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Infinite staircases in the symplectic embedding problem for
four-dimensional ellipsoids into polydisks

MICHAEL USHER

We study the symplectic embedding capacity function Cˇ for ellipsoids E.1; ˛/�R4

into dilates of polydisks P.1; ˇ/ as both ˛ and ˇ vary through Œ1;1/ . For
ˇ D 1 , Frenkel and Müller showed that Cˇ has an infinite staircase accumulating
at ˛ D 3C 2

p
2 , while for integer ˇ � 2 , Cristofaro-Gardiner, Frenkel and Schlenk

found that no infinite staircase arises. We show that for arbitrary ˇ 2 .1;1/ , the
restriction of Cˇ to Œ1; 3C 2

p
2� is determined entirely by the obstructions from

Frenkel and Müller’s work, leading Cˇ on this interval to have a finite staircase with
the number of steps tending to 1 as ˇ! 1 . On the other hand, in contrast to the
results of Cristofaro-Gardiner, Frenkel and Schlenk, for a certain doubly indexed
sequence of irrational numbers Ln;k we find that CLn;k

has an infinite staircase; these
Ln;k include both numbers that are arbitrarily large and numbers that are arbitrarily
close to 1 , with the corresponding accumulation points respectively arbitrarily large
and arbitrarily close to 3C 2

p
2 .

53D22

1 Introduction

It is now understood that questions about when one domain in R2n symplectically
embeds into another often have quite intricate answers. The best known example of
this is the characterization from McDuff and Schlenk [9] of when one four-dimensional
ellipsoid embeds into a ball. Writing

E.a; b/D

�
.w; z/ 2C2

ˇ̌̌ �jwj2
a
C
�jzj2

b
� 1

�
;

they completely describe the embedding capacity function

C ball.˛/D inff� j there exists a symplectic embedding E.1; ˛/ ,!E.�; �/g;

showing that, on the interval Œ1; �4/, where � is the golden ratio, C ball is given by an
“infinite staircase” made up of piecewise linear steps; for ˛ > �4 , C ball.˛/ is given
either by the volume bound

p
˛ or by one of a finite list of piecewise linear functions.

Published: 16 August 2019 DOI: 10.2140/agt.2019.19.1935

http://msp.org
http://www.ams.org/mathscinet/search/mscdoc.html?code=53D22
http://dx.doi.org/10.2140/agt.2019.19.1935


1936 Michael Usher

In this paper we consider instead embeddings of four-dimensional ellipsoids into
four-dimensional polydisks

P.a; b/D f.w; z/ 2C2
j �jwj2 � a; �jzj2 � bg:

For any given ˇ � 1, we consider the embedding capacity function Cˇ W Œ1;1/!R

defined by

(1-1) Cˇ .˛/D inff� j there exists a symplectic embedding E.1; ˛/ ,! P.�; �ˇ/g:

So the fact that symplectic embeddings are volume-preserving implies the “volume
bound” Cˇ .˛/ �

p
˛=2ˇ . The function C1 was completely described in Frenkel

and Müller [4], and was found to be qualitatively similar to the McDuff–Schlenk
function C ball , with an infinite staircase followed by a finite alternating sequence of
piecewise linear steps and intervals on which it coincides with the volume bound; in
this case the infinite staircase occupies the interval Œ1; 3C 2

p
2/. More recently, for

all integers ˇ � 2 the function Cˇ was found to have a rather simpler description in
Cristofaro-Gardiner, Frenkel and Schlenk [3]: in this case there is no infinite staircase
and the function coincides with the volume bound on all but finitely many intervals
where it is piecewise linear, with the piecewise linear steps fitting into a fairly simple
pattern as ˇ varies.

The contrast between the complexity of the function C1 and the simplicity of Cˇ for
integer ˇ � 2 raises a number of questions, some of which we answer here. First,
we determine how the infinite staircase that describes C1jŒ1;3C2

p
2/ disappears as the

parameter ˇ is adjusted away from 1. In fact, we show that for all real ˇ , the restriction
of Cˇ to Œ1; 3C 2

p
2� is in a sense “as simple as possible” given the results of [4]

concerning C1 : the obstructions to symplectic embeddings (arising from a specific
sequence of exceptional spheres in blowups of S2 �S2 ) that give rise to the Frenkel–
Müller staircase are the only obstructions needed to understand Cˇ .˛/ for any real ˇ
and any ˛ 2 Œ1; 3C 2

p
2�; see Theorem 1.6. By directly inspecting these obstructions

one can see that, for any given ˇ > 1, only finitely many of them will actually be
relevant, and indeed we find a sequence bm& 1 such that the graph of Cˇ jŒ1;3C2

p
2�

consists of exactly m steps whenever ˇ 2 Œbm; bm�1/.

Complementing this, we show that once ˛ becomes larger than 3C2
p
2 the obstructions

from [4] and [3] are quite far from being sufficient to describe Cˇ jŒ1;˛� for all ˇ . The
main ingredient in this is a triply indexed family of exceptional spheres A.k/i;n in blowups
of S2�S2 ; for very small values of i these have some overlap with the classes from [4]
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and [3], but otherwise they are new. If one fixes integers n� 2 and k � 0 and varies i ,
the resulting classes can be used to show that, for certain irrational numbers Ln;k
(see (4-15)), the function CLn;k

has an infinite staircase, accumulating at the value
˛ D Sn;k > 1 characterized by the identity

.1CSn;k/
2

Sn;k
D
2.1CLn;k/

2

Ln;k
:

Fixing n, it holds that Ln;k & 1 as k !1, and hence that Sn;k & 3C 2
p
2 as

k !1. On the other hand, setting k D 0 we have Ln;0 D
p
n2� 1, so there are

arbitrarily large ˇ (which even become arbitrarily close to integers) for which Cˇ has
an infinite staircase, a counterpoint to the result of [3] that Cˇ never has an infinite
staircase for integer ˇ � 2.

For i � 2, the obstructions from our classes A.0/i;n give larger lower bounds for CLn;0
.˛/

for ˛D ci;n=di;n (with notation as in (4-12)) than do any of the classes denoted by Em
or Fm in [3]. Since Ln;0 D

p
n2� 1 > 2 for n� 3, this gives many counterexamples

to [3, Conjecture 1.5].

1.1 Initial background and notation

Before stating our results more explicitly, let us recall some of the facts that are the basis
of our analysis; these will largely be familiar to readers of [9; 4; 3]. The first main point
is that, if b=a2Q, the existence of a symplectic embedding E.a; b/ı ,!P.c; d/ı from
the interior of an ellipsoid into the interior of a polydisk is equivalent to the existence
of a certain ball packing, dictated in part by the so-called weight sequence W.a; b/

of E.a; b/. Here W.a; b/ is determined recursively by setting W.x; 0/ DW.0; x/

equal to the empty sequence and, if x � y , setting W.x; y/ and W.y; x/ both equal
to the result of prepending x to the sequence W.x; y � x/. (The recursion terminates
because we assume b=a2Q:/ For any a2Q�0 we let w.a/DW.1; a/. So for instance
W.8; 3/D .3; 3; 2; 1; 1/ and w

�
8
3

�
D
�
1; 1; 2

3
; 1
3
; 1
3

�
. Then [4, Proposition 1.4], which

is based on the analysis in McDuff [7], asserts that E.a; b/ı symplectically embeds
into P.c; d/ı if and only if there is a symplectic embedding of a disjoint union of
balls,

B.c/ı tB.d/ı t

� G
w2W.a;b/

B.w/ı
�
,! B.cC d/ı:

Here B.x/ denotes the four-dimensional ball of capacity x , ie B.x/DE.x; x/.
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In turn, as is explained at the end of the introduction to McDuff [7] based on McDuff
and Polterovich [8], Li and Liu [6] and Biran [1], a disjoint union B.a0/t� � �tB.aN /
of closed balls symplectically embeds into B.�/ı if and only if there is a symplectic
form ! on the complex .NC1/–fold blowup XNC1 of CP 2 whose associated first
Chern class agrees with the one induced by the standard complex structure on XNC1
(namely 3L�

P
i Ei , where L is Poincaré dual to the hyperplane class and the Ei are

the Poincaré duals of the exceptional divisors), and which endows the standard hyper-
plane class with area � and the respective exceptional divisors with areas a0; : : : ; aN .

Let us write CK.XNC1/ for the set of cohomology classes of symplectic forms on
XNC1 having associated first Chern class 3L�

P
i Ei , and denote the closure of this

set by xCK.XNC1/. Also write a general element of H 2.XNC1IR/ as

dL�

NX
iD0

tiEi D hd I t0; : : : ; tN i:

In this notation it follows easily from the above facts that:

Proposition 1.1 [4; 7] Let ˛ 2Q and ˇ; � 2R with ˛; ˇ � 1 and � > 0, and write
the weight sequence w.˛/DW.1; ˛/ as w.˛/D .x2; : : : ; xN /. Then the following
are equivalent:

(i) �� Cˇ .˛/.

(ii) h�.ˇC 1/I�ˇ; �; x2; : : : ; xN i 2 xCK.XNC1/.

Moreover, by [6, Theorem 3], we have

(1-2) xCK.XNC1/D fc 2H 2.XNC1IR/ j c
2
� 0; c �E � 0 for all E 2 ENC1g;

where ENC1 denotes the set of exceptional classes in XNC1 , ie the classes Poincaré
dual to symplectically embedded spheres of self-intersection �1. (Applying [6,
Theorem 3] directly we would also need to check that c � L � 0, but since L D
.L�E0�E1/CE0CE1 is a sum of elements of ENC1 , this follows from the other
conditions.)

To study embeddings into polydisks it is often helpful to use different coordinates on
H 2.XNC1IR/, as described in [4, Remark 3.7]. Recall that, for N � 1, our .NC1/–
fold blowup XNC1 of CP 2 can also be viewed as an N–fold blowup of S2 � S2

(say with exceptional divisors E 01; : : : ; E
0
N ), with the Poincaré duals S1 and S2 of
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the S2 factors corresponding respectively to L�E0 and L�E1 , and with the E 0i
corresponding to L�E0�E1 for i D 1 and to Ei for i � 2. Let us accordingly write

.d; eIm1; : : : ; mN /D dS1C eS2�

NX
iD1

miE
0
i 2H

2.XNC1IR/

(note that we are using angle brackets when we use “CP 2 coordinates” and parentheses
when we use “S2 �S2 coordinates”). Hence the representations in our two bases are
related by

.d; eIm1; m2 : : : ; mN /D hd C e�m1I d �m1; e�m1; m2; : : : ; mN i;(1-3)

hr I s0; s1; s2; : : : ; sN i D .r � s1; r � s0I r � s0� s1; s2; : : : ; sN /:(1-4)

Condition (ii) in Proposition 1.1 can then be rephrased as

(1-5) .�ˇ; �I 0;w.˛// 2 xCK.XNC1/;

where here and throughout the rest of the paper we abuse notation slightly by writing
the weight sequence w.˛/ D .x2; : : : ; xN / as though it were a single entry in the
coordinate expression of our cohomology class, so that .�ˇ; �I 0;w.˛// is shorthand
for .�ˇ; �I 0; x2; : : : ; xN /. By considering small-weight blowups and taking a limit it
is easy to see that (1-5) is equivalent to

.�ˇ; �Iw.˛// 2 xCK.XN /:

Now if w.˛/ D .x2; : : : ; xN / then
P
i x
2
i D a ; conceptually this is because one

can obtain the weight sequence by subdividing a 1-by-a rectangle into squares of
sidelengths xi . Thus the self-intersection of the class .�ˇ; �Iw.˛// is equal to 2�2ˇ�˛
and so is nonnegative if and only if � obeys the volume bound ��

p
˛=2ˇ alluded to

earlier. Now suppose that ED .d; eI Em/2 EN , where Em2Zn . One example of such an
element E is E 0i D .0; 0I 0; : : : ;�1; : : : ; 0/, which has nonnegative intersection number
with .�ˇ; �Iw.˛// since all entries of w.˛/ are nonnegative. All other elements of EN
have d; e � 0 (by positivity of intersections with embedded holomorphic spheres
Poincaré dual to S1 and S2 ), all mi � 0 (by positivity of intersections with E 0i ) and
d Ce > 0 (given that mi � 0, this follows from the Chern number of E being 1). The
intersection number of such a class with .�ˇ; �Iw.˛// is equal to �.dCˇe/�w.˛/ � Em
and so is nonnegative if and only if �� w.˛/ � Em=.d Cˇe/. Recalling that elements
of EN have Chern number 1 and self-intersection �1, we accordingly make the
following definition.
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Definition 1.2 Let E D .d; eI Em/ 2H 2.XN IZ/ be either equal to some E 0i or have
the properties that c1.TXN / �E D 1, E �E D�1, and all mi � 0 (and hence1 d; e � 0
with d C e > 0). Let ˛ 2 Q have weight sequence w.˛/ of length N � 1 and let
ˇ 2 Œ1;1/. The obstruction from E at .˛; ˇ/ is

�˛;ˇ .E/D

(
0 if E DE 0i ;
w.˛/� Em

dCˇe
otherwise.

Proposition 1.1 and (1-2) therefore imply:

Corollary 1.3 For any ˇ � 1 and any ˛ whose weight sequence has length N � 1,
we have

Cˇ .˛/Dmax
�r

˛

2ˇ
; sup
E2EN

�˛;ˇ .E/

�
:

In fact, it follows from [1, Section 6.1] that if we let zEN be the set of classes E 2
H 2.XN IZ/ obeying the assumptions in the first sentence of Definition 1.2, then we
continue to have

(1-6) Cˇ .˛/Dmax
�r

˛

2ˇ
; sup
E2zEN

�˛;ˇ .E/

�
:

Thus, enlarging the set EN to zEN does not affect the supremum on the right-hand side
above. This sometimes will save us the trouble of checking that certain families of
classes that are easily seen to lie in zEN in fact lie in EN . That said, it is sometimes
important to know that a class lies in EN , because the fact that distinct elements of EN
have nonnegative intersection number often provides useful constraints.

As ˛ varies through Q, the length of its weight sequence also varies, so the value N
appearing in Corollary 1.3 and in (1-6) depends on ˛ . To avoid keeping track of
this dependence, it is better to work in the union of all of the H 2.XN IR/, with two
elements in this union regarded as equivalent if one can be obtained from the other
by pullback under the map XN 0 ! XN given by blowing down the last N 0 � N
exceptional divisors when N 0 >N . Let H2 denote this union; more formally,

H2 WD lim
��!
N!1

H 2.XN IR/

1Indeed, the condition on the Chern number shows that 2.d C e/� 2.d C e/�
P
mi > 0 , and then if

either of d and e were negative we would have E �E � 2de � �2 , which is not the case.
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for the directed system whose structure maps H 2.XN IR/! H 2.XN 0 IR/ are the
pullbacks associated to the blowdowns XN 0 ! XN . So any element of H2 can be
expressed as .d; eIm1; : : : ; mN /— or, if one prefers, as hr I s0; : : : ; sN i— for some
finite collection of real numbers d , e and m1; : : : ; mN , and .d; eIm1; : : : ; mN / and
.d; eIm1; : : : ; mN ; 0/ are expressions of the same element of H2 . The Chern number
of such an element is 2.d C e/�

P
mi and its self-intersection is 2de �

P
m2i ; in

particular these are both independent of the choice of representative of the equivalence
class.

It is easy to see that if E 2 EN (resp. E 2 zEN ) then the image of E under the
blowdown-induced map H 2.XN IR/! H 2.XN 0 IR/ for N 0 > N belongs to EN 0

(resp. to zEN 0 ). Let E and zE be the respective unions of the images under the canonical
map H 2.XN IR/! H2 of the various EN and zEN , so an element E 2 E can be
regarded as Poincaré dual to an embedded symplectic sphere of self-intersection �1
for all sufficiently large N .

Definition 1.2 extends to arbitrary ˛ 2Q\ Œ1;1/ and arbitrary E 2 zE : we simply need
to interpret the dot product w.a/ � Em when E D .d; eI Em/, and if w.a/D .x2; : : : ; xN /
and EmD .m2; : : : ; mN 0/,2 we use the obvious convention that w.a/ � EmD

PN
iD2 ximi .

With this definition of �˛;ˇ .E/ for arbitrary E 2 zE and ˛ 2 Q\ Œ1;1/ it follows
easily from Corollary 1.3 and from (1-6) that

(1-7) Cˇ .˛/Dmax
�r

˛

2ˇ
; sup
E2E

�˛;ˇ .E/

�
Dmax

�r
˛

2ˇ
; sup
E2zE

�˛;ˇ .E/

�
:

Since Cˇ is easily seen to be continuous this is enough to characterize Cˇ .˛/ for all
real ˛ � 1.

The great majority of elements of E or zE that we will consider in this paper have a
rather special form:

Definition 1.4 An element E 2H2 is said to be quasiperfect if both E 2 zE and there
are nonnegative integers a , b , c and d such that

E D .a; bIW.c; d//:

Such an element is said to be perfect if additionally E 2 E .

2Here we can assume N 0 �N by appending zeros to Em , which does not change the corresponding
element of zE .
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There are quasiperfect classes that are not perfect, such as .31; 14IW.79; 11// D

.31; 14I 11�7; 2�5; 1�2/,3 which cannot lie in E because it has negative intersection
number with the element .3; 1I 1�7/ of E .

The discussion in [9, Section 2.1] shows that for each E 2 zE and ˇ � 1, the function
˛ 7!�˛;ˇ .E/ is piecewise linear, though in some cases it can be somewhat complicated.
For quasiperfect classes ED .a; bIW.c; d//, it will often be sufficient for us to consider
a simpler piecewise linear function �� ;ˇ .E/ which, like � � ;ˇ .E/, provides a lower
bound for Cˇ :

Proposition 1.5 If E D .a; bIW.c; d// 2 zE is quasiperfect and ˛; ˇ � 1, define

�̨ ;ˇ .E/D

8<:
d˛

aCˇb
if ˛ � c

d
;

c

aCˇb
if ˛ � c

d
:

Then Cˇ .˛/� �̨ ;ˇ .E/.

Proof Observe first that w.c=d/D .1=d/W.c; d/ and w.c=d/ �w.c=d/D c=d , so

�c=d;ˇ
�
.a; bIW.c; d//

�
D

c

aCˇb
:

Hence

(1-8) Cˇ

�
c

d

�
�

c

aCˇb
:

But Cˇ is trivially a monotone increasing function (increasing ˛ enlarges the codomain
of the desired embedding) while Cˇ also satisfies the sublinearity property Cˇ .t˛/�
tCˇ .˛/ for t �1, because if there is a symplectic embedding E.1; ˛/ ,!P.�; �ˇ/ then
by scaling we obtain a composition of symplectic embeddings E.1; t˛/ ,!E.t; t˛/ ,!

P.t�; t�ˇ/; see [9, Lemma 1.1.1]. The proposition then follows from (1-8) and these
monotonicity and sublinearity properties.

1.2 The disappearing Frenkel–Müller staircase

In [4] the authors introduce a sequence of perfect classes that we denote by fFMng
1
nD�1

(these are the classes called E.ˇn/ in [4, Section 5.1]; we recall the formula in (3-1)),
and [4, Theorem 1.3(i)] can be expressed in our notation as stating that

C1.˛/D sup
n
f�̨ ;1.FMn/ j n� �1g for ˛ 2 Œ1; 3C 2

p
2�:

3Throughout the paper we use the usual convention that z�` means that z is repeated ` times, so
.31; 14I 11�7; 2�5; 1�2/D .31; 14I 11; 11; 11; 11; 11; 11; 11; 2; 2; 2; 2; 2; 1; 1/ .
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See Figure 1.

FM�1
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FM2
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˛

C1.˛/
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FM2

FM3

FM4

FM5

FM6
:::

1 10 102 103 104
1
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1

�2�˛

1

C1.�2/�C1.˛/

Figure 1: A plot of the Frenkel–Müller infinite staircase C1jŒ1;�2� where
�2 D 3C 2

p
2 , top, together with a log–log plot which makes more visible

some of the steps that accumulate at �2 , bottom. Each step in each of the
plots is labeled by the Frenkel–Müller class FMn having the property that
C1 coincides with �� ;1.FMn/ on that step.

Our first main result is that the analogous statement continues to hold for Cˇ with
ˇ > 1.
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Theorem 1.6 For any ˇ � 1 and any ˛ 2 Œ1; 3C 2
p
2�, we have

(1-9) Cˇ .˛/D sup
n
f�̨ ;ˇ .FMn/ j n� �1g:

The right-hand side of (1-9) can be computed explicitly, and its behavior when ˇ D 1
is different from its behavior when ˇ > 1. The perfect classes FMn have the form
.xn; ynIW.cn; dn//, where the cn=dn form an increasing sequence. It is also true that
the �cn=dn;1.FMn/ D cn=.xnC yn/ form an increasing sequence, in view of which
the graph of ˛ 7! supnf�̨ ;1.FMn/ j n� �1g forms an infinite staircase as described
in [4]. However for any ˇ > 1 there is a value of n (depending on ˇ , and always odd)
for which �cn=dn;ˇ .FMn/ is maximal, as a result of which the right-hand side of (1-9)
reduces to a maximum over a finite set.

A bit more specifically, let fPng1nD0 and fHng1nD0 be the Pell numbers and the half-
companion Pell numbers, respectively (see Section 2.1), and for n� �1 let

bn D

8̂<̂
:
PnC2C1

PnC2�1
if n is even,

HnC1C1

HnC1�1
if n is odd.

The bn form a decreasing sequence that converges to 1, with the first few values
being given by b�1 D1, b0 D 3, b1 D 2, b2 D 13

11
, b3 D 9

8
, b4 D 71

69
. We show in

Proposition 3.4 that, for all ˛ ,

sup
n
f�̨ ;ˇ .FMn/ j n� �1g

D

8̂<̂
:

maxf�̨ ;ˇ .FM�1/; �̨ ;ˇ .FM0/; : : : ; �̨ ;ˇ .FM2k�1/g for ˇ 2 Œb2k; b2k�1�;

maxf�̨ ;ˇ .FM�1/; �̨ ;ˇ .FM0/; : : : ; �̨ ;ˇ .FM2k�1/; �̨ ;ˇ .FM2kC1/g

for ˇ 2 Œb2kC1; b2k�:

As ˇ increases within the interval Œb2kC1; b2k�, the �̨ ;ˇ .FMn/ all become smaller
since our codomain P.1; ˇ/ is expanding, but the maximal value of �̨ ;ˇ .FM2k�1/

decreases more slowly than does the maximal value of �̨ ;ˇ .FM2kC1/, matching it
precisely when ˇ D b2k . In particular the step in the graph of Cˇ corresponding to
FM2kC1 disappears as ˇ%b2k , being overtaken by the step corresponding to FM2k�1 .
Similarly, as ˇ% b2k�1 , the step corresponding to FM2k�2 is overtaken by the step
corresponding to FM2k�3 (and the step corresponding to FM2k�1 remains as the final
step, surviving until ˇ reaches b2k�2 ). See Figure 2. Once ˇ rises above b0 D 3,
only the “step” (more accurately described as a floor) corresponding to FM�1 remains.
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5

1:61

1:64

1:67

1:6

1:62

1:58

1:59

1:525

1:535

FM1 FM1

FM1

FM1

FM2

FM2

FM3
FM3

FM3

ˇ D 21
20
2 Œb4; b3� ˇ D 10

9
2 Œb4; b3�

ˇ D 8
7
2 Œb3; b2� ˇ D 5

4
2 Œb2; b1�

Figure 2: Plots of the functions Cˇ jŒ4:9;3C2
p
2� for selected values of ˇ . For

b4 < ˇ < b3 , Cˇ jŒ1;�2� is given as the maximum of obstructions arising
from the Frenkel–Müller classes FM�1 , FM0 , FM1 , FM2 and FM3 (the
first two of which are relevant only for values of ˛ outside the domain of
these plots). The obstruction from FM1 approaches the obstruction from
FM2 as ˇ approaches b3 D 9

8
, and these obstructions cross once ˇ > b3

so that FM2 is no longer relevant. Once ˇ > b2 D 13
11

the obstruction from
FM1 likewise overtakes the obstruction from FM3 . Increasing ˇ still further
would lead to the obstruction from FM�1 overtaking that from FM0 when ˇ
crosses b1 D 2 and overtaking that from FM1 when ˇ crosses b0 D 3 .

In fact one has FM�1 D .1; 0I 1/ so that �̨ ;ˇ .FM�1/D 1 for all ˛; ˇ ; thus for ˇ � 3
Theorem 1.6 just says that Cˇ .˛/D 1 for ˛ � 3C2

p
2, ie that the bound given by the

nonsqueezing theorem is sharp for all such ˛ . (This latter fact is easily deduced from
well-known results, since 3C2

p
2 < 6 and for ˇ � 3 there is a symplectic embedding

of E.1; 6/ı into P.1; ˇ/; see eg [3, Remark 1.2.1].)

Remark 1.7 In fact, our proof shows that, when ˇ > 1, the equality Cˇ .˛/ D

supnf�̨ ;ˇ .FMn/ j n��1g continues to hold for ˛ < ˛0.ˇ/ for an upper bound ˛0.ˇ/
that is somewhat larger than 3C 2

p
2, and converges to 3C 2

p
2 as ˇ! 1. (Explicit,

though typically not optimal, values for ˛0.ˇ/ can be read off from Propositions 3.14
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and 3.15.) It follows from our other main results that such a bound ˛0.ˇ/ must
depend on ˇ , as there are pairs .˛; ˇ/ arbitrarily close to .3C 2

p
2; 1/ for which

(1-9) is false. (For instance, in the notation used elsewhere in the paper, one can take
.˛; ˇ/D .Sn;k; Ln;k/ for large k and any n� 2.)

Remark 1.8 In [4], the “feet” of each of the stairs4 of the infinite staircase describing
C1.˛/ for ˛ � �2 are found to precisely agree with the volume constraint. We see
in Proposition 3.17 that the situation is different for Cˇ .˛/ with ˇ > 1: although as
ˇ approaches 1 the number of stairs in the staircase describing Cˇ jŒ1;�2� becomes
arbitrarily large, at most one (and, for most ˇ , none) of these stairs touches the volume
bound. More precisely, for ˛ 2 Œ1; �2� and ˇ 2 .1;1/, Proposition 3.17 shows that
the only pairs .˛; ˇ/ for which Cˇ .˛/D

p
˛=2ˇ are those of the form�

P 2
2k

P 2
2k�1

;
H2kC 1

H2k � 1

�
where k � 1. The first few such pairs are .4; 2/,

�
144
25
; 9
8

�
,
�
4900
841

; 50
49

�
,
�
166464
28561

; 289
288

�
.

1.3 New infinite staircases

The analysis in [9] and [4] shows that, for any ˛; ˇ � 1 such that Cˇ .˛/ exceeds the
volume bound

p
˛=2ˇ , there is a neighborhood of ˛ on which Cˇ is piecewise linear.

Let Sˇ denote the collection of affine functions f W R!R having the property that
there is an nonempty open set on which Cˇ coincides with f . Thus the graph of Cˇ
consists of segments which coincide with the graph of one of the functions from Sˇ ,
collectively forming a sort of staircase, and other segments which coincide with the
volume bound. We say that Cˇ has an infinite staircase if Sˇ is an infinite set. In
this case, we say that ˛ 2 R is an accumulation point of the infinite staircase if for
every neighborhood U of ˛ there are infinitely many f 2 Sˇ such that Cˇ coincides
with f on some nonempty open subset of U .

Remark 1.9 Arguing as in [9, Corollary 1.2.4], for any E D .x; yI Em/ 2 E n
S
ifE
0
ig

we have 1D c1.E/D 2.xCy/�
P
i mi , so that for any ˛ 2Q,

Em �w.˛/�
X
i

mi < 2.xCy/;

4In other words, the points at which the slope suddenly increases.
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and so, for any ˇ � 1,

�˛;ˇ .E/D
Em �w.˛/

xCˇy
�
2.xCy/

xCˇy
� 2:

Thus if the volume bound
p
˛=2ˇ is at least 2, ie if ˛ � 8ˇ , then Cˇ .˛/ is equal

to the volume bound. It follows easily from this that if Cˇ has an infinite staircase
then this infinite staircase must have an accumulation point. An unpublished argument
communicated to the author by Cristofaro-Gardiner appears to imply that the only
possible accumulation point for any such infinite staircase is the value ˛>1 determined
by the equation .1C˛/2=˛ D 2.1Cˇ/2=ˇ .

Again denoting by Pm and Hm the Pell and half-companion Pell numbers, respectively,
for any integers n� 2 and k � 0 let

Ln;k D
H2k.

p
n2� 1C 1/C 2nP2kC .

p
n2� 1� 1/

H2k.
p
n2� 1C 1/C 2nP2k � .

p
n2� 1� 1/

;

Sn;k D
.
p
n2� 1C 1/P2kC1CnH2kC1

.
p
n2� 1C 1/P2k�1CnH2k�1

:

In particular,

Ln;0 D
p

n2� 1; Sn;0 D

p
n2� 1C 1Cn
p
n2� 1C 1�n

:

Our second main result is the following, proven as part of Corollary 4.10:

Theorem 1.10 For any n� 2 and k � 0, the function CLn;k
has an infinite staircase,

with accumulation point at Sn;k .

We also show in Corollary 4.10 that .1CSn;k/2=Sn;kD 2.1CLn;k/2=Ln;k , consistent
with Cristofaro-Gardiner’s work.

The proof of Theorem 1.10 makes use of a collection of perfect classes A.k/i;n D
.ai;n;k; bi;n;kIW.ci;n;k; di;n;k// for i; k � 0 and n � 2. (See (4-12) and (4-14) for
explicit formulas.) For fixed n and k and varying i , the numbers ci;n;k=di;n;k form a
strictly increasing sequence, and we see in (4-18) that CLn;k

coincides on a neighbor-
hood of each ci;n;k=di;n;k with the function �� ;Ln;k

.A
.k/
i;n /. This is enough to show that

CLn;k
has an infinite staircase, though it does not determine the structure of the staircase

in detail since does not address the behavior of CLn;k
outside of these neighborhoods.
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At least for k D 0, the infinite staircase of Theorem 1.10 does not consist only of steps
given by the �� ;Ln;k

.A
.k/
i;n /; indeed, Proposition 4.11 shows that supi �̨ ;Ln;0

.A
.0/
i;n/ is

below the volume bound at certain points ˛ 2 .ci;n;0=di;n;0; ciC1;n;0=diC1;n;0/. (We
expect the analogous statement to be true for arbitrary k , and have confirmed this with
computer calculations for all n; k � 100.) In Section 4.6 we introduce a different set
of quasiperfect classes5 yA.k/i;n . The fact that A.k/i;n and yA.k/i;n are all quasiperfect implies
that we have a lower bound

(1-10) CLn;k
.˛/� sup

�
�̨ ;Ln;k

.A/
ˇ̌̌
A 2

1[
iD0

fA
.k/
i;n ;
yA
.k/
i;n g

�
;

and Conjecture 4.23 asserts that this inequality is in fact an equality for all ˛ in the
region Œc0;n;k=d0;n;k; Sn;k� occupied by the staircase.

Setting k D 0, Proposition 4.22 shows that the right-hand side of (1-10) is strictly
greater than the volume bound for all ˛ 2 Œc0;n;0=d0;n;0; Sn;0�. Computer calculations
show that the analogous statement continues to hold for all n; k � 100. In particular,
while it is in principle possible for an infinite staircase for some Cˇ to include intervals
on which Cˇ coincides with the volume bound, our infinite staircases do not have
this property, at least when k D 0 and n is arbitrary, or when n; k � 100. Indeed, in
contrast to the Frenkel–Müller staircase, these infinite staircases do not even touch the
volume bound at isolated points prior to the accumulation point Sn;k .

One can show that the interval of ˛ on which �̨ ;Ln;k
.A
.k/
i;n / realizes the supremum on

the right-hand side of (1-10) has length with the same order of magnitude as 1=.P 2
2k
!2in /

where !n D nC
p
n2� 1, while the corresponding interval for �̨ ;Ln;k

. yA
.k/
i;n / is con-

tained in Œci;n;k=di;n;k; ciC1;n;k=diC1;n;k� and has length bounded by a constant times
1=.P 2

2k
!4in /. Thus the steps corresponding to the yA.k/i;n are between those which

correspond to A.k/i;n and A.k/iC1;n , and decay in size at a faster rate. See Figure 3.

Our infinite staircases for CLn;k
join together nicely with the picture in Section 1.2. As

we see in Section 4.7, for all n it holds that A.k/0;nD FM2k�1 , so that the initial obstruc-
tion in our staircase coincides with one of the Frenkel–Müller obstructions. Moreover
when n � 4 Proposition 4.14 shows that Ln;k lies in the interval .b2k; b2k�1/, and
so FM2k�1 is the last surviving obstruction in the Frenkel–Müller staircase for CLn;k

.
For the remaining values of n, as we explain in Section 4.7, Proposition 4.14 shows that
A
.k/
0;3DFM2k�1 is the penultimate surviving obstruction in the Frenkel–Müller staircase

5We expect these classes to all be perfect, and have checked this for many examples, but we do not
have a general argument.
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A
.0/
0;2

yA
.0/
0;2

A
.0/
1;2

A
.0/
1;2

A
.0/
2;2

yA
.0/
1;2

A
.0/
2;2

19
3

19
31C

p
3 3 3.2C

p
3/

1C
p
3

5

5

2C
p
3

5

2C
p
3

3

1C
p
3

1

19

7C4
p
3

Figure 3: Partial plots of our lower bound (1-10) for CL2;0
(which we con-

jecture to be equal to CL2;0
), with steps labeled by their corresponding

elements of E , together with the volume bound curve. The bottom plot
is a magnification of the box in the upper right of the top plot; evidently
such a magnification is needed in order to make the step corresponding to
yA
.0/
1;2 D .11; 7IW.31; 5// visible.

for CL3;k
(and the last one is yA.k/0;3 D FM2kC1 ), and that A.k/0;2 is the antepenultimate

surviving obstruction in the Frenkel–Müller staircase for CL2;k
, with the last two being

yA
.k/
0;2 D FM2k and A.k/1;2 D FM2kC1 . So in all cases our staircases overlap with the

remnants of the Frenkel–Müller staircase.
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As for the accumulation points Sn;k , we see in Proposition 4.13 that each Sn;k lies
in the interval .P2kC4=P2kC2; P2kC2=P2k/ (which for k D 0 is to be interpreted as
.6;1/). Since P2kC2=P2k! 3C 2

p
2 as k!1, this shows that Sn;k! 3C 2

p
2

as k ! 1, uniformly in n. In the other limit as n ! 1 with k fixed, one has
Sn;k % P2kC2=P2k and Ln;k % .H2kC1 C 1/=.H2kC1 � 1/ as n ! 1. In this
limit all of the steps in our staircases have length tending to zero except for the step
corresponding to A

.k/
0;n (which as mentioned in the previous paragraph is equal to

FM2k�1 independently of n), and indeed a special case of Proposition 3.14 shows that
when ˇD .H2kC1C1/=.H2kC1�1/, the final step that remains in the Frenkel–Müller
staircase for Cˇ extends all the way to ˛ D P2kC2=P2k , at which point it can be seen
to coincide with the volume bound.

The existence of an infinite staircase for CLn;k
appears to depend quite delicately

on the specific values Ln;k . In particular it follows from Corollary 4.21 that all
but finitely many of the �� ;ˇ .A

.k/
i;n / cease to be relevant to Cˇ when ˇ is arbitrarily

close to but not equal to Ln;k . For typical values of ˇ that are close to some of the
Ln;k we expect Cˇ .˛/ for ˛ slightly larger than 3C 2

p
2 � 5:828 to be given by

the maximum of a small collection of the �̨ ;ˇ .A
.k/
i;n / for various values of n. For

example one can show (for instance using the program at [12]) that for ˇ D 5
4

(which
lies between L6;1 and L7;1 ), Cˇ is given on

�
3C 2

p
2; 1000

169

�
by the obstruction

coming from the exceptional class FM1 D A
.1/
0;n D .2; 1IW.5; 1//, on

�
1000
169

; 5929
1000

�
by the obstruction coming from A

.1/
1;6 D .25; 20IW.77; 13//, and on

�
5929
1000

; 457
77

�
by

the obstruction coming from A
.1/
1;7 D .29; 23IW.89; 15//, after which it is given on a

somewhat longer interval by the obstruction coming from the nonquasiperfect class
.2; 2I 2; 1�5/, which readers of [4] will recognize as the first class to appear after the
infinite staircase for C1 .

The A.k/i;n and yA.k/i;n are not the only perfect classes to contribute to some of the
functions Cˇ in the region following the Frenkel–Müller staircase; for instance,
.15; 10IW.43; 7// is the first class after FM1 to contribute to C 3

2
, and cannot be

found among the A.k/i;n or yA.k/i;n . Preliminary computer experiments suggest that classes
such as .15; 10IW.43; 7// may fit into different families that are structurally similar to
the A.k/i;n , perhaps leading to infinite staircases for other irrational values of ˇ besides
the Ln;k . (To give a concrete family of examples, the author suspects that Cˇ has an
infinite staircase for ˇD .2n�1C2

p
n2� 1/=.2n�2C

p
n2� 1/ for all integers n�2.

For nD 2 this is equal to
p
3D L2;0 , but for n� 3 it is distinct from all of the Ln;k

since it lies strictly between 4
3
D supk�1;n�2Ln;k and

p
3Dminn�2Ln;0 .) However,
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analogous methods would not seem to be capable of producing infinite staircases for
Cˇ when ˇ is rational, consistently with the conjecture of Cristofaro-Gardiner, Holm,
Mandini and Pires (see [10, page 13]) that would imply that the only rational ˇ for
which any such staircase exists is the value ˇ D 1 considered in [4].

1.4 Organization of the paper

The following section collects a variety of tools that are used at various places in our anal-
ysis. It seems unavoidable that many of our proofs will involve extensive manipulations
of Pell numbers Pn and Hn , and some relevant facts about these appear in Section 2.1.
As will be familiar to experts, the subsets of H 2.XNC1IR/ appearing in (1-2), namely
CK.XNC1/ and ENC1 , are acted upon by Cremona moves. In Section 2.2 we recall
this and set up relevant notation, after which we identify a very useful composition of
Cremona moves, labeled „ in Proposition 2.5, and compute its action on various kinds
of classes that appear in the rest of the paper. Restricting attention to classes of the
form .a; bIW.c; d// such as those that appear in Definition 1.4, we then consider the
question of when such a class is (quasi-)perfect. Some simple algebra shows that the
quasiperfect classes of this form having gcd.c; d/D 1 correspond, after a change of
variables, to solutions to a certain (generalized) Pell equation. We can then exploit the
construction from [2] of infinite families of such solutions to define (Definition 2.10)
the kth –order Brahmagupta move C 7! C .k/ acting on classes .a; bIW.c; d//. By
construction this move preserves the property of being quasiperfect provided that
gcd.c; d/ D 1, and in Proposition 2.12 we use the aforementioned composition of
Cremona moves „ to show that it also preserves the property of being perfect. Section 2
concludes with a brief discussion of what we call the tiling criterion, which gives a
sufficient criterion for a class to belong to xC.XNC1/, expressed in terms of partial tilings
of a large square by several rectangles. The roots of this go back to [11, Section 5],
and something similar is used in [5, Section 3], but we give a more systematic and
straightforwardly applicable formulation here.

Section 3 contains the proof of Theorem 1.6. First we rewrite more explicitly, for
any given ˇ > 1, the supremum supn �̨ ;ˇ .FMn/, identifying it as a supremum over
a finite set depending on ˇ and not on ˛ . Using the monotonicity and sublinearity
of Cˇ , the statement that the lower bound Cˇ .˛/ � supn �̨ ;ˇ .FMn/ is sharp for all
˛ 2 Œ1; 3C 2

p
2� is easily seen to be equivalent to sharpness just for a finite subset

of ˛ (depending on ˇ > 1), namely the points where the “steps” in the finite staircase
determining supn �̨ ;ˇ .FMn/ come together (as well as one point at the end of the
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staircase). In each case this is equivalent to a certain class belonging to xCK.XNC1/,
which we show (in Section 3.2) to hold using the techniques of Section 2. A bit
more specifically, our preferred approach to showing that a general class belongs to
xCK.XNC1/ is to apply repeated Cremona moves to the class, often iteratively using „,
until it satisfies the tiling criterion. Roughly speaking, the move „ transforms the
problem for the kth class to the problem for the .k�2/nd class. Our use of the tiling
criterion is somewhat different than the approaches used in [9; 4; 3], and seems better
adapted to a situation where the codomains of our embeddings depend on a continuous
parameter ˇ . Section 3 concludes with Section 3.3, which relates Cˇ .˛/ to the volume
constraint, proving the results mentioned in Remark 1.8.

Section 4 contains the proof of Theorem 1.10 and discusses some of the properties of our
infinite staircases. In Section 4.1 we provide a general criterion for a sequence of perfect
classes .ai ; bi IW.ci ; di // to give rise to an infinite staircase. We then construct our
key collection of perfect classes A.k/i;n in Section 4.2, and show in Section 4.3 that, for
fixed n and k , the sequence fA.k/i;n g

1
iD0 satisfies our general criterion. This suffices to

prove Theorem 1.10, though it does not provide a complete description of the staircases.
We explain in Section 4.4 that, at least for k D 0, the lower bound supi �̨ ;Ln;k

.A
.k/
i;n /

for Cˇ provided by the A.k/i;n falls under the volume constraint at some values of ˛
lying within the region occupied by the staircase, so the staircase is not completely
described by the obstructions from A

.k/
i;n . Section 4.5 carries out a few elementary

calculations that help make sense of the values Ln;k and Sn;k from Theorem 1.10,
and then makes progress toward understanding how the function of two variables
.˛; ˇ/ 7! Cˇ .˛/ behaves near Sn;k and Ln;k , by finding two classes which are not
among those contributing to the infinite staircase and whose obstructions at .Sn;k; Ln;k/
exactly match the volume. We use this to give some indication of how our infinite
staircases disappear as ˇ is varied away from Ln;k in Corollary 4.21. Section 4.6
introduces the classes yA.k/i;n , which appear to be necessary to completely describe our
staircases, leading to the conjectural formula for CLn;k

.˛/ in Conjecture 4.23. Finally,
in Section 4.7 we work out the interface between our infinite staircases and the remnants
of the Frenkel–Müller staircase that are determined in Section 3. With the exception of
Section 4.7, Sections 3 and 4 are completely independent of each other.
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encouragement and for explaining his results about possible accumulation points of
infinite staircases, to F Schlenk for comments on the initial version of the paper, and to
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2 Some tools

2.1 Preliminaries on Pell numbers

The Pell numbers Pn and the half-companion Pell numbers Hn appear frequently
throughout the paper, and here we collect some facts concerning them. The sequences
fPng and fHng, by definition, obey the same recurrence relation

PnC2 D 2PnC1CPn; HnC2 D 2HnC1CHn;

with different initial conditions

P0 D 0; P1 D 1; H0 D 1; H1 D 1:

Denote by � D 1C
p
2 the “silver ratio”, so that � is the larger solution to the equation

x2 D 2xC 1, the smaller solution being �1=� D 1�
p
2. Note that �2 D 3C 2

p
2,

which is the quantity appearing in Theorem 1.6. It is easy to check the following
closed-form expressions for Pn and Hn :

(2-1) Pn D
�n� .��/�n

2
p
2

; Hn D
�nC .��/�n

2
:

From these expressions it is not hard to check,for n; j 2N with j � n, the identities

PnCjPn�j D P
2
n C .�1/

nCjC1P 2j ;(2-2)

Pn˙jHn�j D PnHn˙ .�1/
nCjPjHj ;(2-3)

HnHnCj D 2PnPnCj C .�1/
nHj :(2-4)

Given the initial conditions P1 D H1 D H0 D 1, we immediately see some useful
special cases of these identities:

Pn˙1Hn�1 D PnHn˙ .�1/
nC1;(2-5)

PnC1Pn�1 D P
2
n C .�1/

n;(2-6)

H 2
n D 2P

2
n C .�1/

n
D 2PnC1Pn�1� .�1/

n;(2-7)

HnHnC1 D 2PnPnC1C .�1/
n:(2-8)
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Also, the fact that the Pn and Hn obey the same linear recurrence relation makes the
following an easy consequence of their initial conditions:

(2-9) Hn D PnCPn�1 D PnC1�Pn; Pn D
1
2
.HnCHn�1/D

1
2
.HnC1�Hn/:

Furthermore we have the identities

HnC2CHn D 2HnC1C 2Hn D 4PnC1;(2-10)

PnC2CPn D 2PnC1C 2Pn D 2HnC1:(2-11)

Moreover,

PnC2CPn�2 D 2PnC1CPnCPn�2 D 5PnC 2Pn�1CPn�2 D 6Pn;(2-12)

HnC2CHn�2 D 6Hn:(2-13)

Although the conventional definition is that Pn;Hn are defined only for n 2N , we
will occasionally (and without comment) use the convention that P�1 D 1, H�1 D�1
and P�2 D�2; evidently this is consistent with both the recurrence relations and the
closed forms given above.

Proposition 2.1 For k � 0 the following inequalities hold:

P2kC1

P2k�1
<
H2kC2

H2k
<
P2kC3

P2kC1
< �2 <

P2kC4

P2kC2
<
H2kC3

H2kC1
<
P2kC2

P2k
:

(Strictly speaking P2kC2=P2k is not defined if k D 0 since P0 D 0, but in this case
we interpret P2kC2=P2k as 1. A similar remark applies to Proposition 2.2.)

Proof We have

PnC1Hn�Pn�1HnC2 D .2PnCPn�1/Hn�Pn�1.2HnC1CHn/

D 2.PnHn�Pn�1HnC1/D�2.�1/
n;

where the last equality uses (2-5), and this immediately implies that

P2kC1

P2k�1
<
H2kC2

H2k
and

P2kC2

P2k
>
H2kC3

H2kC1
:

Similarly, using the other case of (2-5) we have

PnHnC1�PnC2Hn�1 D Pn.2HnCHn�1/� .2PnC1CPn/Hn�1

D 2.PnHn�PnC1Hn�1/D 2.�1/
n;
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so that
H2kC3

H2kC1
>
P2kC4

P2kC2
and

H2kC2

H2k
<
P2kC3

P2kC1
:

So it remains only to show that P2kC1=P2k�1 <�2 <P2kC2=P2k for all k . By (2-1),
we see that

P2kC1

P2k�1
D
�2kC1C ��2k�1

�2k�1C ��2kC1
D �2

�
1C ��4k�2

1C ��4kC2

�
< �2

since � > 1. Similarly,

P2kC2

P2k
D �2

�
1� ��4k�4

1� ��4k

�
> �2:

It so happens that the sequence�
2.P 2

2kC2
� 1/

H 2
2kC1

�1
kD0

D

�
6;
286

49
;
9798

1681
; : : :

�
will play a role in the proof of Theorem 1.6 (specifically in Proposition 3.15), and the
following estimate will be relevant:

Proposition 2.2 For k � 0 we have

�2 <
2.P 2

2kC2
� 1/

H 2
2kC1

<
P2kC2

P2k
:

Proof First notice that (2-7) gives H 2
2kC1

D 2P2kP2kC2C 1, and so

P2kC2H
2
2kC1 D 2P

2
2kC2P2kCP2kC2 > 2P2k.P

2
2kC2� 1/;

from which the second inequality is immediate. As for the first inequality, based
on (2-1) we have

2.P 2
2kC2

� 1/

H 2
2kC1

D
�4kC4� 10C ��4k�4

�4kC2� 2C ��4k�2
D �2

�
1� 10��4k�4C ��8k�8

1� 2��4k�2C ��8k�4

�
:

So the desired inequality is equivalent to the statement that �10��4k�4C ��8k�8 >
�2��4k�2C ��8k�4 , ie (multiplying both sides by �4kC4 and rearranging)

(2-14) 2�2� 10 > ��4k.1� ��4/:

Of course since � > 1, (2-14) holds for all k � 0 if and only if it holds for k D 0, ie if
and only if 2�2C��4 > 11. But this is indeed true: we have 2�2D 2.3C2

p
2/ > 11

since
p
2 > 5

4
. This proves (2-14) and hence the proposition.

Algebraic & Geometric Topology, Volume 19 (2019)



1956 Michael Usher

Figure 4: The square tiling of a 338-by-70 rectangle corresponding to the
fact that

W.2P7; P6/D .P
�4
6 ; 2P5; P

�4
4 ; 2P3; P

�4
2 ; 2P1/:

We now discuss some connections between weight sequences and Pell numbers. As in
the introduction, for any pair of nonnegative, rationally dependent real numbers x and y ,
the weight sequence W.x; y/ associated to the ellipsoid E.x; y/ is determined recur-
sively by setting W.x; 0/DW.0; x/ equal to the empty sequence and, if x � y , setting
W.x; y/ and W.y; x/ both equal to .x;W.x; y � x// (abusing notation slightly), ie to
the sequence that results from prepending x to the sequence W.x; y � x/.

More geometrically, the weight sequence W.x; y/ D .w1; : : : ; wk/ is obtained by
beginning with an x -by-y rectangle and inductively removing as large a square as
possible (of side length wi at the i th stage), leaving a smaller rectangle, until the final
stage when the rectangle that remains is a square of side length wk . Thus the statement
that W.x; y/D .w1; : : : ; wk/ implies, in particular, that an x -by-y rectangle can be
tiled by a set of squares of side lengths w1; : : : ; wk .

First we compute a certain specific family of weight sequences.

Proposition 2.3 For any positive real number x and any m 2N , we have

W.2P2mC1x; P2mx/

D ..P2mx/
�4; 2P2m�1x; : : : ; .P2jx/

�4; 2P2j�1x; : : : ; .P2x/
�4; 2P1x/:

(Of course, since P2 D 2P1 D 2, we could equally well write the last five terms in the
sequence as .2x/�5 . See Figure 4 for the corresponding tiling in the case that mD 3.)

Proof This is a straightforward induction on m: if mD 0 then since P2m D 0, both
sides of the equation are equal to the empty sequence, while for m> 0 the fact that

0 < 2P2mC1� 4P2m D 2P2m�1 D P2m�P2m�2 � P2m
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implies that

W.2P2mC1x; P2mx/D ...P2mx/
�4/;W.2P2m�1x; P2mx//

D ...P2mx/
�4; 2P2m�1x/;W.2P2m�1x; P2m�2x//:

Thus the validity of the result for m� 1 implies it for m.

The following computation gives the first part of the weight expansion w.˛/DW.1; ˛/

of an arbitrary rational number ˛ � 1, with more information when ˛ is close to �2 .

Proposition 2.4 Assume ˛ 2 ŒP2kC1=P2k�1; P2kC2=P2k�\Q, where k � 0. Then

w.˛/D�
1;
�
1
2
P2�

1
2
P0˛

��4
; P1˛�P3; : : : ;

�
1
2
P2k �

1
2
P2k�2˛

��4
; P2k�1˛�P2kC1;

W
�
1
2
P2kC2�

1
2
P2k˛; P2k�1˛�P2kC1

��
:

(If k D 0, in which case the condition ˛ 2 ŒP2kC1=P2k�1; P2kC2=P2k� just says
that ˛ 2 Œ1;1/, then the sequence

�
1
2
P2�

1
2
P0˛

�
�4; : : : ; P2k�1˛�P2kC1 should be

interpreted as empty, so this just simplifies to w.˛/D .1;W.1; ˛� 1//.)

Proof We proceed by induction. For k D 0 the statement is trivial. Let ˛ be in
ŒP2kC1=P2k�1; P2kC2=P2k� where k � 1, and assume the statement proven for all
j < k . Note that Proposition 2.1 shows that�

P2kC1

P2k�1
;
P2kC2

P2k

�
�

�
P2jC1

P2j�1
;
P2jC2

P2j

�
for j < k;

so the inductive hypothesis applies to our particular ˛ . The special case j D k� 1 of
the inductive hypothesis leads us to consider W

�
1
2
P2k �

1
2
P2k�2˛; P2k�3˛�P2k�1

�
.

We simply observe that

.P2k�3˛�P2k�1/� 4
�
1
2
P2k �

1
2
P2k�2˛

�
D P2k�1˛�P2kC1 � 0;

since we assume that ˛ � P2kC1=P2k�1 , and then that�
1
2
P2k �

1
2
P2k�2˛

�
� .P2k�1˛�P2kC1/D

1
2
P2kC2�

1
2
P2k˛ � 0;

since we assume that ˛ � P2kC2=P2k . Thus

W
�
1
2
P2k�

1
2
P2k�2˛; P2k�3˛�P2k�1

�
D��

1
2
P2k�

1
2
P2k�2˛

��4
; P2k�1˛�P2kC1

�
tW

�
1
2
P2kC2�

1
2
P2k˛; P2k�1˛�P2kC1

�
:

The result then follows immediately by induction.
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2.2 Cremona moves

As in the introduction, let XNC1 denote the .NC1/–point blowup of CP 2 , with L
and E0; : : : ; EN in H 2.XNC1;Z/ the Poincaré duals of a complex projective line and
of the N C 1 exceptional divisors of the blowups, respectively. If x; y; z 2 f0; : : : ; N g
then XNC1 contains a smoothly embedded sphere of self-intersection �2 that is
Poincaré dual to the class L�Ex �Ey �Ez , and the Cremona move

cxyz W H
2.XNC1IR/!H 2.XNC1IR/

is defined to be the cohomological action of the generalized Dehn twist along this
sphere. Likewise if x; y 2 f0; : : : ; N g then XNC1 contains a smoothly embedded
sphere of self-intersection �2 Poincaré dual to Ex �Ey , and we let cxy denote the
action on H 2 of the generalized Dehn twist along this sphere. In terms of the basis
fL;E0; : : : ; EN g, we have

cxyz

�
dL�

X
i

aiEi

�
D .d C ıxyz/L�

X
i2fx;y;zg

.ai C ıxyz/Ei �
X

i…fx;y;zg

aiEi ;

where

(2-15) ıxyz D d � ax � ay � az

and
cxy

�
dL�

X
i

aiEi

�
D dL� ayEx � axEy �

X
i…fx;yg

aiEi :

(So in terms of the coordinates hd I a0; : : : ; aN i from Section 1.1, cxyz adds ıxyz to
the coordinates d; ax; ay ; az and cxy simply swaps ax with ay .) Note that Cremona
moves preserve the standard first Chern class c1.TXN /D 3L�

P
i Ei . We say that

two classes A;B 2H 2.XNC1IR/ are Cremona equivalent if there is a sequence of
Cremona moves mapping A to B . The operations cxyz and cxy obviously give rise to
corresponding operations on the direct limit H2 D lim

��!
H 2.XN IR/, which we denote

by the same symbols.

A crucial fact for our purposes will be that Cremona moves cxyz and cxy preserve both
the closure of the symplectic cone xCK.XNC1/ and the set of exceptional classes ENC1 .
Indeed, as shown in [9, Proposition 1.2.12(iii)], one has E 2 ENC1 if and only if E can
be mapped to E0 by a sequence of Cremona moves; since Cremona moves are induced
by orientation-preserving diffeomorphisms this implies that they likewise preserve
xCK.XNC1/ by (1-2). Thus to verify that condition (ii) in Proposition 1.1 holds (and
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thus to show that �� Cˇ .˛/) it suffices to find a sequence of Cremona moves which
sends the class h�.ˇC 1/I�ˇ; �; x2; : : : ; xN i to a class that can be directly verified
to lie in xCK.XNC1/. Likewise, to show that classes such as the A.k/i;n that we use to
prove Theorem 1.10 belong to E , it suffices to show that they are Cremona equivalent
to E0 D h0I �1; 0i D .1; 0I 1/.

There is a particular composition of Cremona moves whose repeated application
underlies both the proof of Theorem 1.6 and the construction of many of the classes
involved in our infinite staircases. Specifically, let

„D c36 ı c456 ı c236 ı c012 ı c345 2 Aut.H 2.X7IR//:

Proposition 2.5 Given any Z;A;B; C; � 2R, we have

„.hZIAC �; A� �; B�4; C i/D hZ0IA0C �; A0� �; B 0�4; C 0i;

where A0 , B 0 , C 0 and Z0 are computed as follows. Let

� DZ � 2B:

Then

A0 D 2� �A; C 0 D 2� �C; B 0 D C 0CZ � 2A�B; Z0 D 2B 0C �:

Proof This is a straightforward computation, which we leave to the reader.

Repeated application of the following proposition will be helpful in the proof of
Theorem 1.6.

Proposition 2.6 For any j 2N and 
; ˛; ˇ 2R, we have

„
�˝
P2j�1.
.ˇC1/�1/�P2j�2˛I

1
2
H2j�2
.ˇC1/�P2j�1C

1
2

.ˇ�1/;

1
2
H2j�2
.ˇC1/�P2j�1�

1
2

.ˇ�1/;

�
1
2
P2j�

1
2
P2j�2˛

��4
; P2j�1˛�P2jC1

˛�
D
˝
P2jC1.
.ˇC1/�1/�P2j˛I

1
2
H2j 
.ˇC1/�P2jC1C

1
2

.ˇ�1/;

1
2
H2j 
.ˇC1/�P2jC1�

1
2

.ˇ�1/;

�
1
2
P2j .2
.ˇC1/�˛�1/

��4
;

P2j�1.2
.ˇC1/�˛�1/
˛
:

Proof We follow the notation of Proposition 2.5, so

Z D P2j�1.
.ˇC 1/� 1/�P2j�2˛; AD 1
2
H2j�2
.ˇC 1/�P2j�1;

B D 1
2
P2j �

1
2
P2j�2˛; C D P2j�1˛�P2jC1:
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We then find

� D .P2j�1.
.ˇC 1/� 1/�P2j�2˛/� 2
�
1
2
P2j �

1
2
P2j�2˛

�
D P2j�1
.ˇC 1/�P2j�1�P2j D P2j�1
.ˇC 1/�H2j

and

Z�2A�B D 
.ˇC1/.P2j�1�H2j�2/�
1
2
P2j�2˛C

�
�P2j�1C2P2j�1�

1
2
P2j

�
D P2j�2

�

.ˇC1/� 1

2
˛� 1

2

�
:

Thus

C 0D 2��C DP2j�1.2
.ˇC1/�˛/�.2H2j �P2jC1/DP2j�1.2
.ˇC1/�˛�1/;

where we have used that 2H2j �P2jC1 D P2j�1 by (2-11). Also,

B 0 D C 0C .Z � 2A�B/D .P2j�1C
1
2
P2j�2/.2
.ˇC 1/�˛� 1/

D
1
2
P2j .2
.ˇC 1/�˛� 1/;

and then

Z0 D 2B 0C � D .P2j�1C 2P2j /
.ˇC 1/� .H2j CP2j /�P2j˛

D P2jC1.
.ˇC 1/� 1/�P2j˛:

Finally

A0D2��AD
�
2P2j�1�

1
2
H2j�2

�

.ˇC1/�.2H2j�P2j�1/D

1
2
H2j 
.ˇC1/�P2jC1;

since (2-10) shows that 1
2
H2j C

1
2
H2j�2 D 2P2j�1 and (2-11) shows that

P2jC1CP2j�1 D 2H2j :

In view of Proposition 2.5, this completes the proof.

The definition of „ given above presents it as an automorphism of H2.X7IR/; we will
use variants „.n/ of „ which are automorphisms of H2.XN IR/, where N �nC5�7.
Specifically, we define

(2-16) „.n/ D cnC1;nC4 ı cnC2;nC3;nC4 ı cn;nC1;nC4 ı c01n ı cnC1;nC2;nC3:

Equivalently,

„.n/.hr I s0; s1; s2; : : : ; sn�1; sn; snC1snC2; snC3; snC4; snC5; : : : ; sN�1i/

D hr 0I s00; s
0
1; s2; : : : ; sn�1; s

0
n; s
0
nC1s

0
nC2; s

0
nC3; s

0
nC4; snC5; : : : ; sN�1i;

where r 0; s00; s
0
1; s
0
n; : : : ; s

0
nC4 are defined by the property that

„.hr I s0; s1; sn; : : : ; snC4i/D hr
0
I s00; s

0
1; s
0
n; : : : ; s

0
nC4i:

(In practice we will have snDsnC1DsnC2DsnC3 so that we can apply Proposition 2.5.)
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We will now use the „.n/ together with Propositions 2.4 and 2.6 to modify via Cremona
moves the classes that are relevant to the embedding problems that arise in the proof of
Theorem 1.6. Recall that E.1; ˛/ı symplectically embeds into 
P.1; ˇ/ if and only if
.
ˇ; 
 IW.1; ˛// 2 xCK.XNC1/, where N is the length of the weight sequence w.˛/.

Proposition 2.7 Assume that 
; ˇ�1 and that ˛2 ŒP2kC1=P2k�1; P2kC2=P2k�\Q,
where k � 1. If 2
.ˇC1/�˛�1 < 0 then .
ˇ; 
 IW.1; ˛// … xCK.XNC1/, where N
is the length of w.˛/. Otherwise, .
ˇ; 
 IW.1; ˛// is Cremona equivalent to the class

†k˛;ˇ;
 D˝
P2kC1.
.ˇC 1/� 1/�P2k˛I

1
2
H2k
.ˇC 1/�P2kC1C 


�
1
2
ˇ� 1

�
;

1
2
H2k
.ˇC 1/�P2kC1� 


�
1
2
ˇ� 1

�
;W

�
1
2
P2kC2�

1
2
P2k˛; P2k�1˛�P2kC1

�
;

W
�
1
2
P2k.2
.ˇC 1/�˛� 1/; P2kC1.2
.ˇC 1/�˛� 1/

�˛
:

Proof Combining (1-3) with Proposition 2.4, we see that our class .
ˇ; 
 IW.1; ˛//

is equal to˝

.ˇC1/�1I 
ˇ�1; 
�1;

�
1
2
P2�P0˛

��4
; P1˛�P3; : : : ;

�
1
2
P2k�

1
2
P2k�2˛

��4
;

P2k�1˛�P2kC1;W
�
1
2
P2kC2�

1
2
P2k˛; P2k�1˛�P2kC1

�˛
:

With a view toward Proposition 2.6, note that the first three terms can be rewritten as


.ˇC 1/� 1D P1.
.ˇC 1/� 1/�P0˛;


ˇ� 1D 1
2
H0
.ˇC 1/�P1C

1
2

.ˇ� 1/;


 � 1D 1
2
H0
.ˇC 1/�P1�

1
2

.ˇ� 1/:

So we can apply Proposition 2.6 successively with j D1; : : : ; k to find that the image of
.
ˇ; 
 IW.1; ˛// under the composition of Cremona moves „.5k�3/ ı � � � ı„.7/ ı„.2/

is equal to˝
P2kC1.
.ˇC 1/� 1/�P2k˛I

1
2
H2k
.ˇC 1/�P2kC1C 
.

1
2
ˇC 1/;

1
2
H2k
.ˇC 1/�P2kC1� 


�
1
2
ˇ� 1

�
;
�
1
2
P2.2
.ˇC 1/�˛� 1/

��4
;

P1.2
.ˇC1/�˛�1/; : : : ;
�
1
2
P2k.2
.ˇC1/�˛�1/

��4
; P2k�1.2
.ˇC1/�˛�1/;

W
�
1
2
P2kC2�

1
2
P2k˛; P2k�1˛�P2kC1

�˛
:

If 2
.ˇC1/�˛�1<0 then the above expression has some negative entries, so our class
pairs negatively with some of the E 0i and thus cannot belong to xCK.XNC1/. Otherwise,
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we can use Proposition 2.3 to group the entries beginning with 1
2
P2.2
.ˇC1/�˛�1/

and ending with P2k�1.2
.ˇC 1/�˛� 1/ together as

W
�
1
2
P2k.2
.ˇC 1/�˛� 1/; P2kC1.2
.ˇC 1/�˛� 1/

�
;

and so (modulo reordering, which can be carried out by Cremona moves cxy ), the
above class is precisely the class †k

a;b;

given in the proposition.

Remark 2.8 The values of ˛ such that there exist k for which Proposition 2.7 is
applicable to ˛ are precisely those ˛ in the interval ŒP3=P1; P4=P2�D Œ5; 6�. For any
such ˛ , we have

w.˛/D .1�5; ˛� 5;W.˛� 5; 6�˛//:

Consider the class E D .2; 2I 2; 1�5/, which lies in E . We find that, for ˛ 2 Œ5; 6�,

�˛;ˇ .E/D
.2; 1�5/ � .1�5; ˛� 5/

2C 2ˇ
D

˛C 1

2.ˇC 1/
:

Thus the condition that 2
.ˇC 1/�˛� 1� 0 in Proposition 2.7 is equivalent to the
condition that the class E does not obstruct the embedding E.1; ˛/ı ,! 
P.1; ˇ/.

The class E was identified in [4] as giving a sharp obstruction to this embedding when
ˇ D 1 and ˛ 2 Œ�2; 6�. (For ˇ D 1 and 1 � ˛ < �2 , on the other hand, �˛;ˇ .E/ is
less than the volume bound.) Results such as Theorem 1.10 show that the situation is
more complicated for ˛ 2 .�2; 6� and ˇ arbitrarily close but not equal to 1.

Remark 2.9 Since P0D 0 and 1
2
P2DP1DH0DP�1D 1, the kD 0 version of the

class †k
˛;ˇ;


would degenerate to h
.ˇC1/�1I 
ˇ�1; 
 �1;W.1; ˛�1/i, which by
(1-3) is equal to .
ˇ; 
 IW.1; ˛//. So the appropriate — and trivially true — variant of
Proposition 2.7 for k D 0 (which would allow ˛ to be an arbitrary value in Œ1;1/) is
simply that .
ˇ; 
 IW.1; ˛// 2 xCK.XNC1/ if and only if †0

˛;ˇ;

2 xCK.XNC1/ (with

no condition on 2
.ˇC 1/�˛� 1).

2.2.1 The Brahmagupta move on perfect classes We now use the move „ from
Proposition 2.5 to construct an action on classes of the form .a; bIW.c; d// that will
be important in our proof of the existence of some of the infinite staircases from
Theorem 1.10. (Specifically, the obstructions producing the infinite staircase for CLn;k

will be obtained from those producing the infinite staircase for CLn;0
by the kth –order

Brahmagupta move, defined below.)
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To motivate this, let us consider the question of whether a class C D .a; bIW.c; d//,
where a; b; c; d 2 N , belongs to the sets zE or E from the introduction. Assume for
simplicity that gcd.c; d/D 1 and that a � b and c � d . Since the entries of W.c; d/

are all nonnegative, we will have C 2 zE if and only if C has Chern number 1 and
self-intersection �1. Writing W.c; d/D .m1; : : : ; mN /, the Chern number of C is
2.aCb/�

P
i mi D 2.aCb/� .cCd �1/, where we have used [9, Lemma 1.2.6(iii)]

and the assumption that c and d are relatively prime. Thus C has the correct Chern
number for membership in zE precisely if 2.aC b/D cC d . This holds if and only if
we can express C in the form

(2-17) C D
�
1
2
xC �; 1

2
x� �IW.xC ı; x� ı/

�
;

where x , ı , � 2 N with ı � x . Since we will have
P
m2i D .xC ı/.x � ı/ (as is

obvious from the interpretation of W.xC ı; x � ı/ in terms of tiling a rectangle by
squares, as in [9, Lemma 1.2.6(ii)]), the self-intersection number of C is

2
�
1
2
xC �

��
1
2
x� �

�
� .xC ı/.x� ı/D�1

2
.x2� 2ı2C �2/:

Thus a class of the form (2-17) belongs to zE if and only if the triple .x; ı; �/ obeys

(2-18) x2� 2ı2 D 2� �2:

Now if we temporarily regard � as fixed, and x and ı as variables, (2-18) is a (gener-
alized) Pell equation x2�Dı2 DN with D D 2 and N D 2� �2 . A basic feature of
such equations, observed in [2, XVIII 64–65, page 246], is that their integer solutions
come in infinite families. Indeed the equation asks for xC ı

p
D to be an element

of norm N in ZŒ
p
D�, and the norm is multiplicative, so if uC v

p
D 2 ZŒ

p
D� has

norm one then .uC v
p
D/.xC ı

p
D/ will have norm N , ie .uxCDvı; vxCuı/

will again be a solution to the equation. In our case, where DD 2, (2-7) shows that, for
any k � 0, H2kCP2k

p
2 has norm one in ZŒ

p
2�. Thus, given � 2Z, if .x; ı/ is one

solution to (2-18) then, for all k , .H2kxC 2P2kı; P2kxCH2kı/ is also a solution.

Accordingly we make the following definition:

Definition 2.10 For k 2N , the kth –order Brahmagupta move is the operation which
sends a class C 2H2 having the form (2-17) where x , ı , � 2N and ı� x , to the class

C .k/ D
�
1
2
xkC �;

1
2
xk � �IW.xkC ık; xk � ık/

�
;

where
xk DH2kxC 2P2kı and ık D P2kxCH2kı:
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Recalling that a quasiperfect class is by definition one having the form .a; bIW.c; d//

that belongs to zE , the preceding discussion almost immediately implies the following.

Corollary 2.11 If C D .a; bIW.c; d// with gcd.c; d/ D 1 is a quasiperfect class,
then for all k 2N , the class C .k/ is also quasiperfect.

Proof By construction, the operation C 7!C .k/ preserves the self-intersection number.
Writing C .k/ D

�
1
2
xk C �;

1
2
xk � �IW.xk C ık; xk � ık/

�
, with xk and ık as in

Definition 2.10, the argument preceding Definition 2.10 shows that C .k/ will have
Chern number 1 provided that gcd.xk C ık; xk � ık/ D 1. We have xk C ık D
P2kC1xCH2kC1ı and xk � ık D P2k�1xCH2k�1ı , by repeated use of (2-9). In
particular,

(2-19) xk � ık D xk�1C ık�1:

Also,
.xkC ık/C .xk�1� ık�1/D .P2kC1CP2k�3/xC .H2kC1CH2k�3/ı

D 6.P2k�1xCH2k�1ı/D 6.xk�1C ık�1/;

where we have used (2-12) and (2-13). Together with (2-19) this shows that the ideal
in Z generated by xkC ık and xk � ık is the same as that generated by xk�1C ık�1
and xk�1 � ık�1 . So by induction on k we will have gcd.xk C ık; xk � ık/D 1 if
and only if gcd.x0C ı0; x0� ı0/D 1. But .x0C ı0; x0� ı0/D .c; d/, so this follows
from the hypothesis of the corollary.

It turns out that the kth –order Brahmagupta move also preserves the set of perfect
classes, not just the set of quasiperfect classes.

Proposition 2.12 Let x , � , ı , k � 0 with x � ı . Let xk D H2kx C 2P2kı and
ık D P2kxCH2kı . Then�
1
2
xC �; 1

2
x� �IW.xC ı; x� ı/

�
and

�
1
2
xkC �;

1
2
xk � �IW.xkC ık; xk � ık/

�
are Cremona equivalent. In particular, if C D .a; bIW.c; d// 2 E with gcd.c; d/D 1,
then also C .k/ 2 E .

Proof First observe that, using (2-9),

3H2kC 4P2k D 3H2kC 2.H2kC1�H2k/D 2H2kC1CH2k DH2kC2;

2H2kC 3P2k D 2.P2kC1�P2k/C 3P2k D 2P2kC1CP2k D P2kC2;

and so, since H2 D 3 and P2 D 2,
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.H2xkC 2P2ık; P2xkCH2ık/

D .3.H2kxC 2P2kı/C 4.P2kxCH2kı/; 2.H2kxC 2P2kı/C 3.P2kxCH2kı//

D .H2kC2xC 2P2kC2ı; P2kC2xCH2kC2ı/:

Thus the map .x; ı/ 7! .xkC1; ıkC1/ can be factored as the composition of the maps
.x; ı/ 7! .xk; ık/ and .x; ı/ 7! .x1; ı1/, and so by induction .x; ı/ 7! .xk; ık/ is just
the k–fold composition of the map .x; ı/ 7! .x1; ı1/. This implies that it suffices to
prove the proposition when k D 1, in which case .x1; ı1/D .3xC 4ı; 2xC 3ı/.

We then have, since we assume x � ı � 0,

W.x1C ı1; x1� ı1/DW.5xC 7ı; xC ı/D ..xC ı/�5/tW.2ı; xC ı/

D ..xC ı/�5; 2ı/tW.2ı; x� ı/:

So�
1
2
x1C �;

1
2
x1� �IW.x1C ı1; x1� ı1/

�
D
�
1
2
3xC 4ıC �; 1

2
3xC 4ı� �IW.x1C ı1; x1� ı1/

�
D
˝
2xC 3ıI 1

2
xC 2ıC �; 1

2
xC 2ı� �; .xC ı/�4; 2ı;W.2ı; x� ı/

˛
:

Applying Proposition 2.5 shows that this class is Cremona equivalent (via „.2/ D
c36 ı c456 ı c236 ı c012 ı c345 ) to˝

ıI 1
2
� xC 2ıC �; 1

2
� xC 2ı� �; 0�5;W.2ı; x� ı/

˛
;

which after the usual change of basis (1-3) is equal to�
1
2
xC �; 1

2
x� �I x� ı; 0�5;W.2ı; x� ı/

�
:

But .x� ı/tW.2ı; x� ı/DW.xC ı; x� ı/, so after deleting zeros the above class
simply becomes

�
1
2
xC �; 1

2
x� �IW.xC ı; x� ı/

�
.

2.3 Tiling

We note here a simple criterion for a class to belong to the set xCK.XNC1/ that appears
in Proposition 1.1. Throughout this section a p -by-q rectangle means a subset of R2

that is given as a product of intervals having lengths p and q , not necessarily in that
order. A square of sidelength p is a p -by-p rectangle.

Proposition 2.13 Suppose that r , s0; : : : ; sN 2R>0 have the property that there are
squares R , S0; : : : ; SN of respective sidelengths r , s0; : : : ; sN such that the interiors
Sıi of the Si are disjoint and

SN
iD0 S

ı
i �R . Then hr I s0; : : : ; sN i 2 xCK.XNC1/.
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Proof By [8, Proposition 2.1.B] it suffices to show that there is a symplectic embeddingFN
iD0B

4.si /
ı ,! B.r/ı .

For any v > 0 let us write

�.v/D .0; v/� .0; v/ and 4.v/D f.x1; x2/ 2 .0;1/
2
j x1C x2 < vg:

Also for any subsets A, B �R2 let us denote by A�LB the “Lagrangian product”

A�LB D f.x1; y1; x2; y2/ j .x1; x2/ 2 A; .y1; y2/ 2 Bg:

(We of course use the symplectic form dx1 ^ dy1C dx2 ^ dy2 on R4 .)

Now [11, Proposition 5.2] states6 that, for any s > 0, there is a symplectomorphism
B.s/ı Š�.�/�L4.s=�/. The map

.x1; y1; x2; y2/ 7!
�
s

�
x1;

�

s
y1;

s

�
x2;

�

s
y2

�
is a symplectomorphism of R4, which maps �.�/�L4.s=�/ to �.s/�L4.1/. Thus
the existence of a symplectic embedding

FN
iD0B.si /

ı ,! B.r/ı is equivalent to the
existence of a symplectic embedding

(2-20)
NG
iD0

.�.si /�L4.1// ,!�.r/�L4.1/:

But the hypothesis of the proposition implies that the squares �.s0/; : : : ;�.sN / can
be arranged by translations to be disjoint and still contained in �.r/; applying these
translations in the x1 , x2 directions in R4 then gives the desired embedding (2-20).

Corollary 2.14 Let a1 , b1; : : : ; am , bm , r > 0 and suppose that there are ai -by-bi
rectangles Ti for i D 1; : : : m such that the T ıi are disjoint and such that

Sm
iD1 T

ı
i is

contained in a square of sidelength r . Then the class

hr IW.a1; b1/; : : : ;W.am; bm/i

belongs to xC.XN /, where N is the sum of the lengths of the weight sequences
W.ai ; bi /.

Proof Indeed if we write W.ai ; bi / D .si1; : : : ; siki
/ then, as noted earlier, an ai -

by-bi rectangle can be divided into squares of sidelength si1; : : : ; siki
with disjoint

interiors. So we can simply apply Proposition 2.13 to a collection of squares of
sidelengths sij (1� i �m, 1� j � ki ).

6What Traynor denotes by B4.s/ is what we would denote by B.�s/ .
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We will say that a class hr IW.a1; b1/; : : : ;W.am; bm/i satisfies the tiling criterion if
it obeys the hypothesis of Corollary 2.14. Our most common method of showing that a
general class belongs to xCK.XN / will be to find a sequence of Cremona moves which
converts it to a class that satisfies the tiling criterion.

3 Proof of Theorem 1.6

3.1 The Frenkel–Müller classes

Theorem 1.6 asserts that, for any ˇ � 1 and ˛ � �2 D 3C 2
p
2, Cˇ .˛/ is given

as the supremum of the obstructions �̨ ;ˇ .FMn/ induced by the Frenkel–Müller
classes FMn . We now recall the definition of the classes FMn and describe more
explicitly supn �̨ ;ˇ .FMn/; in particular, we will see that for any given ˇ > 1, this
reduces to a supremum over a finite set that is independent of ˛ .

The classes FMn , which are shown to belong to E in [4, Theorem 5.1], are given by

(3-1) FMn D

�
.PnC1; PnC1IW.HnC2;Hn// for n even,�
1
2
HnC1C 1;

1
2
HnC1� 1IW.PnC2; Pn/

�
for n odd.

(The slightly more complicated formula in [4] is equivalent to this by (2-10) and (2-11).)
While the definition in [4] assumes that n� 0, we can also set nD�1; this yields the
class FM�1 D .1; 0I 1/, which also belongs to E .

Remark 3.1 In terms of Definition 2.10 we have

FM2k�1 D FM.k/
�1 and FM2k D FM.k/

0 :

So, since it is easy to check that FM�1 D .1; 0IW.1; 1// 2 E and that FM0 D

.1; 1IW.3; 1// 2 E , Proposition 2.12 leads to an easy proof that all of the FMn are
perfect classes.

Based on the definition in Proposition 1.5, we have

�̨ ;ˇ .FMn/D

8̂<̂
:

Hn˛

.ˇC 1/PnC1
for ˛ �

HnC2

Hn
;

HnC2

.ˇC 1/PnC1
for ˛ �

HnC2

Hn

(n even),

�̨ ;ˇ .FMn/D

8̂<̂
:

2Pn˛

.ˇC 1/HnC1� .ˇ� 1/
for ˛ �

PnC2

Pn
;

2PnC2

.ˇC 1/HnC1� .ˇ� 1/
for ˛ �

PnC2

Pn

(n odd).
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For n� �1 let

(3-2) ˛n D

8̂<̂
:
HnC2

Hn
for n even,

PnC2

Pn
for n odd,

and let us abbreviate

(3-3) 
n;ˇ D �̨ n;ˇ .FMn/D

8̂<̂
:

HnC2

.ˇC 1/PnC1
for n even,

2PnC2

.ˇC 1/HnC1� .ˇ� 1/
for n odd,

for the value taken by �̨ ;ˇ .FMn/ for all ˛ � ˛n . Note that 
�1;ˇ D 1 for all ˇ
(corresponding to the nonsqueezing bound), but all other 
n;ˇ depend nontrivially on ˇ .

For the remainder of this subsection we will examine more closely the quantity

(3-4) sup
n
�̨ ;ˇ .FMn/;

leading to the more explicit formula in Proposition 3.7. First of all notice that
the ˛n from (3-2) form a strictly increasing sequence by the first two inequalities
in Proposition 2.1; this sequence converges to �2 by (2-1). When ˇ D 1 it is also true
that the numbers 
n;ˇ form a strictly increasing sequence as n varies, but we will see
presently that this is not the case when ˇ > 1, as a result of which Theorem 1.6 implies
qualitatively different behavior for ˇ > 1 than for ˇ D 1.

Proposition 3.2 The 
n;ˇ satisfy the following relationships for k 2N and ˇ � 1:

(i) 
2kC2;ˇ > 
2k;ˇ for all ˇ .

(ii) 
2kC1;ˇ > 
2k;ˇ for all ˇ .

(iii) 
2k;ˇ > 
2k�1;ˇ if and only if ˇ < 1C 2=.H2kC2� 1/.

(iv) 
2kC1;ˇ > 
2k�1;ˇ if and only if ˇ < 1C 2=.P2kC2� 1/.

The statements (iii) and (iv) also hold with their strict inequalities replaced by nonstrict
inequalities.

Proof First we use (2-5) to see that


2kC2;ˇ


2k;ˇ
D
H2kC4=..1Cˇ/P2kC3/

H2kC2=..1Cˇ/P2kC1/
D
2H2kC3P2kC1CH2kC2P2kC1

2H2kC2P2kC2CH2kC2P2kC1

D
2H2kC2P2kC2C 2CH2kC2P2kC1

2H2kC2P2kC2CH2kC2P2kC1
> 1;

proving (i).
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Also, using (2-7), we see that


2k;ˇ


2kC1;ˇ
D

H2kC2=..ˇC 1/P2kC1/

2P2kC3=..ˇC 1/H2kC2� .ˇ� 1//

D
H 2
2kC2

2P2kC3P2kC1
�
ˇ� 1

ˇC 1

H2kC2

2P2kC1P2kC3

D
2P2kC3P2kC1� 1

2P2kC3P2kC1
�
ˇ� 1

ˇC 1

H2kC2

2P2kC1P2kC3
< 1;

proving (ii).

On the other hand, we calculate using (2-4) and (2-2) that

H2kH2kC2 D 2P2kP2kC2C 3D 2P
2
2kC1C 1;

and hence that


2k;ˇ


2k�1;ˇ
D

H2kC2=..ˇC 1/P2kC1/

2P2kC1=..ˇC 1/H2k � .ˇ� 1//
D
H2kH2kC2

2P 2
2kC1

�
ˇ� 1

ˇC 1

H2kC2

2P 2
2kC1

D 1C
1

2P 2
2kC1

�
1�

ˇ� 1

ˇC 1
H2kC2

�
:

Thus 
2k;ˇ > 
2k�1;ˇ if and only if 1� ..ˇ� 1/=.ˇC 1//H2kC2 > 0, ie if and only
if ˇ < 1C 2=.H2kC2� 1/, as stated in (iii).

Finally, we see from (2-5) that

P2kC3H2k �P2kC1H2kC2 D .2P2kC2CP2kC1/H2k �P2kC1.2H2kC1CH2k/

D 2.P2kC2H2k �P2kC1H2kC1/D 2;

and hence that


2kC1;ˇ


2k�1;ˇ
D
2P2kC3=..ˇC 1/H2kC2� .ˇ� 1//

2P2kC1=..ˇC 1/H2k � .ˇ� 1//

D
.ˇC 1/P2kC3H2k � .ˇ� 1/P2kC3

.ˇC 1/P2kC1H2kC2� .ˇ� 1/P2kC1

D
.ˇC 1/.P2kC1H2kC2C 2/� .ˇ� 1/.P2kC1C 2P2kC2/

.ˇC 1/P2kC1H2kC2� .ˇ� 1/P2kC1

D 1C
2.ˇC 1/� 2.ˇ� 1/P2kC2

.ˇC 1/P2kC1H2kC2� .ˇ� 1/P2kC1
;

which is greater than one if and only if .ˇ � 1/P2kC2 < ˇ C 1, ie if and only if
ˇ < 1C 2=.P2kC2� 1/, proving (iv).
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Let us write b�1 D1 and, for n 2N ,

(3-5) bn D

8̂<̂
:
1C

2

PnC2�1
for n even,

1C
2

HnC1�1
for n odd.

So b0 D 1C 2
2�1
D 3, b1 D 1C 2

3�1
D 2, b2 D 1C 2

12�1
D

13
11

, b3 D 18
16

, b4 D 71
69

,
b5 D

100
98
; : : : . Since for n � 2 it holds that Pn < Hn < PnC1 , we have b0 > b1 >

� � �> bn > � � � . Also evidently limn!1 bn D 1.

The following can be derived directly from Proposition 3.2.

Corollary 3.3 If b2k < ˇ < b2k�1 , then 
2k�1;ˇ � 
n;ˇ for all n 2N [f�1g, and


�1;ˇ < 
0;ˇ < � � �< 
2k�1;ˇ :

On the other hand if b2kC1 < ˇ < b2k , then 
2kC1;ˇ � 
n;ˇ for all n 2 N [ f�1g,
and we have 
n;ˇ < 
nC1;ˇ for all n 2 f�1; 0; : : : ; 2k� 2g, while 
2k�2;ˇ < 
2k;ˇ <

2k�1;ˇ < 
2kC1;ˇ .

Recalling the definitions of �̨ ;ˇ .FMn/ from Proposition 1.5 and 
n;ˇ from (3-3),
observe that if ˇ , m and n have the property that m > n (so that ˛m > ˛n ) and

m;ˇ < 
n;ˇ , then we in fact have �̨ ;ˇ .FMn/ > �̨ ;ˇ .FMm/ for all ˛ . Hence, using
continuity considerations at the endpoints of the intervals, Corollary 3.3 implies that
for any given ˇ > 1, the supremum on the right-hand side of Theorem 1.6 becomes a
maximum over a finite set, as follows:

Proposition 3.4 If ˇ 2 Œb2k; b2k�1�, then

sup
n2N[f�1g

�̨ ;ˇ .FMn/Dmaxf�̨ ;ˇ .FM�1/; �̨ ;ˇ .FM0/; : : : ; �̨ ;ˇ .FM2k�1/g;

and if ˇ 2 Œb2kC1; b2k�, then

sup
n2N[f�1g

�̨ ;ˇ .FMn/

Dmaxf�̨ ;ˇ .FM�1/; �̨ ;ˇ .FM0/; : : : ; �̨ ;ˇ .FM2k�1/; �̨ ;ˇ .FM2kC1/g:

For n 2N , let

(3-6) sn.ˇ/D

n�1;ˇ˛n


n;ˇ
I

thus sn.ˇ/ is the unique value of ˛ at which the constant piece of �n�1;ˇ coincides
with the nonconstant piece of �n;ˇ . Obviously if 
n�1;ˇ < 
n;ˇ , then sn.ˇ/ < ˛n .
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Proposition 3.5 If n is even, then ˛n�1 < sn.ˇ/ for all ˇ , while if n is odd, then
˛n�1 < sn.ˇ/, provided that ˇ < 1C 2=.Hn�1� 1/D bn�2 .

Proof Evidently ˛n�1 < sn.ˇ/ if and only if 
n;ˇ=˛n < 
n�1;ˇ=˛n�1 . We see from
the definitions that for k 2N ,

(3-7)

2k;ˇ

˛2k
D

H2k

.ˇC 1/P2kC1
and


2k�1;ˇ

˛2k�1
D

2P2k�1

.ˇC 1/H2k � .ˇ� 1/
:

So

2k;ˇ=˛2k


2k�1;ˇ=˛2k�1
D
.ˇC 1/H 2

2k
� .ˇ� 1/H2k

.ˇC 1/2P2kC1P2k�1

D
.ˇC 1/.2P2kC1P2k�1� 1/� .ˇ� 1/H2k

.ˇC 1/2P2kC1P2k�1
< 1;

where we have used (2-7). This proves the first clause of the proposition.

For the second clause, write n D 2k C 1 and note that (2-4) and (2-2) imply that
H2kH2kC2 D 2P2kP2kC2C 3D 2P

2
2kC1

C 1, and so


2kC1;ˇ=˛2kC1


2k;ˇ=˛2k
D
2P2kC1=

�
.ˇC 1/H2kC2� .ˇ� 1/

�
H2k=..ˇC 1/P2kC1/

D
2P 2

2kC1

H2kH2kC2�
�
.ˇ� 1/=.ˇC 1/

�
H2k

D
2P 2

2kC1

2P 2
2kC1

C 1�
�
.ˇ� 1/=.ˇC 1/

�
H2k

;

which is smaller than one provided that
�
.ˇ� 1/=.ˇC 1/

�
H2k < 1, ie provided that

ˇ < 1C 2=.H2k � 1/.

Corollary 3.6 If ˇ 2 Œb2kC1; b2k�1�, then for all n 2 f0; : : : ; 2k � 1g, we have
˛n�1 < sn.ˇ/� ˛n . Hence

maxf�̨ ;ˇ .FM�1/; : : : ; �̨ ;ˇ .FM2k�1/g

D

8<:
�̨ ;ˇ .FM�1/ for 1� ˛ � s0.ˇ/;
�̨ ;ˇ .FMn/ for sn.ˇ/� ˛ � snC1.ˇ/ and 0� n� 2k� 2;
�̨ ;ˇ .FM2k�1/ for ˛ � s2k�1.ˇ/:

Proof Throughout the proof we only consider values of n in the set f0; : : : ; 2k� 1g.

Corollary 3.3 shows that 
n�1;ˇ �
n;ˇ for all such n, which as noted earlier implies that
sn.ˇ/� ˛n . Since the bn form a strictly decreasing sequence, we have b2k�1 < bn�2
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for nD 0; : : : ; 2k� 1, so Proposition 3.5 applies to show that ˛n�1 < sn.ˇ/ for all ˇ
in the interval under consideration. This proves the first sentence of the proposition.

Given this, since the �� ;ˇ .FMn/ are all globally nondecreasing and, on the interval
Œ˛n�1; ˛n�, �� ;ˇ .FMn�1/ is constant while �� ;ˇ .FMn/ is strictly increasing, with
�sn.ˇ/;ˇ .FMn�1/D �sn.ˇ/;ˇ .FMn/, it follows that �̨ ;ˇ .FMn�1/� �̨ ;ˇ .FMn/ for all
˛ 2 Œ˛n�1; sn.ˇ/� and �̨ ;ˇ .FMn/ � �̨ ;ˇ .FMn�1/ on Œsn.ˇ/; ˛n�. Moreover, since
both �� ;ˇ .FMn�1/ and �� ;ˇ .FMn/ are constant on Œ˛n;1/ and linear on Œ1; ˛n�1�,
these inequalities extend to �� ;ˇ .FMn�1/��� ;ˇ .FMn/ on Œ1; sn.ˇ/� and �� ;ˇ .FMn/�

�� ;ˇ .FMn�1/ on Œsn.ˇ/;1/. Since the sn.ˇ/ form an increasing sequence in n,
applying this repeatedly shows that for j �n, �� ;ˇ .FMn�1/��� ;ˇ .FMj / on Œ1; sn.ˇ/�,
and for j < n, �� ;ˇ .FMn/ � �� ;ˇ .FMj / on Œsn.ˇ/;1/. Hence, on each interval
Œsn.ˇ/; snC1.ˇ/�, the �� ;ˇ .FMj / are maximized by setting j D n, while �� ;ˇ .FM�1/
is maximal on Œ1; s0.ˇ/� and �� ;ˇ .FM2k�1/ is maximal on Œs2k�1.ˇ/;1/. This is
precisely what the second sentence of the corollary states.

In view of Proposition 3.4, Corollary 3.6 gives an explicit piecewise formula for
supn2N[f�1g �̨ ;ˇ .FMn/ in the case that ˇ lies in an interval of the form Œb2k; b2k�1�.
If instead ˇ 2 .b2kC1; b2k/ for some k , then we have supn2N[f�1g �̨ ;ˇ .FMn/ D

maxf�̨ ;ˇ .FM�1/; : : : ; �̨ ;ˇ .FM2k�1/; �̨ ;ˇ .FM2kC1/g, and so we need to take into
account the relationship of �� ;ˇ .FM2k�1/ and �� ;ˇ .FM2kC1/. Accordingly, write

(3-8) s02k.ˇ/D

2k�1;ˇ˛2kC1


2kC1;ˇ
;

so that s0
2k
.ˇ/ is the value of ˛ at which the linear piece of �� ;ˇ .FM2kC1/ coin-

cides with the constant piece of �� ;ˇ .FM2k�1/. Since for ˇ 2 Œb2kC1; b2k� we have

2k�1;ˇ � 
2kC1;ˇ , it holds that s0

2k
.ˇ/� ˛2kC1 . To compare s0

2k
.ˇ/ to ˛2k�1 , we

first use (3-7) to see that

(3-9)
˛2k�1

s0
2k
.ˇ/
D

2kC1;ˇ=˛2kC1


2k�1;ˇ=˛2k�1
D
P2kC1=

�
.ˇC 1/H2kC2� .ˇ� 1/

�
P2k�1=

�
.ˇC 1/H2k � .ˇ� 1/

�
D

.ˇC 1/P2kC1H2k � .ˇ� 1/P2kC1

.ˇC 1/P2k�1H2kC2� .ˇ� 1/P2k�1
:

Now

P2kC1H2k �P2k�1H2kC2 D .2P2kCP2k�1/H2k �P2k�1.2H2kC1CH2k/

D 2.P2kH2k �P2k�1H2kC1/D�2;

Algebraic & Geometric Topology, Volume 19 (2019)



The symplectic embedding problem for four-dimensional ellipsoids into polydisks 1973

in view of which the numerator of (3-9) is smaller than the denominator for every
ˇ � 1.

So when ˇ 2 Œb2kC1; b2k�, we have

(3-10) ˛2k�1 < s
0
2k.ˇ/� ˛2kC1;

and
�̨ ;ˇ .FM2k�1/� �̨ ;ˇ .FM2kC1/ for ˛ � s02k.ˇ/;

�̨ ;ˇ .FM2kC1/� �̨ ;ˇ .FM2k�1/ for ˛ � s02k.ˇ/:

The inequality s0
2k
.ˇ/ > ˛2k�1 implies that s0

2k
.ˇ/ > s2k�1.ˇ/, so these calculations

together with Corollary 3.6 imply that for ˇ 2 Œb2kC1; b2k�,

maxf�̨ ;ˇ .FM�1/; : : : ; �̨ ;ˇ .FM2k�1/; �̨ ;ˇ .FM2kC1/g

D

8̂̂̂<̂
ˆ̂:
�̨ ;ˇ .FM�1/ for 1� ˛ � s0.ˇ/;
�̨ ;ˇ .FMn/ for sn.ˇ/� ˛ � snC1.ˇ/ and 0� n� 2k� 2;
�̨ ;ˇ .FM2k�1/ for s2k�1.ˇ/� ˛ � s02k.ˇ/;
�̨ ;ˇ .FM2kC1/ for ˛ � s0

2k
.ˇ/:

For future reference we rephrase this derivation as follows.

Proposition 3.7 If ˇ 2 Œb2k; b2k�1�, we have

sup
n2N[f�1g

�̨ ;ˇ .FMn/D

8̂̂<̂
:̂

n�1;ˇ if ˛n�1 � ˛ � sn.ˇ/ and n 2 f0; : : : ; 2k� 1g;

n;ˇ˛

˛n
if sn.ˇ/� ˛ � ˛n and n 2 f0; : : : ; 2k� 1g;


2k�1;ˇ if ˛ � ˛2k�1;

and if ˇ 2 Œb2kC1; b2k�, then

sup
n2N[f�1g

�̨ ;ˇ .FMn/D

8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:


n�1;ˇ if ˛n�1 � ˛ � sn.ˇ/ and n 2 f0; : : : ; 2k� 1g;

n;ˇ˛

˛n
if sn.ˇ/� ˛ � ˛n and n 2 f0; : : : ; 2k� 1g;


2k�1;ˇ if ˛2k�1 � ˛ � s02k.ˇ/;

2kC1;ˇ˛

˛2kC1
if s0

2k
.ˇ/� ˛ � ˛2kC1;


2kC1;ˇ if ˛ � ˛2kC1:

Here, ˛n , 
n;ˇ , bn , sn.ˇ/ and s0
2k
.ˇ/ are defined, respectively, in (3-2), (3-3), (3-5),

(3-6) and (3-8).
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Provided that ˇ lies in the interior .bm; bm�1/ of an interval between consecutive bn ,
the mC1 values 
�1;ˇ , 
0;ˇ ; : : : ; 
m�1;ˇ (if m is even) or 
�1;ˇ , 
0;ˇ ; : : : ; 
m�2;ˇ ,

m;ˇ (if m is odd) form a strictly increasing sequence by Corollary 3.3, and so the graph
of supn2N[f�1g �� ;ˇ .FMn/ consists of m distinct nontrivial “steps” from 
�1;ˇ D 1

to 
0;ˇ , from 
0;ˇ to 
1;ˇ , and so on, ending at a step from 
m�2;ˇ to either 
m�1;ˇ or

m;ˇ depending on the parity of m. (If mD0, so that ˇ2 .3;1/, then supn �̨ ;ˇ .FMn/

is just the constant function 1, corresponding to the nonsqueezing theorem.) As ˇ
approaches bm�1 from below, two of the heights 
i;b approach each other and so one
of the steps collapses to a constant.

Since Hn and Pn are each asymptotic to constants times �n , where � D 1C
p
2, the

formula (3-5) makes clear that bm� 1 is asymptotic to a constant times ��m . Thus
the number of steps in the graph of supn �� ;ˇ .FMn/ is comparable to log.1=.ˇ� 1//,
which of course diverges to infinity as ˇ! 1, but does so rather slowly. For example,
the interval Œb10; b9/ of values of ˇ for which the graph has 10 steps is

�
13861
13859

; 3364
3362

�
.

3.2 Sharpness of the lower bound

As noted earlier, the existence of the Frenkel–Müller classes FMn immediately implies
an inequality Cˇ .˛/� supn2N[f�1g �̨ ;ˇ .FMn/ for all ˛ , so to prove Theorem 1.6 we
just need to establish the reverse inequality for ˛ � �2 . In fact, consulting the formula
in Proposition 3.7, we see that it is sufficient to establish the reverse inequality at the
various points sn.ˇ/ and (when ˇ 2 .b2kC1; b2k/) s02k.ˇ/ that appear in that formula,
together with a single point ˛ with ˛ � �2 . Indeed if we know that Cˇ .sn.ˇ// �
supn �sn.ˇ/;ˇ .FMn/, then the obvious inequality Cˇ .˛/ � Cˇ .˛0/ for ˛ � ˛0 will
then imply that Cˇ .˛/� supn �̨ ;ˇ .FMn/ for ˛ 2 Œ˛n�1; sn.ˇ/�, and the sublinearity
inequality Cˇ .t˛/� tCˇ .˛/ for t � 1 noted in the proof of Proposition 1.5 will imply
that Cˇ .˛/� supn �̨ ;ˇ .FMn/ for ˛ 2 Œsn.ˇ/; ˛n�; similar remarks apply to the other
intervals in 3.7.

Thus we must show that

(I) Cˇ .sn.ˇ//� 
n�1;ˇ for ˇ � bn if n is odd and for ˇ � bnC1 if n is even,

(II) Cˇ .s
0
2k
.ˇ//� 
2k�1;ˇ for b2kC1 � ˇ � b2k , and

(III) Cˇ .˛/� 
2k�1;ˇ for some ˛ � �2 , whenever b2k � ˇ � b2k�2 .

Note that it is sufficient to prove (I), (II) and (III) when ˇ is rational (and hence sn.ˇ/
and s0

2k
.ˇ/ are also), as this will be sufficient to prove the equality

Cˇ .˛/D sup
n
�̨ ;ˇ .FMn/ for ˇ 2 Œ1;1/\Q and ˛ � 3C 2

p
2;
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and both sides of this equality are easily seen to vary continuously with ˇ . The
forthcoming discussion will prove statements (I), (II) and (III) for rational ˇ > 1.
Specifically:

� The case of (I) with n odd follows from Proposition 2.7 and Corollary 3.9, while
the case of (I) with n even follows from Proposition 3.12.

� (II) follows from Proposition 3.13.

� The condition b2k � ˇ � b2k�2 is equivalent to the condition P2k.ˇ � 1/ �
ˇC1�P2kC2.ˇ�1/, so (III) follows by combining Propositions 3.14 and 3.15.

The statements listed above all amount to showing that a certain class of the form
.
ˇ; 
 IW.1; ˛// belongs to the appropriate symplectic cone closure xCK.XN /. By
Proposition 2.4, if ˛ 2 ŒP2kC1=P2k�1; P2kC2=P2k�\Q and 
 � .˛C 1/=.2ˇC 2/,
then .
ˇ; 
 IW.1; ˛// is Cremona equivalent to the class denoted there by †k

˛;ˇ;

,

which may be written as

†k˛;ˇ;
 D hZIA;B;W.C;D/;W.E; F /i;

where

(3-11)

Z D P2kC1.
.ˇC 1/� 1/�P2k˛;

AD 1
2
H2k
.ˇC 1/�P2kC1C 


�
1
2
ˇ� 1

�
;

B D 1
2
H2k
.ˇC 1/�P2kC1� 


�
1
2
ˇ� 1

�
;

C D 1
2
P2kC2�

1
2
P2k˛; D D P2k�1˛�P2kC1;

E D 1
2
P2k.2
.ˇC 1/�˛� 1/; F D P2kC1.2
.ˇC 1/�˛� 1/:

(We use this notation even if k D 0, although in that case E (which is zero) and F
(which is typically nonzero) are not relevant to †k

˛;ˇ;

. As noted in Remark 2.9, when

k D 0 we do not need to assume that 
 � .˛C 1/=.2ˇC 2/.)

Throughout the rest of this section Z , A, B , C , D , E and F will refer to the above
quantities.

3.2.1 The case 
 D 
2k;ˇ The statements (I)–(III) in the beginning of Section 3.2
involve one case of embedding an ellipsoid E.1; ˛/ı into 
2k;ˇP.1; ˇ/ (with ˛ D
s2kC1.ˇ/ and ˇ � b2kC1 ), and three cases of embedding an ellipsoid E.1; ˛/ı into

2k�1;ˇP.1; ˇ/ (with ˛ D s2k.ˇ/ and ˇ � b2kC1 , with ˛ D s0

2k
.ˇ/ and b2kC1 �

ˇ � b2k , and with ˛ equal to some value greater than �2 and b2k � ˇ � b2k�2 ). This
subsection will establish the one case involving 
 D 
2k;ˇ DH2kC2=..ˇC1/P2kC1/.
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We accordingly assume that ˇ � b2kC1 D 1C 2=.H2kC2 � 1/; equivalently, that
.ˇC 1/ � H2kC2.ˇ � 1/. Proposition 3.5, and the fact that b2kC1 < b2k�1 , shows
that ˛2k � s2kC1.ˇ/, while Proposition 3.2 shows that 
2k;ˇ � 
2kC1;ˇ and hence
that s2kC1.ˇ/D .
2k;ˇ=
2kC1;ˇ /˛2kC1 � ˛2kC1 . In particular, since

˛2k�1 D
P2kC1

P2k�1
< ˛2k and ˛2kC1 < �

2 <
P2kC2

P2k
;

we have s2kC1.ˇ/2 ŒP2kC1=P2k�1; P2kC2=P2k�, and so Proposition 2.7 (or, if kD 0,
Remark 2.9) is applicable to the question of whether there is a symplectic embedding
E.1; s2kC1.b//

ı ,! 
2k;bP.1; b/.

Proposition 3.8 Let 
 D 
2k;ˇ and ˛ D s2kC1.ˇ/. Then for any ˇ , we have

(i) Z D 2C ,

(ii) DCF D 4C ,

(iii) ACBCE D C ,

(iv) AD F D P2kC3�P2kC1˛ .

Under the additional assumption that 1� ˇ � b2kC1 , we have

(v) A� C ,

(vi) B � 0.

Proof By the definition of 
2k;ˇ we have P2kC1
.ˇC 1/DH2kC2 , so

Z DH2kC2�P2kC1�P2k˛ D P2kC2�P2k˛ D 2C;

proving (i). Next, notice that

F D 2P2kC1
.ˇC 1/�P2kC1˛�P2kC1 D .2H2kC2�P2kC1/�P2kC1˛

D .2P2kC2CP2kC1/�P2kC1˛ D P2kC3�P2kC1˛;

which proves the second equality in (iv), and also implies that

F CD D .P2kC3�P2kC1/� .P2kC1�P2k�1/˛ D 2P2kC2� 2P2k˛ D 4C;

proving (ii). Also, using again that 
.ˇC 1/DH2kC2=P2kC1 , we see that

AD
H2kH2kC2

2P2kC1
�P2kC1C

H2kC2

2P2kC1

ˇ� 1

ˇC 1
(3-12)

D
1

2P2kC1

�
H2kH2kC2� 2P

2
2kC1CH2kC2

ˇ� 1

ˇC 1

�
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D
1

2P2kC1

�
1CH2kC2

ˇ� 1

ˇC 1

�
(using (2-4) and (2-6)), and similarly,

(3-13) B D
1

2P2kC1

�
1�H2kC2

ˇ� 1

ˇC 1

�
:

Since the condition that ˇ� b2kC1 is equivalent to the statement that .ˇ�1/=.ˇC1/�
1=H2kC2 , this last equation immediately implies (vi).

Since E D .P2k=2P2kC1/F , we also find that

C �E D

�
P2kC2

2
�
P2k

2

�̨
�

P2k

2P2kC1
.P2kC3�P2kC1˛/

D
1

2P2kC1
.P2kC1P2kC2�P2kP2kC3/

D
1

2P2kC1
.P2kC1P2kC2� 2P2kP2kC2�P2kP2kC1/

D
1

2P2kC1
.P2kC1.P2kC2�P2k/� 2P2kP2kC2/

D
1

P2kC1
.P 22kC1�P2kP2kC2/D

1

P2kC1
;

where the last equation uses (2-6). But (3-12) and (3-13) clearly imply that ACB D
1=P2kC1 also, so C �E D ACB , which is equivalent to (iii).

So far we have not used the assumption that ˛ D s2kC1.ˇ/; however this assumption
will be relevant to the remaining two statements. We have

˛ D 

˛2kC1


2kC1;ˇ
D 


H2kC2.ˇC 1/� .ˇ� 1/

2P2kC1
:

We see then using (3-12) that

ACP2kC1˛ D
1

2P2kC1

�
1CH2kC2

ˇ� 1

ˇC 1

�
C



2
.H2kC2.ˇC 1/� .ˇ� 1//

D
1

2P2kC1

�
1CH2kC2

ˇ� 1

ˇC 1
CH 2

2kC2�H2kC2
ˇ� 1

ˇC 1

�
D
H 2
2kC2

C 1

2P2kC1
D P2kC3;

where the last equation uses (2-7). This proves (iv) since we have already seen that
F D P2kC3�P2kC1˛ .
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It remains to prove (v). It is obvious from the definitions that A� B and that E and
F have the same sign. So since B � 0 by (vi) and AD F by (iv), we deduce that also
E � 0. But then (iii) gives AD C �B �E � C , as desired.

Corollary 3.9 For 
 D 
2k;ˇ and ˛ D s2kC1.ˇ/ with 1 � ˇ � b2kC1 , we have
2
.ˇC 1/�˛� 1� 0, and the class †k

˛;ˇ;

belongs to xCK.XN / for appropriate N .

Proof We noted earlier that ˛ < ˛2kC1 (as a consequence of Proposition 3.2), so
since ˛2kC1 D P2kC3=P2kC1 , Proposition 3.8 (iv) shows that F > 0. But F has the
same sign as 2
.ˇC 1/�˛� 1, proving the first statement of the corollary.

Proposition 3.8(ii), (iv) and (v) together show that D D 4C �A> 3C . (Note also that
C and D are nonnegative since, as noted earlier, ˛ 2 ŒP2kC1=P2k�1; P2kC2=P2k�.)
Thus †k

˛;ˇ;

can be rewritten (also using Proposition 3.8(i)) as

h2C IA;B;C�3;W.C;D� 3C /;W.E; F /i:

We will see that this class satisfies the tiling criterion of Corollary 2.14. Note that
obviously, A� B , and B � 0 by Proposition 3.8(vi); we have also already noted that
C , D�3C and F are positive, and so E is also nonnegative since E is a nonnegative
multiple of F .

We must show that a square of sidelength 2C contains, disjointly, the interiors of
3 squares of sidelength C , squares of sidelengths A and B , a C -by-.D�3C / rectangle
and an E -by-F rectangle. We can place the 3 squares of sidelength C in three of the
four quadrants of the square of sidelength 2C , so it suffices to show that the remaining
quadrant (also a square of sidelength C ) can be tiled by squares of sidelengths A
and B together with a C -by-.D�3C / rectangle and an E -by-F rectangle.

Proposition 3.8(ii) and (iv) show that AC .D�3C /DC . Placing the C -by-.D�3C /
rectangle along one side of the remaining quadrant, we see that it suffices to tile an
A-by-C rectangle by a square of sidelength A, a square of sidelength B and an
E -by-F rectangle. Since (using various statements in Proposition 3.8) F D A� C ,
ACBCE D C and A;B;E � 0 (and hence B � C ), this is straightforward to do by
simply stacking the two squares and the rectangle on top of each other. Thus †k

˛;ˇ;


satisfies the tiling criterion, so belongs to the appropriate xCK.XN / by Corollary 2.14.
See Figure 5.
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A�E

A�A

C �C C �C

C �C

B �B

.D� 3C /
�C

Figure 5: The tiling used to prove Corollary 3.9

The fact that
�

2k;ˇˇ; 
2k;ˇ IW.1; s2kC1.ˇ//

�
2 xCK.XN / for ˇ � b2kC1 , or equiva-

lently that there is a symplectic embedding E.1; s2kC1.ˇ//ı ,! 
2k;ˇP.1; ˇ/, now
follows directly from Proposition 2.7 (or Remark 2.9 in the case that k D 0).

3.2.2 The case 
 D 
2k�1;ˇ We now turn to the various embeddings E.1; ˛/ı ,!

P.1; ˇ/ that we require when


 D 
2k�1;ˇ D
2P2kC1

H2k.ˇC 1/� .ˇ� 1/
:

Continue to denote by Z , A, B , C , D , E and F the functions of k , ˛ , ˇ and 

given by the formulas of (3-11).

Lemma 3.10 If 
 D 
2k�1;ˇ , then for any k , ˛ and ˇ we have

(i) AD 
.ˇ� 1/,

(ii) B D 0,

(iii) ACC CE DZ .

Proof Indeed, we find that

1
2
H2k
.ˇC 1/�P2kC1 D

.2P2kC1H2k � 2P2kC1H2k/.ˇC 1/C 2P2kC1.ˇ� 1/

2H2k.ˇC 1/� 2.ˇ� 1/

D
1
2

.ˇ� 1/;
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which immediately implies (i) and (ii) by the definitions of A and B .

Also,

ACC CE D 
.ˇ� 1/C
�
1
2
P2kC2�

1
2
P2k˛

�
C
1
2
P2k.2
.ˇC 1/�˛� 1/

D 
.ˇ� 1/CP2k
.ˇC 1/�P2k˛C
1
2
.P2kC2�P2k/:

Now we can rewrite P2k as P2kC1�H2k , and 1
2
.P2kC2�P2k/ as P2kC1 , giving

ACC CE D P2kC1.
.ˇC 1/� 1/�P2k˛C 2P2kC1C 
.ˇ� 1/�H2k
.ˇC 1/

DZC 2P2kC1� 
.H2k.ˇC 1/� .ˇ� 1//DZ;

proving (iii).

Proposition 3.11 If 
 D 
2k�1;ˇ and ˛; ˇ � 1, then 2
.ˇC1/�˛�1� 0 provided
that one of the following holds:

(i) ˛ �H2kC2=H2k , or

(ii) ˛ D s0
2k
.ˇ/, or

(iii) ˇC 1�H2kC1.ˇ� 1/ and ˛ D P2kC2=P2k , or

(iv) ˇC 1�H2kC2.ˇ� 1/ and

˛ D
2P2kC1

H2kC1

P2kC2.ˇC 1/� .ˇ� 1/

H2k.ˇC 1/� .ˇ� 1/
:

Proof Using (2-10), we have

(3-14) 2
.ˇC 1/� 1D
.4P2kC1�H2k/.ˇC 1/C .ˇ� 1/

H2k.ˇC 1/� .ˇ� 1/

D
H2kC2.ˇC 1/C .ˇ� 1/

H2k.ˇC 1/� .ˇ� 1/
:

This is obviously greater than H2kC2=H2k , proving (i). As for (ii), we have

s02k.ˇ/D 

˛2kC1


2kC1;ˇ
D 


H2kC2.ˇC 1/� .ˇ� 1/

2P2kC1
;

so if ˛ D s0
2k
.ˇ/, then (2-10) gives

2
.ˇC 1/�˛ D 

.4P2kC1�H2kC2/.ˇC 1/C .ˇ� 1/

2P2kC1

D 

H2k.ˇC 1/C .ˇ� 1/

H2k.ˇC 1/� .ˇ� 1/
� 1;

which suffices to prove (ii).
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Next, we see from (2-11) and (2-8) that

2
.ˇC1/�
P2kC2

P2k
�1D 2
.ˇC1/�

P2kC2CP2k

P2k
D 2
.ˇC1/�

2H2kC1

P2k

D
2.2P2kP2kC1.ˇC1/�H2kC1H2k.ˇC1/CH2kC1.ˇ�1//

P2k.H2k.ˇC1/�.ˇ�1//

D
2

P2k.H2k.ˇC1/�.ˇ�1//
.�.ˇC1/CH2kC1.ˇ�1//;

which immediately implies (iii).

Finally let

˛ D
2P2kC1

H2kC1

P2kC2.ˇC 1/� .ˇ� 1/

H2k.ˇC 1/� .ˇ� 1/
:

By (3-14), we have

2
.ˇC1/�˛�1

D
H2kC1H2kC2.ˇC1/CH2kC1.ˇ�1/�2P2kC1P2kC2.ˇC1/C2P2kC1.ˇ�1/

H2kC1.H2k.ˇC1/�.ˇ�1//

D
.H2kC1H2kC2�2P2kC1P2kC2/.ˇC1/C.H2kC1C2P2kC1/.ˇ�1/

H2kC1.H2k.ˇC1/�.ˇ�1//

D
�.ˇC1/CH2kC2.ˇ�1/

H2kC1.H2k.ˇC1/�.ˇ�1//
;

where the last equation follows from (2-8) and (2-9). Thus (iv) holds.

Proposition 3.12 If 1 � ˇ � b2kC1 , 
 D 
2k�1;ˇ and ˛ D s2k.ˇ/, with W.1; ˛/

having length N � 1, then .
ˇ; 
 IW.1; ˛// 2 xCK.XN /.

Proof Corollary 3.6 shows, under the assumption that ˇ � b2kC1 , that ˛2k�1 �
s2k.ˇ/ � ˛2k for any k , ie that s2k.ˇ/ 2 ŒP2kC1=P2k�1;H2kC2=H2k�. In par-
ticular, Proposition 2.7 applies, with the same value of k , when ˛ D s2k.ˇ/, and
Proposition 3.11(i) shows that

0� 2
.ˇC 1/�
H2kC2

H2k
� 1� 2
.ˇC 1/�˛� 1:

So both the parameters

E D 1
2
P2k.2
.ˇC 1/�˛� 1/ and F D P2kC1.2
.ˇC 1/�˛� 1/
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A�A

C �F E �F

Figure 6: The tiling used to prove Proposition 3.12

are nonnegative, and, using Proposition 2.7 and Lemma 3.10, the class .
ˇ; 
 IW.1; ˛//

is Cremona equivalent to

(3-15) hZIA; 0;W.C;D/;W.E; F /i;

where, as before, Z D P2kC1.
.ˇC 1/� 1/�P2k˛ , AD 
.ˇ� 1/, C D 1
2
P2kC2�

1
2
P2k˛ and D D P2k�1˛�P2kC1 , and where, moreover, Z D ACC CE .

Now, by definition, ˛ D .˛2k=
2k;ˇ /
 D .P2kC1.ˇC 1/
/=H2k . So, by (2-11),

F �D D 2P2kC1
.ˇC 1/� .P2kC1CP2k�1/˛ D 2P2kC1
.ˇC 1/� 2H2k˛ D 0:

Also,

Z �F D�P2kC1
.ˇC 1/C .P2kC1�P2k/˛ D�P2kC1
.ˇC 1/CH2k˛ D 0:

So (3-15) can be rewritten as

hF IA; 0;W.C; F /;W.E; F /i:

We have already noted that E , F � 0, and clearly AD 
.ˇ � 1/ � 0. Also, C > 0

since ˛ �H2kC2=H2k < P2kC2=P2k . Moreover, by Lemma 3.10, F D ACC CE ,
which, of course, in particular implies that A � F . Consequently, the class satisfies
the tiling criterion (see Figure 6), and so our original class .
ˇ; 
 IW.1; ˛// belongs
to xCK.XN /.

Proposition 3.13 If b2kC1 � ˇ � b2k , 
 D 
2k�1;ˇ and ˛ D s0
2k
.ˇ/, with W.1; ˛/

having length N � 1, then .
ˇ; 
 IW.1; ˛// 2 xCK.XN /.
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Proof By (3-10), ˛2k�1 < ˛ � ˛2kC1 , ie P2kC1=P2k�1 < ˛ � P2kC3=P2kC1 . So,
since P2kC3=P2kC1 < �2 < P2kC2=P2k , Proposition 2.7 applies, with the same
value of k , when ˛ D s0

2k
.b/; moreover, Proposition 3.11(ii) shows that we have

2
.ˇ C 1/ � ˛ � 1 � 0. So our class .
ˇ; 
 IW.1; ˛// is Cremona equivalent to
hZIA; 0;W.C;D/;W.E; F /i, where Z , A, C , D , E and F are defined by the
usual formulas of (3-11).

Note that the definitions yield

s02k.ˇ/D
H2kC2.ˇC 1/� .ˇ� 1/

H2k.ˇC 1/� .ˇ� 1/
:

In particular, we have ˛ D s0
2k
.ˇ/�H2kC2=H2k . Consequently,

D� 2C D .P2k�1˛�P2kC1/� .P2kC2�P2k˛/DH2k˛�H2kC2 � 0

and
W.C;D/D .C�2/tW.C;D� 2C /:

Also,

F D P2kC1.2
.ˇC1/�˛�1/D P2kC1
.4P2kC1�H2kC2�H2k/.ˇC1/C2.ˇ�1/

H2k.ˇC1/�.ˇ�1/

D
2P2kC1.ˇ�1/

H2k.ˇC1/�.ˇ�1/
D 
.ˇ�1/D A;

where the third equality uses (2-10) and the last uses Lemma 3.10(i). Moreover,

ZCC CE D .P2kC1CP2k/
.ˇC 1/C
�
�P2kC1C

1
2
P2kC2�

1
2
P2k

�
� 2P2k˛

DH2kC1
.ˇC 1/� 2P2k˛;

and so

(3-16) ZCC CE �D DH2kC1
.ˇC 1/� .2P2kCP2k�1/˛CP2kC1

DH2kC1
.ˇC 1/�P2kC1.˛� 1/:

Now,

˛�1D
.H2kC2.ˇC1/�.ˇ�1//�.H2k.ˇC1/�.ˇ�1//

H2k.ˇC1/�.ˇ�1/
D

2H2kC1.ˇC1/

H2k.ˇC1/�.ˇ�1/
:

Thus (3-16) shows that

ZCC CE �D D
2H2kC1P2kC1.ˇC 1/� 2P2kC1H2kC1.ˇC 1/

H2k.ˇC 1/� .ˇ� 1/
D 0:

So D� 2C DZ �C CE .
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Thus the class hZIA; 0;W.C;D/;W.E; F /i can be rewritten as

hZIA; 0; C�2;W.C;Z �C CE/;W.E;A/i:

Applying the Cremona move c023 and recalling from Lemma 3.10 that ZDACCCE ,
and hence Z � A � 2C D E � C , we conclude that .
ˇ; 
 IW.1; ˛// is Cremona
equivalent to

(3-17) hZ �C CEIA�C CE; 0;E�2;W.C;Z �C CE/;W.E;A/i:

Now rearranging the equation Z DACC CE shows that AC2E DZ�C CE and

.A�C CE/CECC D .ACC CE/�C CE DZ �C CE:

So by combining the E�2 with the W.E;A/ into an E -by-.Z�CCE/ rectangle
and placing this in between a C -by-.Z�CCE/ rectangle and a square of sidelength
A�C CE , as in Figure 7, shows that (3-17) satisfies the tiling criterion, provided that
it holds that A�C CE � 0.

.A�CCE/
�

.A�CCE/

E �A

E �E

E �E

C � .Z �C CE/

Figure 7: The tiling used to prove Proposition 3.13

Since ACC CE DZ , we have

A�C CE DZ�2C D P2kC1.
.ˇC1/�1/�P2kC2 D P2kC1
.ˇC1/�H2kC2

D
.2P 2

2kC1
�H2kH2kC2/.ˇC1/CH2kC2.ˇ�1/

H2k.ˇC1/�.ˇ�1/

D
�.ˇC1/CH2kC2.ˇ�1/

H2k.ˇC1/�.ˇ�1/
;
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where the last equation follows from (2-4) and (2-5). Our assumption ˇ � b2kC1
is equivalent to the statement that ˇ C 1 � H2kC2.ˇ � 1/, and so we indeed have
A�CCE� 0. So Figure 7 shows that (3-17) satisfies the tiling criterion and hence that
the class .
ˇ; 
 IW.1; ˛//, to which it is Cremona equivalent, belongs to xCK.XN /.

Proposition 3.14 Assume that P2k.ˇ � 1/ � ˇC 1 � H2kC1.ˇ � 1/ where k � 1,
and let 
 D 
2k�1;ˇ and ˛ D P2kC2=P2k . Then .
ˇ; 
 IW.1; ˛// 2 xCK.XN /, where
N � 1 is the length of W.1; ˛/.

Proof It follows from Proposition 2.7 that this is equivalent to the statement that
hZIA;B;W.C;D/;W.E; F /i belongs to the appropriate xCK.XN / provided that
E;F � 0, and Proposition 3.11(iii) shows that we indeed have E;F � 0 due to the
assumption that ˇC1�H2kC1.ˇ�1/. Moreover the hypothesis that ˛DP2kC2=P2k
means that C D 0, so that W.C;D/ is the empty sequence. Also, Lemma 3.10 shows
that B D 0 and that (since C D 0) Z D ACE , so we just need to consider the class

(3-18) hACEIA;W.E; F /i;

where

AD 
.ˇ� 1/;

E D
P2k

2

�
2
.ˇC 1/�

P2kC2

P2k
� 1

�
D P2k
.ˇC 1/�

1
2
.P2kC2CP2k/

D P2k
.ˇC 1/�H2kC1 (using (2-11)),

F D
2P2kC1

P2k
E:

Now
F � 4E D

2P2kC1� 4P2k

P2k
E D

2P2k�1

P2k
E � 0;

so (3-18) is equal to

(3-19) hACEIA;E�4;W.E; F � 4E/i;

where F � 4E D .2P2k�1=P2k/E D .1�P2k�2=P2k/E �E . Also

A�2E D 
.ˇ�1/�2P2k
.ˇC1/C2H2kC1

D
2P2kC1.ˇ�1/�4P2kC1P2k.ˇC1/C2H2kC1H2k.ˇC1/�2H2kC1.ˇ�1/

H2k.ˇC1/�.ˇ�1/

D
2.ˇC1/�.2H2kC1�2P2kC1/.ˇ�1/

H2k.ˇC1/�.ˇ�1/
D
2..ˇC1/�P2k.ˇ�1//

H2k.ˇC1/�.ˇ�1/
� 0

by our assumption on ˇ . So A� 2E .
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The facts that A� 2E � 0 and that 0�F �4E �E imply that the class (3-18) satisfies
the tiling criterion, as can be seen for instance from Figure 8. Since .
ˇ; 
 IW.1; ˛//

is Cremona equivalent to (3-19), this proves the proposition.

A�A

E �E E �E

E �E

E �E

E�.F�4E/

Figure 8: The tiling used to prove Proposition 3.14

Proposition 3.15 Assume that H2kC1.ˇ� 1/� ˇC 1� P2kC2.ˇ� 1/, and let

˛ D
2P2kC1

H2kC1

P2kC2.ˇC 1/� .ˇ� 1/

H2k.ˇC 1/� .ˇ� 1/
:

Then �2 < ˛ < P2kC2=P2k . Furthermore, if 
 D 
2k�1;ˇ and W.1; ˛/ has length
N � 1, then .
ˇ; 
 IW.1; ˛// 2 xCK.XN /.

Proof Note that
P2kC2.ˇC 1/� .ˇ� 1/

H2k.ˇC 1/� .ˇ� 1/
D 1C

P2kC2�H2k

H2k � .ˇ� 1/=.ˇC 1/

is an increasing function of ˇ , so to prove the first sentence it suffices to check
that ˛ 2 .�2; P2kC2=P2k/ just when ˇ is one of the endpoints of the interval of
possible values of ˇ under consideration, ie when ˇC 1 D P2kC2.ˇ � 1/ or when
ˇC1DH2kC1.ˇ�1/. If ˇC1DP2kC2.ˇ�1/ (ie if ˇD 1C2=.P2kC2�1/) then,
using (2-5),

˛ D
2P2kC1

H2kC1

P 2
2kC2

� 1

P2kC2H2k � 1
D
2P2kC1

H2kC1

P 2
2kC2

� 1

P2kC1H2kC1
D
2.P 2

2kC2
� 1/

H 2
2kC1

;
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which is greater than �2 by Proposition 2.2. On the other hand, if ˇC1DH2kC1.ˇ�1/
(ie if ˇ D 1C 2=.H2kC1� 1/) then, using (2-8),

˛D
2P2kC1

H2kC1

P2kC2H2kC1�1

H2kH2kC1�1
D
2P2kC1.P2kC2H2kC1�1/

H2kC1.2P2kP2kC1/
D
P2kC2

P2k
�

1

P2kH2kC1
:

So since ˛ is an increasing function of ˇ , for any ˇ 2 Œ1C 2=.P2kC2 � 1/; 1C

2=.H2kC1� 1/� we will have inequalities

�2 <
2.P 2

2kC2
� 1/

H 2
2kC1

� ˛ �
P2kC2

P2k
�

1

P2kH2kC1
<
P2kC2

P2k
;

proving the first sentence of the proposition.

Now since H2kC2 > P2kC2 , Proposition 3.11 shows that 2
.ˇC 1/�˛� 1� 0. By
what we have already shown, we have

P2kC1

P2k�1
<
P2kC3

P2kC1
< �2 < ˛ <

P2kC2

P2k
:

So Proposition 2.7 applies with the same value of k , so that .
ˇ; 
 IW.1; ˛// is
Cremona equivalent to hZIA; 0;W.C;D/;W.E; F /i, where Z , A, C , D , E and F
have their usual meanings (and we have used Lemma 3.10 to see that B D 0).

Now

D� 4C D .P2k�1˛�P2kC1/� 2.P2kC2�P2k˛/D P2kC1˛�P2kC3;

which is positive since, as noted above, ˛ > P2kC3=P2kC1 . So using Lemma 3.10(iii)
we can rewrite hZIA; 0;W.C;D/;W.E; F /i as

hACC CEIA; 0; C�4;W.C;D� 4C /;W.E; F /i:

Applying the Cremona moves c023 and c045 successively yields ı023D ı045DE�C ,
so .
ˇ; 
 IW.1; ˛// is Cremona equivalent to

(3-20) hA�C C 3EIA� 2C C 2E; 0;E�4;W.C;D� 4C /;W.E; F /i:

Now we noted earlier that D� 4C D P2kC1˛�P2kC3 , while, using Lemma 3.10,

(3-21) A�C C 3E D 1
2
P2k˛�

1
2
P2kC2C

3
2
P2k.2
.ˇC 1/�˛� 1/C 
.ˇ� 1/

D 
.3P2k.ˇC 1/C .ˇ� 1//�P2k˛�
1
2
.P2kC2C 3P2k/

D 
.3P2k.ˇC 1/C .ˇ� 1//�P2k˛� .P2kC1C 2P2k/:
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So

.A�C C 3E/� .D� 4C /

D 
.3P2k.ˇC 1/C .ˇ� 1//� .P2kC1CP2k/˛C .P2kC3�P2kC1� 2P2k/:

Now P2kC1CP2kDH2kC1 and P2kC3�P2kC1�2P2kD2P2kC2�2P2kD4P2kC1 .
So we obtain

.A�C C 3E/� .D� 4C /

D 
.3P2k.ˇC 1/C .ˇ� 1//�H2kC1˛C 4P2kC1

D

.6P2kP2kC1� 2P2kC1P2kC2C 4H2kP2kC1/.ˇC 1/

C .2P2kC1C 2P2kC1� 4P2kC1/.ˇ� 1/

H2k.ˇC 1/� .ˇ� 1/

D
2P2kC1.ˇC 1/

H2k.ˇC 1/� .ˇ� 1/
.3P2k �P2kC2C 2H2k/D 0;

since P2kC2 D 2.P2kC1�P2k/C 3P2k D 2H2kC 3P2k .

Furthermore, we have F C 4E D .P2kC1C 2P2k/.2
.ˇC 1/�˛� 1/, so by (3-21)
we find

.A�C C 3E/� .F C 4E/

D 
..3P2k � 2P2kC1� 4P2k/.ˇC 1/C .ˇ� 1//C .P2kC1CP2k/˛

D 
.�P2kC2.ˇC 1/C .ˇ� 1//CH2kC1˛ D 0;

since by definition we have

˛ D
P2kC2.ˇC 1/� .ˇ� 1/

H2kC1

:

We have thus shown that D� 4C D A�C C 3E D F C 4E , in view of which (3-20)
can be rewritten as

hF C 4EIF �C C 3E; 0;E�4;W.C; F C 4E/;W.E; F /i:

So since we already know that C;E; F � 0, by joining together four squares of
sidelength E with an F -by-E rectangle to form an .F C 4E/-by-E rectangle and
then combining this with an .F C 4E/-by-C rectangle and a square of sidelength
F � C C 3E as in Figure 9, it will follow that (3-20) satisfies the tiling criterion
provided merely that we show that F �CC3EDA�2CC2E is nonnegative. In fact,
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.F C 4E/�C

F �E

.F �C C 3E/
� .F �C C 3E/

E
�E

E
�E

E
�E

E
�E

Figure 9: The tiling used to prove Proposition 3.15

we find (using (2-11) and (2-8)) that

A�2C C2E D 
.ˇ�1/�P2kC2CP2k˛CP2k.2
.ˇC1/�˛�1/

D 
.2P2k.ˇC1/C.ˇ�1//�2H2kC1

D
.4P2kP2kC1�2H2kH2kC1/.ˇC1/C.2P2kC1C2H2kC1/.ˇ�1/

H2k.ˇC1/�.ˇ�1/

D
�2.ˇC1/C2P2kC2.ˇ�1/

H2k.ˇC1/�.ˇ�1/
� 0;

since we assume that ˇ C 1 � P2kC2.ˇ � 1/. So (3-20) indeed satisfies the tiling
criterion and the proposition follows.

We have now proven all of the propositions listed near the start of Section 3.2, and
hence have completed the proof of Theorem 1.6.

Remark 3.16 In the case that k D 0, Corollary 3.9 and Propositions 3.12, 3.13 and
3.15 can be read off from results in [5]. (The k D 0 case of Proposition 3.14, on the
other hand, is vacuous since H1 D 1 and so the condition ˇ C 1 � H2kC1.ˇ � 1/
can never be satisfied.) Indeed [5, Proposition 3.8] can be rephrased as saying that if
m 2ZC and ˇ 2R with ˇ �m, then Cˇ .mCˇ/� 1. Since 
�1;ˇ D 1, b1 D 2 and
b0 D 3, and since easy calculations show that s0.ˇ/D 1Cˇ and s00.ˇ/D 2Cˇ , the
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k D 0 case of Proposition 3.12 amounts to the statement that Cˇ .1C ˇ/ � 1 when
1� ˇ � 2, and that of Proposition 3.13 amounts to the statement that Cˇ .2Cˇ/� 1
when 2� ˇ � 3. Also, the k D 0 case of Proposition 3.15 shows that if ˇ � 3, then
Cˇ .3Cˇ/� 1. So when k is set equal to zero each of these three propositions becomes
a special case of [5, Proposition 3.8].

Meanwhile, [5, Proposition 3.10] (with y D b D ˇ and aD 1) shows, for 1� ˇ � 2,
that for all �>1 there is a symplectic embedding E

�
1
3
.1Cˇ/; 2Cˇ

�
,!�P.1; ˇ/ and

hence that Cˇ .3.ˇC 2/=.ˇC 1//� 3=.ˇC 1/, which is easily seen to be equivalent
to the k D 0 case of Corollary 3.9.

3.3 The Frenkel–Müller classes and the volume constraint

Theorem 1.6 and Proposition 3.7 together give an explicit formula for Cˇ .˛/ for all
˛ 2 Œ1; �2�. Of course there is a lower bound Cˇ .˛/�

p
˛=2ˇ arising from volume

considerations, and we now show precisely when this bound is sharp.

Proposition 3.17 Let 1� ˛ � �2 and ˇ > 1. Then Cˇ .˛/D
p
˛=2ˇ if and only if,

for some k � 1, we have

ˇ D b2k�1 and ˛ D
P 2
2k

P 2
2k�1

:

Remark 3.18 From the definitions together with (2-4) and (2-2) one computes

s2k�1.b2k�1/D
H 2
2k
� 1

2P 2
2k�1

D
P 2
2k

P 2
2k�1

;

s02k�2.b2k�1/D
H 2
2k
� 1

H2kH2k�2� 1
D

P 2
2k

P 2
2k�1

:

So the special value of ˛ indicated in Proposition 3.17 is equal both to s2k�1.b2k�1/
and to s0

2k�2
.b2k�1/.

Proof of Proposition 3.17 Given the formulas for supn �̨ ;ˇ .FMn/ in Proposition 3.7,
it is easy to see that it suffices to prove Proposition 3.17 for ˛ equal to �2 , to s2k�1.ˇ/
and s2k�2.ˇ/ whenever ˇ � b2k�1 , and to s0

2k�2
.ˇ/ whenever b2k�1 � ˇ � b2k .

(Briefly, this is because for fixed ˇ , a constant function of ˛ that is bounded below
by
p
˛=2ˇ on an interval is strictly greater than

p
˛=2ˇ on the whole interval except

possibly at the right endpoint, and an increasing function of the form ˛ 7!m˛ that is
bounded below by

p
˛=2ˇ on an interval is strictly greater than

p
˛=2ˇ on the whole

interval except possibly at the left endpoint.)
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For ˛D�2 , the statement follows directly from Propositions 3.14 and 3.15: choosing k
so that ˇ2 Œb2k�2; b2k�, one or the other of these results (depending on the precise value
of ˇ ) gives ˛0 >�2 such that Cˇ .�2/DCˇ .˛0/D 
2k�1;ˇ . Since Cˇ .˛0/�

p
˛0=2ˇ

and �2 < ˛0 , it follows therefore that Cˇ .�2/ >
p
�2=2ˇ .

If ˛ D s2k�1.ˇ/ and ˇ � b2k�1 , then Proposition 3.7 gives Cˇ .˛/ D 
2k�2;ˇ . A
routine computation then yields

(3-22) 2ˇ
22k�2;ˇ�s2k�1.ˇ/D

2k�2;ˇ

2.ˇC1/P2k�1
..4ˇ�.ˇC1/2/H2kC.ˇC1/.ˇ�1//

D

2k�2;ˇ .ˇ�1/

2.ˇC1/P2k�1
..ˇC1/�H2k.ˇ�1//:

Now since ˇ � b2k�1 D 1C 2=.H2k � 1/, we have .ˇ C 1/ � H2k.ˇ � 1/ � 0,
with equality if and only if ˇ D b2k�1 . This shows that 2ˇCˇ .˛/2 � ˛ � 0 (ie that
Cˇ .˛/�

p
˛=2ˇ ) when ˛ D s2k�1.ˇ/ and 1 < ˇ < b2k�1 , with equality only when

ˇ D b2k�1 . (Note that the assumption ˇ > 1 is needed due to the factor of ˇ � 1
in (3-22).)

The case that ˛ D s2k�2.ˇ/ and 1 < ˇ � b2k�1 is similar. We then have Cˇ .˛/ D

2k�3;ˇ and we find that

2ˇ
22k�3;ˇ �s2k�2.ˇ/D

2k�3;ˇP2k�1.ˇ� 1/

H2k�2.H2k�2.ˇC 1/� .ˇ� 1//
..ˇC1/�H2k�2.ˇ�1//:

This is strictly positive since the assumption that 1 < ˇ � b2k�1 implies ˇ C 1 �
H2k.ˇ � 1/ > H2k�2.ˇ � 1/. So for ˛ D s2k�2.ˇ/ and 1 < ˇ � b2k�1 , we have
2ˇCˇ .˛/

2�˛ > 0, ie Cˇ .˛/ >
p
˛=2ˇ .

The final case, in which ˛ D s0
2k�2

.ˇ/ and b2k�1 � ˇ � b2k�2 , requires a bit more
work. In this case Cˇ .˛/D 
2k�3;ˇ , and one finds

2ˇ
2k�3;ˇ � s
0
2k�2.ˇ/

D 
2k�3;ˇ

�
2ˇ
2k�3;ˇ �

˛2k�1


2k�1;ˇ

�
D 
2k�3;ˇ

�
4ˇP2k�1

.ˇC 1/H2k�2� .ˇ� 1/
�
.ˇC 1/H2k � .ˇ� 1/

2P2k�1

�
D

2k�3;ˇ

�
8ˇP 2

2k�1
� .H2k.ˇC 1/� .ˇ� 1//.H2k�2.ˇC 1/� .ˇ� 1//

�
2P2k�1.H2k�2.ˇC 1/� .ˇ� 1//

:
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Thus for ˛ D s0
2k�2

.ˇ/ and b2k�1 � ˇ � b2k�2 , the sign of Cˇ .˛/�
p
˛=2ˇ will be

the same as the sign of

g.ˇ/ WD 8ˇP 22k�1� .H2k.ˇC 1/� .ˇ� 1//.H2k�2.ˇC 1/� .ˇ� 1//

and, in view of Remark 3.18, the proof will be complete if we show that for ˇ 2
Œb2k�1; b2k�2�, we have g.ˇ/� 0 with equality if and only if ˇ D b2k�1 .

For ˇ D b2k�1 we have ˇC 1DH2k.ˇ� 1/ and so

g.b2k�1/D 8b2k�1P
2
2k�1� .b2k�1� 1/

2.H 2
2k � 1/.H2k�2H2k � 1/

D 8b2k�1P
2
2k�1� 4.b2k�1� 1/

2P 22kP
2
2k�1

D
4P 2

2k�1

.H2k � 1/
2
.2.H2kC 1/.H2k � 1/� 4P

2
2k/D 0;

where we have used (2-4) and (2-2). For the other values of ˇ , we compute the
derivative of g as

g0.ˇ/D8P 22k�1�.H2k�1/.H2k�2.ˇC1/�.ˇ�1//�.H2k�2�1/.H2k.ˇC1/�.ˇ�1//

D8P 22k�1�2.H2kH2k�2�1/�2ˇ.H2kH2k�2C1�.H2kCH2k�2//

D4P 22k�1�4ˇ.P2k�1�1/
2;

where we have used (2-4), (2-2) and (2-10). Thus g0.ˇ/ > 0 provided that ˇ <
.1C 1=.P2k�1� 1//

2 . Now

b2k�2 D 1C
2

P2k � 1
<

�
1C

1

P2k � 1

�2
<

�
1C

1

P2k�1� 1

�2
;

so in particular g0.ˇ/ > 0 for all ˇ 2 Œb2k�1; b2k�2�. So since g.b2k�1/ D 0, this
implies that, for ˇ 2 Œb2k�1; b2k�2�, we have g.ˇ/ � 0 with equality if and only if
ˇ D b2k�1 , as desired.

4 Finding the new staircases

4.1 A criterion for an infinite staircase

Recall from the start of Section 1.3 that we say that Cˇ has an infinite staircase if
there are infinitely many distinct affine functions each of which agrees with Cˇ on
some nonempty open interval; we have also defined in Section 1.3 the notion of an
accumulation point of an infinite staircase. The new infinite staircases that we find in this
paper will be deduced from the existence of certain infinite families of perfect classes
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.a; bIW.c; d//. (Recall from the introduction that a class of the form .a; bIW.c; d//

is said to be perfect if it belongs to the set E of exceptional classes, and quasiperfect if it
satisfies the weaker condition of having Chern number 1 and self-intersection �1. Note
that distinct perfect classes always have positive intersection number with each other.)
Before constructing these classes, we will derive in this section a general sufficient
criterion (see Theorem 4.4) for an infinite sequence of perfect classes to guarantee the
existence of an infinite staircase for some Cˇ .

To put the following results into context, we remark that a very similar argument to
those used in [9, Lemma 2.1.5] and [4, Lemma 4.11] shows that, if C D .a; bIW.c; d//

is a perfect class, then C is the unique class in E with Ca=b.c=d/ D �c=d;a=b.C /.
Thus every perfect class exerts some influence on the function .˛; ˇ/ 7! Cˇ .˛/ of two
variables. We will require a somewhat more flexible version of this statement, showing
that a perfect class .a; bIW.c; d// sharply obstructs embeddings of ellipsoids into
dilates of P.1; ˇ/ for all ˇ in an explicit neighborhood of a=b , not just into dilates of
P.1; a=b/.7

Lemma 4.1 Assume that C D .a; bIW.c; d// 2 E , with c � d , gcd.c; d/D 1 and
a � ˇb where ˇ > 1. Assume moreover that we have inequalities

(4-1) .a�ˇb/2 < 2ˇ and .a� b/.a�ˇb/ < 1Cˇ:

Then
�c=d;ˇ .C / >max

�r
c

2ˇd
; sup
E2EnfC g

�c=d;ˇ .E/

�
:

Proof We first compare �c=d;ˇ .C / to the volume bound
p
c=2ˇd . As W.c; d/D

dw.c=d/, we have w.c=d/ �W.c; d/D cd=d D c , and so

�c=d;ˇ .C /D
c

aCˇb
:

This is greater than the volume bound if and only if c2=.aCˇb/2 > c=2ˇd , ie if and
only if

.aCˇb/2 < 2ˇcd D 2ˇ.2abC 1/;

7We take ˇ to be less than or equal to a=b in what follows because this turns out to be true in all of
the examples that we consider later, but a similar argument with slightly different inequalities gives an
analogous result when ˇ > a=b .
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where the equality cd D 2abC 1 follows from C having self-intersection �1. Since
.aCˇb/2� 4ˇab D .a�ˇb/2 , this latter inequality is equivalent to .a�ˇb/2 < 2ˇ ,
as is assumed to hold in the statement of the lemma.

As for the comparison to supE2EnfC g �c=d;ˇ .E/, note first that if E D .x; yI Em/ 2 E
with y > x , then .y; xI Em/ also lies in E , and

(4-2) �c=d;ˇ ..y; xI Em//D
w.c=d/ � Em

yCˇx
>
w.c=d/ � Em

xCˇy
D �c=d;ˇ ..x; yI Em//;

since we assume that ˇ > 1. Thus

sup
E2EnfC g

�c=d;ˇ .E/Dmax
˚
�c=d;ˇ ..b; aIW.c; d//; sup

.x;yI Em/2EnfC g
x�y

�c=d;ˇ ..x; yI Em//
	
:

We have �c=d;ˇ .C / > �c=d;ˇ
�
.b; aIW.c; d//

�
as a special case of (4-2).

Consider any .x; yI Em/2 EnfC g with x�y . Since .x; yI Em/ and C D .a; bIW.c; d//

belong to E they have nonnegative intersection number, ie bxCay�W.c; d/ � Em� 0.
So since w.c=d/D .1=d/W.c; d/, we find

�c=d;ˇ .E/D
w.c=d/ � Em

xCˇy
�

bxC ay

d.xCˇy/
D
b

d

1C .a=b/.y=x/

1Cˇ.y=x/
�

aC b

d.1Cˇ/
:

Here the final inequality follows from the assumption that y � x and the fact that,
since we assume a=b � ˇ , the function t 7! .1C .a=b/t/=.1Cˇt/ is nondecreasing.

So to complete the proof it suffices to show that .aC b/=.d.1C ˇ// < c=.aC ˇb/,
ie that

(4-3) .aC b/.aCˇb/ < cd.1Cˇ/:

But since C has self-intersection �1 we have cd D 2abC 1, so (4-3) follows imme-
diately from the second inequality in (4-1) and the observation that .aC b/.aCˇb/�
2.1Cˇ/ab D .a� b/.a�ˇb/.

Proposition 4.2 Assume that C 2 E satisfies the hypotheses of Lemma 4.1. Then
there is a ı > 0 such that for all rational ˛ � 1 with j˛� c=d j< ı , the class C is the
unique class in E with

Cˇ .˛/D �˛;ˇ .C /:

Proof For any rational ˛ � 1 we have

(4-4) Cˇ .˛/D sup
��r

˛

2ˇ

�
[f�˛;ˇ .E/ jE 2 Eg

�
:
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(See [3, Section 2.1].) Lemma 4.1 shows that our class C obeys Cˇ .c=d/D�c=d;ˇ .C /,
and more strongly that for ˛ D c=d , there is a strict positive lower bound on the
difference between �˛;ˇ .C / and any of the other values in the set over which the
supremum is taken on the right-hand side of (4-4). It will follow that this property
continues to hold for all ˛ sufficiently close to c=d provided that the family of functions
f˛ 7! �˛;ˇ .E/ jE 2 Eg is equicontinuous at ˛ D c=d , ie for any � > 0 there should
be ı > 0 independent of E such that if j˛�c=d j< ı then j�˛;ˇ .E/��c=d;ˇ .E/j< �
for all E 2 E . Of course since �˛;ˇ .E 0i /D 0 for all ˛; ˇ it suffices to restrict attention
to E 2 E n

S
ifE
0
ig.

Now we find, for E D .x; yI Em/ 2 E n
S
ifE
0
ig (so that x and y are not both zero, and

2xy �k Emk2 D�1 since E has self-intersection �1) and ˛0 , ˛1 2Q,

j�˛0;ˇ .E/��˛1;ˇ .E/j D

ˇ̌̌̌
.w.˛0/�w.˛1// � Em

xCˇy

ˇ̌̌̌
�
kw.˛0/�w.˛1/kk Emk

xCˇy

D kw.˛0/�w.˛1/k

r
2xyC 1

.xCˇy/2

� kw.˛0/�w.˛1/k

s
.x=
p
ˇC

p
ˇy/2

.xCˇy/2
C 1

D kw.˛0/�w.˛1/k

r
1

ˇ
C 1:

So our family is equicontinuous at c=d provided that the weight sequence function
wW Q\ Œ1;1/! Q1 D

S
nQn is continuous at c=d (with respect to the obvious

metric on Q1 that restricts to each Qn as the Euclidean metric). This latter fact follows
easily from [9, Lemma 2.2.1], which shows that, if the length of the vector w.c=d/ is n0 ,
then for ˛ in a suitable neighborhood of c=d we can write w.˛/ as . È.˛/; Er.˛// where
È is a piecewise linear Qn0 –valued function equal to w.c=d/ at ˛D c=d . Thus within
this neighborhood we have a Lipschitz bound k È.˛/�w.c=d/k �M j˛�c=d j, and so

kEr.˛/k2 D ˛�kÈ.˛/k2� ˛�
�


w� c

d

�


�M ˇ̌̌
˛�

c

d

ˇ̌̌�2
�

�̨
�
c

d

�
C2M

ˇ̌̌
˛�

c

d

ˇ̌̌q
c

d
:

Therefore kw.˛/�w.c=d/k2 D kÈ.˛/�w.c=d/k2CkEr.˛/k2 converges to zero as
˛! c=d .

Having shown that, for any perfect class C D .a; bIW.c; d//, � � ;ˇ .C / is equal to Cˇ
in a neighborhood of c=d , we now use results from [9] to identify � � ;ˇ .C / in such a
neighborhood with the function �� ;ˇ .C / from Proposition 1.5.
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Proposition 4.3 Suppose that C D .a; bIW.c; d// is a perfect class with c � d and
gcd.c; d/D 1, and suppose that ˇ � 1 is arbitrary. Then there is a ı > 0 such that for
all ˛ 2 .c=d � ı; c=d C ı/, we have

�˛;ˇ .C /D �̨ ;ˇ .C /D

8<:
d˛

aCˇb
if ˛ � c

d
;

c

aCˇb
if ˛ � c

d
:

Proof Since

�˛;ˇ .C /D
w.˛/ �W.c; d/

aCˇb
D

d

aCˇb
w.˛/ �w

�
c

d

�
;

the proposition is equivalent to the statement that, for all ˛ in a neighborhood of c=d ,

(4-5) w.˛/ �w
�
c

d

�
D

8<:˛ if ˛ � c

d
;

c

d
if ˛ � c

d
:

But (4-5) can be read off directly from [9, Lemma 2.2.1 and Corollary 2.2.7]. (Note
that, as is alluded to at the start of [9, Section 2.2], the number denoted therein as N
can be taken either even or odd according to taste, by allowing the possibility of taking
the final term `N in the continued fraction expansion of c=d to be 1.)

Theorem 4.4 Suppose that ˇ > 1 has the property that there is an infinite collec-
tion f.ai ; bi IW.ci ; di //g

1
iD1 of distinct perfect classes all having ai � ˇbi , ci � di ,

gcd.ci ; di /D1, .ai�ˇbi /2<2ˇ and .ai�bi /.ai�ˇbi /<1Cˇ . Then the embedding
capacity function Cˇ has an infinite staircase.

Moreover, this infinite staircase has an accumulation point S D limi!1 ci=di , which
is the unique number greater than 1 that obeys

.1CS/2

S
D
2.1Cˇ/2

ˇ
:

Proof Write Ci D .ai ; bi IW.ci ; di //. Proposition 4.2 shows that for each i there is an
open interval Ii containing ci=di on which Cˇ is identically equal to ˛ 7! �˛;ˇ .Ci /;
moreover, the uniqueness statement in that proposition implies that the intervals Ii can
be taken pairwise disjoint (so in particular the various ci=di are all distinct). Now the
function Cˇ is nondecreasing, and Proposition 4.3 shows that, for each i , Cˇ is equal
to the constant ci=.aiCˇbi / on a nonempty open subinterval of Ii , but takes a strictly
larger value at the right endpoint of Ii than at the left endpoint. In particular this forces
the various ci=.ai Cˇbi / to all be distinct — more specifically, if ci=di < cj =dj then
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ci=.ai C ˇbi / < cj =.aj C ˇbj /. So there are infinitely many distinct real numbers
ci=.ai Cˇbi / such that Cˇ is identically equal to ci=.ai Cˇbi / on some nonempty
open interval, which suffices to prove that Cˇ has an infinite staircase.

As for the accumulation point, since the open intervals on which Cˇ is equal to
ci=.aiCˇbi / contain ci=di in their respective closures, it is clear that if limi!1 ci=di
exists then this limit is an accumulation point for the infinite staircase. So it remains
only to show that ci=di ! S , where S is as described in the statement of the corollary.

The fact that we have a bound .ai�ˇbi /2<2ˇ where ˇ >1 and the .ai ; bi / comprise
an infinite subset of N2 implies that the values jai � bi j diverge to infinity, in view
of which the bound .ai � bi /.ai � ˇbi / < 1C ˇ , and the fact that both factors are
nonnegative, forces ai � ˇbi ! 0. Now since Ci has Chern number 1 and self-
intersection �1, we have

ci C di D 2.ai C bi / and cidi D 2aibi C 1:

Dividing the square of the first equation by the second shows that

(4-6)
.ci C di /

2

cidi
D
4..1Cˇ/bi C .ai �ˇbi //

2

2ˇb2i C 2.ai �ˇbi /bi C 1
:

Our hypotheses imply that the bi diverge to 1. Also, ai is a bounded distance
from ˇbi , and .ai �ˇbi /.ai � bi / is bounded with ˇ ¤ 1, in view of which

.ai �ˇbi /bi D
1

ˇ� 1
.ai �ˇbi /..ai � bi /� .ai �ˇbi //

remains bounded. Hence the limit of the right-hand side of (4-6) is 2.1Cˇ/2=ˇ . So
writing Si D ci=di we obtain limi!1.1CSi /2=Si D 2.1Cˇ/2=ˇ . But the function
x 7! .1C x/2=x D xC 2C 1=x restricts to Œ1;1/ as proper and strictly increasing,
so this forces Si ! S , where S is the unique solution greater than 1 to the equation
.1CS/2=S D 2.1Cˇ/2=ˇ .

4.2 The classes A.k/
i;n

We now begin the construction of explicit families of perfect classes that give rise to
infinite staircases. For any positive integer n let us define a sequence of elements

(4-7) Evi;n D .ai;n; bi;n; ci;n; di;n/ 2 Z4

recursively by

Ev0;n D .1; 0; 1; 1/; Ev1;nD .n; 1; 2nC 1; 1/; EviC2;n D 2nEviC1;n� Evi;n:
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We then let

Ai;n D .ai;n; bi;nIW.ci;n; di;n//:

Notice that the identity ci;nC di;n D 2.ai;nC bi;n/ clearly holds by induction on i ,
so that the Ai;n can be expressed in the form (2-17). The classes A.k/i;n promised in
the introduction are then obtained by applying the kth –order Brahmagupta move of
Definition 2.10 to Ai;n . (In particular, A.0/i;n D Ai;n .)

Clearly A0;n D .1; 0I 1/ D h0I 0;�1i 2 E . It is not difficult to check that A1;n D
.n; 1IW.2nC 1; 1// 2 E ; indeed, A1;n coincides with the class denoted by En in [3],
and this class is shown to belong to E in [3, Lemma 3.2]. Consequently, the following
will show that every Ai;n 2 E .

Lemma 4.5 For i � 2 and n� 1, Ai;n is Cremona equivalent to Ai�2;n .

Proof First we relate W.ci;n; di;n/ to W.ci�2;n; di�2;n/. We have c0;n D 1, c1;n D
2nC1, d0;nD d1;nD 1, and cj;nD 2ncj�1;n�cj�2;n and dj;nD 2ndj�1;n�dj�2;n .
So we find c2;n D 4n2C 2n� 1 and d2;n D 2n� 1. It is sometimes convenient to
allow the index j in cj;n and dj;n to take negative values; the recurrences then give
c�1;nD�1 and d�1;nD 2n�1. From these formulas we see that, for both j D 1 and
j D 2, we have identities

(4-8) cj;n� .2nC 2/dj;n D cj�2;n and dj;n� .2n� 2/cj�2;nD dj�2;n:

But then the recurrence relations defining our sequences make clear that if the identities
(4-8) hold for j D 1; 2, then they continue to hold for all j .

Now it is easy to see, using that n � 1, that fci;ng1iD0 and fdi;ng1iD0 are monotone
increasing sequences, and so in particular ci;n , di;n > 0 for all i � 0. If i � 2 we have,
using (4-8),

W.ci;n; di;n/D .d
�.2nC2/
i;n /tW.ci�2;n; di;n/

D .d
�.2nC2/
i;n ; c

�.2n�2/
i�2;n /tW.ci�2;n; di�2;n/:

We thus have

Ai;nD.ai;n; bi;nI d
�.2nC2/
i;n ; c

�.2n�2/
i�2;n ;W.ci�2;n; di�2;n//

Dhai;nCbi;n�di;nI ai;n�di;n; bi;n�di;n; d
�.2nC1/
i;n ; c

�.2n�2/
i�2;n ;W.ci�2;n; di�2;n/i:
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Applying the sequence c023 ı c045 ı � � � ı c0;2n;2nC1 of n Cremona moves each with
ı D bi;n� 2di;n yields˝
ai;nC.nC1/bi;n�.2nC1/di;nI

ai;nCnbi;n�.2nC1/di;n; .bi;n�di;n/
�.2nC1/; di;n; c

�.2n�2/
i�2;n ;W.ci�2;n; di�2;n/

˛
:

Now for all i one has ai;nC .nC 1/bi;n D ci;n (indeed this clearly holds for i D 0; 1
and therefore it holds for all i since ai;n , bi;n and ci;n all satisfy the same linear
recurrence), and the first equation in (4-8) shows that ci;n�.2nC1/di;nD ci�2;nCdi;n .
So the class displayed above can be rewritten as˝
ci�2;nC di;nI

ci�2;n� .bi;n� di;n/; .bi;n� di;n/
�.2nC1/; di;n; c

�.2n�2/
i�2;n ;W.ci�2;n; di�2;n/

˛
:

We can then apply n� 1 Cremona moves

c2nC2;2nC3;2nC4; c2nC2;2nC5;2nC6; : : : ; c2nC2;4n�1;4n;

each with ı D�ci�2;n , to obtain˝
di;n� .n� 2/ci�2;nI

ci�2;n� .bi;n� di;n/; .bi;n� di;n/
�.2nC1/; di;n� .n� 1/ci�2;n; 0

�.2n�2/;

W.ci�2;n; di�2;n/
˛
:

Now delete the zeros and apply n Cremona moves

c1;2;2nC2; c3;4;2nC2; : : : ; c2n�1;2n;2nC2;

each with ı D ci�2;n� 2.bi;n� di;n/, to obtain

(4-9)
˝
.2nC1/di;nC2ci�2;n�2nbi;nI

.ci�2;n�.bi;n�di;n//
�.2nC1/; bi;n�di;n; di;nCci�2;n�2n.bi;n�di;n/;

W.ci�2;n; di�2;n/
˛
:

Let us simplify some of the terms in (4-9). First, using the first equation in (4-8),

.2nC 1/di;nC 2ci�2;n� 2nbi;n D ci�2;nC ci;n� di;n� 2nbi;n D ci�2;n;

where the fact that

(4-10) ci;n� di;n� 2nbi;n D 0
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follows by a straightforward induction argument. Also, we find that

(4-11) bi;n� di;n D ci�2;n� bi�2;nI

indeed, extending the definition of bj;n using the recurrence, so that b�1;nD 2nb0;n�
b1;n D �1, this is easily seen to hold for i D 1; 2 and hence it holds for all i since
bi;n , ci;n and di;n all obey the same linear recurrence. This implies that

ci�2;n� .bi;n� di;n/D bi�2;n:

Moreover,

di;nC ci�2;n� 2n.bi;n� di;n/D�2nbi;n� di;nC .ci�2;nC .2nC 2/di;n/

D�2nbi;n� di;nC ci;n D 0;

where we have used (4-8) and (4-10). Thus after deleting a zero the class (4-9), which
is Cremona equivalent to Ai;n , can be rewritten as

hci�2;nI b
�.2nC1/
i�2;n ; ci�2;n� bi�2;n;W.ci�2;n; di�2;n/i:

The sequence of n Cremona moves c1;2;2nC1 ı c3;4;2nC1 ı � � � ı c2n�1;2n;2nC1 , each
with ı D�bi�2;n , transforms this to˝
ci�2;n�nbi�2;nI

bi�2;n; 0
�.2n/; ci�2;n� .nC 1/bi�2;n; di�2;n;W.ci�2;n� di�2;n; di�2;n/

˛
:

Deleting the zeros, then applying one last Cremona move c012 with ı D�di�2;n , and
then deleting another zero gives˝
ci�2;n�nbi�2;n�di�2;nI

bi�2;n�di�2;n; ci�2;n�.nC1/bi�2;n�di�2;n;W.ci�2;n�di�2;n; di�2;n/
˛

D .ci�2;n�.nC1/bi�2;n; bi�2;nI di�2;n;W.ci�2;n�di�2;n; di�2;n//

D .ai�2;n; bi�2;nIW.ci�2;n; di�2;n//D Ai�2;n;

where the identity cj;n� .nC 1/bj;n D aj;n , applied here with j D i � 2, follows as
usual by checking it for j D 0; 1 and using the fact that aj;n , bj;n and cj;n all satisfy
the same recurrence. So we have found a sequence of Cremona moves that maps Ai;n
to Ai�2;n when i � 2.

Corollary 4.6 For any n� 1 and i; k � 0, the class A.k/i;n belongs to E .

Proof This follows immediately from Lemma 4.5, Proposition 2.12 and the fact that
A0;n; A1;n 2 E .
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4.3 Verifying the infinite staircase criterion

To analyze the obstructions imposed by the classes A.k/i;n 2 E it is useful to first
give closed-form expressions for the integers ai;n , bi;n , ci;n and di;n from (4-7).
Throughout this section we will assume that n� 2. Let

!n D nC
p

n2� 1:

Then !n is the larger solution to the equation t2 D 2nt � 1, the smaller solution
being !�1n D n�

p
n2� 1. Thus both xi D !in and xi D !�in give solutions to the

recurrence xiC2 D 2nxiC1 � xi ; these solutions are linearly independent since we
assume that n>1, and so any solution fxig1iD0 to xiC2D 2nxiC1�xi must be a linear
combination (with coefficients independent of i ) of !in and !�in . This in particular
applies to each of the sequences fai;ng1iD0 , fbi;ng1iD0 , fci;ng1iD0 and fdi;ng1iD0 , and
using the initial conditions from (4-7) (and the fact that !n�!�1n D 2

p
n2� 1 while

!nC!
�1
n D 2n) to evaluate the coefficients shows that

(4-12)

ai;n D
1
2
.!inC!

�i
n /;

bi;n D
1

2
p
n2� 1

.!in�!
�i
n /;

ci;n D
1

2
p
n2� 1

..!nC 1/!
i
n� .!

�1
n C 1/!

�i
n /;

di;n D
1

2
p
n2� 1

..1�!�1n /!inC .!n� 1/!
�i
n /:

In particular,

(4-13) lim
i!1

ai;n

bi;n
D

p

n2� 1:

Applying the kth –order Brahmagupta move, we find that the classes A.k/i;n can be
written as A.k/i;n D .ai;n;k; bi;n;kIW.ci;n;k; di;n;k// where, as one can verify using
the facts that ci;nC di;n D 2.ai;nC bi;n/ (since Ai;n has Chern number 1) and that
ci;n � di;n D 2nbi;n (by (4-10)) together with (2-9), the entries ai;n;k , bi;n;k , ci;n;k
and di;n;k are given by

(4-14)

ai;n;k D
1
2
..H2kC 1/ai;nC .H2kC 2nP2k � 1/bi;n/;

bi;n;k D
1
2
..H2k � 1/ai;nC .H2kC 2nP2kC 1/bi;n/;

ci;n;k D
1
2
.P2kC2ci;n�P2kdi;n/;

di;n;k D
1
2
.P2kci;n�P2k�2di;n/:
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Let Ln;k D limi!1 ai;n;k=bi;n;k , so using (4-13),

(4-15) Ln;k D
H2k.

p
n2� 1C 1/C 2nP2kC .

p
n2� 1� 1/

H2k.
p
n2� 1C 1/C 2nP2k � .

p
n2� 1� 1/

:

We will see that each A.k/i;n satisfies the requirements of Lemma 4.1 with ˇ D Ln;k .

Lemma 4.7 For i , k � 0 and n� 2 we have

ai;n;k �Ln;kbi;n;k D
2!�in .H2kCnP2k/

H2k.
p
n2� 1C 1/C 2nP2k � .

p
n2� 1� 1/

:

Proof The above formulas for ai;n , bi;n , ai;n;k and bi;n;k yield

ai;n;k D
1

4
p
n2� 1

��
H2k.

p

n2� 1C 1/C 2nP2kC .
p

n2� 1� 1/
�
!in

C
�
H2k.

p

n2� 1� 1/� 2nP2kC .
p

n2� 1C 1/
�
!�in

�
;

bi;n;k D
1

4
p
n2� 1

�
.H2k.

p

n2� 1C 1/C 2nP2k � .
p

n2� 1� 1//!in

C
�
H2k.

p

n2� 1� 1/� 2nP2k � .
p

n2� 1C 1/
�
!�in

�
:

The coefficient of !in in the formula for ai;n;k is the numerator of (4-15) and the
coefficient of !in in the formula for bi;n;k is the denominator of (4-15) (of course this
is not a coincidence since Ln;k D limi!1 ai;n;k=bi;n;k ). Letting �n D

p
n2� 1, we

obtain

ai;n;k �Ln;kbi;n;k

D
!�in
4�n

�
.Ln;k � 1/.2nP2k �H2k.�n� 1//C .Ln;kC 1/.�nC 1/

�
D
!�in
4�n

2.�n� 1/.2nP2k �H2k.�n� 1//2.H2k.�nC 1/C 2nP2k/.�nC 1/

H2k.�nC 1/C 2nP2k � .�n� 1/

D
!�in

�
H2k..�nC 1/

2� .�n� 1/
2/C 2nP2k..�nC 1/C .�n� 1//

�
2�n.H2k.�nC 1/C 2nP2k � .�n� 1//

D
!�in .2H2kC 2nP2k/

H2k.�nC 1/C 2nP2k � .�n� 1/
:

We can now prove the inequalities in Lemma 4.1 for our classes A.k/i;n .
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Proposition 4.8 For any i; k � 0 and n� 2 we have .ai;n;k �Ln;kbi;n;k/2 <Ln;k .

Proof It is clear from Lemma 4.7 that it suffices to prove this in the case that i D 0,
as the left-hand side is a decreasing function of i . As in the proof of Lemma 4.7 we
let �n D

p
n2� 1. We find from Lemma 4.7 that

.a0;n;k �Ln;kb0;n;k/
2

Ln;k

D
.2H2kC 2nP2k/

2

.H2k.�nC 1/C 2nP2kC .�n� 1//.H2k.�nC 1/C 2nP2k � .�n� 1//

D
.2H2kC 2nP2k/

2

.H2k.�nC 1/C 2nP2k/
2� .�n� 1/2

D
.2H2kC 2nP2k/

2

..2H2kC 2nP2k/CH2k.�n� 1//
2� .�n� 1/2

< 1:

Proposition 4.9 For any i , k � 0 and n� 2 we have

.ai;n;k � bi;n;k/.ai;n;k �Ln;kbi;n;k/� 1:

Proof We have

ai;n;k � bi;n;k D ai;n� bi;n D
1

2
p
n2� 1

..
p

n2� 1� 1/!inC .
p

n2� 1C 1/!�in /:

Multiplying this by the identity in Lemma 4.7 gives

.ai;n;k � bi;n;k/.ai;n;k �Ln;kbi;n;k/

D
.
p
n2� 1� 1/.H2kCnP2k/

p
n2� 1.H2k.

p
n2� 1C 1/C 2nP2k � .

p
n2� 1� 1//

C!�2in

.
p
n2� 1C 1/.H2kCnP2k/

p
n2� 1.H2k.

p
n2� 1C 1/C 2nP2k � .

p
n2� 1� 1//

:

In particular, .ai;n;k � bi;n;k/.ai;n;k �Ln;kbi;n;k/ is a decreasing function of i , and
its value for i D 0 is

(4-16)
2.H2kCnP2k/

H2k.
p
n2� 1C 1/C 2nP2k � .

p
n2� 1� 1/

:

This is at most 1, since

H2k.
p

n2� 1C1/� .
p

n2� 1�1/D 2H2kC .H2k �1/.
p

n2� 1�1/� 2H2k :

We can now establish Theorem 1.10 from the introduction. Specifically:
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Corollary 4.10 For any k � 0 and n � 2, CLn;k
has an infinite staircase, with

accumulation point

(4-17) Sn;k D
.
p
n2� 1C 1/P2kC1CnH2kC1

.
p
n2� 1C 1/P2k�1CnH2k�1

satisfying the equation
.1CSn;k/

2

Sn;k
D
2.1CLn;k/

2

Ln;k
:

Proof Indeed it follows quickly from what we have done that the distinct perfect classes
A
.k/
i;n all satisfy the criteria of Theorem 4.4 with ˇ DLn;k : that ai;n;k �Ln;kbi;n;k is

immediate from Lemma 4.7, and the inequalities .ai;n;k �Ln;kbi;n;k/2 < 2Ln;k and
.ai;n;k�bi;n;k/.ai;n;k�Ln;kbi;n;k/ < 1CLn;k are given by Propositions 4.8 and 4.9,
respectively. Finally, we need to check that ci;n;k and di;n;k are relatively prime. The
proof of Corollary 2.11 shows that the Brahmagupta moves preserve the property that
gcd.c; d/D 1, so it suffices to show that gcd.ci;n; di;n/D 1. By (4-8), for i � 2 the
ideal generated by ci;n and di;n is the same as that generated by ci�2;n and di�2;n ,
reducing us to the case that i 2 f0; 1g. But this case is obvious since d0;n D d1;n D 1.
Thus Theorem 4.4 immediately implies the corollary, except that we still need to prove
the formula (4-17) for Sn;k .

To prove this formula, recall that by Theorem 4.4 our infinite staircase will have an
accumulation point at Sn;k D limi!1 ci;n;k=di;n;k so we just need to check that this
limit is equal to the right-hand side of (4-17). Now it is immediate from (4-12) that
limi!1 ci;n=di;nD .1C!n/=.1�!�1n /. So by taking the limit as i!1 of the ratio
of the last two equations in (4-14) we find, using the identities Pm�Pm�2 D 2Pm�1
and PmCPm�2 D 2Hm�1 , that

Sn;k D
P2kC2.1C!n/�P2k.1�!

�1
n /

P2k.1C!n/�P2k�2.1�!
�1
n /

D
2P2kC1CP2kC2.nC

p
n2� 1/CP2k.n�

p
n2� 1/

2P2k�1CP2k.nC
p
n2� 1/CP2k�2.n�

p
n2� 1/

D
.1C
p
n2� 1/P2kC1CnH2kC1

.1C
p
n2� 1/P2k�1CnH2k�1

:

4.4 Ai;n and the volume constraint

The proof of Corollary 4.10 — specifically, a combination of Propositions 4.2, 4.3,
4.8 and 4.9 — shows that for each i there is an open interval U around ci;n;k=di;n;k
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such that

(4-18) CLn;k
.˛/D �̨ ;Ln;k

.A
.k/
i;n / for all ˛ 2 U:

This is enough to show that CLn;k
has an infinite staircase, but it leaves a number of

other questions about CLn;k
unanswered, since these open intervals may be rather small.

Proposition 1.5 shows that, for all ˛ , we have CLn;k
.˛/ � supi �̨ ;Ln;k

.A
.k/
i;n /. Now

the formulas (4-12) obviously imply that ci;n=di;n < ciC1;n=diC1;n , and based on
(4-14) and (2-6), specifically the fact that P 2

2k
�P2k�2P2kC2 D 4 > 0, it follows that

ci;n;k=di;n;k <ciC1;n;k=diC1;n;k for all i , n and k . By examining supi �� ;Ln;k
.A.k/i;n /

on the interval Œci;n;k=di;n;k; ciC1;n;k=diC1;n;k�, we conclude that

(4-19) CLn;k
.˛/�max

�
ci;n;k

ai;n;kCLn;kbi;n;k
;

diC1;n;k˛

aiC1;n;kCLn;kbiC1;n;k

�

for ˛ 2
�
ci;n;k

di;n;k
;
ciC1;n;k

diC1;n;k

�
;

with equality on a neighborhood of the endpoints of Œci;n;k=di;n;k; ciC1;n;k=diC1;n;k�.
Moreover our analysis shows that the maximum above is attained by the first term for
˛ D ci;n;k=di;n;k and by the second term for ˛ D ciC1;n;k=di;n;k , so the value

˛ D
ci;n;k.aiC1;n;kCLn;kbiC1;n;k/

diC1;n;k.ai;n;kCLn;kbi;n;k/

at which the two terms are equal lies in the interval Œci;n;k=di;n;k; ciC1;n;k=diC1;n;k�.
It turns out that (at least for k D 0, though more extensive calculations would likely
yield the same conclusion for arbitrary k ) equality does not hold in (4-19) throughout
the entire interval Œci;n;k=di;n;k; ciC1;n;k=diC1;n;k�.

More specifically, restricting to the case k D 0, we have Ln;0 D
p
n2� 1 and

ai;n;0CLn;0bi;n;0 D ai;nC
p

n2� 1bi;n D !
i
n:

Thus the right-hand side of (4-19) simplifies to

maxfci;n!�in ; diC1;n˛!
�i�1
n g;

and the two terms in the maximum are equal to each other when ˛ D ci;n!n=diC1;n .
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Proposition 4.11 For i � 0 and n� 2 we have

(4-20) c2i;n!
�2i
n <

ci;n!n

2
p
n2� 1diC1;n

:

Proof Note first of all that

!2n � 1D .2n
2
� 1C 2n

p

n2� 1/� 1D 2
p

n2� 1.nC
p

n2� 1/D 2
p

n2� 1!n:

From this together with (4-12), one computes

2
p

n2� 1ci;ndiC1;n

D
1

2
p
n2� 1

..!nC 1/!
i
n� .!nC 1/!

�i�1
n /..!n� 1/!

i
nC .!n� 1/!

�i�1
n /

D
!2n � 1

2
p
n2� 1

.!2in �!
�2i�2
n /D !2iC1n �!�2i�1n :

Since (4-20) is obviously equivalent to the inequality

2
p

n2� 1ci;ndiC1;n < !
2iC1
n ;

the conclusion is immediate.

Corollary 4.12 For ˛ D ci;n!n=diC1;n , we have

(4-21) CLn;0
.˛/�

r
˛

2Ln;0
> sup

i

�̨ ;Ln;0
.Ai;n/:

Proof The first inequality is just the volume constraint. To prove the second inequality,
observe that the left-hand side of (4-20) is the square of the right-hand side of (4-19) at
˛ D ci;n!n=diC1;n , which we noted earlier is equal to supi �̨ ;Ln;0

.Ai;n/, while the
right-hand side of (4-20) is the square of the volume obstruction

p
˛=2Ln;0 .

Thus the classes Ai;n do not suffice by themselves to determine the behavior of CLn;0

between the stairs (at ci;n=di;n ) that we identified in proving Corollary 4.10. In fact
we will see in Section 4.6 that the first inequality in (4-21) is also strict, as there are
classes yAi;n which give obstructions that are stronger than the volume on the intervals
on which supi �̨ ;Ln;0

.Ai;n/ falls under the volume constraint.

Computer calculations show that the analogous statement to Corollary 4.12 continues
to hold at least for many other values of n and k (not just for k D 0 as above). If

˛ D
ci;n;k.aiC1;n;kCLn;kbiC1;n;k/

diC1;n;k.ai;n;kCLn;kbi;n;k/
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is the point at which the two terms in the maximum on the right-hand side of (4-19)
agree, the statement that

p
˛=2Ln;k> supi �̨ ;Ln;k

.A
.k/
i;n / is easily seen to be equivalent

to the statement that

2Ln;kci;n;kdiC1;n;k � .ai;n;kCLn;kbi;n;k/.aiC1;n;kCLn;kbiC1;n;k/ < 0:

Using the definitions (4-12), (4-14) and (4-15), one can expand the left-hand side above
in the form

rn;k!
2i
n C sn;kC tn;k!

�2i
n ;

where rn;k , sn;k and tn;k are (at least at first sight) rather complicated expressions
involving Pell numbers and

p
n2� 1, but are independent of i . Carrying this out in

Mathematica, we have in fact found that rn;k D sn;k D 0 for all n and k , and that
tn;k < 0 whenever n; k � 100. Thus for all n; k � 100 and all i , there are points
˛ 2 Œci;n;k=di;n;k; ciC1;n;k=diC1;n;k� at which

p
˛=2Ln;k > supi �̨ ;Ln;k

.A.k/i;n /.

4.5 Some facts about Ln;k and Sn;k

Since the formulas (4-15) and (4-17) for the “aspect ratios” Ln;k and the corresponding
accumulation points Sn;k are a bit complicated, let us point out a few elementary facts
about these numbers.

Proposition 4.13 For all n� 2 we have

(4-22) 2nC 2 < Sn;0 < 2nC 2C
1

2n� 2
;

and, for k � 1,
P2kC4

P2kC2
< Sn;k < SnC1;k <

P2kC2

P2k
:

Proof The k D 0 case of (4-17) gives

Sn;0 D

p
n2� 1C 1Cn
p
n2� 1C 1�n

D
1C!n

1�!�1n
:

Using that !2n D 2n!n� 1, and hence that �2�!�1n D !n� .2nC 2/, we find

.!n�!
�1
n /Sn;0 D

.!n�!
�1
n /.!nC 1/

1�!�1n
D
!2nC!n� 1�!

�1
n

1�!�1n

D
.2nC 1/!n� 2�!

�1
n

1�!�1n
D
.2nC 2/!n� .2nC 2/

1�!�1n
D .2nC 2/!n:
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Thus
Sn;0 D .2nC 2/

!n

!n�!�1n
> 2nC 2:

Furthermore,

.2n� 2/.Sn;0� .2nC 2//D
4.n2� 1/!�1n
!n�!�1n

D
4.n2� 1/.n�

p
n2� 1/

2
p
n2� 1

D 2n
p

n2� 1� 2.n2� 1/ < 1;

where the last inequality follows from the fact that .n � 1=2n/2 > n2 � 1, so that
2n
p
n2� 1 < 2n.n� 1=2n/D 2n2� 1. This completes the proof of (4-22).

For the remaining statement, recall that, by construction, Sn;k D limi!1 ci;n;k=di;n;k .
So by taking the limit of the ratio of the last two equations of (4-14) as i !1 it is
clear that

Sn;k D
P2kC2Sn;0�P2k

P2kSn;0�P2k�2

for k � 1. Since P2kC2=P2k < P2k=P2k�2 by Proposition 2.1, the function

t 7!
P2kC2t �P2k

P2kt �P2k�2

is strictly increasing. By (4-22) and our assumption that n � 2, we have SnC1;0 >
Sn;0 > 6 and hence

6P2kC2�P2k

6P2k �P2k�2
< Sn;k < SnC1;0 < lim

t!1

P2kC2t �P2k

P2kt �P2k�2
:

But the limit on the right is equal to P2kC2=P2k , while (2-12) shows that the expression
on the left is equal to P2kC4=P2kC2 .

We now describe the locations of the Ln;k , in particular indicating how they compare
to the various bm from (3-5).

Proposition 4.14 For any n� 2 and k � 0 we have Ln;k <LnC1;k , and

Ln;k 2

8<:
.b2k; b2k�1/ if n� 4;
.b2kC1; b2k/ if nD 3;
.b2kC2; b2kC1/ if nD 2:

Also, for all n� 2 and all k we have

2P2kC2C 1

2P2kC2� 1
< Ln;k <

H2kC1C 1

H2kC1� 1
D lim
n!1

Ln;k :
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Proof Since x 7! .1Cx/2=x is a strictly increasing function of x as long as x >1, the
equation .1CSn;k/2=Sn;kD 2.1CLn;k/2=Ln;k and the fact that Sn;k; Ln;k >1 allow
us to conclude that Ln;k < LnC1;k directly from the fact, proven in Proposition 4.13,
that Sn;k < SnC1;k .

Let

(4-23) mn;k D
Ln;k � 1

Ln;kC 1
D

p
n2� 1� 1

H2k.
p
n2� 1C 1/C 2nP2k

:

As t 7! .t�1/=.tC1/ is a strictly increasing function for t >0, to show that Ln;k lies in
some interval .s; t/ it suffices to show that mn;k lies in ..s�1/=.sC1/; .t�1/=.tC1//.

From (3-5) one finds

b2kC 1

b2k � 1
D P2kC2 and

b2kC1C 1

b2kC1� 1
DH2kC2:

We see that

1

m2;k
D
.
p
3C 1/H2kC 4P2k
p
3� 1

D .2C
p
3/H2kC .2C 2

p
3/P2k

D 2P2kC1C
p
3H2kC1 2 .H2kC2; 2P2kC2/;

since H2kC2 D 2P2kC1CH2kC1 while 2P2kC2 D 2P2kC1C 2H2kC1 . Thus

m2;k 2

�
1

2P2kC2
;

1

H2kC2

�
�

�
b2kC2� 1

b2kC2C 1
;
b2kC1� 1

b2kC1C 1

�
;

and so L2;k 2 .b2kC2; b2kC1/. (In fact the argument shows more specifically that
L2;k > .2P2kC2C 1/=.2P2kC2� 1/, which is larger than b2kC2 .)

Also,

1

m3;k
D

p
8C 1
p
8� 1

H2kC
6

p
8� 1

P2k D

�
9C 4

p
2

7

�
H2kC

�
6C 12

p
2

7

�
P2k

2 .2H2kC 3P2k; 3H2kC 4P2k/D .2P2kC1CP2k; 3P2kC1CP2k/

D .P2kC2; P2kC2CP2kC1/

D .P2kC2;H2kC2/;

where we have used both equalities in (2-9) and the facts that 2 < 9C4
p
2

7
< 3 and

3 < 6C12
p
2

7
< 4. So m3;k 2 .1=H2kC2; 1=P2kC2/, and so L3;k 2 .b2kC1; b2k/.
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Similarly,

1

m4;k
D

p
15C 1
p
15� 1

H2kC
8

p
15� 1

P2k D

�
8C
p
15

7

�
H2kC

�
4C 4

p
15

7

�
P2k

< P2kC2;

which implies that L4;k >b2k . So since Ln;k <LnC1;k for all n we have Ln;k >b2k
for n� 4. Furthermore,

Ln;k < lim
n!1

Ln;k D
H2kC 2P2kC 1

H2kC 2P2k � 1
D
H2kC1C 1

H2kC1� 1
:

Since
H2kC1C 1

H2kC1� 1
<
H2kC 1

H2k � 1
D b2k�1;

this suffices to complete the proof.

We now give a bit more information about the function of two variables .˛; ˇ/ 7!Cˇ .˛/

near .˛; ˇ/ D .Sn;k; Ln;k/. Some useful context is provided by the following mild
extension of [4, Corollary 4.9].

Proposition 4.15 Fix 
 > 1. There are only finitely many elements ED .x; yI Em/2 zE
having all mi ¤ 0 for which there exist ˛; ˇ > 1 such that �˛;ˇ .E/� 


p
˛=2ˇ .

Recall from the introduction that zE consists of classes .x; yI Em/ 2H2 having Chern
number 1 and self-intersection �1 which are either equal to the Poincaré duals of the
standard exceptional divisors E 0i or else have all coordinates of Em nonnegative; in
particular, E � zE . The provision that all mi ¤ 0 is included due to the trivial point that
if .x; yI Em/ satisfies the condition then so does .x; yI 0; : : : ; 0; Em/ (which formally
speaking represents a different element of zE �H2 ), where the string of zeros can be
arbitrarily long.

Proof Suppose that E 2 zE has �˛;ˇ .E/ � 

p
˛=2ˇ where ˛; ˇ � 1, and write

E D .x; yI Em/, so the fact that E has self-intersection �1 shows that k Emk D 2xyC1.
Since �˛;ˇ .E 0i / D 0 by definition, E is not one of the standard classes E 0i , so all
coordinates of Em are nonnegative and hence x C y > 0 with x; y � 0. Using the
Cauchy–Schwarz inequality and the fact that kw.˛/k2 D ˛ , we then find that

(4-24) 


r
˛

2ˇ
� �˛;ˇ .E/D

w.˛/ � Em

xCˇy
�

p
˛
p
2xyC 1

xCˇy
:
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Now since 0 � .x � ˇy/2 D .xC ˇy/2 � 4ˇxy and since xC ˇy > 0, rearranging
(4-24) gives


 �

r
4ˇxyC 2ˇ

4ˇxy
D

r
1C

1

2xy
I

in other words,
2xy �

1


2� 1
:

But there are only finitely many pairs of positive integers x and y obeying 2xy �
1=.
2 � 1/; for each of these pairs .x; y/ there are only finitely many sequences of
positive integers mi obeying 2xy �

P
m2i D �1. Thus there are only finitely many

classes satisfying the condition that have both x; y > 0. We should also consider the
possibility that one of x or y is zero, but in this case the condition 2xy�

PN
iD1m

2
i D�1

with all mi nonzero forces N to be 1 and m1 to be ˙1, so that the Chern number
condition 2.xCy/�

P
mi D 1 forces either xCy D 0 and m1 D�1, or xCy D 1

and m1 D 1. So allowing x or y to be zero does not change the fact that only finitely
many classes in zE obey the condition.

Corollary 4.16 If ˇ , S � 1 and if the function Cˇ has an infinite staircase accumu-
lating at S , then Cˇ .S/D

p
S=2ˇ .

Proof Of course Cˇ .S/ �
p
S=2ˇ by volume considerations. If equality failed

to hold then we could find a neighborhood U of S and a value 
 > 1 such that
Cˇ .˛/ � 


p
˛=2ˇ for all ˛ 2 U . But then, by (1-7) and Proposition 4.15, Cˇ .˛/

would be given for ˛ 2 U as the maximum of the values �˛;ˇ .E/ where E varies
through a finite subset of E that is independent of ˛ . Since the functions ˛ 7!�˛;ˇ .E/

are piecewise affine (with finitely many pieces), by [9, Section 2] this would contradict
the fact that S is an accumulation point of an infinite staircase.

In particular, Corollary 4.16 applies with ˇDLn;k and S D Sn;k , so that CLn;k
.Sn;k/

agrees with the volume bound, and we have

(4-25) �Sn;k ;Ln;k
.E/�

r
Sn;k

2Ln;k
for all E 2 E :

We will see now that there are at least two distinct choices of E 2 E for which the
bound (4-25) is sharp. This will later help give us some indication of what happens to
our infinite staircases when ˇ is varied away from one of the Ln;k .
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Proposition 4.17 Let n� 2 and k � 1. Then

�Sn;k ;Ln;k
..2; 2I 2; 1�5//D

r
Sn;k

2Ln;k
:

Proof By Propositions 2.1 and 4.13 we have

�2 < Sn;k <
P4

P2
D 6;

so since �2 D 3C 2
p
2 > 5 we have

w.Sn;k/D .1
�5;W.1; Sn;k � 5//D .1

�5; Sn;k � 5;W.6�Sn;k; Sn;k � 5//:

Hence

�Sn;k ;Ln;k
..2; 2I 2; 1�5//D

.2; 1�5/ � .1�5; Sn;k � 5;W.6�Sn;k; Sn;k � 5//

2C 2Ln;k

D
2C 4CSn;k � 5

2.1CLn;k/
D
1

2

�
1CSn;k

1CLn;k

�
:

But the identity .1CSn;k/2=Sn;k D 2.1CLn;k/2=Ln;k from Corollary 4.10 implies
immediately that

1

2

�
1CSn;k

1CLn;k

�
D

r
Sn;k

2Ln;k
:

Proposition 4.17 does not apply to the case k D 0 because Sn;0 > 6, leading w.Sn;0/
to have a different form. Here is the analogous statement for that case.

Proposition 4.18 For any n� 2 let

Gn D .2n
2
�n� 1; 2n� 1I 2n� 1; .2n� 2/�.2nC1/; 1�.2n�2//:

Then Gn 2 E , and

�Sn;0;Ln;0
.Gn/D

r
Sn;0

2Ln;0
D

!n

!n� 1
:

Proof Changing basis as usual, we find

Gn D h2n
2
�n� 1I 2n2� 3n; 0; .2n� 2/�.2nC1/; 1�.2n�2/i:

Applying n Cremona moves c034; c056; : : : ; c0;2nC1;2nC2 , each with ı D �2nC 3,
reduces this to

h2n� 1I 0; 0; 2n� 2; 1�.4n�2/i;
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which after deleting zeros and changing basis simply yields .2n� 2; 1IW.4n� 3; 1//,
which is the familiar class A1;2n�2 that of course belongs to E . Thus Gn 2 E .

Now in view of Proposition 4.13 we have

w.Sn;0/D
�
1�.2nC2/;W.1; Sn;0�.2nC2//

�
D
�
1�.2nC2/; .Sn;0�.2nC2//

�.2n�2/;W.1�.2n�2/.Sn;0�.2nC2//;

Sn;0�.2nC2//
�

and hence

.2n� 1; .2n� 2/�.2nC1/; 1�.2n�2// �w.Sn;0/

D 2n� 1C .2n� 2/.2nC 1/C .2n� 2/.Sn;0� .2nC 2//

D 1C .2n� 2/.2nC 2/C .2n� 2/.Sn;0� .2nC 2//D .2n� 2/Sn;0C 1:

Hence

(4-26) �Sn;0;Ln;0
.Gn/D

.2n� 2/Sn;0C 1

.2n2�n� 1/C .2n� 1/Ln;0
:

Now Ln;0 D
p
n2� 1, so the denominator of the above fraction is

.2n2�n� 1/C .2n� 1/
p

n2� 1D .2n� 1/.nC
p

n2� 1/� 1D !2n �!n:

So since Sn;0 D .!nC 1/=.1�!�1n / and !2n D 2n!n� 1,

(4-27) �Sn;0;Ln;0
.Gn/D

.2n� 2/.!nC 1/=.1�!
�1
n /C 1

!2n �!n

D
.2n� 2/.!nC 1/C .1�!

�1
n /

.!n� 1/2

D
!2n � 2!nC 2n�!

�1
n

.!n� 1/2
D

!2n �!n

.!n� 1/2
D

!n

!n� 1
:

On the other hand since 2Ln;0 D 2
p
n2� 1D !n�!

�1
n , we have

Sn;0

2Ln;0
D

!nC 1

.1�!�1n /.!n�!�1n /
D

!2n.!nC 1/

.!n� 1/.!2n � 1/
D

!2n
.!n� 1/2

:

So by (4-27) we indeed have �Sn;0;Ln;0
.Gn/D

p
Sn;0=2Ln;0 D !n=.!n� 1/.

Proposition 4.19 Let k � 0 and n� 2. Then

�Sn;k ;Ln;k
.A
.k/
1;nC1/D

s
Sn;k

2Ln;k
:
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Proof We have, freely using identities from Section 2.1,

A
.k/
1;nC1 D

�
1
2

�
.H2kC 1/.nC 1/CH2kC .2nC 2/P2k � 1

�
;

1
2

�
.H2k � 1/.nC 1/CH2kC .2nC 2/P2kC 1

�
I

W
�
1
2
.P2kC2.2nC 3/�P2k/;

1
2
.P2k.2nC 3/�P2k�2/

��
D

�
1
2

�
n.H2kC1C 1/C 2P2kC1

�
; 1
2

�
n.H2kC1� 1/C 2P2kC1

�
I

W.nP2kC2CH2kC2; nP2kCH2k/
�
:

Now we have Sn;k D .P2kC2Sn;0 � P2k/=.P2kSn;0 � P2k�2/ and Sn;0 < 2nC 3

by Proposition 4.13, so since t 7! .P2kC2t �P2k/=.P2kt �P2k�2/ is an increasing
function (as can be seen from Proposition 2.1) it follows that

Sn;k <
c1;nC1;k

d1;n;k
D
P2kC2.nC 1/�P2k

P2k.nC 1/�P2k�2
:

So Sn;k lies in the region on which �� ;Ln;k
.A
.k/
1;nC1/ is linear. Abbreviating �n Dp

n2� 1 as in earlier proofs, we have

�Sn;k ;Ln;k
.A
.k/
1;nC1/

D
.nP2kCH2k/Sn;k

1
2
.n.H2kC1C 1/C 2P2kC1/C

1
2
.n.H2kC1� 1/C 2P2kC1/Ln;k

D
.nP2kCH2k/Sn;k

1
2
.nH2kC1C 2P2kC1/.Ln;kC 1/�

1
2
n.Ln;k � 1/

D

.nP2kCH2k/
.�nC 1/P2kC1CnH2kC1

.�nC 1/P2k�1CnH2k�1

.nH2kC1C 2P2kC1/..�nC 1/H2kC 2nP2k/�n.�n� 1/

H2k.�nC 1/C 2nP2k � .�n� 1/

:

Meanwhile,s
Sn;k

2Ln;k
D

Sn;kC 1

2.Ln;kC 1/
D

2.�nC 1/H2kC 4nP2k

.�nC 1/P2k�1CnH2k�1

4.�nC 1/H2kC 8nP2k

H2k.�nC 1/C 2nP2k � .�n� 1/

:

Thus

�Sn;k ;Ln;k
.A
.k/
1;nC1/p

Sn;k=.2Ln;k/
D

2.nP2kCH2k/..�nC 1/P2kC1CnH2kC1/

.nH2kC1C 2P2kC1/..�nC 1/H2kC 2nP2k/�n.�n� 1/
:
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By expanding out both the numerator and the denominator, and twice using the identity
H2kH2kC1 D 2P2kP2kC1C 1, the above fraction simplifies to 1.

Thus at the accumulation point Sn;k of each of our infinite staircases we have two
distinct classes — namely Gn and A1;nC1 if k D 0, and .2; 2I 2; 1�5/ and A.k/1;nC1
if k > 0— which are not themselves involved in the infinite staircase for Ln;k , but
whose associated obstructions exactly match the volume bound at .Sn;k; Ln;k/. The
following discussion will show that these classes lead the infinite staircase to disappear
when the aspect ratio ˇ of the target polydisk is varied from Ln;k . We leave the proof
of the following simple calculus exercise to the reader.

Proposition 4.20 Let a , b , c , d , t0 > 0 and suppose that c=.aC t0b/ D d=
p
t0 .

Then
d

dt

�
c

aC tb
�
d
p
t

�
tDt0

has the same sign as a� t0b .

Corollary 4.21 Given n� 2 and k � 0 there is an � > 0 such that

�Sn;k ;ˇ .A
.k/
1;nC1/ >

r
Sn;k

2ˇ
for Ln;k < ˇ < Ln;kC �;

�Sn;k ;ˇ ..2; 2I 2; 1
�5// >

r
Sn;k

2ˇ
for Ln;k � � < ˇ < Ln;k if k � 1;

�Sn;k ;ˇ .Gn/ >

r
Sn;k

2ˇ
for Ln;k � � < ˇ < Ln;k if k D 0:

Thus for any choice of n and k we have

Cˇ .Sn;k/ >

r
Sn;k

2ˇ
for 0 < jˇ�Ln;kj< �:

Proof �Sn;k ;ˇ .A
.k/
1;nC1/ and the various �Sn;k ;ˇ .E/ are, as functions of ˇ , of the

form ˇ 7! c=.aC ˇb/, where a and b are the first two entries in the expression of
A
.k/
1;nC1 or E as .a; bI Em/. So by Propositions 4.19 and 4.20 the first statement follows

from the statement that a1;nC1;k > Ln;kb1;nC1;k , which holds by Lemma 4.7 and the
fact that LnC1;k >Ln;k . Similarly the second statement follows from Propositions 4.17
and 4.20 and the fact that 2� 2Ln;k < 0. Finally the third statement follows from
Propositions 4.18 and 4.20 and the calculation

.2n2�n�1/2�L2n;0.2n�1/
2
D .2n2�n�1/2�.n2�1/.2n�1/2D�2nC2< 0:
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Combining Corollary 4.21 with Proposition 4.15 and continuity considerations, we
see that if ˇ is sufficiently close to but not equal to Ln;k then Cˇ is given on a
neighborhood Uˇ of Sn;k as the maximum of a finite collection of obstruction func-
tions � � ;ˇ .E/. In particular, for any given such ˇ , only finitely many of the A.k/i;n can
influence Cˇ in this neighborhood. A bit more strongly, ci;n;k=di;n;k! Sn;k implies
that for all but finitely many i it will hold that ci;n;k=di;n;k 2 Uˇ , and so we will have
Cˇ .ci;n;k=di;n;k/ > �ci;n;k=di;n;k ;ˇ .A

.k/
i;n /. But, just as in the proof of Proposition 1.5,

this latter inequality implies that in fact Cˇ .˛/ > �̨ ;ˇ .A
.k/
i;n / for all ˛ . Thus for a

fixed ˇ with 0 < jˇ�Ln;kj< � , only finitely many of the �� ;ˇ .A
.k/
i;n / ever coincide

with Cˇ . Similar remarks apply to the classes yA.k/i;n discussed in the next section.

4.6 Additional obstructions

We will see now that the Ai;n D A
.0/
i;n are not the only classes that contribute to the

infinite staircase for Ln;0 D
p
n2� 1. For each n � 2 define a sequence of integer

vectors Ewi;n D .yai;n; ybi;n; yci;n; ydi;n/ by

Ew�1;n D .nC 1;�1;�1; 2nC 1/; Ew0;n D .n� 1; 1; 2n� 1; 1/;

EwiC2;n D .4n
2
� 2/ EwiC1;n� Ewi;n� .0; 4n; 4nC 4; 4n� 4/:

Since it is clear from these recurrences that yai;n , ybi;n , yci;n and ydi;n are all nonnegative
for i � 0, we can then define a class

yAi;n D .yai;n; ybi;n;W.yci;n; ydi;n//:

In terms of the ai;n; bi;n; ci;n; di;n from (4-12) one finds that

(4-28)
yai;n D a2iC1;n�b2iC1;n; ybi;n D b2iC1;n�

1

n2�1
.a2iC1;n�n/

yci;n D b2iC2;n�
1

n�1
.a2iC1;n�1/; ydi;n D�b2i;nC

1

nC1
.a2iC1;nC1/:

Using (4-12) one then finds that

(4-29)
a2iC1;n� 1

n� 1
ydi;n� b2i;nyci;n

D
a22iC1;n� 1

n2� 1
� b2i;nb2iC2;n

D
1

4.n2� 1/

�
.!4iC2n � 2C!�4i�2n /� .!2in �!

�2i
n /.!2iC2n �!�2i�2n /

�
D
.!n�!

�1
n /2

4.n2� 1/
D 1;
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which in particular implies that gcd.yci;n; ydi;n/D 1. Also, using (by a straightforward
induction argument) that

b2iC2;n� b2i;n D 2nb2iC1;n� 2b2i;n D 2a2iC1;n;

one sees that

yci;nC ydi;n D b2iC2;n� b2i;nC
1

n2� 1
.2n� 2a2iC1;n/D 2.yai;nC ybi;n/:

Together with the fact that gcd.yci;n; ydi;n/D1, this implies that yAi;n has Chern number 1
by [9, Lemma 1.2.6]. Moreover a routine computation shows 2yai;nybi;n�yci;n ydi;nD�1,
ie that yAi;n has self-intersection �1.

This suffices to show that yAi;n is quasiperfect and hence, as seen in Proposition 1.5,
that Cˇ .˛/� �̨ ;ˇ . yAi;n/. We expect that the yAi;n are all perfect, but we will neither
prove nor use this.

We record the following identities, each of which can be proven by a straightforward
but (in some cases) tedious calculation based on (4-12) and (4-28):

yci;ndi;n� ydi;nci;n D 2.aiC1;n� biC1;n/;(4-30)

yci;ndiC1;n� ydi;nciC1;n D�2.ai;n� bi;n/;(4-31)

yci;n.ai;nC
p
n2� 1bi;n/� ci;n.yai;nC

p
n2� 1ybi;n/D !

�i�1
n ;(4-32)

ydi;n.aiC1;nC
p

n2� 1biC1;n/� diC1;n.yai;nC
p

n2� 1ybi;n/D !
�i
n ;(4-33)

2yci;ndiC1;n
p

n2� 1� .yai;nC
p

n2� 1ybi;n/.aiC1;nC
p

n2� 1biC1;n/(4-34)

D
!�i�1n
p
n2� 1

.n� .1C
p

n2� 1/!�2i�1n /:

(In each of our applications of these identities, the signs of the right-hand sides, not
their exact values, will be what is relevant.) Since ai;n > bi;n for all i � 0; n� 2, the
identities (4-30) and (4-31) show that

(4-35)
ci;n

di;n
<
yci;n

ydi;n
<
ciC1;n

diC1;n
:

Now �
ci;n=di;n;

p
n2�1

.Ai;n/Dci;n=.ai;nC
p
n2� 1bi;n/ provides a lower bound for the

value of Cp
n2�1

.˛/ at any ˛ � ci;n=di;n , and in particular at ˛D yci;n= ydi;n . However,
(4-32) shows that this lower bound for Cpn2�1.yci;n= ydi;n/ coming from Ai;n is smaller
than the lower bound �yci;n= ydi;n;

p
n2�1. yAi;n/ coming from our new class yAi;n .
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Using (4-19) and the fact that ai;nC
p
n2� 1bi;n D !

i
n , we have

(4-36) Cp
n2�1

.˛/�maxfci;n!�in ; �̨ ;
p
n2�1

. yAi;n/; diC1;n!
�i�1
n ˛g

for ˛ 2 Œci;n=di;n; ciC1;n=diC1;n�.

Proposition 4.22 Denote the right-hand side of (4-36) by yBi;n.˛/. Then for all
˛ 2 Œci;n=di;n; ciC1;n=diC1;n� we have

yBi;n.˛/ >

r
˛

2
p
n2� 1

:

Thus, Cp
n2�1

is strictly greater than the volume bound throughout the interval
Œci;n=di;n; ciC1;n=diC1;n�.

Proof We claim

.ci;n!
�i
n /

2 >
yci;n

2
p
n2� 1 ydi;n

;(i) �
yci;n

yai;nC
p
n2� 1ybi;n

�2
>

yci;n!
iC1
n

2
p
n2� 1diC1;n.yai;nC

p
n2� 1ybi;n/

:(ii)

To prove (i), first note that a routine computation shows that c2i;nD .a2iC1;n�1/=.n�1/,
and so (4-29) shows that

c2i;n
ydi;n D b2i;nyci;nC 1:

Thus (i) is equivalent to the statement that

2
p

n2� 1!�2in .b2i;nyci;nC 1/ > yci;n:

Since 2
p
n2� 1b2i;n!

�2i
n D 1�!�4in , this in turn is equivalent to the statement that

�yci;n!
�4i
n C 2

p
n2� 1!�2in > 0, ie that

(4-37) yci;n < 2
p

n2� 1!2in :

We find

yci;n D
1

2
p
n2� 1

.!2iC2n �!�2i�2n /�
1

2.n�1/
.!2iC1n � 2C!�2i�1n /

D
!2in

2
p
n2� 1

�
!2n �

r
nC1

n�1
!n

�
C

1

n�1
�

!�2in

2
p
n2� 1

�
!�2n C

r
nC1

n�1
!�1n

�
<

!2in

2
p
n2� 1

�
!2n �

r
nC1

n�1
!nC 2!

�2i
n

r
nC1

n�1

�
:
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Now

!2n �

r
nC1

n�1
!nC 2!

�2i
n

r
nC1

n�1

� !2n �

p
nC 1.!n� 2/
p
n� 1

D 2n2� 1C 2n
p

n2� 1�

r
nC1

n�1
.n� 2C

p

n2� 1/

D .2n2� 1/� .nC 1/C 2n
p

n2� 1� .n� 2/

r
nC1

n�1

� .2n2� 4/C 2n
p

n2� 1 < 4.n2� 1/

since n� 2. Thus

yci;n <
!2in

2
p
n2� 1

� 4.n2� 1/D 2
p

n2� 1!2in ;

proving (4-37) and hence proving claim (i) at the start of the proof.

As for claim (ii), that claim is equivalent to the statement that

yci;n

yai;nC
p
n2� 1ybi;n

>
aiC1;nC

p
n2� 1biC1;n

2
p
n2� 1diC1;n

:

But this latter inequality follows immediately from (4-34).

We now deduce the proposition from claims (i) and (ii). By definition yBi;n.˛/�ci;n!�in
for all i , so claim (i) shows that

yBi;n.˛/�

r
˛

2
p
n2� 1

for all ˛ �
yci;n

ydi;n
:

Next let

˛0 D
yci;n!

iC1
n

diC1;n.yai;nC
p
n2� 1ybi;n/

:

Then (4-33) implies that ˛0 > yci;n= ydi;n , and claim (ii) shows that

yci;n

yai;nC
p
n2� 1ybi;n

>

r
˛0

2
p
n2� 1

:

For all ˛ 2 Œyci;n= ydi;n; ˛0� we then have

yBi;n.˛/�
yci;n

yai;nC
p
n2� 1ybi;n

>

r
˛0

2
p
n2� 1

�

r
˛

2
p
n2� 1

:
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Finally, ˛0 was chosen to have the property that

yci;n

yai;nC
p
n2� 1ybi;n

D diC1;n!
�i�1
n ˛0;

so we have

diC1;n!
�i�1
n ˛ >

r
˛

2
p
n2� 1

for ˛ D ˛0; and hence also for all ˛ > ˛0:

But by definition, yBi;n.˛/� diC1;n!�i�1n ˛ for all ˛ . So we have shown that yBi;n.˛/
is strictly greater than the volume bound

p
˛=2
p
n2� 1 for all ˛ in each of the three

intervals Œci;n=di;n; yci;n= ydi;n�, Œyci;n= ydi;n; ˛0� and Œ˛0; ciC1;n=diC1;n�, completing the
proof.

Applying Brahmagupta moves, one obtains quasiperfect classes yA.k/i;n for all i , k � 0
and n � 2. For k D 0, supi maxf�̨ ;Ln;k

.A
.k/
i;n /; �̨ ;Ln;k

. yA
.k/
i;n /g exceeds the volume

bound for all ˛ 2
S
i Œci;n;k=di;n;k; ciC1;n;k=diC1;n;k� by Proposition 4.22. We suspect

that the same inequality holds for all k , and computer calculations following the same
strategy as those described at the end of Section 4.4 confirm that it holds whenever
n; k � 100.

4.7 Connecting the staircases

The Frenkel–Müller classes that were featured in Section 3 fit in to our collections of
classes A.k/i;n and yA.k/i;n . Specifically we have

A
.k/
0;n D

�
1C1
2
; 1�1
2
IW.1C 0; 1� 0/

�.k/
D
�
1
2
.H2kC 1/;

1
2
.H2k � 1/IW.H2kCP2k;H2k �P2k/

�
D FM2k�1

independently of n, and

(4-38) yA
.k/
0;2 D

�
2C0
2
; 2�0
2
IW.2C 1; 2� 1/

�.k/
D .H2kCP2k;H2kCP2kIW.3H2kC 4P2k;H2k//D FM2k :

These are not the only ways of expressing the FMm as A.k/i;n or yA.k/i;n ; for instance,
since yA0;3 D A1;2 D .2; 1IW.5; 1//D FM1 D A

.1/
0;n , we can write

(4-39) FM2kC1 D A
.kC1/
0;n D A

.k/
1;2 D

yA
.k/
0;3:

Theorem 1.6 shows that for ˛ � 3C 2
p
2 we have

Cˇ .˛/D supf�FMn
.˛; ˇ/ j n 2N [f�1gg;
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and if ˇ > 1 then Proposition 3.4 reduces this supremum to a maximum over a finite
set. Meanwhile, for the specific values ˇ D Ln;k , (4-18) shows that

CLn;k
.˛/D �̨ ;Ln;k

.A
.k/
i;n / for all ˛ in a neighborhood of

ci;n;k

di;n;k
:

We have seen that, at least for k D 0 and likely for all k , the equality

Cˇ .˛/D sup
j

�̨ ;Ln;k
.A
.k/
j;n /

does not persist throughout the interval Œci;n;k=di;n;k; ciC1;n;k=diC1;n;k�; indeed,
Corollary 4.12 and Proposition 4.22 show that (again, at least for k D 0) there is
a subinterval of this interval on which yA.k/i;n gives a stronger lower bound than do any
of the A.k/j;n . However we conjecture that this is all that needs to be taken into account
to fully describe our infinite staircase.

Conjecture 4.23 Let n � 2 and k � 0. Then for all ˛ 2 Œc0;n;k=d0;n;k; Sn;k� we
have

CLn;k
.˛/D sup

�
�̨ ;Ln;k

.A/ j A 2

1[
iD0

fA
.k/
i;n ;
yA
.k/
i;n g

�
:

Let us compare the behavior of CLn;k
on Œc0;n;k=d0;n;k; Sn;k�, as predicted by this

conjecture, to the behavior given by Theorem 1.6 on Œ1; 3C 2
p
2�. First, notice that

since (4-39) gives

A
.k/
0;n D FM2k�1 D

�
1
2
.H2kC 1/;

1
2
.H2k � 1/IW.P2kC1; P2k�1/

�
;

the left endpoint c0;n;k=d0;n;k of the interval given in Conjecture 4.23 is equal to
P2kC1=P2k�1 , which is less than 3C 2

p
2 by Proposition 2.1. If n� 4, then we can

conclude that the first step in our infinite staircase for CLn;k
coincides with the final

step in (what remains of) the Frenkel–Müller staircase, since Proposition 4.14 shows
that in this case Ln;k 2 .b2k; b2k�1/, which by Proposition 3.4 implies that the last
step remaining in the Frenkel–Müller staircase is the one determined by FM2k�1 . For
the case nD 3, since A.k/0;3 D FM2k�1 and yA.k/0;3 D FM2kC1 by (4-39), referring again
to Propositions 4.14 and 3.4 we see that the first two steps in the staircase described by
Conjecture 4.23 are �� ;L3;k

.FM2k�1/ and �� ;L3;k
.FM2kC1/, which coincide with the

last two steps of the Frenkel–Müller staircase. Finally, in the case nD 2, we see that
A
.k/
0;2D FM2k�1 , yA.k/0;2D FM2k and A.k/1;2D FM2kC1 , and so the first three steps in the

staircase from Conjecture 4.23 coincide with the last three steps of the Frenkel–Müller
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staircase. In all cases Theorem 1.6 therefore implies that the formula in Conjecture 4.23
holds for all ˛ 2 Œc0;n;k=d0;n;k; 3C 2

p
2�.
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