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New hyperbolic 4–manifolds of low volume

STEFANO RIOLO

LEONE SLAVICH

We prove that there are at least two commensurability classes of (cusped, arithmetic)
minimal-volume hyperbolic 4–manifolds. Moreover, by applying a well-known
technique due to Gromov and Piatetski-Shapiro, we build the smallest known non-
arithmetic hyperbolic 4–manifold.

57M50, 57N16

1 Introduction

A hyperbolic manifold is a manifold equipped with a Riemannian metric of constant
sectional curvature equal to �1. Throughout this paper, hyperbolic manifolds are
assumed to be complete and of finite volume.

An important invariant of a hyperbolic manifold is its volume. Since it is often regarded
as a measure of complexity, it is reasonable to look for manifolds of low volume. In
this regard, recall that the Gauss–Bonnet formula relates the volume of a hyperbolic
4–manifold M to its Euler characteristic in the following way:

Vol.M /D 4
3
�2�.M /:

Moreover, by the work of Wang [23], for any n� 4 and V > 0, there is at most a finite
number of (isometry classes of) hyperbolic n–manifolds with volume bounded by V .

Let us now draw attention to minimal-volume hyperbolic manifolds. In dimension two,
there are uncountably many such manifolds. Up to diffeomorphism, by the Gauss–
Bonnet formula these are just three: the connected sum of three projective planes, the
thrice-punctured sphere and the once-punctured torus. The former is closed, while
the latter two are cusped. In contrast, in dimension three there is a unique orientable
hyperbolic manifold of minimal volume: the so-called Fomenko–Matveev–Weeks
manifold [16; 24; 4], which is closed. The smallest cusped hyperbolic 3–manifold is
the Gieseking manifold; see Adams [1] (this manifold will play a role in this paper).
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From now on, let us focus on dimension four. In 2000, Ratcliffe and Tschantz produced
a census of 1171 cusped hyperbolic 4–manifolds, all tessellated by a single copy of a
hyperbolic regular polytope, the ideal right-angled 24–cell C , which has volume

Vmin D
4
3
�2:

These manifolds are thus of minimal volume. For comparison, the smallest known
closed hyperbolic 4–manifolds have volume 8 �Vmin — see Conder and Maclachlan [2]
and Long [10] — but the minimal volume of a closed hyperbolic 4–manifold is still
unknown.

At the moment, computing the exact number of hyperbolic 4–manifolds with volume
Vmin seems to be an unrealistic expectation. An explicit bound is still unknown, and
this number may be enormous. Counting such manifolds up to commensurability is
perhaps a simpler task. (Recall that two manifolds are commensurable if there is a third
manifold finitely covering both.) For instance, all the manifolds from the Ratcliffe and
Tschantz’s census are commensurable.

In a recent survey about hyperbolic 4–manifolds [14, Section 4, Question 6], Martelli
asks whether all hyperbolic 4–manifolds of volume Vmin are commensurable. The
main result of the present paper is the following:

Theorem 1.1 There exist at least two commensurability classes of (cusped , arithmetic)
hyperbolic 4–manifolds containing an orientable manifold of minimal volume.

Each of these two commensurability classes is associated to a (noncompact, arithmetic)
hyperbolic Coxeter polytope: the ideal regular 24–cell C and the ideal rectified 5–
cell R, respectively. These two commensurability classes are represented by Coxeter
diagrams in Figure 1, left. The manifolds of Ratcliffe and Tschantz are commensurable
(in the orbifold sense — see Section 2.3) with the 24–cell C . Another minimal-volume
manifold, commensurable with the rectified 5–cell R, is obtained by slightly modifying
a construction of the second author [19]. The reflection groups associated to these two
Coxeter polytopes are arithmetic. This allows us to distinguish their commensurability
classes by applying the work of Maclachlan [11].

Having established the existence of two commensurability classes of minimal-volume
hyperbolic 4–manifold, we turn our attention to manifolds with twice the minimal
volume, namely 8

3
�2 . Our main objective is constructing a (nonorientable) hyperbolic

4–manifold N of volume 2 � Vmin , commensurable with a Coxeter polytope P first
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introduced by Kerckhoff and Storm in [7] and further studied in detail by Martelli
and Riolo [15] (see our Theorem 3.1). The manifold N is explicitly built by pairing
the facets of two copies of the polytope P. Our construction is similar to that of
another manifold of volume 2 � Vmin built in [15]. In fact, these two manifolds are
commensurable, although not isometric. Thus, there is no reason to consider our
manifold N special. On the other hand, its construction suggests that the polytope P
may be used to build more manifolds of low volume.

Finally, we note that all the known examples of minimal-volume hyperbolic 4–manifolds
are arithmetic, so one could wonder whether there exists a nonarithmetic hyperbolic
4–manifold of volume Vmin or, more generally, what the minimal volume of a non-
arithmetic hyperbolic 4–manifold might be. We prove the following:

Theorem 1.2 There exist two nonarithmetic cusped hyperbolic 4–manifolds H and
H0 such that

� H is nonorientable and �.H/D 3,

� H0 is orientable and �.H0/D 5.

The proof is a simple application of the well-known “interbreeding” technique intro-
duced by Gromov and Piatetski-Shapiro [5]. The manifold constructed in [19] has
totally geodesic boundary isometric to the figure-eight knot complement. By cutting our
manifold N (or its orientable double covering) along a totally geodesic hypersurface,
we get another hyperbolic manifold bounding the figure-eight knot complement. We
glue the two manifolds through an isometry of their boundaries to get the nonarithmetic
H and H0. To the best of the authors’ knowledge, these are the smallest known examples
of nonarithmetic hyperbolic 4–manifolds.

The paper is organized as follows: In Section 2 we introduce the Coxeter polytopes R
and P, describe their combinatorial and geometric properties, and give their commen-
surability invariants. Theorem 1.1 is proved in Section 2.3. In Section 3, we build the
manifold N commensurable with the Kerchoff–Storm polytope and prove Theorem 3.1.
The proof of Theorem 1.2 follows in Section 4.

Acknowledgements The authors are grateful to Ruth Kellerhals, Sasha Kolpakov and
Bruno Martelli for some crucial observations. In particular, we thank Ruth Kellerhals
and Sasha Kolpakov for suggesting a simpler proof of Lemma 2.2. Figures 3 and 5 come
from the paper [15] and were originally drawn by Bruno Martelli (actually, Figure 5 is
taken from his beautiful book [13]).
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Figure 1: The Coxeter diagrams of three polytopes obtained from C , R
and P as quotients by some groups of symmetries. The polytope C=Sym.C/
(top left) is the characteristic simplex of the 24–cell C ; for the remaining
two polytopes see Lemma 2.2 and the end of Section 2.2. The notation for
Coxeter diagrams is explained in Section 2.1.

Riolo was supported by the research fellowship Deformazioni di strutture iperboliche in
dimensione quattro, by the Mathematics Department of the University of Pisa. Slavich
was supported by a grant from Scuola di Scienze di base Galileo Galilei, and wishes
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2 Two Coxeter polytopes

In this section, we first introduce the Coxeter polytopes P and R, and then show that
they are not commensurable. Finally, we prove Theorem 1.1.

2.1 The rectified 5–cell

Here, we briefly introduce the ideal hyperbolic rectified 5–cell R. We refer the reader
to [9; 19] for more details.

Definition 2.1 Consider a regular Euclidean 4–simplex ��R4, normalized so that
the midpoints of its edges P1; : : : ;P10 belong to the unit sphere S3. Interpret now the
unit ball B4 as the hyperbolic space H4 in the Klein–Beltrami model. The rectified
5–cell R is the convex hull in H4 of the ideal points P1; : : : ;P10 2 @1H4. (Of course,
we have defined the polytope R up to isometries of H4.)

The polytope R has ten facets: five ideal regular octahedra and five ideal regular
tetrahedra.
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Figure 2: The vertex figure of the rectified 5–cell R is a Euclidean right
prism over an equilateral triangle. All of its edges have equal length.

We note that the symmetry group of R acts transitively on the set of its vertices. The
vertex figure L of R is a right Euclidean prism over an equilateral triangle, with all
edges of equal length. At each vertex, there are three octahedra meeting side-by-side,
corresponding to the square faces, and two tetrahedra, corresponding to the triangular
faces.

The dihedral angle between two octahedral facets is therefore equal to �
3

, while the
dihedral angle between a tetrahedral and an octahedral facet is equal to �

2
. An important

consequence of this fact is that R is a Coxeter polytope.

As shown in [9], the volume of the rectified 5–cell is

(1) Vol.R/D 2
9
�2
D

1
6
Vmin:

The symmetry group Sym.R/ of the polytope R is clearly isomorphic to Sym.�/,
which is isomorphic to the symmetric group S5 . Moreover, we obtain the following
one-to-one correspondences (see also [9]):

(1) fvertices of Rg $ fedges of �g.

(2) ftetrahedral facets of Rg $ fvertices of �g.

(3) foctahedral facets of Rg $ ffacets of �g.

The next lemma will be used in Section 2.3. By a hyperbolic n–pyramid, we mean
the convex hull in Hn of a (possibly ideal) point and an .n�1/–dimensional polytope
which is not a simplex; see [21].

We will adopt the following notation for (generalized) Coxeter diagrams; see [22].
The thick edges correspond to facets which are tangent at infinity. The dotted edges
correspond to facets which are at positive distance. The thin unlabeled edges correspond
to facets which intersect at angle �

3
. Vertices not joined by an edge correspond to

facets intersecting orthogonally. Finally, edges labeled by � (not necessarily an integer)
correspond to facets intersecting at an angle of �=� .
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Lemma 2.2 The quotient R=S5 of the rectified 5–cell under the action of its sym-
metry group is isometric to the hyperbolic Coxeter pyramid whose Coxeter diagram is

(2)

Proof For simplicity, let us first consider a regular 4–simplex �˛ �H4 with dihedral
angles ˛

�
where ˛ > arccos 1

3

�
and its symmetry group S5 . It is well known that the

quotient �˛=S5 is an orthoscheme with the generalized Coxeter diagram
ˇ

where ˇ D 2�=˛ .

The simplex �˛ is ideal for ˛ D arccos 1
3

. If instead ˛ 2
�
�
3
; arccos 1

3

�
, the simplex

�˛ is hyperideal, and each hyperideal vertex determines a dual hyperplane in Hn.
We can thus consider the corresponding truncated simplex tr.�˛/ (whose symmetry
group is always S5 ). In that case, the quotient tr.�˛/=S5 has the generalized Coxeter
diagram

ˇ

where the additional node corresponds to the truncation. In other words, the polytope
tr.�˛/=S5 can be obtained by truncating �˛=S5 with the hyperplane dual to its
hyperideal vertex.

As the angle ˛ approaches �
3

, the truncation tr.�˛/ tends to the rectification R, and
the generalized Coxeter diagram of the quotient R=S5 is given by (2).

Conversely, we see that the rectified 5–cell R can be obtained from the pyramid
represented by (2) as its orbit by the action of the group S5 generated by reflections
in the hyperplanes associated to the subdiagram

This subdiagram is the link of the vertex of R=S5 corresponding to the barycenter
of the original simplex � D ��=3 . This operation is also known as the “Wythoff
construction”; see [3].

2.2 The Kerckhoff–Storm polytope

In this section, we describe the hyperbolic Coxeter polytope P that tessellates the man-
ifold N of Theorem 3.1. The reflection lattice associated to P was recently discovered
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by Kerckhoff and Storm in [7, Section 13.2]. The geometry and combinatorics of the
polytope P are carefully described in [15, Proposition 3.14]. We refer to these papers
for more details — in particular, the reader can find the proofs of all the upcoming facts
in [15].

Let us consider the hyperboloid model of the hyperbolic 4–space, that is, we set

H4
D fv 2R1;4

j hv; vi D �1; hv; e0i< 0g;

where R1;4 is the Minkowski space with standard basis e0; : : : ; e4 and Lorentzian
product h ; i given by

hei ; ej i D

8<:
�1 if i D j D 0;

1 if i D j ¤ 0;

0 if i ¤ j:

Every spacelike vector v 2R1;4 (ie such that hv; vi> 0) determines a halfspace of H4,

Hv D fx 2H4
j hx; vi � 0g:

Definition 2.3 Let P �H4 be the intersection of the 24 halfspaces determined by
the 24 spacelike vectors in R1;4 listed in Table 1.

�p
2; 1; 1; 1;

p
5=3
�
;

�p
2; 1; 1; 1;�

p
3=5
�
; .1;

p
2; 0; 0; 0/;�p

2; 1;�1; 1;�
p

5=3
�
;

�p
2; 1;�1; 1;

p
3=5
�
; .1; 0;

p
2; 0; 0/;�p

2; 1;�1;�1;
p

5=3
�
;

�p
2; 1;�1;�1;�

p
3=5
�
; .1; 0; 0;

p
2; 0/;�p

2; 1; 1;�1;�
p

5=3
�
;

�p
2; 1; 1;�1;

p
3=5
�
; .1; 0; 0;�

p
2; 0/;�p

2;�1; 1;�1;
p

5=3
�
;

�p
2;�1; 1;�1;�

p
3=5
�
; .1; 0;�

p
2; 0; 0/;�p

2;�1; 1; 1;�
p

5=3
�
;

�p
2;�1; 1; 1;

p
3=5
�
; .1;�

p
2; 0; 0; 0/;�p

2;�1;�1; 1;
p

5=3
�
;

�p
2;�1;�1; 1;�

p
3=5
�
; .
p

5; 0; 0; 0;�
p

6/;�p
2;�1;�1;�1;�

p
5=3
�
;
�p

2;�1;�1;�1;
p

3=5
�
; .
p

5; 0; 0; 0;
p

6/:

Table 1: The halfspaces that define P are determined by these spacelike vectors.

The set P is a hyperbolic Coxeter 4–polytope, and has 24 facets (ie 3–faces), 100 ridges
(ie 2–faces), 120 edges and 44 vertices, of which 20 are ideal. The combinatorics and
geometry of P can be recovered from Figure 3.
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Figure 3: The geometry and combinatorics of the positive, negative, equa-
torial and tetrahedral facets of the polytope P (respectively labeled P, N,
E and T). Ideal vertices are represented by white dots. The labels on each
2–dimensional face show adjacencies between facets of various types. Black
labels apply to faces in the foreground and blue labels to faces in the back-
ground. In the polytope P, the white and red 2–faces have dihedral angles �

2

and �
3

, respectively. Similarly, in each facet, the black edges are right-angled,
while the red edges have dihedral angle �

3
.

The facets The symmetry group of P acts transitively on each of the following sets
of facets:

(1) The positive (abbreviated P) facets are the eight facets determined by the vectors
of Table 1 whose last coordinate is ˙

p
5=3 . Four of them lie in the halfspace He4

(resp. H�e4
), and are called upper (resp. lower) positive facets.1

(2) The negative (abbreviated N) facets are the eight facets determined by the vectors
of Table 1 whose last coordinate is ˙

p
3=5 . Four of them lie in the halfspace He4

(resp. H�e4
), and are called upper (resp. lower) negative facets.2

(3) The equatorial (abbreviated E) facets are the six facets determined by the vectors
of Table 1 whose last coordinate is 0. Each such facet intersects the equatorial
hyperplane @He4

D fx4 D 0g �H4 in an ideal quadrilateral.

(4) The tetrahedral (abbreviated T) facets are the two facets determined by the vectors
of Table 1 whose last coordinate is ˙

p
6. These are regular ideal tetrahedra, and

are the only facets whose intersection with the equatorial hyperplane @He4
D

fx4D 0g�H4 is empty. The facet given by
p

5e0�
p

6e4 (resp.
p

5e0C
p

6e4 )
is the upper (resp. lower) tetrahedral facet.3

1In [7; 15], these are called the “odd (resp. even) positive walls”.
2In [7; 15], these are called the “even (resp. odd) negative walls”.
3The eight facets of (3)–(4) are called the “letter walls” in [7; 15].

Algebraic & Geometric Topology, Volume 19 (2019)



New hyperbolic 4–manifolds of low volume 2661
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Figure 4: The links of the vertices of the polytope P. Black edges are
right-angled, while red edges have dihedral angle �

3
. The faces of these

three polyhedra are labeled (front faces in black, back faces in blue) with a
symbol — P for positive, N for negative, E for equatorial, T for tetrahedral —
denoting the isometry class of the corresponding facet of P. The Euclidean
parallelepiped on the left is the link of an equatorial ideal vertex, the Euclidean
prism in the center is the link of an upper or lower ideal vertex, the spherical
tetrahedron on the right is the link of a finite vertex.

We now describe some of the faces of P of lower dimension. Note that, being a Coxeter
polytope, P is simple — meaning that every face of codimension k (except the ideal
vertices) is the intersection of exactly k facets of P ; see [22].

The faces of P will be often distinguished by their type (rather than by isometry class),
where by the type of a face F we mean the isometry classes of the facets of P whose
intersection is F. For instance, an edge of P is of type PNE if it is the intersection of a
positive, a negative and an equatorial facet. However there are two distinct isometry
classes of PNE edges (some edges have two ideal vertices, some others have only one),
as can be seen from Figure 3. (For the facets of P, instead, the type coincides with the
isometry class.)

The ridges The polytope P has dihedral angles �
2

and �
3

. The right-angled ridges
are of type PN, PE, PT and NE, while the ridges with dihedral angle �

3
are of type PP,

as shown in Figure 3. We note that every ridge has some ideal vertices.

The vertices The link Lv of each vertex v of P is a three-dimensional polyhedron,
which is Euclidean (and defined up to rescaling) if v is ideal, or spherical if v is finite.
Each face of Lv is the link of v , seen as vertex of an appropriate facet F of P. We
label each face of Lv by the type of the corresponding F, as in Figure 4.

The symmetry group of P acts transitively on each of the following sets of vertices:
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(1) 12 equatorial ideal vertices, lying in @1fx4 D 0g � @1H4, and corresponding
to the ideal vertices of the equatorial faces. These are of type EEPPNN, with
link a Euclidean rectangular parallelepiped, depicted in Figure 4, left.

(2) 8 ideal vertices, of which four lie in @1He4
(resp. @1H�e4

) called upper (resp.
lower) ideal vertices corresponding to the ideal vertices of the tetrahedral facets.
These are of type TNPPP, with link a Euclidean right prism over an equilateral
triangle, depicted in Figure 4, center.

(3) 24 finite vertices. These are of type PPNE, with link the spherical tetrahedron
depicted in Figure 4, right.

Volume As proved in [15, Proposition 3.21], the volume of the polytope P is

(3) Vol.P/D 4
3
�2
D Vmin;

which coincides with the minimal volume of a hyperbolic 4–manifold.

Symmetries Next, we explicitly describe the symmetry group Sym.P/ of the poly-
tope P, its subgroup of orientation-preserving symmetries SymC.P/ and their action
on P. An important symmetry of P is the antipodal map

aW .x0;x1;x2;x3;x4/ 7! .x0;�x1;�x2;�x3;�x4/:

It is easy to check that a is orientation-preserving and exchanges the two halfspaces
He4

and H�e4
. In particular, a exchanges the two tetrahedral facets of P.

Proposition 2.4 There is a group isomorphism

Sym.P/Š Z=2Z�S4

that restricts to an isomorphism

SymC.P/Š Z=2Z�A4;

where S4 (resp. A4 ) is the symmetric (resp. alternating) group on the set of the upper
positive facets of the polytope P. The center Z=2Z is generated by the antipodal
map a.

Proof The group Sym.P/ is explicitly computed in [15, Section 3.2] and [7, Section 4]
as

Sym.P/D hr; l;m; ni;
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where
r W .x0;x1;x2;x3;x4/ 7! .x0;x1;x2;�x3;�x4/;

l W .x0;x1;x2;x3;x4/ 7! .x0;x2;x1;x3;x4/;

mW .x0;x1;x2;x3;x4/ 7! .x0;x1;x3;x2;x4/;

nW .x0;x1;x2;x3;x4/ 7! .x0;x1;�x3;�x2;x4/:

It is easy to check that the group hl;m; ni consists precisely of the symmetries of P that
preserve the halfspace He4

. Moreover, it acts faithfully on the set of the upper positive
facets of P as its full permutation group (see also the proof of [15, Lemma 4.15]), and
thus we have a natural isomorphism

hl;m; ni ŠS4:

Since r D a ım ı l ım ı n ı l ım, we also have

Sym.P/D ha; l;m; ni:

Now, the antipodal map a has order two and is in the center of Sym.P/, while S4 is
centerless. Thus, the short exact sequence

1!S4! Sym.P/! Z=2Z! 1

(where the third map sends an s 2 Sym.P/ to 0 if s preserves He4
and to 1 otherwise)

splits, and furnishes an isomorphism Sym.P/Š Z=2Z�S4 .

Finally, since the upper tetrahedral facet T is a regular tetrahedron whose set of faces
is

fT \X j X an upper positive facet of Pg;

the group hl;m; ni acts on T as its symmetry group. The subgroup A4 acts by
orientation-preserving isometries of T and a is orientation-preserving. Thus, the
subgroup Z=2Z�A4 acts on P as its group of orientation-preserving isometries, and
the proof is completed.

From now on, we will naturally write the elements of Sym.P/ as elements of Z=2Z�S4.

The quotient P=S4 is isometric the polytope represented by the Coxeter diagram in
Figure 1, right; see [7, Figure 33] and [15, Figure 7].
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2.3 Commensurability

A (complete) hyperbolic orbifold is a quotient Hn=� for a discrete group �< Isom.Hn/.
Two orbifolds Hn=� and Hn=� 0 are commensurable if � \g� 0g�1 has finite index
in both � and g� 0g�1 for some g 2 Isom.Hn/.

A convex polytope P �Hn is called a Coxeter polytope if all its dihedral angles are
integral submultiples of � . In this case, we interpret P as a hyperbolic orbifold Hn=� ,
where � is the hyperbolic Coxeter group generated by reflections through the supporting
hyperplanes of P.

We refer the reader to [12] for the notion of arithmetic lattices. We will not describe the
regular ideal 24–cell C , as it is not necessary for our purposes. The interested reader
can find more detail elsewhere in the literature, for instance in [8].

Proposition 2.5 The rectified 5–cell R, the polytope P and the ideal regular 24–cell
C are pairwise noncommensurable arithmetic Coxeter polytopes.

Proof The arithmeticity of the 24–cell is proved in [18, Section 4], while arithmeticity
of the polytope P is observed in [7] (it can be easily verified from the Coxeter diagram in
Figure 1, right, by applying Vinberg’s algorithm [22] as explained in [7, Section 13.3]).
The rectified 5–cell R is clearly commensurable with the pyramid R=S5 of Lemma 2.2,
which is shown to be arithmetic in [6].

By the work of Maclachlan [11], commensurability classes of arithmetic Coxeter poly-
topes are distinguished by the ramification sets of some naturally associated quaternion
algebras. As shown in [15, Proposition 4.25], the ramification set of the 24–cell is
trivial, while the ramification set of the polytope P is the set f2; 5g. Finally, the
ramification set for the pyramid R=S5 is computed in [6, Table 4, first line], and is
given by the set f3;1g.

This proves that these three Coxeter polytopes are pairwise noncommensurable.

Remark 2.6 Proposition 2.5 allows us to correct the inexact claim in the proof of
[9, Proposition 4.4] that the rectified 5–cell R and the 24–cell C are commensurable.
However, since R is indeed arithmetic, the statement of that proposition remains true.

We are finally ready to prove Theorem 1.1. The proof follows essentially by combining
Proposition 2.5 with previously known results, and the details are given below.
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Proof of Theorem 1.1 All the manifolds in the Ratcliffe–Tschantz census [18] are by
construction commensurable with the 24–cell C and of volume Vol.C/D Vmin .

In order to build a minimal-volume manifold commensurable with the rectified 5–
cell R, consider the manifold Z described in [19, Remark 4.4]. Since this manifold is
tessellated by six copies of the rectified 5–cell R, we have Vol.Z/D 6 �Vol.R/DVmin .
Now, the manifold Z has totally geodesic boundary isometric to the complement of
the figure-eight knot. It is sufficient to “kill” the boundary component by taking its
quotient under the map which produces the Gieseking manifold, to obtain an orientable,
minimal-volume hyperbolic 4–manifold Z 0 with empty boundary. As can be seen
immediately from the construction, the manifold Z 0 is built by gluing copies of R via
symmetries of R, so Lemma 3.6 applies, showing that Z 0 is in fact commensurable
with R.

By Proposition 2.5, the polytopes R and C are noncommensurable, and we conclude
the same for the manifold Z 0 and any manifold from the Ratcliffe–Tschantz census.

3 A manifold with twice the minimal volume

In this section, we first prove the following:

Theorem 3.1 The commensurability class of the Kerckhoff–Storm polytope P con-
tains a nonorientable manifold N with �.N /D 2.

In order to build such a manifold N, we will first construct a hyperbolic 4–manifold M
with totally geodesic boundary and such that �.M/D 1, by gluing in pairs through
isometries the facets of the Kerckhoff–Storm polytope P introduced in Section 2.2.
The manifold N will then be obtained by mirroring the manifold M in its boundary.

Finally, in Section 4, we will prove Theorem 1.2 by “interbreeding”.

3.1 Defining the manifold M

Before defining the manifold M, we first define the maps to be used as face-pairings
of the polytope P.

The figure-eight knot pattern Similarly to [15, Section 4.3], in order to glue some
facets of P we will exploit the usual ideal triangulation of the figure-eight knot
complement made of two regular tetrahedra, as shown in Figure 5. The resulting
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complex contains four triangular faces P , J , F and R and two edges. Each edge
of the complex has valence six and the return map around an edge is trivial. We call
�P ; �J ; �F and �R the corresponding face pairings.

F

J

J

RP F
P R

T a.T /

Figure 5: This is the well-known ideal triangulation of the figure-eight knot
complement. The two edges of the triangulation have valence six and are
marked with solid and hollow dots. The resulting complex contains four
triangular faces, labeled P, J, F and R . The orientation of the labels in the
figure determines the gluing pattern. We identify the upper tetrahedral facet T
of P with the tetrahedron on the left and the lower tetrahedral facet a.T /
with the tetrahedron on the right, in such a way that for every upper positive
facet F of P, the face T \ F has the same label X 2 fP;J;F;Rg as its
antipode a.T \F/ .

By calling P 0, J 0, F 0, R0 and P 00, J 00, F 00, R00, respectively, the faces of the tetrahedron
on the left in Figure 5 and of that on the right in the obvious way, the face pairings are
induced by the maps

�P W .P
0;J 0;R0;F 0/! .P 00;F 00;J 00;R00/;

�RW .P
0;J 0;R0;F 0/! .F 00;P 00;R00;J 00/;

�F W .P
0;J 0;R0;F 0/! .R00;P 00;J 00;F 00/;

�J W .P
0;J 0;R0;F 0/! .F 00;J 00;P 00;R00/;

so that X 0 is glued with X 00 through the map �X for each X 2 fP;R;F;J g.

The two tetrahedra of the triangulation may be interpreted as the two tetrahedral facets
of the polytope P. Each of them is adjacent along its triangular faces to four positive
facets of P.

At once, we fix an identification of the upper tetrahedral facet T of P with the
tetrahedron on the left and the lower tetrahedral facet a.T / with the tetrahedron on the
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right, in such a way that for every upper positive facet F of P, the face T \F has the
same label X 2 fP;R;F;J g as its antipode a.T \F/.

Remark 3.2 There is a one-to-one correspondence between the 2–strata fP;R;F;J g
of the figure-eight knot complement’s triangulation and the upper (or lower) positive
facets of P. In particular, recalling Proposition 2.4, the S4 –factor of Sym.P/ is
identified with the permutation group of the set fP;R;F;J g.

Remark 3.3 Moreover, every pair of positive (or negative) facets of P is adjacent to
exactly one equatorial facet (this can be seen in Figure 3). Thus, there is a one-to-one
correspondence between the edges of a single chosen tetrahedron (for instance the one
on the left) and the equatorial facets of P.

Gluing the positive facets Let us begin by defining the face pairings on the positive
facets of P. We wish to do this in such a way that the tetrahedral facets are glued
together as in the ideal triangulation of the figure-eight knot complement of Figure 5.

Notice that each of the face pairings of that triangulation induces a unique simplicial
map between the two tetrahedra, and therefore it defines a bijection from the set of
the upper positive facets of P to the set of the lower positive facets. In particular,
by Proposition 2.4, for each of these pairing maps there is a unique symmetry of the
polytope P which acts on the positive facets in the prescribed way. By a slight abuse of
notation, we call these symmetries �P ; �R; �F ; �J 2 Sym.P/. Recalling Remark 3.2,
these maps can be described as follows:

(4)
�P D a ı .JFR/; �R D a ı .PFJ /;

�F D a ı .PRJ /; �J D a ı .PFR/:

Gluing the tetrahedral facets Let us now define the face pairings on the tetrahedral
facets of the polytope P. In this case, we will always use restrictions of the same
symmetry of P.

There exists an orientation-reversing, fixed-point-free isometric involution g of the
figure-eight knot complement. The quotient of the figure-eight knot complement
under g is the Gieseking manifold, which is the cusped hyperbolic 3–manifold of
minimal volume.

In terms of the action on the triangulation in Figure 5, the involution g exchanges the
two tetrahedra, and acts on the triangular faces of the complex as the permutation

P $ F; R$ J:
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Again, by Proposition 2.4, there is a unique isometric involution g of the polytope P
which maps the upper positive facets to the lower positive facets in the prescribed way.
Recalling Remark 3.2, this map is described by

(5) g D a ı .PF /.JR/ 2 Sym.P/:

An important consequence of the fact that the map g induces an automorphism of the
triangulation of the figure-eight knot complement is that it preserves the face pairings
on the positive facets of the polytope P. This is expressed by the equations

(6) g ı�P ıg D ��1
F ; g ı�R ıg D ��1

J :

Gluing the negative facets Finally, we define the face pairings for the negative facets
of P. Once more, we wish to choose restrictions of a symmetry of P which induces
an isometry of the figure-eight knot complement. Notice that there is an isometric
involution of the figure-eight knot complement which maps each tetrahedron to itself
and acts on the triangular faces through the permutation

P $R; F $ J:

Again, by Proposition 2.4, this permutation of the upper positive facets induces an
isometric involution i of the polytope P. Recalling Remark 3.2, its description is

(7) i D .PR/.FJ / 2 Sym.P/:

Note that, in contrast with the previously chosen pairing maps, the involution i lies in
the S4 –factor of Sym.P/.

Once again, let us notice that the fact that i induces an automorphism of the figure-eight
knot complement is expressed by the equations

(8) i ı�P ı i D �R; i ı�F ı i D �J :

We are finally ready to define the desired manifold M.

Definition 3.4 We define M to be the space obtained from the polytope P as follows:

� each point p of an upper positive facet X is identified with �X .p/, where �X

is as defined by (4);
� each point p of a tetrahedral facet is identified with g.p/, where g is as defined

by (5);
� each point p of a negative facet is identified with i.p/, where i is as defined

by (7).
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3.2 Proof of Theorem 3.1

The faces of the polytope P induce a natural stratification of the complex M. In
the sequel, we prove that M is indeed a complete hyperbolic manifold with totally
geodesic boundary. Notice that, in order to define the manifold M, we have paired
all the facets of the polytope P except the equatorial ones. The equatorial facets will
tessellate the boundary of M. Let us first check that the chosen pairing maps do not
introduce self-pairings between any positive, negative or tetrahedral facets of P. This is
fairly obvious in the case of positive facets, since the upper ones are paired to the lower
ones, and in the case of the two tetrahedral facets (which are paired to each other).

Notice that every upper (resp. lower) positive facet is adjacent to a unique lower (resp.
upper) negative facet. This induces a natural one-to-one correspondence between the
set of positive facets and the set of negative facets of P. In terms of the corresponding
spacelike vectors, it is given by f .x0;x1;x2;x3;x4/D .x0;x1;x2;x3;�1=x4/. Now,
by (7), the involution i does not preserve any of the positive facets; therefore, it does
not preserve any of the negative ones.

The associated correspondence between the positive and negative facets of P sends
each upper (resp. lower) positive facet to the unique lower (resp. upper) negative facet
adjacent to it. The function f does not induce an isometry of H4, but does nonetheless
commute with all elements of Sym.P/. Therefore, the action of any element of Sym.P/
on the set of negative facets can be directly inferred by its action on the set of positive
facets, and by composing it with the function f . Now, by (7), the involution i does not
preserve any of the positive facets; therefore, it does not preserve any of the negative
ones.

Following Thurston [20] (see also Ratcliffe [17, Chapter 11]), we can reduce the issue
of proving that M is a hyperbolic manifold with totally geodesic boundary to a purely
3–dimensional problem: it suffices to check that the links of the ideal vertices of P
are paired together to produce Euclidean 3–manifolds (perhaps with totally geodesic
boundary), and that the links of the finite vertices (which are all adjacent to some
equatorial facet) are paired together to produce 3–dimensional hemispheres.

The equatorial ideal vertices Let us begin with the equatorial ideal vertices of P.
Recall that the link of each such vertex is a rectangular parallelepiped, shown in Figure 4,
left. By gluing these 12 parallelepipeds together according to the pairing maps, we
obtain a piecewise Euclidean complex E. We now show that E is indeed a (possibly
disconnected) Euclidean 3–manifold with totally geodesic boundary.
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Now, the various edges of the parallelepiped fall into three types, according to the type
of the ridges of P which they correspond to: PN, PE and NE. Notice, moreover, that
all the pairing maps preserve the facet type. Therefore, also the edges of the complex E
fall into the types PN, PE and NE. The edges of the first type lie in the interior of the
complex E, while the edges of types PE and NE lie in its boundary.

Consider the abstract graph G whose nodes correspond to the edges of type PN of the
above parallelepipeds, with an arc connecting the nodes corresponding to the edges
E1 and E2 if there is a pairing map between the faces of the corresponding two
parallelepipeds mapping E1 to E2 . Since an edge of type PN is adjacent to exactly
two paired rectangular faces, the graph G is a union of cycles, called the edge cycles of
the gluing. To each edge cycle, there corresponds a return map from any of the edges
which make up the cycle to itself: simply follow the sequence of pairing maps until the
cycle closes up. There are clearly only two possibilities for each return map: either it
is the identity or it acts by exchanging the vertices.

Since all the parallelepipeds are right-angled, in order to check that the edges of type PN
of the complex E are nonsingular, we need to check that all these edge cycles have
length 4 and that all the return maps are trivial. The latter condition assures that
the links of the midpoints of the edges of the complex E are indeed spheres and not
projective planes.

The pairing maps involved for each edge of type PN fall into two types: the involution i

for the negative facets and the pairing maps �P , �J , �F and �R for the positive ones.
These two types of pairing maps clearly alternate in each edge cycle. Now, because
of (8), we observe that the sequences of pairing maps are of one of the two types

(9) i ı�P ı i ı�R
�1
D id; i ı�F ı i ı�J

�1
D id:

The equation above proves that these face cycles have length at most 4. In order to
verify that their length is exactly 4, we need to take a closer look at the behavior of the
pairing maps on the positive facets, and verify that none of the ridges of P of type PN
is mapped to itself under ��1

R
, i ı ��1

R
or �P ı i ı ��1

R
D i (and, similarly, that the

equivalent statement holds for the cycles of the second type).

Notice that each ridge of type PN determines a unique positive facet adjacent to it,
and that these fall into upper and lower facets. The isometry i preserves these two
groups, while the maps �P , �J , �F and �R exchange them. This implies that none
of these latter maps can take a ridge of type PN to itself, and neither can the maps
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i ı ��1
R

or i ı �J
�1 . Finally, the involution i does not preserve any of the positive

facets by (7). Notice that by (9) all the return maps are induced by the identity map of
the polytope P, and therefore all return maps are trivial.

Concerning the edges of E of type PE and NE, they are also easily seen to be nonsingular.
This is a consequence of the fact that all the dihedral angles between the equatorial
facets of P and the positive and negative facets are right.

Having shown that the edges of the complex E are nonsingular, we now turn our
attention to its vertices. Notice that all the vertices lie in the boundary of E. Let us call
L the link of each such vertex, which is tessellated by right-angled spherical triangles.
In order to prove that the complex E is a Euclidean manifold, it remains to show that
L is isometric to a hemisphere of S2. By the previous argument concerning the edges
of type PN, we obtain that L is indeed a (nonsingular) spherical surface with totally
geodesic boundary; therefore, it can only be a hemisphere.

The upper and lower ideal vertices We now deal with the upper and lower ideal
vertices of P. Recall that the link of each such vertex is a right prism over an equilateral
triangle, shown in Figure 4, center.

The pairings along the positive facets glue these prisms together along their rectangular
faces to produce a Euclidean manifold T �I, where T is the torus corresponding to the
cusp section of the figure-eight knot complement and I is a closed interval. The torus T

is tessellated by eight Euclidean equilateral triangles, one for each upper or lower ideal
vertex of P. The eight triangles which tessellate the boundary component T � f0g

correspond to the vertex figures of the two tetrahedral facets, while the triangles which
tessellate T � f1g correspond to the ideal vertex figures of negative facets.

Therefore, the pairing maps between the tetrahedral facets induce an isometric involution
of the torus T � f0g, and in a similar way the pairings between the negative facets
induce an isometric involution of the torus T � f1g. It is sufficient to check that both
involutions are fixed-point free.

The pairings along the tetrahedral facets come from the involution g defined by (5). The
involution g defines a fixed-point-free involution of the figure-eight knot complement
such that the quotient is the Gieseking manifold. Therefore, also its action on the
torus T � f0g is fixed-point-free, and the quotient is a Klein bottle tessellated by four
equilateral triangles.
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In the case of the negative facets, the pairing map is given by the involution i defined
by (7). This induces an orientation-preserving involution of the figure-eight knot
complement which is, however, not fixed-point-free. The set of fixed points is a knot K

in the figure-eight knot complement. From Figure 5, one observes that the intersection of
the knot K with each of the two tetrahedra tessellating the figure-eight knot complement
is a geodesic segment connecting the midpoints of a pair of opposite edges; in particular,
it is disjoint from small enough horospheres around the ideal vertices. This implies
that the action of the involution i on the torus T � f1g is indeed fixed-point-free. The
quotient is a Euclidean torus tessellated by four equilateral triangles.

Summarizing the above discussion, the effect of the chosen pairing maps is to identify
the faces of the links of the upper and lower ideal vertices of P to produce a Euclidean
manifold with a singular fibration over the interval I. The fiber above 0 is a one-sided
Klein bottle, while the fiber above 1 is a one-sided torus. All other fibers are two-sided
tori, tessellated by 8 equilateral triangles.

The finite vertices We lastly deal with the finite vertices of P. Since all the finite
vertices are adjacent to some equatorial facet, these correspond to points in the boundary
of M. Recall that the link of each such vertex is the spherical tetrahedron shown in
Figure 4, right, which has one edge with dihedral angle �

3
and all the others right-angled.

These 24 spherical tetrahedra are glued together via the pairing maps to produce a
piecewise spherical complex S, corresponding to the link of a vertex lying in the
boundary of M. We have to show that each component of S is indeed homeomorphic
to a 3–dimensional disk, realized as a hemisphere of S3.

We begin with some preliminary considerations that will be useful later on. We have
already proven that the cusp sections of M are Euclidean manifolds. Therefore, all
the interior points of the unbounded strata of M are nonsingular. Since every ridge
of the polytope P has at least one ideal vertex, we know that the 2–strata of M are
nonsingular. This translates to the fact that every edge of the complex S is nonsingular.

For the same reason, all the edges of the complex M which connect an ideal vertex to
a finite vertex are nonsingular. This translates to the fact that every vertex of S of type
PPN or PNE is also nonsingular.

Let us now come back to the 24 spherical tetrahedra that tessellate the complex S. By
gluing them together via the pairing maps of positive facets, we obtain four spherical
polyhedra, each isometric to the intersection of two orthogonal halfspaces of S3. In this
regard, recall that the figure-eight knot’s ideal triangulation has all edges of valence 6
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E

N

Figure 6: The result of the gluing of the spherical vertex figure along the
positive facets is given by four copies of the spherical polyhedron above.
Each copy is tessellated by six spherical tetrahedra. The two faces of this
polyhedron correspond respectively to equatorial (top) and negative (bottom)
facets of P.

and note that the types of all the strata are preserved by isometries of P. The result is
represented in Figure 6.

The boundary of this spherical polyhedron is obviously a union of two discs; the first
one is tessellated by triangles corresponding to the negative facets of P, while the
second one is tessellated by triangles corresponding to the equatorial facets.

Let us now glue the faces of the resulting polyhedron via the pairing maps corresponding
to the negative facets. These are induced by the involution i . We claim that the four
discs corresponding to the negative facets are identified in pairs by isometries. The
induced pairing maps are isometries on each triangle and extend continuously with
their inverses to each disc by (8). There remains to show that no disc is mapped to itself
under the pairing maps. However, if this were the case, the center of such disc would
be a fixed point, and this would imply the existence of a singular point corresponding
to a vertex of type PPN, which was previously excluded.

This proves that the gluings at the spherical vertex links along the positive and negative
facets produce two balls B1 and B2 , each isometric to a hemisphere of S3 and
tessellated by 12 spherical tetrahedra.

Conclusion of the proof We have finally shown that M is a hyperbolic 4–manifold
with totally geodesic boundary. Since the manifold M is tessellated by a single copy
of the polytope P, by (3) we have

Vol.M/D 4
3
�2
D Vmin:

Remark 3.5 The manifold M is nonorientable. The reason for this is that the sym-
metries of P used to define the pairing maps on the facets are orientation-preserving.
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To conclude the proof of Theorem 3.1, we simply define

N D D.M/

to be the double of M, that is, the hyperbolic manifold obtained from two copies of M
by identifying their boundary through the map induced by the identity. Clearly, the
volume of N is equal to 8

3
�2 D 2 �Vmin .

Finally, to complete the proof of Theorem 3.1, we show that the manifold M is com-
mensurable with the polytope P. This is a straightforward consequence of the following:

Lemma 3.6 Let M be a hyperbolic manifold obtained by pairing the facets of some
copies of a Coxeter polytope P. Suppose that each pairing map is induced by a
symmetry of the polytope P. Then the orbifolds M and P are commensurable.

Proof By analyzing a holonomy representation for the hyperbolic structure of M, it
is not difficult to conclude that M covers the orbifold P=Sym.P /.

4 Nonarithmetic manifolds

In this section, we prove Theorem 1.2 by the “interbreeding” technique. Let us first
recall Gromov and Piatetski-Shapiro’s theorem.

Theorem 4.1 (Gromov and Piatetski-Shapiro [5]) Let M1 and M2 be complete,
finite-volume, hyperbolic manifolds with nonempty, totally geodesic boundary. Suppose
that @M1 and @M2 are isometric, and let �W @M1! @M2 be an isometry. Let M be
the hyperbolic manifold obtained by gluing M1 and M2 through the isometry � . If
M is arithmetic, then it is commensurable with the doubles D.M1/ and D.M2/.

A straightforward consequence of this theorem is that if D.M1/ and D.M2/ are
incommensurable, then the manifold M constructed by gluing M1 to M2 along their
totally geodesic boundaries is nonarithmetic.

Proof of Theorem 1.2 First of all, we observe that the manifold N of Theorem 3.1
contains two totally geodesic copies G1 and G2 of the Gieseking manifold, which are
the result of the gluing of the tetrahedral facets of P.

We call N== the manifold obtained by cutting N along the hypersurface G1 . Clearly, N==
can be obtained from two copies of the polytope P but without pairing the tetrahedral
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facets of one of them. In particular, we get that @N== is isometric to the figure-eight
knot complement.

Recall that N (and thus N== ) is nonorientable. Let �N== be the orientable double
covering of N== . The manifold �N== has two boundary components, each isometric to
the figure-eight knot complement. As we already noted, the latter 3–manifold has an
isometric fixed-point-free involution �. We call N 0 the hyperbolic manifold obtained
by quotienting one of the two components of @�N== by �.

Let us now consider the orientable hyperbolic 4–manifold Z described in Remark 4.4
of [19]. Its boundary is totally geodesic and isometric to the figure-eight knot comple-
ment. To build the desired manifold H , we simply glue N== to Z through any isometry
of their boundaries. Similarly, to build the manifold H0, we glue N 0 to Z .

By construction (recall Lemma 3.6), the manifold D.Z/ is commensurable with the
rectified 5–cell R, while D.N==/ and D.N 0/ are commensurable with the polytope P.
The nonarithmeticity of H and H0 follows from Proposition 2.5 and Theorem 4.1.
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