|
|
Recent Issues |
Volume 23, 2 issues
Volume 23
Issue 2, 509–962
Issue 1, 1–508
Volume 22, 8 issues
Volume 22
Issue 8, 3533–4008
Issue 7, 3059–3532
Issue 6, 2533–3057
Issue 5, 2007–2532
Issue 4, 1497–2006
Issue 3, 991–1495
Issue 2, 473–990
Issue 1, 1–472
Volume 21, 7 issues
Volume 21
Issue 7, 3221–3734
Issue 6, 2677–3220
Issue 5, 2141–2676
Issue 4, 1595–2140
Issue 3, 1075–1593
Issue 2, 543–1074
Issue 1, 1–541
Volume 20, 7 issues
Volume 20
Issue 7, 3219–3760
Issue 6, 2687–3218
Issue 5, 2145–2685
Issue 4, 1601–2143
Issue 3, 1073–1600
Issue 2, 531–1072
Issue 1, 1–529
Volume 19, 7 issues
Volume 19
Issue 7, 3217–3753
Issue 6, 2677–3215
Issue 5, 2151–2676
Issue 4, 1619–2150
Issue 3, 1079–1618
Issue 2, 533–1078
Issue 1, 1–532
Volume 18, 7 issues
Volume 18
Issue 7, 3749–4373
Issue 6, 3133–3747
Issue 5, 2509–3131
Issue 4, 1883–2507
Issue 3, 1259–1881
Issue 2, 635–1258
Issue 1, 1–633
Volume 17, 6 issues
Volume 17
Issue 6, 3213–3852
Issue 5, 2565–3212
Issue 4, 1917–2564
Issue 3, 1283–1916
Issue 2, 645–1281
Issue 1, 1–643
Volume 16, 6 issues
Volume 16
Issue 6, 3073–3719
Issue 5, 2459–3071
Issue 4, 1827–2458
Issue 3, 1253–1825
Issue 2, 621–1251
Issue 1, 1–620
Volume 15, 6 issues
Volume 15
Issue 6, 3107–3729
Issue 5, 2479–3106
Issue 4, 1863–2477
Issue 3, 1239–1862
Issue 2, 623–1238
Issue 1, 1–622
Volume 14, 6 issues
Volume 14
Issue 6, 3141–3763
Issue 5, 2511–3139
Issue 4, 1881–2509
Issue 3, 1249–1879
Issue 2, 627–1247
Issue 1, 1–625
Volume 13, 6 issues
Volume 13
Issue 6, 3099–3731
Issue 5, 2471–3097
Issue 4, 1857–2469
Issue 3, 1243–1856
Issue 2, 625–1241
Issue 1, 1–624
Volume 12, 4 issues
Volume 12
Issue 4, 1901–2517
Issue 3, 1265–1899
Issue 2, 643–1263
Issue 1, 1–641
Volume 11, 5 issues
Volume 11
Issue 5, 2477–3084
Issue 4, 1861–2475
Issue 3, 1243–1860
Issue 2, 625–1242
Issue 1, 1–624
Volume 10, 4 issues
Volume 10
Issue 4, 1865–2468
Issue 3, 1245–1863
Issue 2, 627–1244
Issue 1, 1–625
Volume 9, 4 issues
Volume 9
Issue 4, 1885–2502
Issue 3, 1255–1883
Issue 2, 625–1254
Issue 1, 1–624
Volume 8, 4 issues
Volume 8
Issue 4, 1855–2414
Issue 3, 1223–1853
Issue 2, 615–1222
Issue 1, 1–613
Volume 7, 4 issues
Volume 7
Issue 4, 1633–2270
Issue 3, 1135–1632
Issue 2, 529–1134
Issue 1, 1–528
Volume 6, 5 issues
Volume 6
Issue 5, 2031–2518
Issue 4, 1519–2029
Issue 3, 1025–1517
Issue 2, 513–1024
Issue 1, 1–512
Volume 5, 4 issues
Volume 5
Issue 4, 1291–1732
Issue 3, 865–1290
Issue 2, 443–864
Issue 1, 1–442
Volume 4, 2 issues
Volume 4
Issue 2, 647–1272
Issue 1, 1–645
Volume 3, 2 issues
Volume 3
Issue 2, 623–1292
Issue 1, 1–622
Volume 2, 2 issues
Volume 2
Issue 2, 591–1204
Issue 1, 1–590
Volume 1, 2 issues
Volume 1
Issue 2, 627–790
Issue 1, 1–625
|
|
|
|
|
1 |
C C Adams, The
knot book: an elementary introduction to the mathematical
theory of knots, W H Freeman (1994) MR1266837 |
2 |
J W Alexander,
Topological
invariants of knots and links, Trans. Amer. Math. Soc.
30 (1928) 275 MR1501429 |
3 |
A Alishahi, R
Lipshitz, Bordered Floer homology and incompressible
surfaces, preprint (2017) arXiv:1708.05121v1 |
4 |
I Altman,
Introduction to sutured Floer homology, preprint (2013)
arXiv:1304.2606v1 |
5 |
J Archibald,
The
multivariable Alexander polynomial on tangles, PhD
thesis, University of Toronto (2010) MR2941804 |
6 |
J A Baldwin,
A S Levine, A combinatorial
spanning tree model for knot Floer homology, Adv. Math.
231 (2012) 1886 MR2964628 |
7 |
S Bigelow, A diagrammatic
Alexander invariant of tangles, J. Knot Theory
Ramifications 21 (2012) MR2925434 |
8 |
S Bigelow, A
Cattabriga, V Florens, Alexander
representation of tangles, Acta Math. Vietnam. 40
(2015) 339 MR3366173 |
9 |
C Damiani, V
Florens, Alexander invariants of
ribbon tangles and planar algebras, J. Math. Soc. Japan
70 (2018) 1063 MR3830799 |
10 |
A P Ellis, I
Petkova, V Vértesi, Quantum 𝔤𝔩(1|1) and tangle
Floer homology, preprint (2015) arXiv:1510.03483v1 |
11 |
S Friedl, A
Juhász, J Rasmussen, The decategorification
of sutured Floer homology, J. Topol. 4 (2011) 431
MR2805998 |
12 |
P M Gilmer,
R A Litherland, The duality
conjecture in formal knot theory, Osaka J. Math. 23
(1986) 229 MR836713 |
13 |
J Hanselman, J
Rasmussen, L Watson, Bordered Floer homology for
manifolds with torus boundary via immersed curves, preprint
(2017) arXiv:1604.03466v2 |
14 |
R Hartley, The Conway potential
function for links, Comment. Math. Helv. 58 (1983) 365
MR727708 |
15 |
B J Jiang,
On
Conway’s potential function for colored links, Acta
Math. Sin. (Engl. Ser.) 32 (2016) 25 MR3431158 |
16 |
A Juhász, Holomorphic discs and
sutured manifolds, Algebr. Geom. Topol. 6 (2006) 1429
MR2253454 |
17 |
A Juhász, Floer homology and
surface decompositions, Geom. Topol. 12 (2008) 299
MR2390347 |
18 |
A Juhász, The sutured Floer
homology polytope, Geom. Topol. 14 (2010) 1303 MR2653728 |
19 |
L H Kauffman,
Formal knot theory, 30, Princeton Univ. Press (1983)
MR712133 |
20 |
K G Kennedy, A
diagrammatic multivariate Alexander invariant of tangles,
preprint (2012) arXiv:1205.5781v2 |
21 |
M Khovanov,
A
functor-valued invariant of tangles, Algebr. Geom.
Topol. 2 (2002) 665 MR1928174 |
22 |
P Lambert-Cole,
Twisting, mutation
and knot Floer homology, Quantum Topol. 9 (2018) 749
MR3874002 |
23 |
P Lambert-Cole,
On
Conway mutation and link homology, Adv. Math. 354
(2019) MR3982609 |
24 |
W B R
Lickorish, An introduction to
knot theory, 175, Springer (1997) MR1472978 |
25 |
W B R
Lickorish, K C Millett, A polynomial
invariant of oriented links, Topology 26 (1987) 107
MR880512 |
26 |
R Lipshitz,
A
cylindrical reformulation of Heegaard Floer homology,
Geom. Topol. 10 (2006) 955 MR2240908 |
27 |
R Lipshitz, P
Ozsváth, D Thurston, Bordered Heegaard Floer
homology: invariance and pairing, preprint (2014) arXiv:0810.0687v5 |
28 |
A Manion, On the decategorification of
Ozsváth and Szabó’s bordered theory for knot Floer
homology, Quantum Topol. 10 (2019) 77 MR3900777 |
29 |
P Ozsváth, Z
Szabó, Holomorphic disks
and knot invariants, Adv. Math. 186 (2004) 58 MR2065507 |
30 |
P Ozsváth, Z
Szabó, Holomorphic
disks and topological invariants for closed
three-manifolds, Ann. of Math. 159 (2004) 1027 MR2113019 |
31 |
P Ozsváth, Z
Szabó, Knot Floer
homology, genus bounds, and mutation, Topology Appl.
141 (2004) 59 MR2058681 |
32 |
P Ozsváth, Z
Szabó, Holomorphic disks,
link invariants and the multi-variable Alexander
polynomial, Algebr. Geom. Topol. 8 (2008) 615 MR2443092 |
33 |
P Ozsváth, Z
Szabó, A
cube of resolutions for knot Floer homology, J. Topol.
2 (2009) 865 MR2574747 |
34 |
P S Ozsváth, Z
Szabó, Bordered knot algebras with matchings,
preprint (2017) arXiv:1707.00597v2 |
35 |
P Ozsváth, Z
Szabó, Kauffman states,
bordered algebras, and a bigraded knot invariant, Adv.
Math. 328 (2018) 1088 MR3771149 |
36 |
I Petkova, V
Vértesi, Combinatorial tangle
Floer homology, Geom. Topol. 20 (2016) 3219 MR3590353 |
37 |
M Polyak,
Alexander–Conway invariants of tangles, preprint (2010)
arXiv:1011.6200v1 |
38 |
J A Rasmussen,
Floer homology and knot complements, PhD thesis, Harvard
University (2003) arXiv:math/0306378v1
MR2704683 |
39 |
N Reshetikhin,
V G Turaev, Invariants of 3–manifolds via link polynomials and quantum
groups, Invent. Math. 103 (1991) 547 MR1091619 |
40 |
S Sarkar, Maslov index
formulas for Whitney n–gons, J. Symplectic Geom. 9 (2011)
251 MR2811652 |
41 |
A Sartori, The Alexander
polynomial as quantum invariant of links, Ark. Mat. 53
(2015) 177 MR3319619 |
42 |
R Zarev, Bordered
sutured Floer homology, PhD thesis, Columbia University
(2011) MR2941830 |
43 |
C Zibrowius, On a
polynomial Alexander invariant for tangles and its
categorification, preprint (2016) arXiv:1601.04915v1 |
44 |
C Zibrowius, On a
Heegaard Floer theory for tangles, PhD thesis, University
of Cambridge (2017) arXiv:1610.07494 |
45 |
C B Zibrowius,
Peculiar
modules for 4–ended
tangles, J. Topol. 13 (2020) 77 |
|