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Treewidth, crushing and hyperbolic volume

CLÉMENT MARIA

JESSICA S PURCELL

The treewidth of a 3–manifold triangulation plays an important role in algorithmic
3–manifold theory, and so it is useful to find bounds on the treewidth in terms of
other properties of the manifold. We prove that there exists a universal constant c

such that any closed hyperbolic 3–manifold admits a triangulation of treewidth at
most the product of c and the volume. The converse is not true: we show there exists
a sequence of hyperbolic 3–manifolds of bounded treewidth but volume approaching
infinity. Along the way, we prove that crushing a normal surface in a triangulation
does not increase the carving-width, and hence crushing any number of normal
surfaces in a triangulation affects treewidth by at most a constant multiple.

57M15, 57M25, 57M50

1 Introduction

This paper concerns invariants of 3–manifolds that are of interest both in geometry
and in computational topology. For computational purposes, 3–manifolds are often ex-
pressed by a triangulation, that is by gluing a collection of tetrahedra. For example, this
is true for 3–manifold software SnapPea, developed by Weeks in the early 1980s, now
maintained and distributed as SnapPy [14], and for Regina, developed by Burton [8].
These programs have been influential in the development of 3–manifold geometry
and topology. Computational topology considers the running time of algorithms. For
an algorithm that takes a triangulation as input, the running time frequently depends
on some measure of the “simplicity” of the triangulation. Note, however, that a 3–
manifold can have many different triangulations. Therefore, it is important to produce
triangulations that are as simple as possible. Here, we will evaluate the simplicity of a
triangulation by its treewidth.

The treewidth of a triangulation is a measure of the sparsity of the gluing relations
between tetrahedra; see Definition 2.7. It was first developed in graph theory by
Robertson and Seymour [31], then adapted to 3–manifold triangulations. In recent
years, several algorithms have been developed that are highly efficient for triangulations

Published: 20 October 2019 DOI: 10.2140/agt.2019.19.2625

http://msp.org
http://www.ams.org/mathscinet/search/mscdoc.html?code=57M15, 57M25, 57M50
http://dx.doi.org/10.2140/agt.2019.19.2625


2626 Clément Maria and Jessica S Purcell

with low treewidth — see Burton, Maria and Spreer [11; 12] — and so we would like to
find triangulations of 3–manifolds with treewidth bounded in terms of well-understood
properties of the manifold.

One property is geometry. By the geometrisation theorem proved by Perelman [28; 29]
(or see Kleiner and Lott [24]) every closed orientable 3–manifold decomposes into
geometric pieces, and the hyperbolic pieces are among the most prevalent and least
understood. If a closed 3–manifold admits a hyperbolic structure, then that structure
is a topological invariant of the manifold — see Mostow [27] — and so it is natural to
ask if the hyperbolic geometric properties of the manifold can bound treewidth of a
triangulation.

A hyperbolic invariant that has received much attention is the hyperbolic volume.
By work of Jørgensen and Thurston, a hyperbolic 3–manifold M that has a lower
bound on injectivity radius admits a triangulation with O.vol.M // tetrahedra — see
Thurston [36], and also Kobayashi and Rieck [25]. However, if we put no restrictions
on injectivity radius, then no such result holds: for a sufficiently large constant C > 0,
there are infinitely many closed hyperbolic 3–manifolds with volume bounded above
by C, and therefore a finite number of tetrahedra cannot triangulate them all. For
example, such manifolds are obtained by Dehn filling a hyperbolic manifold with finite
volume, using the fact that volume decreases under Dehn filling [36]; or see Benedetti
and Petronio [4, Chapter E]. Nevertheless, we prove in this paper that any hyperbolic
3–manifold with bounded volume admits a triangulation with bounded treewidth.

Theorem 1.1 There exists a universal constant c > 0 such that a hyperbolic 3–
manifold M with volume vol.M / admits a triangulation with treewidth at most
c � vol.M /.

In computer science, parametrised complexity classifies computational difficulty in
terms of multiple parameters as input. Some problems that are known to require super-
polynomial time in terms of the input alone, under standard computational complexity
assumptions, can be solved by algorithms that are exponential in one fixed parameter,
but only polynomial in the size of another. Thus they can be solved efficiently for
low values of the first parameter. An important example of this from graph theory is
Courcelle’s theorem, which states that many graph theory problems can be decided
in linear time in the treewidth of the graph [13]. Recently, Courcelle’s theorem has
been adapted to 3–manifold topology by Burton and Downey [10]. Along with the
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rich theory of parametrised algorithms and standard dynamic programming techniques,
this has led to the development of several algorithms in 3–manifold topology that
are both theoretically and practically efficient provided the input triangulation has
small treewidth. Some of these parametrised algorithms have been implemented in the
3–manifold software Regina [8], and have led to significant improvement in practical
computations.

In practice, the treewidth parameter is strongly dependent on the triangulation chosen
for representing a manifold, and obtaining low treewidth triangulations can be difficult;
see Maria and Spreer [26] for a discussion. Unfortunately, a manifold that has a simple
topological or geometric description can often be represented by a triangulation that has
extremely large treewidth, with no obvious combinatorial simplifications. Therefore it
is important to identify triangulations of a manifold whose treewidth is bounded by
topological or geometric properties of the manifold, as in Theorem 1.1.

We also consider the converse to Theorem 1.1, and show it does not hold. In Theorem 6.3,
we show that there exists a sequence of closed hyperbolic manifolds with bounded
treewidth and volume approaching infinity. Thus, while volume gives an upper bound
on treewidth, it does not give a lower bound.

On the other hand, recent work of Huszár, Spreer and Wagner [19] implies that there is
a sequence of 3–manifolds whose treewidth approaches infinity. A corollary of our
result is that any such examples that are hyperbolic have volume also approaching
infinity. In fact, one family of examples is the family of small manifolds with large
genus developed by Agol [1]. For the nth manifold in this family, combining work
of [1] with [19], the treewidth is at least 1

2
n but the volume is of order O.n2/. It would

be interesting to find a family for which volume and treewidth grow proportionally, to
determine whether there is hope of improving Theorem 1.1.

1.1 Crushing, carving-width and treewidth

The proofs of Theorems 1.1 and 6.3 modify triangulations using the crushing procedure
developed by Jaco and Rubinstein [20] and simplified by Burton [9]. In order to prove
the theorems, we show in Corollary 3.4 that crushing does not affect a different measure
of the sparsity of gluing relations of the triangulation, namely the carving-width; see
Definition 2.2. For a 3–manifold triangulation, it is known that the carving-width
is at least 2

3
the treewidth and at most four times the treewidth; see Theorem 2.8.

Thus crushing any finite number of times affects treewidth by at most a multiplicative
constant.
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Note that a usual pipeline for practical computation in 3–manifold topology consists
of first simplifying a triangulation using efficient implementations of the crushing
procedure and then running computations. Corollaries 3.4 and 3.5 guarantee that this
approach does not affect the computational complexity of parametrised algorithms using
the carving-width or treewidth as a parameter, such as [10; 11; 12]. Thus these results
on crushing and computational complexity are important, and likely of independent
interest.

Outline

In Section 2 we review results on treewidth and carving-width. Then, in Section 3, we
prove that the Jaco–Rubinstein crushing procedure does not increase the carving-width
of a triangulation. To prove Theorem 1.1, we use the fact that there is a universal
Margulis constant � such that any hyperbolic manifold M can be obtained from its
�–thick part M�� by hyperbolic Dehn filling; see Section 4.1. The proof begins by
taking a geodesic triangulation of M�� with O.vol.M // fat tetrahedra, ie tetrahedra
with volume bounded from below (Section 4). Next, we describe how to proceed to the
Dehn filling without increasing the treewidth of the whole triangulation (Section 5). We
consequently obtain a triangulation with treewidth O.vol.M //, and describe an explicit
algorithm to construct it. The number of tetrahedra of the triangulation depends solely
on the hyperbolic volume vol.M / and the slopes of the hyperbolic Dehn surgeries.

Finally, in Section 6, we prove there exists a family of closed hyperbolic 3–manifolds
with unbounded volume that admits a triangulation with constant treewidth.

2 Triangulations, carving-width and treewidth

In this section, we define several necessary terms and fix notation.

Let M be a closed 3–manifold. A cell decomposition of M is a pairwise-disjoint
collection of n oriented, compact, convex linear 3–cells �1; : : : ; �n equipped with
affine maps that identify (or “glue together”) their faces in pairs so that the underlying
topological space is homeomorphic to M. The dual graph of a cell decomposition is
the graph, with multiple arcs and loops, having a node for every 3–cell �i and an arc
.�i ; �j / for every face gluing between 3–cells �i and �j .

A generalised triangulation of M is a cell decomposition where all 3–cells are abstract
tetrahedra. Its dual graph is naturally a 4–valent graph, corresponding to gluings of
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triangular faces. Generalised triangulations are widely used across major 3–manifold
software packages, and they allow the representation of a rich variety of 3–manifolds
using very few tetrahedra.

We also encounter ideal triangulations in this work, which are triangulations from
which vertices have been removed. A removed vertex is called an ideal vertex.

Remark 2.1 We will be discussing both graphs and triangulations. We will refer to
nodes and arcs of graphs, to clearly distinguish these from the vertices and edges of
triangulations.

The carving-width, also known as congestion, is a graph parameter introduced by
Seymour and Thomas [34].

Definition 2.2 Let G be a graph, possibly with loops and multiple arcs between nodes,
defined on n nodes, and let T be an unrooted binary tree, with all internal nodes of
degree 3 and with n leaves. An embedding � of G into T is an injective mapping
from the nodes of G to the leaves of T . To every pair of endpoints .u; v/ of an arc
in G there corresponds a unique path p.�.u/; �.v// in T , connecting leaves �.u/
and �.v/. Define the congestion of an embedding � to be

cng.�/D max
a arc of T

jf.u; v/ in G W p.�.u/; �.v// contains agj;

where note we count a multiple arc only once in the formula. Here j � j denotes the
number of elements in a set.

The carving-width cng.G/ of a graph G is the minimal congestion over all its em-
beddings into binary trees. The carving-width of a cell decomposition cng.T/ is the
carving-width of its dual graph. Finally, we define the carving-width of a 3–manifold M,
denoted by cng.M /, to be the minimal carving-width over all its generalised triangula-
tions.

Our definition of congestion differs from the literature by counting a multiple arc
only once in the tree embedding. However, for a graph dual to a triangulation of a
3–manifold, this only affects the carving-width by a constant multiple, since all dual
graphs of triangulations have constant maximal degree four. Also, note that a loop
arc .u;u/ leads to paths p.�.u/; �.u// of length 0 in a tree embedding, and can be
disregarded when computing carving-width.

We give an example of a tree embedding in Figure 2. The following additional example
will be important to our applications:

Algebraic & Geometric Topology, Volume 19 (2019)



2630 Clément Maria and Jessica S Purcell

a1a2a3an�1
an

an
an�1

a3

a2

a1

�

Figure 1: On the left is the daisy chain graph. Shown is an embedding into a
tree, on the right, indicating that the carving-width is at most two.

Example 2.3 Let M be a solid torus. We describe a well-known triangulation of M,
discussed in detail by Jaco and Rubinstein [21], called a layered triangulation or layered
solid torus. At the core is a triangle with two sides identified to form a Möbius band.
The first tetrahedron is glued so that two of its faces glue to the core triangle, one
on either side of the triangle. By gluing correctly, the result is homeomorphic to a
solid torus and has boundary consisting of exactly two triangles; see [21] for details.
Additional tetrahedra may now be added inductively. At each step, a single tetrahedron
is attached to the existing triangulation so that two of its faces are glued to the two
boundary faces, covering a boundary edge (which then becomes an interior edge). The
result is a solid torus with two triangular boundary faces. For any fixed slope on the
torus, there exists a layered solid torus for which that slope is the meridian, ie bounds
a disc; see for example [22, Theorem 4.1].

Consider now the gluing graph of a layered solid torus. The tetrahedron at the core
with its two faces identified gives a loop at the corresponding node. The other two faces
are identified to a single tetrahedron, giving two arcs to the next node. Any additional
nodes are connected by two nodes to the previous node and two nodes to the next node.
This forms a simple daisy chain. See Figure 1, left.

Note if there are only two nodes in the daisy chain graph, the carving-width is 1. In
the more general case we obtain the following:

Lemma 2.4 The daisy chain graph with n� 3 nodes, arising as the dual of a layered
solid torus, has carving-width two.

Proof The carving-width is at least two, because the carving-width of a graph is at
least the maximal degree of a node after identifying multiple arcs, which is two for the
daisy chain.

We now show that the carving width is at most two. Number the nodes of the daisy
chain linearly, as in Figure 1, by a1; a2; : : : ; an�1; an , where the node a1 has a loop
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and two arcs running to a2 , the node a2 has an additional two arcs running to a3 , etc,
and an is 2–valent (two of its faces lie on the boundary of the layered solid torus).

Form an unrooted binary tree with n nodes as follows. Start with the unrooted binary
tree T3 with three leaves and a single 3–valent node. Label nodes b1 , b2 , b3 in a
cyclic manner. Note the two paths from b1 to b2 and from b2 to b3 run over the arc
connecting the leaf b2 exactly twice and other arcs exactly once. Now inductively
increase the size of the tree until it has n leaves. Given an unrooted tree Tk with k

leaves labelled b1; : : : ; bk in a cyclic manner, form TkC1 by attaching two new leaves
to the k th leaf, making it a 3–valent node, and label all leaves as in Tk except the two
new leaves, labelled bk and bkC1 , so that the labelling on TkC1 is still cyclic. See
Figure 1, right.

Note that paths from bi to biC1 for i < k � 1 are identical in Tk and TkC1 . For
iDk�1 in TkC1 , the path from bk�1 to bk runs over the arc connecting the leaf bk�1 ,
along the arc that connects the new 3–valent node in TkC1 , and then along the arc
connecting the leaf bk . The path from bk to bkC1 runs over the two new arcs. Thus,
by induction, all paths from bi to biC1 for 1� i � k run over arcs connecting leaves
b2; : : : ; bk exactly twice and all other arcs exactly once. Continue until k C 1 D n,
and map each ai to bi in Tn . Thus the carving-width is at most two.

A fundamental property of carving-width is that it decreases when taking immersions.

Definition 2.5 Let G be a graph, with adjacent arcs .u; v/ and .v; w/. A lifting of
uvw consists of removing all arcs .u; v/ and .v; w/ from G and adding arc .u; w/.
An immersion of G is a graph H that can be obtained from G by a sequence of liftings
and arc and node removals.

Equivalently, H is an immersion of G if there exists a mapping of the nodes of H to
the nodes of G where every arc .u; v/ is sent to a path from �.u/ to �.v/ in G such
that distinct arcs in H lead to arc-disjoint paths in G .

The following is standard and follows from the definitions:

Lemma 2.6 If H is an immersion of G , then

cng.G/� cng.H/:

Proof The nodes of H are a subset of the nodes of G , so any embedding of G into
a tree T restricts to an embedding of H into the same tree. Form TH from T by
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removing leaves of T that are not the image of nodes of H , and viewing arcs adjacent
to the remaining 2–valent nodes as a single arc. Then paths in TH between nodes
coming from H are obtained by taking paths in T between nodes of H and removing
leaves and 2–valent nodes.

If H differs from G by a lifting of uvw , then H contains an arc .u; w/ and no arcs
.u; v/ and .v; w/, while G contains arcs .u; v/ and .v; w/. Note that the unique path
in T from �.u/ to �.w/ can be obtained by taking the union of paths from �.u/

to �.v/ and from �.v/ to �.w/ and removing all arcs traversed twice. Thus the
arcs in .�.u/; �.w// in T form a subset of those in the two paths .�.u/; �.v// and
.�.v/; �.w//. It follows that the congestion of H is at most that of G .

Finally, for any node and arc removal to convert G to H , the corresponding paths will
be removed from T , so the number of paths p.�.u/; �.v// running over a fixed arc a

in T , and hence TH , will also decrease.

The carving-width of a graph is closely related to treewidth, which plays a major role
in combinatorial algorithms. The treewidth of a graph was introduced by Robertson
and Seymour [31], and is defined as follows:

Definition 2.7 Let G be a graph with loops and multiple arcs. A tree decomposition
.X; fB�g/ of G consists of a tree X and bags B� of nodes of G for each node � of X,
for which

(1) each node u in G belongs to some bag B� ;

(2) for every arc .u; v/ in G , there exists a bag B� containing both u and v ;

(3) for every node u in G , the bags containing u form a connected subtree of X.

The width of this tree decomposition is defined as max�2X jB� j � 1. The treewidth
of G , denoted by tw.G/, is the smallest width of any tree decomposition of G .

Similarly, the treewidth of a cell decomposition is the treewidth of its dual graph,
and the treewidth of a 3–manifold is the minimal treewidth over all of its generalised
triangulations.

Figure 2 shows the dual graph of a 9–tetrahedra triangulation of a 3–manifold, along
with a possible tree decomposition. The largest bags have size three, and so the width
of this tree decomposition is 3� 1D 2.

Finally, treewidth and carving-width are closely related, and enjoy similar properties.
First, they only differ by a constant multiplicative factor:
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Figure 2: The dual graph of a 3–manifold triangulation (left), a tree decom-
position of width 2 (centre) and a tree embedding of width 4 (right).

Theorem 2.8 [5, Theorem 1] Let G be a graph of maximal degree d . Then

2
3
.tw.G/C 1/� cng.G/� d.tw.G/C 1/:

Note that for dual graphs of generalised triangulations, the degree of every node is at
most four, and treewidth and carving-width consequently differ by a small multiplicative
constant.

The decision problem associated to computing the treewidth or carving-width of a
graph is NP-complete [2; 34]. However, both treewidth and carving-width, together
with an optimal tree decomposition or embedding into a tree, can be computed in time
O.f .k/ � n/ on graphs with n nodes and treewidth/carving-width at most k [6; 35].

In the following, we use carving-width because of its favourable properties, and we
connect it to the more widely used treewidth.

3 Crushing triangulations does not increase carving-width

This section focuses on compact manifolds with or without boundary, which are the
main object of study of this article. However, all results cited and introduced extend
naturally to ideal triangulations.

Crushing of triangulations is a fundamental technique introduced by Jaco and Rubin-
stein [20] to simplify 3–manifold triangulations. Let T be a generalised triangulation
of a 3–manifold M. A normal surface S in T is a properly embedded surface in T
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∆

Figure 3: Tetrahedron cut by a normal surface. The intersection is a collection
of disjoint normal disks (quads and triangles).

that meets each tetrahedron in a (possibly empty) collection of curvilinear triangles
and quads, as illustrated in Figure 3. A trivial surface is a normal surface made only of
triangles; it always triangulates the link of a vertex. Finally, a 0–efficient triangulation
is a triangulation T that either

� contains no nontrivial normal sphere if T is closed or ideal, or

� contains no nontrivial normal disk if T is bounded.

Crushing was introduced in [20] (see also [9]) as a means to construct 0–efficient
triangulations.

Definition 3.1 Let S be a normal surface in a triangulation T. Crushing the triangu-
lation along S consists of the following three steps:

(1) Cut T open along S, leading to a cell decomposition with various cell types,
presented in Figure 4.

(2) Collapse each copy of S to a point, using the quotient topology. This gives four
types of cells: tetrahedra, 3–sided footballs, 4–sided footballs and triangular
purses (all illustrated in Figure 4).

(3) Flatten all nontetrahedra cells to obtain a triangulation, ie flatten footballs into
edges and triangular purses into triangles, as in Figure 4.

Conclude by separating tetrahedra joined by pinched vertices and edges.

Following [9, Lemma 3], the flattening step can be performed iteratively, one non-
tetrahedron cell at a time. In particular, flattening a football or a triangular purse induces
the flattening of bigonal faces in the adjacent cells, hence creating temporary cells of
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Figure 4: Cut-out tetrahedron containing quads, collapsing of the cells and
flattening. The collapsing produces two triangular purses and a collection of
3– and 4–sided footballs. Footballs are flattened into edges and triangular
purses into triangles.

new types: triangular purses with one or two flattened bigons (also known as bigonal
pyramid and triangular pillows, respectively) and 2–sided footballs (also known as
bigonal pillows).

In particular, we use the following property:

Theorem 3.2 (Jaco and Rubinstein [20]; see also Burton [9]) Let T be a generalised
triangulation of a closed or bounded 3–manifold M. There is an algorithm to construct
a finite family of triangulations T1; : : : ;Tn triangulating manifolds M1; : : : ;Mn such
that M D M1 # � � � # Mn and each Ti is either 0–efficient or can be shown to be
a triangulation of S3, S2 � S1, RP3 or L.3; 1/. The algorithm consists of finding
normal spheres and disks in the original triangulation, and crushing them.

Jaco and Rubinstein prove that 0–efficient triangulations of a closed irreducible manifold
have one vertex, and 0–efficient triangulations of a bounded irreducible @–irreducible
manifold (without 2–sphere boundary components1) have all vertices in the boundary,
with exactly one vertex per boundary component.

We now introduce the main combinatorial result of this article, namely that crushing
does not increase the carving-width. We use this result repeatedly as a tool to manipulate
hyperbolic manifolds in the latter sections.

1This is a technicality that only rules out the simple case where the irreducible manifold is a 3–cell.
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Theorem 3.3 Let T be a generalised (or ideal , or bounded ) triangulation of a 3–
manifold M, and S a normal surface in T. Let T� be the triangulation obtained after
crushing S. Then the dual graph of T� is an immersion of the dual graph of T.

Proof We track the evolution of the cell decomposition of the triangulation under the
three steps (cut, collapse, flatten) of crushing S in T, in order to describe the change
to its dual graph. Let G be the dual graph of T.

Cut T along S. The result is a collection of cells; each tetrahedron that meets S in T

is split into cells across normal discs of S as in Figures 3 and 4.

Now collapse each normal disc of S to a point, using the quotient topology, to obtain
the cell complex T0. This operation splits every tetrahedron � of T into a collection
C� D f�0; : : : ; �ng of cells, where n is the number of normal disks in �\S. The
cells are of four types: tetrahedra, 3–sided footballs, 4–sided footballs and triangular
purses; see Figure 4.

Note that if � \ S contains no quad, then C� is made of exactly one (central)
tetrahedron and a possibly empty collection of 3–sided footballs. If �\S contains
quads, then C� is made of two triangular purses and a possibly empty collection of
3–sided and 4–sided footballs.

Now flatten. We obtain a generalised triangulation T� . The 3– and 4–sided footballs
become edges, and thus have no dual nodes or arcs in T� . A tetrahedron is not flattened,
thus the dual graph of T� has one node corresponding to �\S containing no quads.
Two triangular purses flatten to triangles, thus removing the node corresponding to �.

Note if we perform this process one tetrahedron at a time, adjusting the dual graph
one node at a time, then each node corresponding to � that does not meet a quad will
be replaced by a node corresponding to a tetrahedron of the crushing; the arcs from
this node will run to the same nodes as before the replacement, since faces of the new
tetrahedron are still glued to faces of adjacent tetrahedra. For each node corresponding
to � that meets a quad, the node is removed, and two liftings are performed: when
each triangular purse is flattened, it identifies two triangular faces together and removes
a node. Thus faces of adjacent tetrahedra become glued through this triangle. The
result is a lifting. See Figure 5.

Perform this process for each tetrahedron. Then separate tetrahedra joined by pinched
vertices and edges, which does not affect the dual graph. We see that the final result is
an immersion.
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Figure 5: Local transformation of the dual graph at tetrahedron � from Figure 4
when crushing iteratively at � . G is the dual graph before crushing, G0 is the
dual graph after cutting, collapsing and then flattening only the 3– and 4–sided
footballs from � (�1 and �2 stand for the two triangular purses), and G� is
the dual graph after flattening the triangular purses. Note that some of the nodes
�

j
i in G0 may have already been removed when flattening adjacent footballs,

and some of the bigon faces of triangular purses may already be collapsed. This
does not change the analysis as it only removes nodes and arcs from the dual
graph. G� is obtained from G by lifting �1��2 and �3��4 , then removing
the node � . Because their corresponding cells have bigonal faces, and hence
cannot be tetrahedra, the crossed-out nodes on G� will be removed from the
graph when flattening adjacent cells. The immersion of G� into G is obtained
by mapping the (nonremoved) nodes �j

i in G� to �j in G .

Corollary 3.4 Crushing does not increase carving-width.

Proof Immersion does not increase carving-width, by Lemma 2.6.

Corollary 3.5 Crushing an arbitrary finite number of normal surfaces in a triangulation
increases the treewidth by at most a multiplicative factor of six.

Proof This follows from Corollary 3.4 and Theorem 2.8, using the fact that a graph
coming from the dual of a 3–manifold triangulation has all nodes of degree at most
four.

Remark 3.6 In general the two liftings pictured in Figure 5 may increase the treewidth
of a graph. For example, consider the graphs in Figure 6, where the graph of the
pentagonal prism (on the right) is obtained from liftings 2–0–10 and 1–0–9 in the graph
on the left. The latter has treewidth 3, as it admits K4 as a minor (tw � 3), and a
path decomposition .Bi/iD1;:::;8 , Bi D f0; i; iC1; iC2g, of width 3. The former is a
well-known obstruction to treewidth 3, and has treewidth 4 [3; 33].
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Figure 6: Liftings of 2–0–10 and 1–0–9 increase the treewidth of the graph.

In their seminal work on 0–efficient triangulations, Jaco and Rubinstein proved that
a minimal triangulation (ie with a minimal number of tetrahedra) of a manifold is
0–efficient. In the same spirit, we deduce the following for triangulation width:

Corollary 3.7 Any closed, orientable, irreducible 3–manifold M, not S3 , S2 �S1 ,
RP3 or L.3; 1/, admits a 0–efficient triangulation of optimal carving-width cng.M /.

Any compact, orientable, irreducible, @–irreducible 3–manifold M, not the 3–cell,
admits a 0–efficient triangulation of optimal carving-width cng.M /.

Proof Let T be a triangulation of M of carving-width cng.M /. By Theorem 3.2,
one can crush normal spheres and disks in T to get a 0–efficient triangulation T� of
carving-width at most cng.M / by Corollary 3.4.

To conclude this section, we prove the following simple property of carving-width:

Lemma 3.8 Let G and G0 be two graphs, and let G #G0 be obtained by adding m� 1

arcs between nodes of G and nodes of G0, not counting multiplicities. Then

cng.G #G0/�maxfcng.G/Cm� 1; cng.G0/Cm� 1; max degree in G #G0g:

If the m arcs are incident to a single node u in G , then

tw.G #G0/�maxftw.G/; tw.G0/C 1g:

Proof Pick two optimal tree embeddings � W G!T and � 0W G0!T 0, with arcs a2T

and a0 2 T 0 realising the congestion cng.�/ and cng.� 0/, respectively. Without loss
of generality, suppose cng.�/� cng.� 0/; hence, at least as many paths run through a

as a0. Let u in G and v in G0 be two nodes that are adjacent in G #G0. Subdivide the
only arcs incident to the leaves of �.u/ and � 0.v/ in the tree embeddings, and connect
the two new nodes by an arc. This leads to a tree embedding ….G #G0/ of G #G0.
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Note that m paths run through the arc connecting the trees T and T 0. The congestion
cng.…/ will be largest if as many of those paths as possible also run through a. If a

in T does not connect the leaf �.u/, then at most m� 1 new paths run through a,
because the path from ….u/ to ….v/ only runs through new arcs.

If a in T is the arc connecting the leaf �.u/, then cng.G/ paths run to u, hence u is
cng.G/–valent. The arc a is subdivided to form the new tree, and cng.G/ paths from
the tree T will continue to run over the two new arcs obtained by subdividing a. If
one of the m new arcs between G and G0 does not have an endpoint on u, then the
corresponding path will run over the subarc of a that does not meet the leaf of ….u/,
whereas the arc from ….u/ to ….v/ will not meet this arc, and thus the congestion is
at most cng.G/Cm�1. However, if all the m new arcs between G and G0 run from u

to nodes of G0, then all m new paths must also run over the arc connecting the leaf
of ….u/. Thus the congestion will be at most cng.G/Cm, which is the degree of u

in G #G0.

For treewidth, pick two optimal tree decompositions T and T 0 for G and G0, respec-
tively, and let u in G be the node to which all new arcs are incident. Let .u; v/, with
v in G0, be a new arc. Let Bu be a bag of T containing u and Bv be a bag of T 0

containing v . Connecting Bu and Bv with an arc, and adding node u to all bags in T 0,
leads to a tree decomposition of G #G0, and the result follows.

4 Triangulating thick hyperbolic manifolds

In this section, we consider a finite-volume, compact, hyperbolic 3–manifold M

with boundary and bounded injectivity radius. We show such a manifold admits a
triangulation with a bounded number of tetrahedra, where the bound is linear in volume.
This result is not new; its proof is outlined in Thurston’s notes [36], and proved carefully
elsewhere, for example by Kobayashi and Rieck [25]. We step through highlights of the
proof here for completeness, and also to discuss the algorithmic nature of the argument,
in order to actually compute a triangulation. The algorithm will be summarised in
Section 5.1.

4.1 Hyperbolic manifolds

Here we review definitions and results in hyperbolic geometry that are most important
to our results. For further information on hyperbolic 3–manifolds, see for example [4].
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Definition 4.1 Let � > 0 and let M be a hyperbolic 3–manifold. The �–thick part
of M, denoted by M�� , consists of all points x 2M such that any geodesic based
at x has length at least �. Equivalently, M�� is the set of points in M with injectivity
radius at least 1

2
�.

The complement of the �–thick part is the �–thin part.

Recall that, by the Margulis lemma, there exists a universal constant �3 such that for
any finite-volume, hyperbolic 3–manifold M and any �� �3 , the �–thin part of M

consists only of tubes about geodesics and cusps [23]. In the discussion below, we will
always assume that 0 < � � �3 . Such a � is said to be a 3–dimensional Margulis
constant.

Let BD.x; r/ denote the open ball of centre x and radius r > 0 in D. Recall that the
volume of a hyperbolic 3–ball of radius r > 0 is given by

vol.BH3.r//D �.sinh 2r � 2r/I

see for example [16].

4.2 Triangulating thick parts

In this section, for a fixed 3–dimensional Margulis constant �, we recall the argument
of [25] to show that a small neighbourhood of the �–thick part of a hyperbolic 3–
manifold M can be triangulated with O.vol.M // tetrahedra.

We start by setting notation. For � > 0 a Margulis constant and any d > 0, denote
the metric d –neighbourhood of M�� by X WDNd .M

��/. In [25, Proposition 1.2],
it is shown that there exists R WDR.�; d/ such that for any complete finite-volume,
hyperbolic 3–manifold M and any x 2 X, the injectivity radius of x is at least R,
and X is obtained from M by drilling out short geodesics and truncating cusps. Let
D DminfR; dg.

Definition 4.2 Let .X; distX / be a metric space. For " > 0, a set of points P � X

is "–dense in X if, for any x 2 X, there is a point p 2 P such that distX .x;p/ < ".
For 1 � ı > 0, the set P is ı"–separated if any two distinct points p; q 2 P satisfy
distX .p; q/� ı". We call P a .ı; "/–net if it is "–dense and ı"–separated. Note that
any .ı; "/–net is also a .ı0; "/–net for any ı0 � ı .

Lemma 4.3 Let � > 0 be a 3–dimensional Margulis constant and d > 0. Let M be
a hyperbolic manifold of finite volume vol.M /, with d –neighbourhood of the thick
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part M�� denoted by X. Then X admits a .ı; "/–net of size

n�
vol.M /

�.sinh "� "/
�

6

�

vol.M /

"3

for any "� � and any ı � 1.

Proof This is the standard iterative construction of nets. Fix an arbitrary "� �. Set
P to be the empty set. While there exists a point x in the set

X �
[

p2P

BX .p; "/;

set P to be P [ fxg. At any time of the procedure, the union of balls of radius 1
2
"

centred on the points of P are disjoint and embedded in M. Consequently,

jP j � vol
�
BH3

�
1
2
"
��
� vol.M /:

Because M has finite volume, the procedure terminates, and P is a .1; "/–net for X

by construction.

Recall that D DminfR; dg. Kobayashi and Rieck take a maximal D–separated set
for X, but it suffices for their argument to let fx1; : : : ;xN g be a .1;D/–net for X. Now
let fV1; : : : ;VN g be the Voronoi cells in M corresponding to fx1; : : : ;xN g, namely
the sets

Vi D fp 2M j dist.p;xi/� dist.p;xj / for j D 1; : : : ;N g:

Kobayashi and Rieck show that the components of Vi\X consist of handlebodies with
universally bounded genus, with boundaries consisting of geodesic faces meeting in
geodesic edges and vertices, and that the number of such faces and edges (and vertices)
is universally bounded independent of M.

After possibly perturbing the points fx1; : : : ;xN g slightly, they give an algorithm that
builds, for each component Vi;j of Vi \X, a 2–complex Ki;j . The complex Ki;j

has totally geodesic faces, a universally bounded number of faces and edges, and it
cuts Vi;j into a single ball Bi;j .

By subdividing remaining faces into triangles and then coning to the centre of the
ball Bi;j , we obtain a triangulation of Vi;j such that, by construction, triangulations
of distinct Vi;j agree on their intersections.

The above gives the following, which is [25, Proposition 1.4]:
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Proposition 4.4 Let � be a 3–dimensional Margulis constant and fix d > 0. For
any complete finite-volume, hyperbolic 3–manifold M, let X denote the metric d –
neighbourhood of M�� . Then there exists a constant C D C.�; d/ such that the
following holds:

(1) M is decomposed into N � C vol.M / Voronoi cells fV1; : : : ;VN g.

(2) Vi \X is triangulated using at most C tetrahedra for all i D 1; : : : ;N .

(3) For any i; j 2 f1; : : : ;N g, the triangulations in (2) coincide on the intersection
.Vi \X /\ .Vj \X /.

We now obtain the following consequence, which is [25, Theorem 1.1]:

Theorem 4.5 Let � be a 3–dimensional Margulis constant and fix d > 0. Then
there exists a constant v.�; d/ > 0 such that for M any closed hyperbolic 3–manifold
with volume vol.M /, the metric d –neighbourhood of the �–thick part M�� admits a
triangulation TB with number of tetrahedra at most

vol.M /

v.�; d/
DO.vol.M //:

Proof Apply Proposition 4.4 to M, decomposing X into at most C cells with at
most C tetrahedra each. Because the triangulations match where the cells overlap,
this gives a triangulation of Nd .M

��/ with at most C 2 vol.M / tetrahedra. Set
v.�; d/D 1=C 2 .

Naturally, this triangulation has carving-width (and treewidth) at most O.vol.M //.

5 Triangulations of closed manifolds

For � a Margulis constant and fixed d > 0, let M�� denote the thick part of M and
let X WD Nd .M

��/ denote its d –neighbourhood. Then X is a compact manifold
with (possible) torus boundary components; see [25, Proposition 2.1]. Let TB be the
triangulation of X constructed in Theorem 4.5. This triangulation contains at most
vol.M /=v.�; d/ tetrahedra.

Lemma 5.1 There exists a triangulation TJR of X that has exactly one vertex in each
boundary component of M�� , no other vertices, and contains at most vol.M /=v.�; d/

tetrahedra.

Proof For the proof, we wish to obtain a 0–efficient triangulation, as in work of Jaco
and Rubinstein [20], repeated in Theorem 3.2. To obtain a 0–efficient triangulation
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from TB , apply the crushing procedure. Crushing does not increase the number of
tetrahedra. However, it may affect the topology of the underlying manifold, but only in
well-understood ways that are listed in [9, Theorem 2]: it may

� undo connect sums,

� cut open along properly embedded discs,

� fill a boundary sphere with a 2–ball, or

� delete a 3–ball, 3–sphere, RP3 , L.3; 1/ or S2 �S1 component.

Since we start with M hyperbolic, the interior of the manifold M�� is also hyperbolic.
Hence there are no connect sums, no boundary spheres and no nonhyperbolic compo-
nents. There are also no essential discs; thus if we cut along a properly embedded disc,
the disc will cut off a ball, which we may ignore.

Thus repeatedly applying the crushing move gives a 0–efficient triangulation, which
has the properties required by the lemma.

Lemma 5.2 If T is a triangulation of a 3–manifold M with a torus boundary compo-
nent S such that S inherits a one-vertex triangulation from T, then any Dehn filling
of M along S can be given a triangulation with carving-width at most

maxfcng.T/C 1; 4g:

Proof First, note that the only one-vertex triangulation of the torus S has two triangles,
so the boundary component of T corresponding to S has two triangles, which are
incident to at most two distinct tetrahedra.

The Dehn filling can be obtained by attaching a layered solid torus, as in Example 2.3,
with gluing graph a simple daisy chain, with one loop arc with both endpoints on the
node corresponding to the tetrahedron in the centre, and pairs of parallel arcs between
nodes corresponding to the layers of tetrahedra. The layering is determined by the
slope of the Dehn filling. After a finite number of steps, the meridian of the layered
solid torus will correspond to the desired slope; see [21]. At this stage, the final pair of
faces is attached to the tetrahedra in M that form the torus boundary.

Because the triangulation of M and the one of the layered solid torus are glued along
two faces of at most two distinct tetrahedra, the carving-width after gluing is at most the
maximum of the carving-width between the two triangulations plus 1, or the maximal
degree in the dual graph after filling, which is 4, by Lemma 3.8. Because a daisy chain
graph has carving-width at most two, by Lemma 2.4, the result follows.
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Theorem 5.3 Let � be a 3–dimensional Margulis constant and fix d > 0. Let M be
a closed hyperbolic 3–manifold with volume vol.M /. Then the carving-width of M

is bounded above by 6 � vol.M /=v.�; d/DO.vol.M //.

Proof Start with the triangulation TJR of X WDNd .M
��/. The triangulation TJR is

obtained in Lemma 5.1 by crushing, and by Corollary 3.4 has carving-width at most
the carving-width of triangulation TB in Theorem 4.5, which is naturally at most
4 � vol.M /=v.�; d/DO.vol.M //.

We obtain M from X by Dehn filling the torus boundary components. Each boundary
component inherits a triangulation from TJR with exactly one vertex and two triangles,
and so there are at most 2 � vol.M /=v.�; d/ boundary components. Consequently,
performing the Dehn fillings increases the carving-width by at most 2�vol.M /=v.�; d/,
by Lemma 5.2.

By Theorem 2.8, this result also applies to treewidth.

5.1 Algorithm and computational complexity

Our approach to constructing a triangulation with carving-width O.vol.M // for a
closed hyperbolic 3–manifold M is algorithmic. Given M presented by its thick part
and hyperbolic Dehn fillings, and an oracle to access its geometry, one can compute
the .1;D/–net of Lemma 4.3 with O.poly.vol.M /// calls to the oracle, where poly
is a polynomial function. The procedure to compute Voronoi cells is polynomial
in the size of the net, which is O.vol.M //. Meshing in polynomial time, while
maintaining the Voronoi cells, can be done using an intrinsic version of Delaunay
refinement [15]. Kobayashi and Rieck’s algorithm to subdivide each cell Vi;j into a
ball by constructing a 2–complex Ki;j requires first building a graph with desirable
properties, in [25, Lemma 4.2], which is constructed by adding components of Vi;j\@X

one at a time and then adding and removing edges that lie in geodesic faces. The
number of components of Vi;j\@X is universally bounded, depending on the universal
bound of the genus of Vi;j , and thus for each Vi;j this algorithm runs in constant time.
One can then triangulate the balls Vi;j �Ki;j in constant time, using the fact that the
number of faces, edges and vertices of each ball is universally bounded. This is done
for each of the O.vol.M // cells.

The algorithm using the crushing procedure in the proof of Lemma 5.1 is exponential in
vol.M /, the number of tetrahedra. However, the complexity becomes polynomial [9]
if, instead of 0–efficient triangulations, we only require the triangulations Ti of the
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decomposition described in Theorem 3.2 to have exactly one vertex per boundary
component if bounded, or one vertex triangulation if closed. This is sufficient for the
construction of Theorem 5.3.

The filling by Dehn surgery in the proof of Theorem 5.3 is linear time in the Dehn
filling coefficients (and hence linear in the final number of tetrahedra for the output
triangulation). Consequently, the procedure above constructs a triangulation with
treewidth vol.M / for a closed hyperbolic 3–manifold M in time

O
�
poly.vol.M // �OrC poly.vol.M //C n

�
and O.n/ memory, where poly denotes polynomial functions, Or is the time complexity
for calling the geometry oracle and n is the number of tetrahedra of the output manifold.
Note that, by construction, we also get a tree-decomposition of width O.vol.M //.

6 Treewidth does not bound volume

In this section, we prove there exist families of manifolds with constant treewidth but
unbounded volume. Our examples include both manifolds with boundary and closed
manifolds.

The manifolds with boundary that we consider are the exteriors of 2–bridge knots.
There are many ways to describe 2–bridge knots; see for example [7]. For the purpose
of this paper, a 2–bridge knot KŒan�1; : : : ; a1� is described by a finite collection of
integers a1; : : : ; an�1 . The diagram of the knot KŒan�1; : : : ; a1� consists of n� 1

twist regions arranged linearly, with the i th region containing jai j crossings, and the
direction of the crossing determined by the sign of ai , and twist regions connected as
shown in Figure 7. In general, we may always assume that the ai are either all positive
or all negative, and ja1j and jan�1j are at least 2.

Proposition 6.1 The family of hyperbolic 2–bridge knots has unbounded volume but
treewidth bounded by a constant. This is true whether we take treewidth corresponding
to an ideal triangulation or corresponding to a finite triangulation of the knot exterior.

Proof By Theorem B.3 of [18], the volume of a 2–bridge knot KŒan�1; : : : ; a1� is
bounded below by 2v3n, where v3D 1:0149 : : : is a constant. Thus letting n approach
infinity gives a sequence of 2–bridge knots with volume approaching infinity.
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�a1

a2

�a3

a4 an�2

�an�1

Figure 7: The diagram of KŒan�1; : : : ; a1� for n even. The box labelled
˙ai denotes a horizontal twist region with jai j crossings, with the sign of
all crossings equal to the sign of ˙ai . The crossing number is C D

jan�1jC � � �C ja1j .

To show that these knots have bounded treewidth, we need to describe a triangulation
of the knot complements. We use the well-known triangulation of 2–bridge knot
complements due to Sakuma and Weeks [32]; see also Guéritaud and Futer [18]. We
will review the description of ideal triangulation briefly here. More details can be found
in the two previous references, or in [30].

For ease of exposition, we will only work with examples for which n is even, each ai is
positive and a1 and an�1 are both at least 2. While a similar argument works when n

is odd or when the values ai are all negative, we will not need it for our purposes here.

The easiest way to describe the triangulation is to start with the diagram of the knot
KŒan�1; : : : ; a1� as in Figure 7, and then isotope all the odd twist regions to be vertical,
as in Figure 8.

With the diagram in the form of Figure 8, we may think of the crossings as nested, with
the first crossing of the twist region corresponding to the first crossing of a1 on the
inside and the last crossing corresponding to the last crossing of an�1 on the outside.

a1

an�1

a2
an�2

Figure 8: Another diagram of a 2–bridge knot.
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Figure 9: Vertical (left) and horizontal (right) blocks of the form S � I. The
4–punctured spheres on the outside and inside correspond to S � f1g and
S � f0g , respectively. Figure from [30].

Recall that there are C D a1C � � �C an�1 crossings in total. The complement of the
knot is built of the following:

(1) A tangle containing the very first crossing on the inside.

(2) For the i th crossing, for i D 2; : : : ;C � 1, a block homeomorphic to S � I,
where S is a 4–punctured sphere. The block contains a single horizontal or
vertical crossing, depending on whether the i th crossing is horizontal or vertical.
See Figure 9. It is stacked onto the previous crossing.

(3) A tangle containing the very last crossing on the outside.

There are 2.C � 2/ tetrahedra in the decomposition, which we now describe. First,
ignore the innermost and outermost tangles containing a single crossing. For the i th

crossing, for i D 2; : : : ;C � 2, there is a pair of tetrahedra lying between the i th and
.iC1/st blocks S � I. The ideal edges of these tetrahedra are edges that are either
horizontal or vertical on one of the surfaces S �f0g and S �f1g, for the i th or .iC1/st

block. When we isotope all these edges to lie between the two blocks, we see the form
of the two tetrahedra, as in Figure 10, left. One tetrahedron, denoted by T 1

i lies in
front of the i th block, and one, denoted by T 2

i , lies behind.

We need to determine how the faces of the tetrahedra glue. Note that the faces on
the outside are isotopic through the outside block to triangles on the outside block.
Consider the two outer faces of T 1

i on S �f0g on the .iC1/st block. These two faces
are shown in Figure 10 for the example that the crossing is vertical. When we isotope
through the .iC1/st block, the triangles isotope to the triangles shown on the right of
Figure 10. Note that one lies in front and one lies in the back. The one in front will be
glued to an inside face of T 1

iC1
, and the one in the back will be glued to an inside face

of T 2
iC1

. Similarly, if the crossing in the .iC1/st block is horizontal, triangle faces
of T 1

i on the outside isotope to two triangles, one on the front and one on the back of
S � f1g in the .iC1/st block. Thus one will be glued to T 1

iC1
and the other to T 2

iC1
.
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S � f1gS � f0g

Figure 10: Left: the edges of the tetrahedron are shown. Middle: two faces
of the tetrahedron T 1

i lying on the surface S � f0g � S � I for the .iC1/st

block. Right: position of those two faces when isotoped to S � f1g on the
.iC1/st block. Figure from [30].

An identical argument, isotoping in the other direction, then implies that one of the
inside faces of T 1

i is glued to a face of T 1
i�1

and the other inside face is glued to T 2
i�1

.

To complete the dual graph of the triangulation, we must determine how inner faces of
T 1

2
and T 2

2
glue when we insert the innermost tangle containing a single crossing. As

described in [18], inserting this tangle glues the two faces on the block S�I containing
the second crossing to each other. The two triangles in the front of S � f0g are glued,
and the two triangles in the back of S � f0g are glued. However, recall that we view
tetrahedra T 1

2
and T 2

2
as lying between the 2nd and 3rd blocks. As in Figure 10, right,

isotoping the inner faces of T 1
2

and T 2
2

through the block S � I to S � f0g puts
the two faces of T 1

2
on opposite sides of S � f0g. Thus when we attach the tangle

containing the first crossing, we glue each inner face of T 1
2

to an inner face of T 2
2

.
A similar argument shows each outer face of T 1

C�2
is glued to an outer face of T 2

C�2
.

Thus the graph dual to the triangulation of the 2–bridge knot complement has the form
shown in Figure 11.

A tree decomposition of the graph of Figure 11 is shown in Figure 12. There are C �4

bags in the tree decomposition. Each bag contains exactly four nodes, namely T 1
i , T 2

i ,
T 1

iC1
and T 2

iC1
, for i D 2; 3; : : : ;C �3. Thus the treewidth of this tree decomposition

is 4� 1D 3. Note it is constant, independent of the values of ai and the number of
crossings C and twist regions n.

T 1
2

T 2
2

: : :

T 2
3

T 1
3

T 2
4

T 1
4

T 1
C�3

T 2
C�3

T 1
C�2

T 2
C�2

Figure 11: The form of the dual graph to a 2–bridge knot triangulation.
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T 1
3

T 2
3

T 2
4

T 1
4

T 2
5

T 1
5 T 1

C�3

T 2
C�3

T 1
C�2

T 2
C�2T 2

4

T 1
4 : : :

T 1
2

T 2
2

T 2
3

T 1
3

Figure 12: A tree decomposition of an ideal triangulation of a 2–bridge knot.

Finally, the above argument holds for ideal triangulations. It might be preferable to work
with finite triangulations, ie tetrahedra with only finite vertices and not ideal vertices.
We can modify the above decomposition into a finite triangulation by first truncating
ideal vertices. This turns an ideal tetrahedron into a polyhedron with four triangular
faces (from truncating) and four hexagonal faces (one for each face of the previous ideal
tetrahedron). Add a finite vertex to the centre of each hexagonal face and cone to obtain
six triangles. Then add a finite vertex to the centre of the polyhedron and cone to all
the faces. The result is a subdivision of the ideal tetrahedron into 28 finite tetrahedra.

To obtain a tree decomposition of the finite triangulation, take the same tree decom-
position as in Figure 12. Replace T

j
i with the 28 finite tetrahedra in the subdivision

of T
j
i . This gives a tree decomposition, although it is likely not optimal. However,

the size of each bag in the decomposition is 28� 4D 112. Thus the treewidth of this
decomposition is 111, which is constant, independent of C and n.

Remark 6.2 It is folklore that given a link diagram of treewidth k (seen as a 4–valent
graph), one can construct an ideal triangulation of its link exterior with treewidth O.k/.
More explicitly, this can be done using SnapPy’s link complement triangulation algo-
rithm [14]. Specifically, SnapPy’s procedure first constructs a cell complex with four
cells per crossing in the diagram, whose dual graph connects the four cells around a
crossing in a square and whose arcs run along the link diagram otherwise; this graph
has treewidth at most 4 times the treewidth of the diagram. The procedure concludes
by contracting the cell complex along the link diagram, which induces arc contractions
in the dual graph that can only reduce the treewidth [31], and by adding a constant
number of cells (increasing the treewidth by a constant) to get an ideal triangulation.

However, the construction of Proposition 6.1 above gives a more natural triangulation
with a smaller treewidth.

We have found manifolds with boundary with unbounded volume and bounded treewidth.
We wish to find closed examples. To do so, we will perform Dehn filling on the 2–
bridge knots from above, by attaching a layered solid torus. However, we need to
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ensure that there is a triangulation of the manifold with only one vertex on the boundary,
with bounded treewidth.

Theorem 6.3 There exists a sequence of closed hyperbolic manifolds Mn with
bounded treewidth and unbounded volume.

Proof The sequence will be obtained by Dehn filling 2–bridge knot complements. By
Proposition 6.1, there exists a sequence of 2–bridge knots with volume approaching
infinity but with treewidth bounded by a constant.

By virtue of Corollary 3.4 (and Theorem 2.8), applying the 0–efficiency construction
of Jaco and Rubinstein [20], any (compact) 2–bridge knot exterior admits a bounded
triangulation with constant treewidth and one vertex on each boundary component.
Now perform a very high Dehn filling on the knot. The volume decreases by a bounded
amount; see for example [17]. Hence the sequence still has volume approaching infinity.

We construct the triangulation of the Dehn filling using Lemma 5.2, which increases
the treewidth by one, by Lemma 3.8. Thus the treewidth remains bounded.
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