Volume 19, issue 3 (2019)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 24
Issue 9, 4731–5219
Issue 8, 4139–4730
Issue 7, 3571–4137
Issue 6, 2971–3570
Issue 5, 2389–2970
Issue 4, 1809–2387
Issue 3, 1225–1808
Issue 2, 595–1223
Issue 1, 1–594

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
Commensurability invariance for abelian splittings of right-angled Artin groups, braid groups and loop braid groups

Matthew C B Zaremsky

Algebraic & Geometric Topology 19 (2019) 1247–1264
Bibliography
1 A Baudisch, Subgroups of semifree groups, Acta Math. Acad. Sci. Hungar. 38 (1981) 19 MR634562
2 J A Behrstock, T Januszkiewicz, W D Neumann, Quasi-isometric classification of some high dimensional right-angled Artin groups, Groups Geom. Dyn. 4 (2010) 681 MR2727658
3 R Bieri, R Geoghegan, D H Kochloukova, The sigma invariants of Thompson’s group F, Groups Geom. Dyn. 4 (2010) 263 MR2595092
4 M Carr, Two-generator subgroups of right-angled Artin groups are quasi-isometrically embedded, PhD thesis, Brandeis University (2015) MR3358258
5 M Casals-Ruiz, Embeddability and quasi-isometric classification of partially commutative groups, Algebr. Geom. Topol. 16 (2016) 597 MR3470711
6 M Casals-Ruiz, I Kazachkov, A Zakharov, On commensurability of right-angled Artin groups, I : RAAGs defined by trees of diameter 4, preprint (2016) arXiv:1611.01741
7 C H Cashen, G Levitt, Mapping tori of free group automorphisms, and the Bieri–Neumann–Strebel invariant of graphs of groups, J. Group Theory 19 (2016) 191 MR3466593
8 M Clay, When does a right-angled Artin group split over ?, Internat. J. Algebra Comput. 24 (2014) 815 MR3278386
9 M Clay, C J Leininger, D Margalit, Abstract commensurators of right-angled Artin groups and mapping class groups, Math. Res. Lett. 21 (2014) 461 MR3272023
10 C Damiani, A journey through loop braid groups, Expo. Math. 35 (2017) 252 MR3689901
11 M B Day, R D Wade, Subspace arrangements, BNS invariants, and pure symmetric outer automorphisms of right-angled Artin groups, Groups Geom. Dyn. 12 (2018) 173 MR3781420
12 D Groves, M Hull, Abelian splittings of right-angled Artin groups, from: "Hyperbolic geometry and geometric group theory" (editors K Fujiwara, S Kojima, K Ohshika), Adv. Stud. Pure Math. 73, Math. Soc. Japan (2017) 159 MR3728497
13 J Huang, Quasi-isometry classification of right-angled Artin groups, II: Several infinite out cases, preprint (2016) arXiv:1603.02372
14 J Huang, Quasi-isometric classification of right-angled Artin groups, I : the finite out case, Geom. Topol. 21 (2017) 3467 MR3692971
15 J Huang, Commensurability of groups quasi-isometric to RAAGs, Invent. Math. 213 (2018) 1179 MR3842063
16 S h Kim, T Koberda, Embedability between right-angled Artin groups, Geom. Topol. 17 (2013) 493 MR3039768
17 S H Kim, T Koberda, The geometry of the curve graph of a right-angled Artin group, Internat. J. Algebra Comput. 24 (2014) 121 MR3192368
18 S h Kim, T Koberda, Anti-trees and right-angled Artin subgroups of braid groups, Geom. Topol. 19 (2015) 3289 MR3447104
19 N Koban, J McCammond, J Meier, The BNS-invariant for the pure braid groups, Groups Geom. Dyn. 9 (2015) 665 MR3420539
20 N Koban, A Piggott, The Bieri–Neumann–Strebel invariant of the pure symmetric automorphisms of a right-angled Artin group, Illinois J. Math. 58 (2014) 27 MR3331840
21 C J Leininger, D Margalit, Two-generator subgroups of the pure braid group, Geom. Dedicata 147 (2010) 107 MR2660568
22 J Meier, L VanWyk, The Bieri–Neumann–Strebel invariants for graph groups, Proc. London Math. Soc. 71 (1995) 263 MR1337468
23 L A Orlandi-Korner, The Bieri–Neumann–Strebel invariant for basis-conjugating automorphisms of free groups, Proc. Amer. Math. Soc. 128 (2000) 1257 MR1712889
24 R Strebel, Notes on the Sigma invariants, preprint (2012) arXiv:1204.0214