Volume 19, issue 3 (2019)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 25
Issue 7, 3789–4436
Issue 6, 3145–3787
Issue 5, 2527–3144
Issue 4, 1917–2526
Issue 3, 1265–1915
Issue 2, 645–1264
Issue 1, 1–644

Volume 24, 9 issues

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
 
Subscriptions
 
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
 
Author index
To appear
 
Other MSP journals
The topology of arrangements of ideal type

Nils Amend and Gerhard Röhrle

Algebraic & Geometric Topology 19 (2019) 1341–1358
Bibliography
1 T Abe, M Barakat, M Cuntz, T Hoge, H Terao, The freeness of ideal subarrangements of Weyl arrangements, J. Eur. Math. Soc. 18 (2016) 1339 MR3500838
2 M Barakat, M Cuntz, Coxeter and crystallographic arrangements are inductively free, Adv. Math. 229 (2012) 691 MR2854188
3 N Bourbaki, Groupes et algèbres de Lie, Chapitre I : Algèbres de Lie, 1285, Hermann (1971) MR0271276
4 E Brieskorn, Sur les groupes de tresses (d’après V I Arnold), from: "Séminaire Bourbaki, 1971/1972", Lecture Notes in Math. 317, Springer (1973) 21 MR0422674
5 D C Cohen, Monodromy of fiber-type arrangements and orbit configuration spaces, Forum Math. 13 (2001) 505 MR1830245
6 M Cuntz, I Heckenberger, Finite Weyl groupoids, J. Reine Angew. Math. 702 (2015) 77 MR3341467
7 M Cuntz, G Röhrle, A Schauenburg, Arrangements of ideal type are inductively free, Internat. J. Algebra Comput. (2019)
8 P Deligne, Les immeubles des groupes de tresses généralisés, Invent. Math. 17 (1972) 273 MR0422673
9 E Fadell, L Neuwirth, Configuration spaces, Math. Scand. 10 (1962) 111 MR0141126
10 M J Falk, N J Proudfoot, Parallel connections and bundles of arrangements, Topology Appl. 118 (2002) 65 MR1877716
11 M Falk, R Randell, The lower central series of a fiber-type arrangement, Invent. Math. 82 (1985) 77 MR808110
12 M Falk, R Randell, On the homotopy theory of arrangements, from: "Complex analytic singularities" (editors T Suwa, P Wagreich), Adv. Stud. Pure Math. 8, North-Holland (1987) 101 MR894288
13 A Hultman, Supersolvability and the Koszul property of root ideal arrangements, Proc. Amer. Math. Soc. 144 (2016) 1401 MR3451219
14 A Leibman, D Markushevich, The monodromy of the Brieskorn bundle, from: "Geometric topology" (editors C Gordon, Y Moriah, B Wajnryb), Contemp. Math. 164, Amer. Math. Soc. (1994) 91 MR1282758
15 J N Mather, Stratifications and mappings, from: "Dynamical systems" (editor M M Peixoto), Academic (1973) 195 MR0368064
16 P Orlik, H Terao, Arrangements of hyperplanes, 300, Springer (1992) MR1217488
17 L Paris, The Deligne complex of a real arrangement of hyperplanes, Nagoya Math. J. 131 (1993) 39 MR1238632
18 G Röhrle, Arrangements of ideal type, J. Algebra 484 (2017) 126 MR3656716
19 E Sommers, J Tymoczko, Exponents for B–stable ideals, Trans. Amer. Math. Soc. 358 (2006) 3493 MR2218986
20 R P Stanley, Supersolvable lattices, Algebra Universalis 2 (1972) 197 MR0309815
21 H Terao, Modular elements of lattices and topological fibration, Adv. in Math. 62 (1986) 135 MR865835
22 R Thom, Ensembles et morphismes stratifiés, Bull. Amer. Math. Soc. 75 (1969) 240 MR0239613