Volume 19, issue 3 (2019)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 24
Issue 8, 4139–4730
Issue 7, 3571–4137
Issue 6, 2971–3570
Issue 5, 2389–2970
Issue 4, 1809–2387
Issue 3, 1225–1808
Issue 2, 595–1223
Issue 1, 1–594

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
Classifying spaces from Ore categories with Garside families

Stefan Witzel

Algebraic & Geometric Topology 19 (2019) 1477–1524
Bibliography
1 E Artin, Theorie der Zöpfe, Abh. Math. Sem. Univ. Hamburg 4 (1925) 47 MR3069440
2 J M Belk, Thompson’s group F, PhD thesis, Cornell University (2004) arXiv:0708.3609 MR2706280
3 J Belk, B Forrest, Rearrangement groups of fractals, preprint (2015) arXiv:1510.03133
4 J Belk, B Forrest, A Thompson group for the basilica, Groups Geom. Dyn. 9 (2015) 975 MR3428407
5 D Bessis, The dual braid monoid, Ann. Sci. École Norm. Sup. 36 (2003) 647 MR2032983
6 M Bestvina, N Brady, Morse theory and finiteness properties of groups, Invent. Math. 129 (1997) 445 MR1465330
7 J S Birman, Braids, links, and mapping class groups, Princeton Univ. Press (1974) MR0375281
8 J Birman, K H Ko, S J Lee, A new approach to the word and conjugacy problems in the braid groups, Adv. Math. 139 (1998) 322 MR1654165
9 A Björner, L Lovász, S T Vrećica, R T Živaljević, Chessboard complexes and matching complexes, J. London Math. Soc. 49 (1994) 25 MR1253009
10 T Brady, A partial order on the symmetric group and new K(π,1)’s for the braid groups, Adv. Math. 161 (2001) 20 MR1857934
11 T Brady, J Burillo, S Cleary, M Stein, Pure braid subgroups of braided Thompson’s groups, Publ. Mat. 52 (2008) 57 MR2384840
12 E Brieskorn, K Saito, Artin-Gruppen und Coxeter-Gruppen, Invent. Math. 17 (1972) 245 MR0323910
13 M G Brin, Higher dimensional Thompson groups, Geom. Dedicata 108 (2004) 163 MR2112673
14 M G Brin, On the Zappa–Szép product, Comm. Algebra 33 (2005) 393 MR2124335
15 M G Brin, The algebra of strand splitting, I : A braided version of Thompson’s group V , J. Group Theory 10 (2007) 757 MR2364825
16 K S Brown, Finiteness properties of groups, J. Pure Appl. Algebra 44 (1987) 45 MR885095
17 K S Brown, R Geoghegan, An infinite-dimensional torsion-free FP group, Invent. Math. 77 (1984) 367 MR752825
18 K U Bux, M G Fluch, M Marschler, S Witzel, M C B Zaremsky, The braided Thompson’s groups are of type F, J. Reine Angew. Math. 718 (2016) 59 MR3545879
19 J W Cannon, W J Floyd, W R Parry, Introductory notes on Richard Thompson’s groups, Enseign. Math. 42 (1996) 215 MR1426438
20 R Charney, J Meier, K Whittlesey, Bestvina’s normal form complex and the homology of Garside groups, Geom. Dedicata 105 (2004) 171 MR2057250
21 P Dehornoy, The group of parenthesized braids, Adv. Math. 205 (2006) 354 MR2258261
22 P Dehornoy, F Digne, E Godelle, D Krammer, J Michel, Foundations of Garside theory, 22, Eur. Math. Soc. (2015) MR3362691
23 D S Farley, Finiteness and CAT(0) properties of diagram groups, Topology 42 (2003) 1065 MR1978047
24 M G Fluch, M Marschler, S Witzel, M C B Zaremsky, The Brin–Thompson groups sV are of type F, Pacific J. Math. 266 (2013) 283 MR3130623
25 F A Garside, The braid group and other groups, Quart. J. Math. Oxford Ser. 20 (1969) 235 MR0248801
26 A Hatcher, Algebraic topology, Cambridge Univ. Press (2002) MR1867354
27 G Higman, Finitely presented infinite simple groups, 8, Australian National University (1974) MR0376874
28 V F R Jones, A no-go theorem for the continuum limit of a periodic quantum spin chain, Comm. Math. Phys. 357 (2018) 295 MR3764571
29 C Kassel, V Turaev, Braid groups, 247, Springer (2008) MR2435235
30 D Kozlov, Combinatorial algebraic topology, 21, Springer (2008) MR2361455
31 C Martínez-Pérez, F Matucci, B E A Nucinkis, Cohomological finiteness conditions and centralisers in generalisations of Thompson’s group V , Forum Math. 28 (2016) 909 MR3543701
32 E Pardo, The isomorphism problem for Higman–Thompson groups, J. Algebra 344 (2011) 172 MR2831934
33 D Quillen, Higher algebraic K–theory, I, from: "Algebraic K–theory, I : Higher K–theories" (editor H Bass), Lecture Notes in Math. 341, Springer (1973) 85 MR0338129
34 D Quillen, Homotopy properties of the poset of nontrivial p–subgroups of a group, Adv. in Math. 28 (1978) 101 MR493916
35 R Skipper, S Witzel, M C B Zaremsky, Simple groups separated by finiteness properties, Invent. Math. 215 (2019) 713 MR3910073
36 M Stein, Groups of piecewise linear homeomorphisms, Trans. Amer. Math. Soc. 332 (1992) 477 MR1094555
37 W Thumann, Operad groups and their finiteness properties, Adv. Math. 307 (2017) 417 MR3590523
38 C T C Wall, Finiteness conditions for CW–complexes, Ann. of Math. 81 (1965) 56 MR0171284
39 C T C Wall, Finiteness conditions for CW complexes, II, Proc. Roy. Soc. Ser. A 295 (1966) 129 MR0211402
40 S Witzel, Finiteness properties of thompson groups, Habilitation, Bielefeld University (2016)
41 S Witzel, M C B Zaremsky, The Basilica Thompson group is not finitely presented, preprint (2016) arXiv:1603.01150
42 S Witzel, M C B Zaremsky, The Σ–invariants of Thompson’s group F via Morse theory, from: "Topological methods in group theory" (editors N. Broaddus, M. Davis, J F Lafont, I J Ortiz), London Mathematical Society Lecture Note Series 451, Cambridge Univ. Press (2018) 173
43 S Witzel, M C B Zaremsky, Thompson groups for systems of groups, and their finiteness properties, Groups Geom. Dyn. 12 (2018) 289 MR3781423