Recent Issues
Volume 24, 8 issues
Volume 24
Issue 8, 4139–4730
Issue 7, 3571–4137
Issue 6, 2971–3570
Issue 5, 2389–2970
Issue 4, 1809–2387
Issue 3, 1225–1808
Issue 2, 595–1223
Issue 1, 1–594
Volume 23, 9 issues
Volume 23
Issue 9, 3909–4400
Issue 8, 3417–3908
Issue 7, 2925–3415
Issue 6, 2415–2924
Issue 5, 1935–2414
Issue 4, 1463–1934
Issue 3, 963–1462
Issue 2, 509–962
Issue 1, 1–508
Volume 22, 8 issues
Volume 22
Issue 8, 3533–4008
Issue 7, 3059–3532
Issue 6, 2533–3057
Issue 5, 2007–2532
Issue 4, 1497–2006
Issue 3, 991–1495
Issue 2, 473–990
Issue 1, 1–472
Volume 21, 7 issues
Volume 21
Issue 7, 3221–3734
Issue 6, 2677–3220
Issue 5, 2141–2676
Issue 4, 1595–2140
Issue 3, 1075–1593
Issue 2, 543–1074
Issue 1, 1–541
Volume 20, 7 issues
Volume 20
Issue 7, 3219–3760
Issue 6, 2687–3218
Issue 5, 2145–2685
Issue 4, 1601–2143
Issue 3, 1073–1600
Issue 2, 531–1072
Issue 1, 1–529
Volume 19, 7 issues
Volume 19
Issue 7, 3217–3753
Issue 6, 2677–3215
Issue 5, 2151–2676
Issue 4, 1619–2150
Issue 3, 1079–1618
Issue 2, 533–1078
Issue 1, 1–532
Volume 18, 7 issues
Volume 18
Issue 7, 3749–4373
Issue 6, 3133–3747
Issue 5, 2509–3131
Issue 4, 1883–2507
Issue 3, 1259–1881
Issue 2, 635–1258
Issue 1, 1–633
Volume 17, 6 issues
Volume 17
Issue 6, 3213–3852
Issue 5, 2565–3212
Issue 4, 1917–2564
Issue 3, 1283–1916
Issue 2, 645–1281
Issue 1, 1–643
Volume 16, 6 issues
Volume 16
Issue 6, 3073–3719
Issue 5, 2459–3071
Issue 4, 1827–2458
Issue 3, 1253–1825
Issue 2, 621–1251
Issue 1, 1–620
Volume 15, 6 issues
Volume 15
Issue 6, 3107–3729
Issue 5, 2479–3106
Issue 4, 1863–2477
Issue 3, 1239–1862
Issue 2, 623–1238
Issue 1, 1–622
Volume 14, 6 issues
Volume 14
Issue 6, 3141–3763
Issue 5, 2511–3139
Issue 4, 1881–2509
Issue 3, 1249–1879
Issue 2, 627–1247
Issue 1, 1–625
Volume 13, 6 issues
Volume 13
Issue 6, 3099–3731
Issue 5, 2471–3097
Issue 4, 1857–2469
Issue 3, 1243–1856
Issue 2, 625–1241
Issue 1, 1–624
Volume 12, 4 issues
Volume 12
Issue 4, 1901–2517
Issue 3, 1265–1899
Issue 2, 643–1263
Issue 1, 1–641
Volume 11, 5 issues
Volume 11
Issue 5, 2477–3084
Issue 4, 1861–2475
Issue 3, 1243–1860
Issue 2, 625–1242
Issue 1, 1–624
Volume 10, 4 issues
Volume 10
Issue 4, 1865–2468
Issue 3, 1245–1863
Issue 2, 627–1244
Issue 1, 1–625
Volume 9, 4 issues
Volume 9
Issue 4, 1885–2502
Issue 3, 1255–1883
Issue 2, 625–1254
Issue 1, 1–624
Volume 8, 4 issues
Volume 8
Issue 4, 1855–2414
Issue 3, 1223–1853
Issue 2, 615–1222
Issue 1, 1–613
Volume 7, 4 issues
Volume 7
Issue 4, 1633–2270
Issue 3, 1135–1632
Issue 2, 529–1134
Issue 1, 1–528
Volume 6, 5 issues
Volume 6
Issue 5, 2031–2518
Issue 4, 1519–2029
Issue 3, 1025–1517
Issue 2, 513–1024
Issue 1, 1–512
Volume 5, 4 issues
Volume 5
Issue 4, 1291–1732
Issue 3, 865–1290
Issue 2, 443–864
Issue 1, 1–442
Volume 4, 2 issues
Volume 4
Issue 2, 647–1272
Issue 1, 1–645
Volume 3, 2 issues
Volume 3
Issue 2, 623–1292
Issue 1, 1–622
Volume 2, 2 issues
Volume 2
Issue 2, 591–1204
Issue 1, 1–590
Volume 1, 2 issues
Volume 1
Issue 2, 627–790
Issue 1, 1–625
1
E Artin , Theorie der Zöpfe ,
Abh. Math. Sem. Univ. Hamburg 4 (1925) 47 MR3069440
2
J M Belk ,
Thompson’s group F , PhD thesis, Cornell University
(2004) arXiv:0708.3609 MR2706280
3
J Belk , B
Forrest , Rearrangement groups of fractals , preprint
(2015) arXiv:1510.03133
4
J Belk , B
Forrest , A
Thompson group for the basilica , Groups Geom. Dyn. 9
(2015) 975 MR3428407
5
D Bessis , The dual braid
monoid , Ann. Sci. École Norm. Sup. 36 (2003) 647
MR2032983
6
M Bestvina , N
Brady , Morse theory and
finiteness properties of groups , Invent. Math. 129
(1997) 445 MR1465330
7
J S Birman ,
Braids,
links, and mapping class groups , Princeton Univ. Press
(1974) MR0375281
8
J Birman , K H
Ko , S J Lee , A new approach to the
word and conjugacy problems in the braid groups , Adv.
Math. 139 (1998) 322 MR1654165
9
A Björner , L
Lovász , S T Vrećica , R T
Živaljević , Chessboard complexes and
matching complexes , J. London Math. Soc. 49 (1994) 25
MR1253009
10
T Brady , A partial order on the
symmetric group and new K ( π, 1) ’s for the
braid groups , Adv. Math. 161 (2001) 20 MR1857934
11
T Brady , J
Burillo , S Cleary , M Stein , Pure braid subgroups
of braided Thompson’s groups , Publ. Mat. 52 (2008) 57
MR2384840
12
E Brieskorn , K
Saito , Artin-Gruppen und
Coxeter-Gruppen , Invent. Math. 17 (1972) 245 MR0323910
13
M G Brin ,
Higher
dimensional Thompson groups , Geom. Dedicata 108 (2004)
163 MR2112673
14
M G Brin ,
On the
Zappa–Szép product , Comm. Algebra 33 (2005) 393
MR2124335
15
M G Brin ,
The algebra
of strand splitting, I : A braided version of Thompson’s group
V , J. Group Theory 10
(2007) 757 MR2364825
16
K S Brown ,
Finiteness
properties of groups , J. Pure Appl. Algebra 44 (1987)
45 MR885095
17
K S Brown , R
Geoghegan , An infinite-dimensional
torsion-free FP ∞ group , Invent. Math. 77 (1984)
367 MR752825
18
K U Bux ,
M G Fluch , M Marschler , S Witzel ,
M C B Zaremsky , The braided
Thompson’s groups are of type F ∞ , J. Reine Angew. Math. 718
(2016) 59 MR3545879
19
J W Cannon ,
W J Floyd , W R Parry , Introductory
notes on Richard Thompson’s groups , Enseign. Math. 42
(1996) 215 MR1426438
20
R Charney , J
Meier , K Whittlesey , Bestvina’s
normal form complex and the homology of Garside groups ,
Geom. Dedicata 105 (2004) 171 MR2057250
21
P Dehornoy ,
The
group of parenthesized braids , Adv. Math. 205 (2006)
354 MR2258261
22
P Dehornoy , F
Digne , E Godelle , D Krammer , J Michel ,
Foundations of Garside
theory , 22, Eur. Math. Soc. (2015) MR3362691
23
D S Farley ,
Finiteness and
CAT (0)
properties of diagram groups , Topology 42 (2003) 1065
MR1978047
24
M G Fluch , M
Marschler , S Witzel , M C B
Zaremsky , The Brin–Thompson
groups sV are of type F ∞ , Pacific J. Math. 266 (2013)
283 MR3130623
25
F A Garside ,
The braid
group and other groups , Quart. J. Math. Oxford Ser. 20
(1969) 235 MR0248801
26
A Hatcher , Algebraic
topology , Cambridge Univ. Press (2002) MR1867354
27
G Higman , Finitely
presented infinite simple groups , 8, Australian National
University (1974) MR0376874
28
V F R Jones ,
A no-go
theorem for the continuum limit of a periodic quantum spin
chain , Comm. Math. Phys. 357 (2018) 295 MR3764571
29
C Kassel , V
Turaev , Braid
groups , 247, Springer (2008) MR2435235
30
D Kozlov , Combinatorial
algebraic topology , 21, Springer (2008) MR2361455
31
C Martínez-Pérez , F
Matucci , B E A Nucinkis , Cohomological
finiteness conditions and centralisers in generalisations of
Thompson’s group V , Forum
Math. 28 (2016) 909 MR3543701
32
E Pardo , The
isomorphism problem for Higman–Thompson groups , J.
Algebra 344 (2011) 172 MR2831934
33
D Quillen , Higher algebraic
K –theory, I , from:
"Algebraic K –theory, I : Higher
K –theories" (editor H Bass),
Lecture Notes in Math. 341, Springer (1973) 85 MR0338129
34
D Quillen , Homotopy
properties of the poset of nontrivial p –subgroups of a group , Adv. in Math.
28 (1978) 101 MR493916
35
R Skipper , S
Witzel , M C B Zaremsky , Simple groups
separated by finiteness properties , Invent. Math. 215
(2019) 713 MR3910073
36
M Stein , Groups of piecewise linear
homeomorphisms , Trans. Amer. Math. Soc. 332 (1992) 477
MR1094555
37
W Thumann , Operad groups and
their finiteness properties , Adv. Math. 307 (2017) 417
MR3590523
38
C T C Wall ,
Finiteness
conditions for CW –complexes , Ann. of Math. 81 (1965)
56 MR0171284
39
C T C Wall ,
Finiteness
conditions for CW complexes,
II , Proc. Roy. Soc. Ser. A 295 (1966) 129 MR0211402
40
S Witzel ,
Finiteness properties of thompson groups , Habilitation,
Bielefeld University (2016)
41
S Witzel ,
M C B Zaremsky , The Basilica Thompson group
is not finitely presented , preprint (2016) arXiv:1603.01150
42
S Witzel ,
M C B Zaremsky , The Σ –invariants of Thompson’s group F via Morse theory , from: "Topological
methods in group theory" (editors N. Broaddus,
M. Davis, J F Lafont, I J Ortiz), London
Mathematical Society Lecture Note Series 451, Cambridge Univ.
Press (2018) 173
43
S Witzel ,
M C B Zaremsky , Thompson groups for systems
of groups, and their finiteness properties , Groups
Geom. Dyn. 12 (2018) 289 MR3781423