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A dynamical characterization of
acylindrically hyperbolic groups

BIN SUN

We give a dynamical characterization of acylindrically hyperbolic groups. As an
application, we prove that nonelementary convergence groups are acylindrically
hyperbolic.

20F65; 20F67

1 Introduction

The notion of an acylindrically hyperbolic group was introduced by Osin [16]. A
group is called acylindrically hyperbolic if it admits a nonelementary acylindrical
action on a Gromov hyperbolic space (for details, see Section 3.1). Nonelementary
hyperbolic and nonelementary relatively hyperbolic groups are acylindrically hyperbolic.
Other examples include all but finitely many mapping class groups of punctured
closed surfaces, outer automorphism groups of nonabelian free groups, many of the
fundamental groups of graphs of groups, groups of deficiency at least two, etc (see
Osin [17] for details and other examples).

Not only do acylindrically hyperbolic groups form a rich class, but they also en-
joy various nice algebraic, geometric and analytic properties. For example, every
acylindrically hyperbolic group G has nontrivial H 2

b
.G; `2.G//, which allows one to

apply the Monod–Shalom rigidity theory [15] for measure-preserving actions. Using
methods from Dahmani, Guirardel and Osin [6], one can also find hyperbolically
embedded subgroups in acylindrically hyperbolic groups and then use group-theoretic
Dehn surgery to prove various algebraic results (eg SQ-universality). Yet there is also
a version of the small cancellation theory for acylindrically hyperbolic groups (see
Hull [12]). For a brief survey on those topics we refer to Osin [16; 17].

The work of Bowditch [3], Freden [8] and Tukia [18] provides a dynamical character-
ization of nonelementary hyperbolic groups by means of the notion of convergence
groups. An action of a group G on a metrizable topological space M is called a
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convergence action (or G is called a convergence group acting on M ) if the induced
diagonal action of G on the space of distinct triples

‚3.M/D f.x1; x2; x3/ 2M j x1 ¤ x2; x2 ¤ x3; x1 ¤ x3g

is properly discontinuous. Convergence groups were introduced by Gehring and
Martin [9] in order to capture the dynamical properties of Kleinian groups acting on the
ideal spheres of real hyperbolic spaces. Although the original paper refers only to actions
on spheres, the notion of convergence groups can be generalized to general compact
metrizable topological spaces or even compact Hausdorff spaces. Bowditch [3; 4]
and Tukia [18] proved that nonelementary hyperbolic groups are precisely uniform
convergence groups acting on perfect compact metrizable topological spaces. Later, a
characterization of relatively hyperbolic groups was given by Yaman [21].

Inspired by the result of Bowditch and Tukia, we introduce condition (C) for group
actions on topological spaces and use it to characterize acylindrically hyperbolic groups.

Definition 1.1 Given a group G acting by homeomorphisms on a topological space M
which has at least 3 points, we consider the following condition (see Figure 1):

(C) For every pair of distinct points u; v 2�Df.x; x/ jx 2M g, there exist open sets
U and V of the product topological space M 2 , containing u and v , respectively,
such that for every pair of distinct points a; b 2M 2 n�, there exist open sets
A and B of the product topological space M 2 (A and B are permitted to
intersect �), containing a and b , respectively, withˇ̌

fg 2G j gA\U ¤∅; gB \V ¤∅g
ˇ̌
<1:

Theorem 1.2 A group G that is not virtually cyclic is acylindrically hyperbolic if
and only if G admits an action on some completely Hausdorff topological space M
satisfying (C) with an element g 2G having north–south dynamics on M.

Recall that a topological space M is called completely Hausdorff if for any two distinct
points u; v 2 M, there exist open sets U and V containing u and v , respectively,
such that U \V D ∅. Also recall that a element g 2 G is said to have north–south
dynamics on M if g fixes exactly two points x ¤ y of M and “translates” everything
outside of x towards y (see Definition 3.5 for details).

It was established earlier that nonelementary convergence groups are not virtually
cyclic and contain elements with north–south dynamics. Thus, by proving that every
convergence action satisfies (C), we obtain the following corollary:
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Figure 1: The (C) condition

Corollary 1.3 Nonelementary convergence groups are acylindrically hyperbolic.

Karlsson [13, Proposition 6] proved that if G is a finitely generated group whose Floyd
boundary @FG has cardinality at least 3, then G acts on @FG by a nonelementary
convergence action. Thus, as a further application of Theorem 1.2, we recover the
following result:

Corollary 1.4 (Yang [22, Corollary 1]) Every finitely generated group with Floyd
boundary of cardinality at least 3 is acylindrically hyperbolic.

The converse of Corollary 1.3 is not true, ie there exists an acylindrically hyperbolic
group such that every convergence action of this group is elementary. In Section 7, we
are going to prove that mapping class groups of closed orientable surfaces of genus at
least 2 and noncyclic directly indecomposable right-angled Artin groups corresponding
to connected graphs are examples of this kind.

For countable groups, applying a result of Balasubramanya [1], we show:

Theorem 1.5 A countable group G that is not virtually cyclic is acylindrically hyper-
bolic if and only if G admits an action on the Baire space satisfying (C) and contains
an element with north–south dynamics.

Recall that the Baire space is the Cartesian product NN with the Tychonoff topol-
ogy. Theorem 1.5 implies that acylindrical hyperbolicity of countable groups can be
characterized by their actions on a particular space, the Baire space.

Algebraic & Geometric Topology, Volume 19 (2019)



1714 Bin Sun

This paper is organized as follows. In Section 2–4, we survey some basic information
about Gromov hyperbolic spaces, acylindrically hyperbolic groups and convergence
groups. We introduce the notion of condition (C) in Section 5. In Section 6, we survey
a construction due to Bowditch [3]. The proof of Theorem 1.2 is presented in Section 7
and separated into two parts. We first use geometric properties of Gromov hyperbolic
spaces to prove that every acylindrically hyperbolic group is not virtually cyclic and
admits an action satisfying (C) on a completely Hausdorff space with an element having
north–south dynamics. The other direction of Theorem 1.2 is proved by using the
construction of Bowditch. We also prove Theorem 1.5 and discuss Corollary 1.3 and
its converse in Section 7.

Acknowledgements I would like to thank my supervisor, Denis Osin, for introducing
me to the subject, for explaining his view on this topic, and for his proofreading for
this paper. This paper would not have been written without his help. I would also like
to thank the referee, who helped me make this article more precise and clear.

2 Gromov hyperbolic spaces

2.1 Definition

We start by recalling the well-known concept of a Gromov hyperbolic space. Suppose
that .S; d/ is a geodesic metric space with underlying space S and metric d . Let �
be a geodesic triangle consisting of three geodesic segments 
1 , 
2 and 
3 . For a
number ı > 0, � is called ı–slim if the distance between every point of 
i and the
union 
j [ 
k is less than ı , where fi; j; kg D f1; 2; 3g.

We say that .S; d/ is a ı–hyperbolic space if geodesic triangles in S are all ı–slim.
.S; d/ is called a Gromov hyperbolic space if it is ı–hyperbolic for some ı > 0.
Gromov hyperbolic spaces generalize notions such as simplicial trees and complete
simply connected Riemannian manifolds with constant negative sectional curvature
while preserving most of their interesting properties (see Bridson and Haefliger [5] and
Väisälä [19]).

Some notation When one refers to a metric space .S; d/, usually there is no ambiguity
of the metric d once the underlying space S is clarified. Thus, we will omit the metric
and just use a single letter S to indicate a metric space whenever there is no ambiguity
of the metric. Also, for every x 2 S and r > 0, we will use BS .x; r/ to denote the
open ball in S with x as its center and r as its radius.
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Remark 2.1 In the literature, properness is often part of the definition of a Gromov
hyperbolic space. However, in this article, we do not assume that a Gromov hyperbolic
space S is proper, ie some closed balls of S might not be compact.

We will use the notation Œs; t � to denote a geodesic segment between two points s; t 2S.
Note that such a geodesic may not be unique. Thus, by Œs; t �, we mean that we choose
one geodesic between s; t 2 S and Œs; t � will only denote this chosen geodesic. We
might specify our choice if necessary, but in most cases we will not do so and just
choose an arbitrary geodesic implicitly.

2.2 Gromov product and Gromov boundary

We recall the notions of Gromov products and Gromov boundaries. Our main references
are Bridson and Haefliger [5] and Väisälä [19]. We shall also prove certain properties
of these objects which will be useful later in this article.

Let S be a ı–hyperbolic space. The Gromov product of x and y with respect to z ,
denoted by .x �y/z , where x; y; z 2 S, is defined by

.x �y/z D
1
2
.d.x; z/C d.y; z/� d.x; y//:

One can reformulate Gromov hyperbolicity by using the Gromov product. In particular,
we will use the following inequality many times later in this article:

(1) .x �y/w > minf.x � z/w ; .y � z/wg� 4ı for all x; y; z; w 2 S:

It can be easily extracted from the proofs of Propositions 1.17 and 1.22 in Chapter III.H
of [5].

Define the Gromov boundary @S of S as follows: Pick a point e 2 S. A sequence of
points fsngn>1 � S is called converging to1 if .si �sj /e!1 as i and j tend to 1.
We say that two sequences fxngn>1 and fyngn>1 converging to 1 are equivalent and
write fxngn>1 � fyngn>1 if .xn �yn/e!1 as n!1. It follows from (1) that � is
indeed an equivalence relation. The Gromov boundary @S is then defined as the set
of all sequences in S converging to 1 modulo the equivalence relation �. Elements
of @S are equivalence classes of sequences in S converging to 1 and we say that a
sequence fxngn>1 2 S tends to a boundary point x 2 @S and write xn! x as n!1
if fxngn>1 2 x .
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The definition of the Gromov product can be extended to S [@S. Given x; y 2 S [@S,
if x 2 S; y 2 @S, define .x �y/e by

.x �y/e D inf
˚
lim inf
n!1

.x �yn/e
	
;

where the infimum is taken over all sequences fyngn>1 tending to y ; if x 2 @S and
y 2 S, then we define .x � y/e by flipping the role of x and y in the last equality;
finally, if x; y 2 @S, define .x �y/e by

.x �y/e D inf
˚
lim inf
i;j!1

.xi �yj /e
	
;

where the infimum is taken over all sequences fxngn>1 tending to x and fyngn>1

tending to y .

Given a positive number � , for s; t 2 @S, let

d 0.s; t/D exp.��.s � t /e/; �.s; t/D inf
nX
kD1

d 0.sk; skC1/;

where the infimum is taken over all finite sequences s D s1; s2; : : : ; snC1 D t . By
[19, Proposition 5.16], if � is small enough, � will be a metric for @S and d 0 and �
will satisfy

(2) 1
2
d 0.s; t/6 �.s; t/6 d 0.s; t/ for all s; t 2 @S:

From now on we will fix a sufficiently small � such that � is a metric and that (2) holds.

Remark 2.2 We construct @S with the help of a chosen point e , but the Gromov
boundary does not depend on the choice, ie we can pick another point e0 2 S and use
the same procedure to produce a Gromov boundary of S with respect to e0. The two
resulting boundaries can be naturally identified.

Note that � induces a topology � on @S. While � does depend on the point e and the
constant � we choose, � is independent of those choices and thus we get a canonical
topology on @S. In the sequel, the topological concepts of @S (for example, open sets)
are the ones with respect to this canonical topology.

For x 2 S and K 2R, we employ the notation

UK.x/D fs 2 S j .x � s/e >Kg:

Also recall that BS .x; r/ denotes the open ball in S centered at x with radius r and
that Œu; v� denotes a geodesic segment between u; v 2 S.
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The following estimates, Lemmas 2.3–2.6, are well-known properties of hyperbolic
spaces and Gromov products. For proofs, the readers are referred to [19].

Lemma 2.3 Let x and y be two distinct points of @S. Then there exists K > 0 such
that for every u 2 UK.x/ and v 2 UK.y/, we have j.u � v/e � .x �y/ej< 12ı .

Lemma 2.4 Let u and v be two points of S. Then d.e; Œu; v�/� 8ı 6 .u � v/e 6
d.e; Œu; v�/.

A direct consequence of Lemma 2.4 is:

Lemma 2.5 Let u and v be two points of S and let w 2 Œu; v�; then .u �w/e >
.u � v/e � 8ı .

Combine Lemmas 2.3 and 2.4:

Lemma 2.6 Let x and y be two distinct points of @S. Then there exists K > 0 such
that jd.e; Œu; v�/� .x �y/ej< 20ı for every u 2 UK.x/ and v 2 UK.y/.

Lemma 2.7 Let x and y be two points of @S such that .x � y/e > K for some
number K . Suppose fxngn>1 is a sequence in S tending to x . Then there exists
N > 0 such that .xn �y/e >K for all n>N.

Proof Fix � > 0 such that .x � y/e > K C � . Let fyngn>1 be any sequence in S
tending to y . By the definition of .x �y/e ,

lim inf
m;n!1

.xm �yn/e > .x �y/e >KC �:

Thus, there exists N > 0 such that .xn �ym/e >KC � for all m; n>N. In particular,

lim inf
m!1

.xn �ym/e >KC �

for all n>N.

As the above inequality holds for any sequence fyngn>1 tending to y , we have .xn�y/>
KC � > K for all n>N.

Lemma 2.8 Let x and y be two distinct points of @S. Then there exist D;K > 0

such that for every u 2 UK.x/ and v 2 UK.y/, we have d.e; Œu; v�/ < D.
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Proof Since x ¤ y , there exists D > 0 such that .x �y/e <D�20ı . By Lemma 2.6,
we can pick K>0 large enough that d.e; Œu; v�/<D for every u2UK.x/; v 2UK.y/.

Lemma 2.9 Let x be a point of @S. Then, for every R > 0, there exists K > 0 such
that d.e; UK.x// > R .

Proof We only need to prove that for every R > 0, .x � z/e <R for all z 2BS .e; R/.
Fix any z 2 BS .e; R/. Let fxngn>1 be any sequence in S tending to x as n!1.
By Lemma 2.4, lim infn!1.xn � z/e 6 lim infn!1 d.e; Œxn; z�/ 6 d.e; z/ < R . As
fxngn>1 is arbitrary, we obtain .x � z/e <R .

Lemma 2.10 Let x be a point of @S. Then, for every R> 0, there exists K > 0 such
that for every u1; u2 2 UK.x/, we have Œu1; u2�� UR.x/.

Proof Let K DRC 17ı and let u1 and u2 be two points of UK.x/. We first prove
that .u1 �u2/e >RC 13ı . Let fxngn>1 be any sequence in S tending to x . By (1),

.u1 �u2/e > minf.u1 � xn/e; .u2 � xn/eg� 4ı

for all n. Pass to a limit and we obtain .u1 �u2/ > K � 4ı DRC 13ı .

Let t be any point of Œu1; u2�. As .u1 �u2/e >RC 13ı , we have .u1 � t /e >RC 5ı
by Lemma 2.5. By (1) again,

.t � xn/e > minf.t �u1/e; .u1 � xn/eg� 4ı

for all n. By passing to a limit and by the arbitrariness of fxngn>1 , we obtain .t �x/e >
RC ı > R and thus t 2 UR .

Lemma 2.11 Let x and y be two distinct points of @S. Then, for every R > 0, there
exists K > 0 such that for every u 2 UK.x/ and v 2 UK.y/, we have d.u; v/ > R .

Proof Given any R > 0, by Lemmas 2.8 and 2.9, if K is large enough, we will have
d.e; Œu; v�/ < D and that d.e; u/ > RCD for every u 2 UK.x/; v 2 UK.y/. Fix
one such K and let u 2 UK.x/ and v 2 UK.y/. Select t 2 Œu; v� such that d.e; t/D
d.e; Œu; v�/ by the compactness of Œu; v�. Then d.u; v/>d.u; t/>d.u; e/�d.e; t/>R ,
as desired.
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Proposition 2.12 Let x and y be two distinct points of @S. Then, for every R > 0,
there exists K > 0 such that for every u1; u2 2 UK.x/ and every v1; v2 2 UK.y/, we
have d.Œu1; u2�; Œv1; v2�/ > R .

Proof Given any R > 0, by Lemma 2.11, there exists K 0 > 0 such that for every
u 2 UK0.x/ and v 2 UK0.y/, we have d.u; v/ > R . By Lemma 2.10, there exists
K > 0 such that Œu1; u2�� UK0.x/ and Œv1; v2�� UK0.y/ for every u1; u2 2 UK.x/
and v1; v2 2UK.y/. It follows that d.Œu1; u2�; Œv1; v2�/>R for every u1; u2 2UK.x/
and v1; v2 2 UK.y/.

Lemma 2.13 Let x and y be two distinct points of @S. Then there exists D > 0

with the following property:

For every K >D, there exists R > 0 such that for every u 2 UR.x/; v 2 UR.y/ and
every t 2 Œu; v� nBS .e;K/, we have

maxf.t � x/e; .t �y/eg>K �D� 12ı:

Proof Use Lemma 2.8 and pick D>0 and R>K such that d.e; Œu; v�/<D for every
u 2UR.x/ and v 2UR.y/. Fix u 2UR.x/ and v 2UR.y/. Let t 2 Œu; v�nBS .e;K/,
let Œt; u� (resp. Œt; v�) be the subgeodesic of Œu; v� from u to t (resp. from t to v ) and
pick s 2 Œu; v� such that d.e; s/D d.e; Œu; v�/ by the compactness of Œu; v�. Without
loss of generality, we may assume that s … Œt; u�.

We prove that Œt; u�\BS .e;K �D/D∅ by contradiction. Suppose there is some z
belonging to Œt; u�\BS .e;K �D/. As t … BS .e;K/, we have

d.t; z/> d.t; e/� d.e; z/ > D:

As d.e; t/ > K and d.e; s/ < D, we have d.s; t/> d.e; t/� d.e; s/DK �D. Thus,

d.s; z/D d.s; t/C d.t; z/ > K �DCD DK:

But d.s; z/6 d.s; e/C d.e; z/ < DCK �D DK , a contradiction.

Apply Lemma 2.4 and we see that .t �u/e >K �D� 8ı . Let fxngn>1 be a sequence
in S tending to x . By (1), .t � xn/e > minf.u � xn/e; .t �u/eg� 4ı for all n. Pass to a
limit and we obtain .t � x/e >minfR;K �D� 8ıg� 4ı DK �D� 12ı .

Lemma 2.14 Let x and y be two points of @S. Then, for K>0, u1; u2 2UKC6ı.x/
and v1; v2 2 UKC6ı.y/, Œu1; v1� \ BS .e;K/ lies inside the 2ı–neighborhood of
Œu2; v2�.
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Proof Given any K>0, fix u1; u22UKC6ı.x/ and v1; v22UKC6ı.y/. Let fxngn>1

be a sequence in S tending to x . By (1), .u1�u2/e> f.u1�xn/e; .u2�xn/eg�4ı for all n.
Pass to a limit and we obtain .u1�u2/>KC2ı . By Lemma 2.4, d.e; Œu1; u2�/>KC2ı .
Similarly, d.e; Œv1; v2�/ > KC 2ı .

Consider the geodesic quadrilateral Œu1; u2�, Œu2; v2�, Œv2; v1�, Œv1; u1�. By hyperbolic-
ity, BS .e;K/\Œu1; v1� lies inside the 2ı–neighborhood of Œu1; u2�[Œu2; v2�[Œv2; v1�.
Since d.e; Œu1; u2�/ > K C 2ı , we have d.Œu1; u2�; BS .e;K// > 2ı by the triangle
inequality. Likewise, d.Œv1; v2�; BS .e;K// > 2ı . It follows that Œu1; v1�\BS .e;K/
lies inside the 2ı–neighborhood of Œu2; v2�.

Lemma 2.15 Let x , y and z be three distinct points of @S. Then, for every K > 0,
there exists R>0 such that for every u2UR.x/, v 2UR.y/ and w 2UR.z/, we have
d.w; Œu; v�/ > K .

Proof By Lemmas 2.8 and 2.11, there exists D > 0 with the following property:
Given any K > 0, there exists R0 > 0 such that

maxfd.e; Œu; w�/; d.e; Œv; w�/g<D; minfd.u;w/; d.v; w/g>K

for all u2UR0.x/, v 2UR0.y/ and w 2UR0.z/. By Lemmas 2.9 and 2.13, there exists
R >R0 such that

Œu; v�nBS .e; R
0
CDC12ı/�UR0.x/[UR0.y/; d.w;BS .e; R

0
CDC12ı// >K

for all u 2 UR.x/, v 2 UR.y/ and w 2 UR.z/.

Fix arbitrary u2UR.x/, v 2UR.y/ and w 2UR.z/. We verify that d.w; Œu; v�/ >K .
Pick t 2 Œu; v� such that d.w; t/ D d.w; Œu; v�/ by the compactness of Œu; v�. By
our choice of R , either t 2 UR0.x/ [ UR0.y/ or t 2 BS .e; R0 C D C 12ı/. If
t 2 UR0.x/ or UR0.y/, then d.w; Œu; v�/ D d.w; t/ > K by our choice of R0. If
t 2BS .e; R

0CDC12ı/, we will still have d.w; Œu; v�/D d.w; t/ >K by our choice
of R .

Proposition 2.16 Let x , y and z be three distinct points of @S. Then for every K>0,
there exists R > 0 such that for every u 2 UR.x/, v 2 UR.y/ and w1; w2 2 UR.z/,
we have d.Œu; v�; Œw1; w2�/ > K .

Proof Given any K>0, by Lemma 2.15, there exists R0>0 such that d.w; Œu; v�/>K
for every u 2 UR0.x/, v 2 UR0.y/ and w 2 UR0.z/. By Lemma 2.10, there exists
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R > 0 such that Œw1; w2� � UR0.z/ for every w1; w2 2 UR.z/. It follows that
d.Œu; v�; Œw1; w2�/ > K for every u 2 UR.x/, v 2 UR.y/ and w1; w2 2 UR.z/.

Lemma 2.17 Let u and v be two points of S. Select a geodesic Œu; v� connecting u
and v and let T D fz 2 Œu; v� j d.e; z/6 d.e; Œu; v�/C 42ıg. Then the diameter of T
is at most 88ı .

Proof Suppose, to the contrary, that there exists x; y 2T such that d.x; y/>88ı . Let
Œx; y� be the subgeodesic of Œu; v� between x and y . Let t be the midpoint of Œx; y�.
Obviously, both d.x; t/and d.y; t/ are strictly greater than 44ı .

Consider the geodesic triangle Œx; e�, Œe; y�, Œx; y�. There is a point w 2 Œx; e�[ Œe; y�
such that d.t; w/< ı . If w 2 Œx; e�, then, since d.x; t/>44ı , d.x;w/>44ı�ı >43ı
by the triangle inequality, hence

d.t; e/6 d.t; w/C d.w; e/ < ıC d.e; Œu; v�/C 42ı� 43ı < d.e; Œu; v�/:

Similarly, if w 2 Œe; y�, then the same argument with y in place of x shows that
d.y; e/ < d.e; Œu; v�/. Either case contradicts the definition of d.e; Œu; v�/.

Proposition 2.18 Let fpngn>1 , fqngn>1 , frngn>1 and fsngn>1 be sequences in S
tending to four distinct boundary points p , q , r and s , respectively. For each n, choose
a point an (resp. bn ) in Œpn; qn� (resp. Œrn; sn�) such that d.e; an/ D d.e; Œpn; qn�/
(resp. d.e; bn/D d.e; Œrn; sn�/) by the compactness of Œpn; qn� (resp. Œrn; sn�).

If m and n are large enough , Œam; bm� will be in the 92ı–neighborhood of Œan; bn�.

Proof By Lemma 2.6, there exists N1 such that if n > N1 ,

jd.e; Œpn; qn�/� .p � q/ej< 20ı:

There exists N2 such that if m; n>N2 , both d.e; Œpm; pn�/ and d.e; Œqm; qn�/ will be
strictly greater than .p �q/eC22ı , by the fact that fpngn>1 and fqngn>1 are sequences
tending to 1 and Lemma 2.4. Let m; n > maxfN1; N2g and consider the geodesic
quadrilateral consisting of the four sides Œpm; qm�, Œqm; qn�, Œqn; pn� and Œpn; pm�.
There is a point am;n 2 Œpm; qm�[ Œqm; qn�[ Œpn; pm� such that d.am;n; an/ < 2ı .
Since

d.e; am;n/6 d.e; an/C 2ı 6 .p � q/eC 22ı;
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Figure 2: Ideas behind Lemma 2.17 and Proposition 2.18. Left: the estimate
of T . Right: as n increases, Œan; bn� is stabilized.

we have am;n 2 Œpm; qm�. We already know that both jd.e; Œpn; qn�/� .p � q/ej and
jd.e; Œpm; qm�/� .p � q/ej are less than or equal to 20ı . Therefore,

jd.an; e/� d.e; Œpm; qm�/j D jd.e; Œpn; qn�/� d.e; Œpm; qm�/j6 40ı:

The triangle inequality implies that

d.am;n; e/� d.e; Œpm; qm�/6 d.am;n; an/C d.an; e/� d.e; Œpm; qm�/6 42ı:

By Lemma 2.17, d.am;n; am/6 88ı ; thus, d.am; an/6 .88C 2/ı D 90ı . Similarly,
there exists N3 > 0 such that if m; n > N3 , then d.bm; bn/6 90ı . Now let

m; n >maxfN1; N2; N3g

and consider the geodesic quadrilateral Œam; an�, Œan; bn�, Œbn; bm�, Œbm; am�. Every
point of Œam; bm� is 2ı–close to a point in the union of the other three sides, which is
90ı–close to Œan; bn�, thus Œam; bm� is in the 92ı–neighborhood of Œan; bn�.

3 Group actions on Gromov hyperbolic spaces

3.1 Acylindrically hyperbolic groups

Let .S; d/ be a Gromov hyperbolic space and let G be a group acting on S by
isometries. The action of G is called acylindrical if for every � > 0 there exist
R;N > 0 such that for every two points x and y with d.x; y/>R , there are at most
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N elements g 2G satisfying both d.x; gx/6 � and d.y; gy/6 � . The limit set ƒ.G/
of G on @S is the set of limit points in @S of a G–orbit in S, ie

ƒ.G/D fx 2 @S j there exists a sequence in Gs tending to x for some s 2 Sg:

If ƒ.G/ contains at least three points, we say the action of G is nonelementary.
Acylindrically hyperbolic groups are defined by Osin [16]:

Definition 3.1 A group G is called acylindrically hyperbolic if it admits a non-
elementary acylindrical action by isometries on a Gromov hyperbolic space.

Theorem 3.2 (Osin [16, Theorem 1.2]) For a group G, the following are equivalent:

(AH1) G admits a nonelementary acylindrical and isometric action on a Gromov
hyperbolic space.

(AH2) G is not virtually cyclic and admits an isometric action on a Gromov hyperbolic
space such that at least one element of G is loxodromic and satisfies the WPD
condition.

Recall that an element g 2G is called loxodromic if the map Z! S, n 7! gns , is a
quasi-isometric embedding for some (equivalently, any) s 2 S. The WPD condition,
due to Bestvina and Fujiwara [2], is defined as follows:

Definition 3.3 Let G be a group acting isometrically on a Gromov hyperbolic space
.S; d/ and let g be an element of G. One says that g satisfies the weak proper
discontinuity condition (or g is a WPD element) if for every � > 0 and every s 2 S,
there exists K 2N such thatˇ̌

fh 2G j d.s; hs/ < �; d.gKs; hgKs/ < �g
ˇ̌
<1:

In fact, g satisfies the WPD condition for every s if and only if g satisfies the same
condition for just one s 2 S. More precisely, let us consider the following condition:

.?/ There is a point s 2 S such that for every � > 0, there exists K 2N withˇ̌
fh 2G j d.s; gs/ < �; d.gKs; hgKs/ < �g

ˇ̌
<1:

Lemma 3.4 Let G be a group acting isometrically on a Gromov hyperbolic space
.S; d/ and let g be an element of G ; then g satisfies the WPD condition if and only if
g satisfies .?/.
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Proof Clearly, WPD implies .?/. On the other hand, suppose that g satisfies .?/ for
some point s0 2 S, but g does not satisfy the WPD condition. Thus, there is some
�1 > 0 and s1 2 S such that for every K 2N , we haveˇ̌

fh 2G j d.s1; hs1/ < �1; d.g
Ks1; hg

Ks1/ < �1g
ˇ̌
D1:

Let � D 2d.s0; s1/C �1 and let K0 be an integer such that

(3)
ˇ̌
fh 2G j d.s0; hs0/ < �; d.g

K0s0; hg
K0s0/ < �g

ˇ̌
<1:

For any element h 2G, if d.s1; hs1/ < �1 , then

d.s0; hs0/6 d.s0; s1/C d.s1; hs1/C d.hs1; hs0/ < �:

Similarly, if h is an element in G such that d.gK0s1; hg
K0s1/ < �1 , then

d.gK0s0; hg
K0s0/ < �:

As
ˇ̌
fh 2G j d.s1; hs1/ < �1; d.g

K0s1; hg
K0s1/ < �1g

ˇ̌
D1, it follows thatˇ̌

fh 2G j d.s0; hs0/ < �; d.g
K0s0; hg

K0s0/ < �g
ˇ̌
D1:

This contradicts inequality (3).

3.2 Induced actions on Gromov boundaries

Let G be a group acting isometrically on a Gromov hyperbolic space .S; d/. As
mentioned in Section 2.2, the Gromov boundary @S of S is defined via sequences of
points in S tending to 1 and there is a canonical topology for @S. Note that G maps
one sequence tending to 1 to another such sequence, so it naturally acts on @S and
this action is by homeomorphisms (see Väisälä [19] for details).

If an element g 2G is loxodromic, then fg�negn>1 and fgnegn>1 are two sequences
in S tending to different boundary points x; y 2 @S, respectively, and g fixes these
boundary points. Moreover, g actually has the so-called north–south dynamics on @S.
This is well known when the space S is proper. Nevertheless, the original idea of
Gromov [10] works even for nonproper spaces. The readers are referred to Hamann [11]
for a detailed proof.

Definition 3.5 Let G be a group acting by homeomorphisms on a topological space M.
We say an element g 2 G has north–south dynamics on M if the following two
conditions are satisfied:
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(1) g fixes exactly two distinct points x; y 2M.

(2) For every pair of open sets U and V containing x and y , respectively, there
exists N > 0 such that gn.M nU/� V for all n > N.

Lemma 3.6 (Hamann [11, Proposition 3.4]) Suppose that a group G acts isomet-
rically on a Gromov hyperbolic space S and has a loxodromic element g . Let @S
be the Gromov boundary of S with the topology defined in Section 2.2. Then, with
respect to the action of G on @S (induced by the action of G on S ), g has north–south
dynamics.

4 Convergence groups

Let G be a group acting on a compact metrizable topological space M by homeomor-
phisms (with respect to the topology induced by the metric d ). We assume that both G
and M are infinite sets since otherwise the notion of convergence groups will be trivial.
G is called a discrete convergence group if for every infinite sequence fgngn>1 of
distinct elements of G, there exists a subsequence fgnk

g and points a; b 2M such that
gnk
jMnfag converges to b locally uniformly, that is, for every compact set K�M nfag

and every open neighborhood U of b , there is an N 2 N such that gnk
.K/ � U

whenever nk >N. In what follows, when we say a group G is a convergence group,
we always mean that G is a discrete convergence group, and we will call the action
of G on M a convergence action.

An equivalent definition of a convergence action can be formulated in terms of the
action on the space of distinct triples. Let

‚3.M/D f.x1; x2; x3/ 2M j x1 ¤ x2; x2 ¤ x3; x1 ¤ x3g

be the set of distinct triples of points in M, endowed with the subspace topology
induced by the product topology of M 3 . Notice that ‚3.M/ is noncompact with
respect to this topology. Clearly, the action of G on M naturally induces an action
of G on ‚3.M/ given by .x1; x2; x3/! .gx1; gx2; gx3/ for all g 2G.

Proposition 4.1 (Bowditch [4, Proposition 1.1]) The action of G on M is a conver-
gence action if and only if the action of G on ‚3.M/ is properly discontinuous, that
is, for every compact set K � ‚3.M/, there are only finitely many elements g 2 G
such that gK \K ¤∅.
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Remark 4.2 Let G be a convergence group acting on a compact metrizable topological
space M. Elements of G can be classified into the following three types:

� Elliptic Having finite order.

� Parabolic Having infinite order and fixing a unique point of M.

� Loxodromic Having infinite order and fixing exactly two points of M.

Moreover, a parabolic element cannot share its fixed point with a loxodromic element
(see Tukia [18, Theorem 2G]).

A convergence group G is called elementary if it preserves setwise a nonempty subset
of M with at most two elements. The next theorem is a combination of [18, Theorems
2S, 2U and 2T]:

Theorem 4.3 (Tukia, 1994) If G is a nonelementary convergence group acting on a
compact metrizable topological space M, the following statements hold:

(1) G contains a nonabelian free group as its subgroup and thus cannot be virtually
abelian.

(2) There is an element g 2G having north–south dynamics on M.

For more information on convergence groups, the readers are referred to Bowditch [4]
and Tukia [18].

5 The (C) condition

In this section, we prove some properties of condition (C) (see Definition 1.1).

Lemma 5.1 Let G be a convergence group acting on a compact metrizable topological
space M. Then this action satisfies (C).

Proof Let uD .x; x/ and vD .y; y/ be two distinct points on the diagonal � of M 2

(hence x; y 2M and x ¤ y ), let d be a metric on M compatible with its topology,
and let

U D BM
�
x; 1
3
d.x; y/

�
�BM

�
x; 1
3
d.x; y/

�
;

V D BM
�
y; 1
3
d.x; y/

�
�BM

�
y; 1
3
d.x; y/

�
:

Then U and V are open sets in M 2 containing u and v , respectively. Let us check (C)
for U and V .
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Let aD .p; q/ and b D .r; s/ be two distinct points of M 2 n� (hence p; q; r; s 2M,
p ¤ q and r ¤ s ) and let

ADBM
�
p; 1

3
d.p; q/

�
�BM

�
q; 1
3
d.p; q/

�
; BDBM

�
r; 1
3
d.r; s/

�
�BM

�
s; 1
3
d.r; s/

�
:

Then A and B are open sets in M 2 containing a and b , respectively. Suppose that (C)
does not hold for U and V . Then there exists an infinite sequence fgng1nD1 of distinct
elements of G such that gnA\U ¤ ∅ and gnB \ V ¤ ∅ for all n > 1. In other
words,

g�1n U \A¤∅; g�1n V \B ¤∅
for all n> 1.

Consider the infinite sequence fg�1n g
1
nD1 of distinct elements of G. By the convergence

property and passing to a subsequence, one may assume that there exist two points
z; t 2 M such that g�1n jMnfzg converges to t locally uniformly. By the triangle
inequality, we have d.z; x/C d.z; y/> d.x; y/, and thus at least one of d.z; x/ and
d.z; y/ is strictly greater than 1

3
d.x; y/. Without loss of generality, we may assume

that d.z; x/ > 1
3
d.x; y/. As g�1n jMnfzg converges to t locally uniformly, there exists

a positive integer N such that

g�1N
�
BM

�
x; 1
3
d.x; y/

��
� BM

�
t; 1
6
d.p; q/

�
:

Note that g�1N U \A¤∅. As a consequence, one has

g�1N
�
BM

�
x; 1
3
d.x; y/

��
\BM

�
p; 1

3
d.p; q/

�
¤∅;

g�1N
�
BM

�
x; 1
3
d.x; y/

��
\BM

�
q; 1
3
d.p; q/

�
¤∅;

and thus

BM
�
t; 1
6
d.p; q/

�
\BM

�
p; 1

3
d.p; q/

�
¤∅;(4)

BM
�
t; 1
6
d.p; q/

�
\BM

�
q; 1
3
d.p; q/

�
¤∅:(5)

Now, (4) (resp. (5)) implies that d.t; p/ < 1
6
d.p; q/C 1

3
d.p; q/ D 1

2
d.p; q/

�
resp.

d.t; q/ < 1
6
d.p; q/ C 1

3
d.p; q/ D 1

2
d.p; q/

�
. Thus d.p; q/ 6 d.t; p/ C d.t; q/ <

1
2
d.p; q/C 1

2
d.p; q/D d.p; q/, a contradiction.

Remark 5.2 Let G be a group acting on a topological space M satisfying con-
dition (C). In order to prepare for the proof of Theorem 1.2, let us reformulate
Definition 1.1 in terms of the action of G on M instead of M 2 . Let u D .x; x/

and v D .y; y/ be two distinct points on the diagonal � of M 2 (hence x; y 2 M
and x ¤ y ). Condition (C) requires the existence of open sets U and V in M 2
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containing u and v , respectively, with certain properties. By shrinking U and V if
necessary, let us assume that U DX �X and V D Y �Y , where X and Y are open
sets in M containing x and y , respectively. Suppose that a and b are two distinct
points of M 2 n�. There are several cases to consider.

Case 1 The coordinates of a and b involve only two distinct points of M, ie aD .p; q/
and bD .q; p/, where p and q are distinct points of M (note that a and b are different
points of M 2 as M 2 is the set of ordered pairs of M ).

Condition (C) asserts the existence of open sets A and B in M 2 containing a and b ,
respectively, with certain properties. By shrinking A and B if necessary, we may
assume that AD A1 �A2 and B D A2 �A1 , where A1 and A2 are open sets in M
containing p and q , respectively. Then (C) can be rephrased asˇ̌

fg 2G j gA1\X; gA1\Y; gA2\X; gA2\Y are all nonemptyg
ˇ̌
<1:

Case 2 The coordinates of a and b involve only three distinct points of M. For
example, aD .p; q/ and b D .p; r/, where p , q and r are three distinct points of M.

Again, condition (C) asserts the existence of certain open sets A and B, and one can
assume that A D A1 �A2 and B D A1 �B2 , where A1 , A2 and B2 are open sets
in M containing p , q and r , respectively. In this case, (C) can be rephrased asˇ̌

fg 2G j gA1\X; gA1\Y; gA2\X; gB2\Y are all nonemptyg
ˇ̌
<1:

The other cases where the coordinates of a and b involve only three distinct points
of M can be treated in the same way.

Case 3 The coordinates of a and b involve four distinct points of M, ie and bD .r; s/,
where p , q , r and s are four distinct points of M.

Once again, condition (C) asserts the existence of certain open sets A and B, and one
can assume that ADA1�A2 and B DB1�B2 , where A1 , A2 , B1 and B2 are open
sets in M containing p , q , r and s , respectively. In this case, (C) can be rephrased asˇ̌

fg 2G j gA1\X; gA2\X; gB1\Y; gB2\Y are all nonemptyg
ˇ̌
<1:

For further reference, let us sum up the above discussion.

Lemma 5.3 Let G be a group acting on a topological space M which has at least 3
points. Then this action of G satisfies (C) if and only if for every pair of distinct points
x; y 2M, there exist open sets U and V , in the topological space M, containing x
and y , respectively , and satisfying the following conditions .C1/–.C3/ simultaneously:
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.C1/ For every pair of distinct points p; q 2M, there exist open sets A and B, of the
topological space M, containing p and q , respectively, withˇ̌

fg 2G j gA\U; gA\V; gB \U; gB \V are all nonemptyg
ˇ̌
<1:

.C2/ For every three distinct points p; q; r 2M, there exist open sets A, B and C of
the topological space M, containing p , q and r , respectively, withˇ̌
fg 2G j gA\U; gB \V; gC \U; gC \V are all nonemptyg

ˇ̌
<1:

.C3/ For every four distinct points p; q; r; s 2M, there exist open sets A, B, C and D
of the topological space M, containing p , q , r and s , respectively, withˇ̌
fg 2G j gA\U; gB \U; gC \V; gD\V are all nonemptyg

ˇ̌
<1:

In the rest of this paper, we say that a pair of distinct points x; y 2M satisfy .C1/
(resp. .C2/, .C3/) if there exist open sets U and V , in the topological space M,
containing x and y , respectively, and satisfying .C1/ (resp. .C2/, .C3/).

6 Annulus system and hyperbolicity

Throughout this section, let G be a group acting on a topological space M. In Section 7,
we are going to prove that if the action G ÕM satisfies condition (C) and there exists
g 2G such that g has north–south dynamics on M, then G admits an isometric action
on some Gromov hyperbolic space with g being a loxodromic WPD element (which
implies that G is either acylindrically hyperbolic or virtually cyclic, by Theorem 3.2).
The proof relies on a construction of Bowditch [3] called an annulus system, which is
surveyed below.

Definition 6.1 An annulus, A, is an ordered pair, .A�; AC/, of disjoint closed subsets
of M such that M n .A�[AC/¤∅.

For an annulus A and g 2G, we write gA for the annulus .gA�; gAC/.

An annulus system on M is a set of annuli. The system is called symmetric if �A WD
.AC; A�/ 2A whenever A 2A.

Let A be an annulus. Given any subset K �M, we write K <A if K � intA� and
write A <K if K � intAC , where intA� (resp. intAC ) denotes the interior of A�

(resp. AC ). Thus A <K if and only if K < �A. If B is another annulus, we write
A < B if intAC[ intB� DM.
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Given an annulus system A on M and K;L�M, define .K jL/D n 2 f0; 1; : : : ;1g,
where n is the supremum of all positive integers m such that there exist m annuli
A1; : : : ; Am in A with K < A1 < A2 < � � � < Am < L (if no such m exists, set
.KjL/D0). For finite sets we drop braces and write .a; bjc; d/ to mean .fa; bgjfc; dg/.
This gives us a well-defined function M 4! Œ0;C1�. Note that this function is G–
invariant, ie .gx; gy jgz; gw/D .x; y j z; w/ for all g 2G provided that the annulus
system A is G–invariant.

Definition 6.2 The function from M 4 to Œ0;C1�, defined as above, is called the
crossratio associated with A.

Recall the definition of a quasimetric on a set Q :

Definition 6.3 Given r > 0, an r –quasimetric � on a set Q is a function �W Q2!
Œ0;C1/ satisfying �.x; x/D 0, �.x; y/D �.y; x/ and �.x; y/6 �.x; z/C�.z; y/Cr
for all x; y; z 2Q .

A quasimetric is an r –quasimetric for some r > 0. Given s > 0 and a quasimetric
space .Q; �/, an s–geodesic segment is a finite sequence of points x0; x1; : : : ; xn
such that �s 6 �.xi ; xj /� ji � j j 6 s for all 0 6 i; j 6 n. A quasimetric is a path
quasimetric if there exists s > 0 such that every pair of points can be connected by
an s–geodesic segment. A quasimetric is called a hyperbolic quasimetric if there is
some k > 0 such that the 4–point definition of k–hyperbolicity holds via the Gromov
product (see Bridson and Haefliger [5, Chapter III.H, Definition 1.20]).

Given an annulus system A on M, one can construct a quasimetric on ‚3.M/ from
the crossratio associated with A, where

‚3.M/D f.x1; x2; x3/ 2M
3
j x1 ¤ x2; x2 ¤ x3; x3 ¤ x1g

is the set of distinct triples of M. Let x D .x1; x2; x3/ and y D .y1; y2; y3/ be two
points of ‚3.M/. Define the function �W .‚3.M//2! Œ0;C1� by

�.x; y/Dmax.xi ; xj jyk; yl/;

where . � ; � j � ; � / denotes the crossratio associated with A and the maximum is taken
over all i; j; k; l 2 f1; 2; 3g with i ¤ j and k ¤ l .

Consider two axioms on the crossratio . � ; � j � ; � / (and hence on the annulus system A):

(A1) If x ¤ y and z ¤ w , then .x; y j z; w/ <1.
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(A2) There is some k > 0 such that there are no four points x; y; z; w 2 M with
.x; y j z; w/ > k and .x; z jy;w/ > k .

Proposition 6.4 Suppose that G is a group acting on a topological space M, and that
A is a symmetric, G–invariant annulus system on M satisfying (A1) and (A2). Then
the map � defined as above is a hyperbolic G–invariant path quasimetric on ‚3.M/.

By � being G–invariant, we mean �.gx; gy/ D �.x; y/ for all x; y 2 ‚3.M/ and
g 2G.

Proof The fact that � is a hyperbolic path quasimetric follows from Bowditch [3,
Propositions 4.2 and 6.5 and Lemma 4.3]. Note that Bowditch assumes that M is
compact, but he does not use this assumption in the proofs of loc. cit. The fact that � is
G–invariant follows from the fact that A is G–invariant and the relationship between
� and A.

Note that Proposition 6.4 only produces a space ‚3.M/ with a G–invariant hyperbolic
quasimetric � , but, as mentioned in the beginning of this section, we need to construct
an isometric action of G on some Gromov hyperbolic space, which is a geodesic metric
space. This can be easily achieved by passing to a geodesic metric space quasi-isometric
with ‚3.M/.

Definition 6.5 Let .Q; d/ and .Q0; d 0/ be two quasimetric spaces. A map f W Q!
Q0 is called a quasi-isometry from Q to Q0 if there exist �;C;D > 0 such that

(1) the inequality d.x; y/=��C < d 0.f .x/; f .y// < �d.x; y/CC holds for all
x; y 2Q ;

(2) every point of Q0 is within distance D from the image of f .

Proposition 6.6 Let G be a group acting on a topological space M and let � be a G–
invariant hyperbolic path quasimetric on ‚3.M/. Then there is a Gromov hyperbolic
space .S; �0/ such that G acts isometrically on S and that there is a G–equivariant
quasi-isometry f W ‚3.M/! S.

Proof The proof can be easily extracted from [3]. We provide it for convenience
of the reader. Let s be a number such that every pair of points in ‚3.M/ can be
connected by an s–geodesic. Construct the undirected graph S whose vertex set is just
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‚3.M/ and two vertices x and y are connected by an edge if �.x; y/6 sC1. Define
a path metric, �0, on S by deeming every edge to have unit length. We see that S is
connected and that the inclusion f W ‚3.M/ ,! S is a quasi-isometry. Since �0.x; y/
is an integer for every pair of vertices x; y 2 ‚3.M/, S is a geodesic metric space.
Now, �0 is a hyperbolic metric since � is hyperbolic and f is a quasi-isometry. Hence,
S is a Gromov hyperbolic space. Moreover, the action of G on ‚3.M/ induces an
action of G on S : for every g 2 G, g maps a vertex x to the vertex gx , and this
action uniquely extends to an isometric action on S since our definition of edges
is G–equivariant. In particular, the action of G on S is isometric. Clearly, f is
G–equivariant.

Let G be a group acting by isometries on a hyperbolic quasimetric space Q and let
g 2G. Define that g is loxodromic (resp. satisfying condition .?/) with respect to the
action G ÕQ in exactly the same manner as for actions of G on Gromov hyperbolic
spaces (see Section 3). The following lemma reduces the proof in Section 7.

Lemma 6.7 Let G be a group acting by isometries on a hyperbolic quasimetric
space Q and let g 2 G be a loxodromic element satisfying .?/ with respect to the
action GÕQ . Suppose that G also admits an action on a Gromov hyperbolic space Q0

and there is a G–equivariant quasi-isometry f W Q!Q0. Then g 2G is a loxodromic
WPD element with respect to the action G ÕQ0.

To prove Lemma 6.7, one checks that g is loxodromic and satisfies .?/ with respect to
the action G ÕQ0 and then applies Lemma 3.4. We leave the details to the reader.

7 Proof of Theorem 1.2

Throughout this section, let .S; d/ be a ı–hyperbolic space and let @S be the Gromov
boundary of S. As in Section 2, pick some point e 2 S and define the Gromov product
with the aid of e . Fix a sufficiently small number � and then define � on @S so that �
is a metric and thus induces the topology � . We will use the notation

UK.x/D fs 2 S j .x � s/e >Kg; @UK.x/D fs 2 @S j .x �S/e >Kg

for x 2 @S and K 2R. Recall that BM .x; r/ denotes the open ball in a metric space M
centered at a point x 2 M with radius r , that Œu; v� denotes a geodesic segment
between u; v 2 S, and that in Remark 5.2 and Lemma 5.3, we have reformulated
Definition 1.1 as the combination of .C1/, .C2/ and .C3/.
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Lemma 7.1 Let G be a group acting on S by isometries. Then every pair of distinct
points of @S satisfies .C1/.

Proof Let x and y be two distinct points of @S. By Lemma 2.8, there exist D;R > 0
such that d.e; Œu; v�/ < D for every u 2 UR.x/ and v 2 UR.y/. By (2), there exist
open subsets U and V of @S containing x and y , respectively, such that U � @UR.x/
and V � @UR.y/. We examine .C1/ for U and V .

Let p and q be two distinct points of @S. Using Proposition 2.12, we can find K > 0

such that d.Œa1; a2�; Œb1; b2�/ > 2D for all a1; a2 2 UK.p/ and b 2 UK.q/. By (2),
there exist open subsets A and B of @S containing p and q , respectively, such that
A� @UK.p/ and B � @UK.q/.

Suppose that there exists g 2 G such that gA\ U, gA\ V , gB \ U and gB \ V
are all nonempty. Let p0 2 gA\U, p00 2 gA\ V , q0 2 gB \U and q00 2 gB \ V
and let fp0ngn>1 , fp00ngn>1 , fq0ngn>1 and fq00ngn>1 be sequences in S tending to p0,
p00, q0 and q00, respectively. Then fgp0ngn>1 , fgp00ngn>1 , fgq0ngn>1 and fgq00ngn>1 are
sequences tending to gp0, gp00, gq0 and gq00, respectively. As

minf.p �p0/e; .p �p00/e; .q � q0/e; .q � q00/eg>K;

minf.x �gp0/e; .x �gq0/e; .y �gp00/e; .y �gq00/eg>R;

by Lemma 2.7 there exists N > 0 such that

minf.p �p0N /e; .p �p
00
N /e; .q � q

0
N /e; .q � q

00
N /eg>K

and
minf.x �gp0N /e; .x �gq

0
N /e; .y �gp

00
N /e; .y �gq

00
N /eg>R:

By our choice of R , the geodesics Œgp0N ; gp
00
N � and Œgq0N ; gq

00
N � intersect BS .e;D/

nontrivially and thus d.Œp0N ; p
00
N �; Œq

0
N ; q

00
N �/Dd.Œgp

0
N ; gp

00
N �; Œgq

0
N ; gq

00
N �/<2D. But

by our choice of K , d.Œp0N ; p
00
N �; Œq

0
N ; q

00
N �/ > 2D, a contradiction.

Lemma 7.2 Let G be a group acting on S by isometries. Then every pair of distinct
points of @S satisfies .C2/.

Proof Let x and y be two distinct points of @S. By Lemma 2.8, there exist D;R > 0
such that d.e; Œu; v�/ < D for every u 2 UR.x/; v 2 UR.y/. By (2), there exist open
subsets U and V of @S containing x and y , respectively, such that U � @UR.x/ and
V � @UR.y/. We examine .C2/ for U and V .
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Let p , q and r be three distinct points of @S. By Proposition 2.16, there exists K > 0

such that d.Œa; b�; Œc1; c2�/ > 2D for every a 2 UK.p/ and b 2 UK.q/ and every
c1; c2 2 UK.r/. By (2), there exist open subsets A, B and C of @S containing p , q
and r , respectively, such that A� @UK.p/, B � @UK.q/ and C � @UK.r/.

Suppose that there exists g 2 G such that gA\U, gB \ V , gC \U and gC \ V
are all nonempty. Thus, A\ g�1U, B \ g�1V , C \ g�1U and C \ g�1V are all
nonempty. Pick

p0 2 A\g�1U; q0 2 B \g�1V; r 0 2 C \g�1U; r 00 2 C \g�1V

and let fp0ngn>1 , fq0ngn>1 , fr 0ngn>1 and fr 00ngn>1 be sequences in S tending to p0,
q0, r 0 and r 00, respectively. Then fgp0ngn>1 , fgq0ngn>1 , fgr 0ngn>1 and fgr 00ngn>1 are
sequences in S tending to gp0, gq0, gr 0 and gr 00, respectively. As

minf.p �p0/e; .q � q0/e; .r � r 0/e; .r � r 00/eg>K;

minf.x �gp0/e; .y �gq0/e; .x �gr 0/e; .y �gr 00/eg>R;

by Lemma 2.7 there exists N > 0 such that

minf.p �p0N /e; .q � q
0
N /e; .r � r

0
N /e; .r � r

00
N /eg>K

and
minf.x �gp0N /e; .y �gq

0
N /e; .x �gr

0
N /e; .y �gr

00
N /eg>R:

By our choice of R , the geodesics Œgp0N ; gq
0
N � and Œgr 0N ; gr

00
N � intersect BS .e;D/

nontrivially and hence d.Œp0N ; q
0
N �; Œr

0
N ; r

00
N �/ D d.Œgp0N ; gq

0
N �; Œgr

0
N ; gr

00
N �/ < 2D.

But by our choice of K , d.Œp0N ; q
0
N �; Œr

0
N ; r

00
N �/ > 2D, a contradiction.

Lemma 7.3 Let G be a group acting acylindrically on S by isometries. Then every
pair of distinct points of @S satisfies .C3/.

Proof Let x and y be two distinct points of @S. By Lemma 2.8, there exists R;K >0
such that d.e; Œu; v�/ < R for every u 2 UK.x/ and v 2 UK.y/.

As the action of G on S is acylindrical, there exists E > 0 such that for every two
points t; w 2 S with d.t; w/ > E, the number of elements g 2 G satisfying both
d.t; gt/6 189ı and d.w; gw/6 189ı is finite.

By Lemmas 2.9 and 2.14, there exists F 0 >K such that both of d.e; u1/ and d.e; v1/
are strictly greater than RCE and that Œu1; v2�\BS .e; RCE/ lies inside the 2ı–
neighborhood of Œu2; v2� for every u1; u2 2 UF 0.x/ and every v1; v2 2 UF 0.y/. By
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Lemma 2.10, there exists F >0 such that Œu1; u2��UF 0.x/ for every u1; u2 2UF .y/
and that Œv1; v2� � UF 0.y/ for every v1; v2 2 UF .y/. Using (2), we can pick open
subsets U and V of @S containing x and y , respectively, such that U � @UF .x/ and
V � @UF .y/. We examine .C3/ for U and V .

Suppose, to the contrary, that there exist four distinct points p , q , r and s such that for
every four open subsets A, B, C and D of @S containing p , q , r and s , respectively,
we haveˇ̌

fg 2G j gA\U; gB \U; gC \V; gD\V are all nonemptyg
ˇ̌
D1:

In particular, for ADB@S .p; 1/, B DB@S .q; 1/, C DB@S .r; 1/ and D DB@S .s; 1/,
there exist p1 2A, q1 2B, r1 2C, s1 2D and g1 2G such that g1p1 2U, g1q1 2U,
g1r1 2 V and g1s1 2 V . For A D B@S

�
p; 1

2

�
, B D B@S

�
q; 1
2

�
, C D B@S

�
r; 1
2

�
and

D D B@S
�
s; 1
2

�
, sinceˇ̌

fg 2G j gA\U; gB \U; gC \V; gD\V are all nonemptyg
ˇ̌
D1;

there exist p2 2 A, q2 2 B, r2 2 C, s2 2D and g2 2 G n fg1g such that g2p2 2 U,
g2q2 2 U, g2r2 2 V and g2s2 2 V . Continuing in this manner, we see that there
exist four sequences fpngn>1 , fqngn>1 , frngn>1 and fsngn>1 of points in @S and a
sequence fgngn>1 of distinct elements in G, such that

maxf�.p; pn/; �.q; qn/; �.r; rn/; �.s; sn/g<
1

n
and

gnpn 2 U; gnqn 2 U; gnrn 2 V; gnsn 2 V;

for all n> 1.

By (2), limn!1.p�pn/eD limn!1.q�qn/eD limn!1.r �rn/eD limn!1.s�sn/eD1 .
By passing to a subsequence, we may assume that

minf.p �pn/e; .q � qn/e; .r � rn/e; .s � sn/eg> n for all n:

Since .gnpn � x/e > F and .pn �p/e > n, there exists p0n 2 S such that

.gnp
0
n � x/e > F; .p0n �p/e > n;

by Lemma 2.7. Thus, there exist four sequences fp0ngn>1 , fq0ngn>1 , fr 0ngn>1 and
fs0ngn>1 of points in S such that

minf.p0n �p/e; .q
0
n � q/e; .r

0
n � r/e; .s

0
n � s/eg> n
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and
minf.gnp0n � x/e; .gnq

0
n � x/e; .gnr

0
n �y/e; .gns

0
n �y/eg> F;

for all n> 1.

For each n, use the compactness of Œp0n; q
0
n� and Œr 0n; s

0
n� and choose points a0n and b0n in

Œp0n; q
0
n� and Œr 0n; s

0
n�, respectively, such that d.e; a0n/D d.e; Œp

0
n; q
0
n�/ and d.e; b0n/D

d.e; Œr 0n; s
0
n�/. By Proposition 2.18, there exists N > 0 such that if n > N, Œa0n; b

0
n�

will be in the 92ı–neighborhood of Œa0N ; b
0
N �.

By our choice of F and the properties of fp0ngn>1 , fq0ngn>1 , fr 0ngn>1 and fs0ngn>1 ,
we have

minf.gna0n � x/; .gnb
0
n �y/g> F

0 for all n> 1:

By our choice of F 0, we have the following properties:

.P1/ d.e; ŒgNa
0
N ; gN b

0
N �/ < R .

.P2/ minfd.e; gNa0N /; d.e; gN b
0
N /g>RCE.

.P3/ ŒgNa
0
N ; gN b

0
N �\BS .RCE/ lies inside the 2ı–neighborhood of Œgna0n; gnb

0
n�

for all n> 1.

Pick c2 ŒgNa0N ; gN b
0
N � such that d.e; c/Dd.e; ŒgNa0N ; gN b

0
N �/<R by .P1/ and the

compactness of ŒgNa0N ; gN b
0
N �. By .P2/, there exist t 2 ŒgNa0N ; c� and w2 Œc; gN b0N �

such that d.e; t/D d.e; w/DRCE. As d.e; c/ < R , we have

d.t; w/D d.t; c/C d.c; w/> 2E:

By .P3/, maxfd.t; Œgna0n; gnb
0
n�/; d.w; Œgna

0
n; gnb

0
n�/g 6 2ı for all n > N. Since gn

is an isometry, apply g�1n and we obtain

maxfd.g�1n t; Œa0n; b
0
n�/; d.g

�1
n w; Œa0n; b

0
n�/g6 2ı:

For each n > N, Œa0n; b
0
n� lies inside the 92ı–neighborhood of Œa0N ; b

0
N �. Thus,

maxfd.g�1n t; Œa0N ; b
0
N �/; d.g

�1
n w; Œa0N ; b

0
N �/g6 2ıC 92ı 6 94ı:

Select a point zt;n (resp. zw;n ) of Œa0N ; b
0
N � such that d.g�1n t; zt;n/ 6 94ı (resp.

d.g�1n w; zw;n/6 94ı ).

Partition Œa0N ; b
0
N � into finitely many subpaths such that each of these subpaths has

length < ı . Using the pigeonhole principle, we may assume, after passing to a
subsequence, that zt;n stays in a subpath for all n > N C 1. Using the pigeonhole
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principle once more and passing to a further subsequence, we may further assume that
zw;n also stays in a subpath for all n>N C 1. Thus, for all m; n>N C 1, we have

d.g�1m t; g�1n t /6 d.g�1m t; zt;m/C d.zt;m; zt;n/C d.zt;n; g
�1
n t / < 189ı;

d.g�1m w; g�1n w/6 d.g�1m w; zw;m/Cd.zw;m; zw;n/Cd.zw;n; g
�1
n w/ < 189ı:

As the gn are all distinct for n>N C 1, we have

d.t; gng
�1
NC1t / < 189ı and d.w; gng

�1
NC1w/ < 189ı:

We have found infinitely many elements which move t and w by at most 189ı . As
d.t; w/ > E, this contradicts our choice of E.

Proposition 7.4 Let G be a group acting nonelementarily, acylindrically and isomet-
rically on a Gromov hyperbolic space S. Then G is not virtually cyclic, has an element
with north–south dynamics on @S and the action of G on the completely Hausdorff
topological space @S satisfies (C).

Recall that a topological space M is called completely Hausdorff if for any two distinct
points u; v 2M, there are open sets U and V containing u and v , respectively, such
that U \V D∅.

Proof By Theorem 3.2, G is not virtually cyclic. By Osin [16, Theorem 1.1], G
contains a loxodromic element g (with respect to the action of G on S ). By Lemma 3.6,
g has north–south dynamics on @S. As the action of G on S is nonelementary, it is
well known that jƒ.G/j D1 (see [16]) and thus j@S j D1 > 3. Let x and y be a
pair of distinct points of M. Pick open sets U1 and V1 in M containing x and y ,
respectively, and satisfying .C1/ by Lemma 7.1; U2 and V2 in M containing x and y ,
respectively, and satisfying .C2/ by Lemma 7.2; and U3 and V3 in M containing x
and y , respectively, and satisfying .C3/ by Lemma 7.3. Let U D U1\U2\U3 and
V D V1\V2\V3 . Then U and V satisfy the .C1/, .C2/ and .C3/ simultaneously. As
x and y are arbitrary, Lemma 5.3 implies that the action of G on @S satisfies (C).

We now turn to the other direction of Theorem 1.2.

Proposition 7.5 Let G be a group acting on a completely Hausdorff topological
space M which has at least 3 points. If there is an element g 2G having north–south
dynamics on M and .C1/, .C2/ and .C3/ hold for the fixed points of g , then G is
either acylindrically hyperbolic or virtually cyclic.
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Figure 3: The annulus A (left) and the image of A under the action of gN (right).

Remark 7.6 The existence of a loxodromic element does not follow from the assump-
tion that the action of G satisfies (C). For example, let G D Z�Z, let M DR2 and
let G act on M by integral translations, ie .m; n/ � .x; y/ D .xCm; y C n/ for all
.m; n/ 2 G and .x; y/ 2M. As G acts on M properly discontinuously and M is
locally compact, it is easy to see that the action of G on M satisfies (C). Nevertheless,
no element of G can fix exactly two points of M.

Proof Let x and y be the fixed points of g . The idea is to construct a specific
annulus system on M, obtain a Gromov hyperbolic space and then verify that there is a
loxodromic WPD element. The construction is illustrated by Figure 3. Since M has at
least three points, there is some z 2M n fx; yg. Pick open sets U and V containing
x and y , respectively, and satisfying .C1/, .C2/ and .C3/. By shrinking U and V if
necessary, we may assume that U \V D∅ and that z … U [V , as M is a completely
Hausdorff space. Let

A� D U ; AC D V :

Then A� and AC are two closed sets such that x 2 intA� , y 2 intAC , A�\ACD∅
and A�[AC ¤M. In Figure 3, left, the white closed half-disc containing x (resp. y )
is A� (resp. AC ). The gray shaded region is M n .A�[AC/. Let

AD fh.˙A/ j h 2Gg;

where AD .A�; AC/. Then A is a symmetric G–invariant annulus system. Define
the crossratio . � ; � j � ; � / and the quasimetric � in the same manner as in Section 6.
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We proceed to verify that A satisfies (A1) and (A2). Suppose (A1) does not hold, then
there exist four points p , q , r and s such that p¤ q , r ¤ s and .p; q j r; s/D1. By
the definition of . � ; � j � ; � /, we see that p , q , r and s are pairwise distinct and, by
switching p with q and r with s if necessary, we may assume that there exist infinitely
many elements h 2G such that hp; hq 2 U and hr; hs 2 V . Thus, for all open sets P,
Q , R and W in M containing p , q , r and s , respectively, we have infinitely many
elements h 2G such that hP \U, hQ\U, hR\V and hW \V are all nonempty
and .C3/ is violated.

The verification for (A2) is similar. Suppose (A2) does not hold; then there exist four
sequences of points fpngn>1; fqngn>1; frngn>1; fsngn>1 �M such that for each n,
.pn; qn j rn; sn/ > n and .pn; rn j qn; sn/ > n. We will choose a sequence fhngn>1

of distinct elements of G such that hnU \ U, hnU \ V , hnV \ U and hnV \ V
are nonempty for all n> 1. The verification of (A2) will then be complete since, by
applying .C1/ with pD x and qD y , we see that there are only finitely many elements
h 2G with hU \U, hU \V , hV \U and hV \V all nonempty, a contradiction.

First we choose h1 . Since .p1; q1 j r1; s1/ > 1 and .p1; r1 j q1; s1/ > 1, by renaming
p1 , q1 , r1 and s1 if necessary, we may assume that there exist h01 and h001 such that

fp1; q1g< h
0
1A < fr1; s1g; fp1; r1g< h

00
1A < fq1; s1g:

In other words,

p1 2 h
0
1U \ h

00
1U; q1 2 h

0
1U \ h

00
1V; r1 2 h

0
1V \ h

00
1U; s1 2 h

0
1V \ h

00
1V:

Let h1 D h0�11 h001 and we see that h1U \U , h1U\V , h1V \U and h1V \V are all
nonempty.

Suppose that we have chosen h1; : : : ; hn�1 . Since we have .pn; qn j rn; sn/ > n and
.pn; rn j qn; sn/ > n, there are two elements h0n; h

00
n 2G such that h0�1n h00n is not one

of h1; : : : ; hn�1 and that (by renaming pn , qn , rn and sn if necessary)

fpn; qng< h
0
nA < frn; sng; fpn; rng< h

00
nA < fqn; sng:

In other words,

pn 2 h
0
nU \ h

00
nU; qn 2 h

0
nU \ h

00
nV; rn 2 h

0
nV \ h

00
nU; sn 2 h

0
nV \ h

00
nV:

Let hn D h0�1n h00n and we see that hnU \U, hnU \V , hnV \U and hnV \V are all
nonempty and that h1; : : : ; hn are all distinct. This finishes the verification of (A2).
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Below, we are going to show that g is loxodromic and satisfies .?/ with respect to the
action of G on ‚3.M/. Once this is done, Propositions 6.4 and 6.6 and Lemma 6.7
will imply that G admits an isometric action on some Gromov hyperbolic space with
g being a loxodromic WPD element, and then Theorem 3.2 will imply that G is either
virtually cyclic or acylindrically hyperbolic, which finishes the proof.

Since g has north–south dynamics on M with fixed points x and y , there exists a
positive integer N such that gN .M n intA�/ � intAC . Figure 3, right, illustrates
the dynamics of gN on M : gN maps the large gray shaded area onto the small gray
shaded band inside of AC and compresses AC into the small white half-disc around b
labeled by gNAC . From the figure, it is easy to see inequalities (6) and (9) below. Let
aD .x; y; z/. To prove that g is loxodromic, it suffices to show that �.a; gnNa/>n�1
for all positive integers n. Fix a positive integer n. Observe that x and y are fixed
by g , hence x 2 gN .intA�/ and y 2 g.n�1/N .intAC/. Consequently,

(6) fxg< gNA; fyg> g.n�1/NA:

Note that g is a bijection on M, thus gN .M n intA�/� intAC is equivalent to

(7) gN .intA�/[ intAC DM:

As a consequence, A < gNA. Multiplying both sides of this inequality by gN, g2N,
etc, we have the chain of inequalities

(8) gNA < g2NA < � � �< g.n�1/NA:

Since z … intA�[ intAC , equality (7) also implies

(9) fzg< gNA; A < fgNzg:

The second inequality of (9) is equivalent to

(10) g.n�1/NA < fgnNzg:

Combining inequalities (6), (8), (9) and (10), we obtain

(11) fx; zg< gNA < g2NA < � � �< g.n�1/NA < fgnNz; yg:

Thus, �.a; gnNa/> .x; z jgnNz; y/> n� 1 and loxodromicity is proved.

In order to prove .?/, we proceed as follows. Given � > 0, let

(12) L> �C 2; K D .2LC 1/N
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be integers. By (11) and (12), we have fx; zg < A1 < A2 < � � � < A2L < fgKz; yg,
where

(13) Ai D g
iNA

for all 16 i 6 2L. Let us make the following observation:

Lemma 7.7 Let a D .x; y; z/ 2 ‚3.M/. If w D .w1; w2; w3/ 2 ‚3.M/ and
�.a;w/<� , then at least two of w1 , w2 and w3 lie in A�L . Similarly, if �.gKa;w/<� ,
then at least two of w1 , w2 and w3 lie in ACL .

Proof Suppose that wi ; wj …A�L for some 16 i <j 63. Since intACL�1[ intA�LDM
by (7) and (13), we have fwi ; wj g 2 intACL�1 and consequently fx; zg< A1 < A2 <
� � � < AL�1 < fwi ; wj g. By (12) and the definition of the quasimetric � , we have
�.a;w/ > �C 1. This proves the first part.

Similarly, suppose wi ; wj …ACL for some 16 i < j 6 3. Again, using (7) and (13), we
obtain intA�LC1[intACL DM. Thus fwi ; wj g2 intA�LC1 and consequently fwi ; wj g<
ALC1 < ALC2 < � � � < A2L < fg

Kz; yg. As above, this implies �.gKa;w/ > �C 2
and proves the second part.

Now suppose that there is an infinite sequence of distinct elements fhngn>1 � G

such that �.a; hna/ < � and �.gKa; hng
Ka/ < � for all n. Since �.a; hna/ < �

and �.gKa; hng
Ka/ < � , by Lemma 7.7, for every n, at least two of hnx , hny

and hnz lie in A�L and at least two of hngKx , hngKy and hng
Kz lie in ACL .

There is a subsequence fhnk
g and four points u1 ¤ u2 and v1 ¤ v2 such that

u1; u2 2 fx; y; zg and v1; v2 2 fgKx; gKy; gKzg and that hnk
u1; hnk

u2 2 A
�
L and

hnk
v1; hnk

v2 2 A
C

L . In particular, we see that u1 , u2 , v1 and v2 are four distinct
points and that .u1; u2 j v1; v2/D1, which already contradicts the previously proved
axiom (A1). This proves that g satisfies .?/ with respect to the action G Õ‚3.M/

and we are done.

Corollary 7.8 Let G be a group which admits an action on a completely Hausdorff
space satisfying (C) and contains an element with north–south dynamics. Then G is
either acylindrically hyperbolic or virtually cyclic.

Theorem 1.2 is now an obvious consequence of Proposition 7.4 and Corollary 7.8.

By a result of Balasubramanya [1, Theorem 1.2], an acylindrically hyperbolic group G
admits a nonelementary acylindrical and isometric action on one of its Cayley graphs �
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which is quasi-isometric to a tree T . Note that the boundaries @� and @T of � and T ,
respectively, can be naturally identified by a homeomorphism. If, in addition, G is
countable, then the construction in [1] actually implies that the boundary @T of T
can be naturally identified, by a homeomorphism, with the Baire space, which can
be defined as NN with the product topology or the set of irrational numbers with the
usual topology (see Engelking [7, Theorem 1.3.13] for details).

By Proposition 7.4, G acts on the Baire space by an action satisfying (C) and has an
element with north–south dynamics.

Conversely, if G is a countable group that is not virtually cyclic with an action on
the Baire space satisfying (C) and contains an element with north–south dynamics,
Corollary 7.8 implies that G is acylindrically hyperbolic. Theorem 1.5 is proved.

Theorem 4.3 and Lemma 5.1 imply that if G is a nonelementary convergence group
acting on a compact metrizable topological space M, then G is not virtually cyclic, has
an element with north–south dynamics on M and the action of G on M satisfies (C),
thus Corollary 1.3 follows from Theorem 1.2 directly. As mentioned in the introduction,
the converse of Corollary 1.3 is not true. In fact, we have the following general
statement:

Proposition 7.9 Let G D hX j Ri be a group generated by X with relations R.
If X consists of elements of infinite order and the commutativity graph of X is
connected, then any convergence action of G on a compact metrizable topological
space is elementary.

Here the commutativity graph of X is the undirected graph with vertex set X and
edge set consisting of pairs .x; y/ 2 X2 for every x; y 2 X with their commutator
xyx�1y�1 equal to the identity. The proof of Proposition 7.9 is similar to Karlsson
and Noskov [14], which proves that groups such as SLn.Z/ and Artin braid groups
can only have elementary actions on hyperbolic-type bordifications.

Proof Suppose that G acts on a compact metrizable topological space M by a
convergence action. Let x be an element of X. As x has infinite order, it is either
parabolic or loxodromic by Remark 4.2. We split our argument into two cases.

Case 1 (x is a parabolic element) Let y be any element of X. As the commutativity
graph of X is connected, there exists a path in this graph from x to y labeled by
x D x1 , x2; : : : , xn D y . Since elements of X have infinite order, each of x2; : : : ; xn
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is either parabolic or loxodromic. Let a 2M be the fixed point of x . As x1 commutes
with x2 , we have

x1x2aD x2x1aD x2a:

In other words, x2a is a fixed point of x1 . Since x1 fixes a unique point, x2 fixes a .
Then x2 cannot be a loxodromic element since, otherwise, the fact that x2 shares the
fixed point a with x1 will contradict Remark 4.2. Thus, x2 is a parabolic element
fixing a . The above argument with x2 and x3 in place of x1 and x2 shows that x3 is
also a parabolic element fixing a , and then we can apply the argument with x3 and x4
in place of x1 and x2 . Continue in this manner and we see that y D xn is a parabolic
element fixing a . As y is arbitrary, we conclude that G fixes a and thus is elementary.

Case 2 (x is a loxodromic element) Let y be any element of X. As the commutativity
graph of X is connected, there exists a path in this graph from x to y labeled by
x D x1 , x2; : : : , xn D y . Since elements of X have infinite order, each of x2; : : : ; xn
is either parabolic or loxodromic. Let a; b 2 M be the fixed points of x . As x1
commutes with x2 , we have

x1x2aD x2x1aD x2a; x1x2b D x2x1b D x2b:

In other words, x2a and x2b are two fixed points of x1 . Since x1 fixes exactly two
points, x2 either permutes a and b or fixes a and b pointwise. If x2 permutes a
and b , then since x2 is either parabolic or loxodromic, it fixes at least a point c 2M
and, obviously, c ¤ a; b . Note that x22 has infinite order and fixes the three points a ,
b and c , contradicting Remark 4.2.

Thus, x2 fixes a and b pointwise and is a loxodromic element. The above argument
with x2 and x3 in place of x1 and x2 shows that x3 is also a loxodromic element
fixing a and b , and then we can apply the argument with x3 and x4 in place of x1
and x2 . Continue in this manner and we see that yD xn is a loxodromic element fixing
a and b . As y is arbitrary, we conclude that G fixes a and b and thus is elementary.

Proposition 7.9 implies that various mapping class groups and right-angled Artin groups
provide counterexamples for the converse of Corollary 1.3.

Corollary 7.10 Mapping class groups of closed orientable surfaces with genus > 2

and noncyclic directly indecomposable right-angled Artin groups corresponding to
connected graphs are acylindrically hyperbolic groups failing to be nonelementary
convergence groups.
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Proof By Osin [16], these groups are acylindrically hyperbolic. For mapping class
groups of a closed surface with genus > 2, the commutativity graph corresponding
to a generating set due to Wajnryb [20, Theorem 2] is connected. The fact that a
right-angled Artin group corresponding to a connected graph has some generating set
with connected commutativity graph just follows from the definition. Thus, none of
these groups can be a nonelementary convergence group, by Proposition 7.9.
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