Volume 19, issue 3 (2019)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 25
Issue 6, 3145–3787
Issue 5, 2527–3144
Issue 4, 1917–2526
Issue 3, 1265–1915
Issue 2, 645–1264
Issue 1, 1–644

Volume 24, 9 issues

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
 
Subscriptions
 
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
 
Author index
To appear
 
Other MSP journals
Examples of nontrivial contact mapping classes for overtwisted contact manifolds in all dimensions

Fabio Gironella

Algebraic & Geometric Topology 19 (2019) 1207–1227
Bibliography
1 M A Aguilar, J L Cisneros-Molina, M E Frías-Armenta, Characteristic classes and transversality, Topology Appl. 154 (2007) 1220 MR2310455
2 M F Atiyah, K–theory, Addison-Wesley (1989) MR1043170
3 M S Borman, Y Eliashberg, E Murphy, Existence and classification of overtwisted contact structures in all dimensions, Acta Math. 215 (2015) 281 MR3455235
4 F Bourgeois, Odd dimensional tori are contact manifolds, Int. Math. Res. Not. 2002 (2002) 1571 MR1912277
5 F Bourgeois, Contact homology and homotopy groups of the space of contact structures, Math. Res. Lett. 13 (2006) 71 MR2200047
6 J Bowden, D Crowley, A I Stipsicz, The topology of Stein fillable manifolds in high dimensions, I, Proc. Lond. Math. Soc. 109 (2014) 1363 MR3293153
7 R Casals, E Murphy, F Presas, Geometric criteria for overtwistedness, J. Amer. Math. Soc. 32 (2019) 563 MR3904160
8 J Cerf, Sur les difféomorphismes de la sphère de dimension trois 4 = 0), 53, Springer (1968) MR0229250
9 F Ding, H Geiges, The diffeotopy group of S1 × S2 via contact topology, Compos. Math. 146 (2010) 1096 MR2660686
10 Y Eliashberg, Classification of overtwisted contact structures on 3–manifolds, Invent. Math. 98 (1989) 623 MR1022310
11 Y Eliashberg, M Fraser, Topologically trivial Legendrian knots, J. Symplectic Geom. 7 (2009) 77 MR2496415
12 H Geiges, Constructions of contact manifolds, Math. Proc. Cambridge Philos. Soc. 121 (1997) 455 MR1434654
13 H Geiges, An introduction to contact topology, 109, Cambridge Univ. Press (2008) MR2397738
14 H Geiges, J Gonzalo Perez, On the topology of the space of contact structures on torus bundles, Bull. London Math. Soc. 36 (2004) 640 MR2070440
15 H Geiges, M Klukas, The fundamental group of the space of contact structures on the 3–torus, Math. Res. Lett. 21 (2014) 1257 MR3335846
16 F Gironella, Examples of non-trivial contact mapping classes for overtwisted contact manifolds in all dimensions, preprint (2017) arXiv:1704.07278v2
17 F Gironella, On some examples and constructions of contact manifolds, preprint (2017) arXiv:1711.09800v2
18 F Gironella, On some constructions of contact manifolds, Thèse de doctorat, Université Paris-Saclay (2018)
19 E Giroux, Sur les transformations de contact au-dessus des surfaces, from: "Essays on geometry and related topics, II" (editors É Ghys, P de la Harpe, V F R Jones, V Sergiescu, T Tsuboi), Monogr. Enseign. Math. 38, Enseignement Math. (2001) 329 MR1929332
20 E Giroux, Géométrie de contact : de la dimension trois vers les dimensions supérieures, from: "Proceedings of the International Congress of Mathematicians" (editor L Tatsien), Higher Ed. Press (2002) 405 MR1957051
21 E Giroux, P Massot, On the contact mapping class group of Legendrian circle bundles, Compos. Math. 153 (2017) 294 MR3604864
22 Y Huang, On plastikstufe, bordered Legendrian open book and overtwisted contact structures, J. Topol. 10 (2017) 720 MR3665409
23 S Lanzat, F Zapolsky, On the contact mapping class group of the contactization of the Am–Milnor fiber, Ann. Math. Qué. 42 (2018) 79 MR3777507
24 S Lisi, A Marinković, K Niederkrüger, On properties of Bourgeois contact structures, preprint (2018) arXiv:1801.00869
25 A Marinković, M Pabiniak, On displaceability of pre-Lagrangian toric fibers in contact toric manifolds, Internat. J. Math. 27 (2016) MR3593675
26 P Massot, Natural fibrations in contact topology, preprint (2015)
27 P Massot, K Niederkrüger, Examples of non-trivial contact mapping classes in all dimensions, Int. Math. Res. Not. 2016 (2016) 4784 MR3564627
28 P Massot, K Niederkrüger, C Wendl, Weak and strong fillability of higher dimensional contact manifolds, Invent. Math. 192 (2013) 287 MR3044125
29 A Mori, Reeb foliations on S5 and contact 5–manifolds violating the Thurston–Bennequin inequality, preprint (2015) arXiv:0906.3237v3
30 K Niederkrüger, F Presas, Some remarks on the size of tubular neighborhoods in contact topology and fillability, Geom. Topol. 14 (2010) 719 MR2602849
31 T Vogel, Non-loose unknots, overtwisted discs, and the contact mapping class group of S3, Geom. Funct. Anal. 28 (2018) 228 MR3777417