 1//D�1:

Notation We denote by uCom1 the operad �uuCom ¡ .

8.4.2 Coalgebras over uCom ¡ We will show that the category of uCom ¡ –coalgebras
is equivalent to the category of curved conilpotent Lie coalgebras.

Definition 128 (curved Lie coalgebra) A curved Lie coalgebra C D .C; ı; d; �/ is a
graded K–module C equipped with an antisymmetric map ıW C! C˝ C such that

.ı˝ Id/ı D .Id˝ ı/ıC .Id˝ �/.ı˝ Id/ı;

where � is the exchange map �.x˝y/D .�1/jxjjyjy˝x . It is also equipped with a
degree �1 map d W C! C which is a coderivation, that is,

ıd D .d ˝ IdC Id˝ d/ı;

and with a degree �2 map � W C!K which is a curvature, that is,

d2
D .� ˝ Id� Id˝ �/ı:

A curved Lie coalgebra C is said to be conilpotent if for any x 2 C , there exists an
integer n such that the element

.Id˝ � � �˝ ı˝ � � �˝ Id/ � � � ı.x/

is zero whenever ı appears n times. We denote by cLieCog the category of curved
conilpotent Lie coalgebras.
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Proposition 129 The endofunctor of the category of graded K–modules V 7! sV
induces an equivalence between the category of uCom ¡ –coalgebras and the category
cLieCog of curved conilpotent Lie coalgebras.

Lemma 130 The category of uCom ¡ –coalgebras is equivalent to the category whose
objects are graded K–modules C equipped with three maps:

� A degree �1 map ıW C! C˝ C which is symmetric is the sense that �ı D ı0,
which satisfy the equation

.ı˝ Id/ı.x/C ..ı˝ Id/ı.x//.2;3/C ..ı˝ Id/ı.x//.1;3/ D 0;

and such that for any x 2 C , there exists an integer n such that the element

.Id˝ � � �˝ ı˝ � � �˝ Id/ � � � .Id˝ ı/ı.x/

is zero whenever ı appears at least n times.

� A degree �1 map � W C!K.

� A degree �1 map d W C!C such that �dD0, such that ıdD�.d˝IdCId˝d/ı

and such that d2 D�.� ˝ IdC Id˝ �/ı D�2.� ˝ Id/ı .

The morphisms of this category are the morphisms of graded K–modules which
commute with these structure maps.

Proof We apply Theorem 119. A graded uCom ¡ –coalgebra is a graded K–module C
equipped with maps

ı0W C! .K � s�/˝S2
.C˝ C/;

� 0W C!K � s�;

d 0W C! C;

such that the corresponding precoradical filtration is exhaustive, such that

(2) .Ids� ı
0 ı0/ı0.C/� s2R.3/˝S3

C˝3

and such that
ı0d 0 D .Id ı0 d 0/ı0;

� 0d 0 D 0;

d 02 D .�uCom¡ ı Id/.Id ı0 ı0/ı0:
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These maps induce new maps

ıW C ı0
�! .K � s�/˝S2

.C˝ C/! C˝ C;

� W C � 0
�!K � s�!K;

d D d 0W C! C;

where the degree �1 map .K � s�/˝S2
.C ˝ C/! C ˝ C sends s�˝S2

.x˝ y/ to
1
2
.x˝yC .�1/jxjjyjy˝x/. Then, for any x 2 C ,

ı0.x/D s�˝S2
ı.x/:

We know from [19, Section 7.6.3] that the K–module T .s�/.3/ has three generators
�I , �II and �III , which are obtained from the composite s�˝S2

.s�˝ 1/ by applying
the permutations Id2S3 , .2; 3/ and .1; 3/, respectively. Moreover, s2R.3/ is spanned
by �I� �II and �I� �III . Further, K � .�IC �IIC �III/ is a complementary sub-KŒS3�–
module of s2R.3/ in T .s�/.3/. Let us denote by � the projection of T .s�/.3/ onto
K � .�IC �IIC �III/ along s2R.3/. Since the action of the group S2 on s� is trivial,
we have, for any x 2 C ,

.Ids� ı
0 ı0/ı0.x/D 2�I˝S3

..ı˝ Id/ı.x//:

Then
.� ı Id/.Ids� ı

0 ı0/ı0.x/D 2
3
.�IC �IIC �III/˝S3

..ı˝ Id/ı.x//:

The above condition (2) is equivalent to the fact that .�IC�IIC�III/˝S3
..ı˝ Id/ı.x//

is zero, which is equivalent to

.ı˝ Id/ı.x/C ..ı˝ Id/ı.x//.2;3/C ..ı˝ Id/ı.x//.1;3/ D 0:

The other conditions are equivalent to

ıd D�.d ˝ IdC Id˝ d/ı;

�d D 0;

d2
D�.� ˝ IdC Id˝ �/ı:

Conversely, from the maps ı , � and d , one can reconstruct ı0, � 0 and d 0 in the obvious
way.

Proof of Proposition 129 We show that the category described in Lemma 130 is
equivalent to the category of curved conilpotent Lie coalgebras. Let C D .C; ı; �; d/ be
a curved conilpotent Lie coalgebra. Then we can define the maps .ı0; � 0; d 0/ on s�1C ,
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where ı0 is the composite

s�1C 'K � s�1
˝ C!K � s�1

˝K � s�1
˝ C˝ C 'K � s�1

˝ C˝K � s�1
˝ C;

s�1
˝x 7! s�1

˝ s�1
˝ ı.x/;

and where � 0.s�1x/ D �.x/ and d 0.s�1x/ D �s�1dx for any x 2 C . It is straight-
forward to prove that these maps satisfy the conditions of Lemma 130. Conversely, from
a graded K–module D and maps .ı; �; d/ as in Lemma 130, one can build a structure
of curved conilpotent Lie coalgebra .ı0; � 0; d 0/ on sD, where ı0 is the composite

sD'K � s˝D!K � s˝K � s˝D˝D'K � s˝D˝K � s˝D;

s˝x 7! �s˝ s˝ ı.x/;

and where � 0.sx/D�.x/ and d 0.sx/D�sdx for any x 2D. It is again straightforward
to prove that these maps define actually a structure of curved conilpotent Lie coalgebra.
Moreover, these two constructions are inverse to one another.

8.4.3 The bar–cobar adjunction If we compose the bar–cobar adjunction between
uCom–algebras and uCom ¡–coalgebras with the equivalence between uCom ¡–coalgebras
and curved conilpotent Lie coalgebras, then we obtain an adjunction �C aBL between
unital commutative algebras and curved conilpotent Lie coalgebras, which is as follows.

Definition 131 (curved Lie bar construction) Let A D .A; A ; 1/ be a unital com-
mutative algebra. Its curved Lie bar construction BL.A / is the following curved
conilpotent Lie coalgebra. The underlying graded Lie coalgebra of BL.A / is

BL.A/ WD Liec
ı .sA˚K � v/;

where Liec denotes the Lie cooperad which is the linear dual of the Lie operad and
where jvj D 2. The coderivation of BL.A / extends the map

Liec.sA˚Kv/� sA^ sA˚ sA˚Kv! sA;
sx ^ sy 7! .�1/jxjsA.x˝y/;

v 7! s1;

sx 7! �sdx:

The curvature is the map

Liec.sA˚K � v/� K � v!K; v 7! 1:

Definition 132 (unital commutative cobar construction) Let C D .C; ı; dC; �/ be a
curved Lie coalgebra. Its unital commutative cobar construction �C .C / is the free
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unital commutative algebra

�C C WD S.s�1C/ WD
M
n2N

.s�1C/˝n=Sn;

whose coderivation extends the map

s�1C! S.s�1C/; s�1x 7! �.x/1� s�1dCx�
X

.�1/jx1js�1x1˝S2
s�1x2;

where
P

x1 ^x2 D ı.x/.

Definition 133 (twisting morphisms) A twisting morphism from a curved conilpotent
Lie coalgebra C to a unital commutative algebra A is a degree �1 map ˛W C! A
such that

@˛C A .˛˝˛/ıC D �.�/1A :

We denote by TwL.C ;A / the set of twisting morphisms from C to A .

Proposition 134 We have functorial isomorphisms

homuCom�alg.�C C ;A /' TwL.C ;A /' homcLieCog.C ;BLA /

for any unital commutative algebra A and any curved conilpotent Lie coalgebra C.

Proof The proof uses the same arguments as the proof of Proposition 63.

The adjunction �C a BL is part of a larger picture,

cLieCog
�� // uCom1–alg
B�

oo

 ! // uCom–alg;
 �
oo

where the adjunction  ! a  
� is induced by the morphism of operads  W uCom1!

uCom and where �C D  !�� and BL D B� 
� . We know that a uCom1–algebra

A D .A;  / is the data of a chain complex A together with a degree �1 map

 W Liec.sA˚K � v/! sA

such that the coderivation of the curved Lie coalgebra Liec.sA˚K�v/ which extends 
squares to .� ˝ Id/ı , where � is given by

Liec.sA˚K � v/� K � v!K; v 7! 1:

In particular, we have the following:
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� A degree zero symmetric product

2W A˝A!A:

� A degree 1 map
I;IIW A˝A˝A!A

whose boundary is the associator of 2 , that is,

@.I;II/D 2.Id˝ 2/� 2.2˝ Id/:

� A degree 1 map
I;IIIW A˝A˝A!A

whose boundary is

@.I;III/D 2.Id˝ 2/� 2.Id˝ 2/.� ˝ Id/:

� An element 1A defined by  .v/D s1A .

� A degree 1 map uW A!A which makes 1A a unit up to homotopy:

@.u/D 2.1A ˝ Id/� Id:

8.4.4 The Koszul property and the infinity category of uCom1 –algebras

Theorem 135 The operad uCom is Koszul.

Proof We know from [17] that quCom ¡
' Com ¡

ı .I˚K � s�/. So, we have

quCom ı quCom ¡
'K � �˚Com ıCom ¡

ı .I˚K � s�/:

We can filter quCom ı� quCom ¡ by the number of � and s� appearing in the trees. Then
the induced graded complex have the form

G.quCom ı� quCom ¡/'K � �˚ .Com ı� Com ¡/ ı .I˚K � s�/:

We already know by [19, Theorems 7.4.6 and 13.1.7] that the canonical morphism
Com ı� Com ¡

! I is a weak equivalence. Then the map G.quCom ı� quCom ¡/! I
may be decomposed as follows:

G.quCom ı� quCom ¡/'K ��˚ .Com ı� Com ¡/ı .I˚K � s�/! I˚K ��˚K � s�! I:

All the maps of this composition are quasi-isomorphisms. So, by Theorem 88, the
canonical map quCom ı� quCom ¡

! I is a quasi-isomorphism. We conclude by
Theorem 116.
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There are several ways to describe the infinity category of uCom –algebras:

� One can take the Dwyer–Kan simplicial localization of the category of uCom –
algebras with respect to quasi-isomorphisms as described in [10; 9].

� One can take the simplicial category whose objects are cofibrant-fibrant uCom –
algebras and whose spaces of morphisms are

Map.A ;B/n WD HOMuCom�alg.A ;B/:

� One can also take the simplicial category whose objects are all uCom –algebras
and whose spaces of morphisms are

Map.A ;B/ WD HOMuCom�alg.�C BLA ;B/' HOMcLieCog.BLA ;BLB/:

Appendix

The purpose of this appendix is to describe the category of dg counital cocommutative
coalgebras over an algebraically closed field of characteristic zero in the vein of [7]. In
the sequel, dg counital cocommutative coalgebras are simply called cocommutative
coalgebras. We suppose that the base field K is algebraically closed field and of
characteristic zero.

Remark 136 The characteristic zero assumption is needed in [7, Theorem 2.9].

We know that the linear dual of a cocommutative coalgebra is a commutative alge-
bra. Moreover, for any cocommutative coalgebra C, the subcoalgebras of C are in
correspondence with the ideals of C � .

Definition 137 (orthogonal ideals and subcoalgebras) Let D D .D; �; �/ be a sub-
coalgebra of C. The orthogonal of D is the subchain complex

D? WD ff 2 C � j f .x/D 0 for all x 2 D; g � C �;

which is an ideal of C � . Let I be an ideal of the commutative algebra C � . The
orthogonal of I is the subchain complex I? WD fx 2 C j f .x/D 0 for all f 2 Ig � C,
which is a subcoalgebra of C.

Definition 138 (pseudocompact algebras) A pseudocompact algebra is a dg unital
commutative algebra A together with a set fIugu2U of ideals of finite codimension,
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which is stable under finite intersections and such that

A ' lim A =Iu:

A morphism of pseudocompacts algebras from .A ; fIugu2U / to .B; fJvgv2V / is a
morphism of algebras f W A ! B which is continuous with respect to the induced
topologies, and is such that for any v 2 V , there exists a u 2U such that the composite
morphism A !B!B=Jv factors through A !A =Iu . A pseudocompact algebra A

is called local if its underlying graded algebra is local.

Proposition 139 The linear dual of a cocommutative coalgebra is a pseudocompact
algebra. Moreover, the linear dual functor is an antiequivalence between the category
of cocommutative coalgebras and the category of pseudocompact algebras.

Proof It is clear that linear duality induces an antiequivalence between finite-dimen-
sional cocommutative coalgebras and finite-dimensional commutative algebras. The
rest is a consequence of the following Proposition 140.

Proposition 140 [11] Let C be a cocommutative coalgebra and let x be an element
of C. There exists a finite-dimensional subcoalgebra of C which contains x . Then C

is the colimit of the filtered diagram of its finite-dimensional subcoalgebras.

Chuang, Lazarev and Mannan showed that any pseudocompact algebra can be decom-
posed into a product of local pseudocompact algebras.

Theorem 141 [7, Theorem 2.9] Any pseudocompact algebra A is isomorphic to
the product of local pseudocompact algebras A '

Q
i2I Ai . Moreover, a morphism

of products of local pseudocompact algebras f W
Q

i2I Ai !
Q

j2J Bj is the data
of a function �W J ! I and a morphism fj W A�.j/ ! Bj for any j 2 J, where
�jf D fj��.j/

�
here �j and ��.j/ denote the projection of

Q
j2J Bj onto Bj and

the projection of
Q

i2I Ai onto A�.j/ , respectively
�
.

We show that local pseudocompact algebras are linear duals of conilpotent cocommuta-
tive coalgebras.

Definition 142 (irreducible coalgebras) A nonzero graded cocommutative coalgebra
is said to be irreducible if any two nonzero subcoalgebras have a nonzero intersection.

Proposition 143 A graded cocommutative coalgebra is irreducible if and only if its
dual algebra is local.
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Proof Let C D .C; �; �/ be a graded cocommutative coalgebra. We first suppose
that it is irreducible. Let M1 and M2 be two maximal ideals of the commutative
algebra C � . Since C is irreducible, the subcoalgebras M?

1
and M?

2
have a nonzero

intersection. So M1CM2 � .M
?
1
\M?

2
/? is a proper ideal. Since M1 and M2 are

maximal ideals, M1 DM1CM2 DM2 . So C � is local. Conversely, suppose that
C � is local. We denote by M its maximal ideal. By Lemma 144, M is the kernel of
an augmentation C �!K. By the antiequivalence between pseudocompact algebras
and cocommutative coalgebras, we obtain a morphism of coalgebras K! C, that
is, an atom a of C. For any nonzero subcoalgebra D of C, the orthogonal D? is
contained in M. Thus, K � aDM? � .D?/? D D . So any nonzero subcoalgebra of
C contains a. Subsequently, C is irreducible.

Lemma 144 Let A be a graded local pseudocompact algebra. Then the maximal
ideal M of A is the kernel of an augmentation A !K.

Proof Since A D .A; A ; 1/ is the inverse limit of finite-dimensional algebras and
since M is maximal, M is the kernel of a surjection A !B , where BD .B; B; 1/ is
a finite-dimensional commutative algebra. Since M is maximal, any nonzero element
of B is invertible. Since the elements in nonzero degrees are nilpotent, B is concentrated
in degree zero. So B is a finite-dimensional field extension of K. Finally, B ' K

because K is an algebraically closed field.

Corollary 145 A graded cocommutative coalgebra is irreducible if and only if it
contains a single atom.

Proof It is a direct consequence of Proposition 143.

Proposition 146 Irreducible graded cocommutative coalgebras are conilpotent graded
cocommutative coalgebras.

Proof Let C D .C; �; �/ be an irreducible graded cocommutative coalgebra. Let
x be an element of C and let D D .D; �; �/ be a finite-dimensional subcoalgebra
of C which contains x . The commutative algebra D� is local; its maximal ideal is
M WDD� . Then D�

0
is also local with maximal ideal M0 . By Nakayama’s lemma, M0

is nilpotent. So, M is nilpotent and so D is a conilpotent cocommutative coalgebra.

Corollary 147 The antiequivalence between the category of pseudocompact algebras
and the category uCocom of cocommutative coalgebras restricts to an antiequivalence

Algebraic & Geometric Topology, Volume 19 (2019)
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between the category of local pseudocompact algebras and the category uNilCocom of
conilpotent cocommutative coalgebras.

Proof It is a direct consequence of Propositions 143 and 146.

Theorem 78 Let C D .C; �; �/ be a dg cocommutative coalgebra over an algebraically
closed field of characteristic zero and let A be its set of graded atoms. There exists
a unique decomposition C '

L
a2A Ca , where Ca is a subcoalgebra of C which

contains a and which belongs to the category uNilCocom. Moreover, a morphism
of dg cocommutative coalgebras f W

L
a2A Ca!

L
b2B Db is the data of a function

�W A! B and of a morphism faW Ca! D�.a/ for any a 2A.

Proof The only point that needs to be cleared up is that, in the decomposition C DL
i2I Ci , the set I is isomorphic to the set of graded atoms of C. A graded atom of C

is a morphism of graded cocommutative coalgebras from K to C, that is, a morphism of
graded pseudocompact algebras from

Q
i2I C �i to K. So it is the choice of an element

of I.
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