Volume 19, issue 3 (2019)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 24
Issue 8, 4139–4730
Issue 7, 3571–4137
Issue 6, 2971–3570
Issue 5, 2389–2970
Issue 4, 1809–2387
Issue 3, 1225–1808
Issue 2, 595–1223
Issue 1, 1–594

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
The topology of arrangements of ideal type

Nils Amend and Gerhard Röhrle

Algebraic & Geometric Topology 19 (2019) 1341–1358
Bibliography
1 T Abe, M Barakat, M Cuntz, T Hoge, H Terao, The freeness of ideal subarrangements of Weyl arrangements, J. Eur. Math. Soc. 18 (2016) 1339 MR3500838
2 M Barakat, M Cuntz, Coxeter and crystallographic arrangements are inductively free, Adv. Math. 229 (2012) 691 MR2854188
3 N Bourbaki, Groupes et algèbres de Lie, Chapitre I : Algèbres de Lie, 1285, Hermann (1971) MR0271276
4 E Brieskorn, Sur les groupes de tresses (d’après V I Arnold), from: "Séminaire Bourbaki, 1971/1972", Lecture Notes in Math. 317, Springer (1973) 21 MR0422674
5 D C Cohen, Monodromy of fiber-type arrangements and orbit configuration spaces, Forum Math. 13 (2001) 505 MR1830245
6 M Cuntz, I Heckenberger, Finite Weyl groupoids, J. Reine Angew. Math. 702 (2015) 77 MR3341467
7 M Cuntz, G Röhrle, A Schauenburg, Arrangements of ideal type are inductively free, Internat. J. Algebra Comput. (2019)
8 P Deligne, Les immeubles des groupes de tresses généralisés, Invent. Math. 17 (1972) 273 MR0422673
9 E Fadell, L Neuwirth, Configuration spaces, Math. Scand. 10 (1962) 111 MR0141126
10 M J Falk, N J Proudfoot, Parallel connections and bundles of arrangements, Topology Appl. 118 (2002) 65 MR1877716
11 M Falk, R Randell, The lower central series of a fiber-type arrangement, Invent. Math. 82 (1985) 77 MR808110
12 M Falk, R Randell, On the homotopy theory of arrangements, from: "Complex analytic singularities" (editors T Suwa, P Wagreich), Adv. Stud. Pure Math. 8, North-Holland (1987) 101 MR894288
13 A Hultman, Supersolvability and the Koszul property of root ideal arrangements, Proc. Amer. Math. Soc. 144 (2016) 1401 MR3451219
14 A Leibman, D Markushevich, The monodromy of the Brieskorn bundle, from: "Geometric topology" (editors C Gordon, Y Moriah, B Wajnryb), Contemp. Math. 164, Amer. Math. Soc. (1994) 91 MR1282758
15 J N Mather, Stratifications and mappings, from: "Dynamical systems" (editor M M Peixoto), Academic (1973) 195 MR0368064
16 P Orlik, H Terao, Arrangements of hyperplanes, 300, Springer (1992) MR1217488
17 L Paris, The Deligne complex of a real arrangement of hyperplanes, Nagoya Math. J. 131 (1993) 39 MR1238632
18 G Röhrle, Arrangements of ideal type, J. Algebra 484 (2017) 126 MR3656716
19 E Sommers, J Tymoczko, Exponents for B–stable ideals, Trans. Amer. Math. Soc. 358 (2006) 3493 MR2218986
20 R P Stanley, Supersolvable lattices, Algebra Universalis 2 (1972) 197 MR0309815
21 H Terao, Modular elements of lattices and topological fibration, Adv. in Math. 62 (1986) 135 MR865835
22 R Thom, Ensembles et morphismes stratifiés, Bull. Amer. Math. Soc. 75 (1969) 240 MR0239613