|
|
Recent Issues |
Volume 24, 9 issues
Volume 24
Issue 9, 4731–5219
Issue 8, 4139–4730
Issue 7, 3571–4137
Issue 6, 2971–3570
Issue 5, 2389–2970
Issue 4, 1809–2387
Issue 3, 1225–1808
Issue 2, 595–1223
Issue 1, 1–594
Volume 23, 9 issues
Volume 23
Issue 9, 3909–4400
Issue 8, 3417–3908
Issue 7, 2925–3415
Issue 6, 2415–2924
Issue 5, 1935–2414
Issue 4, 1463–1934
Issue 3, 963–1462
Issue 2, 509–962
Issue 1, 1–508
Volume 22, 8 issues
Volume 22
Issue 8, 3533–4008
Issue 7, 3059–3532
Issue 6, 2533–3057
Issue 5, 2007–2532
Issue 4, 1497–2006
Issue 3, 991–1495
Issue 2, 473–990
Issue 1, 1–472
Volume 21, 7 issues
Volume 21
Issue 7, 3221–3734
Issue 6, 2677–3220
Issue 5, 2141–2676
Issue 4, 1595–2140
Issue 3, 1075–1593
Issue 2, 543–1074
Issue 1, 1–541
Volume 20, 7 issues
Volume 20
Issue 7, 3219–3760
Issue 6, 2687–3218
Issue 5, 2145–2685
Issue 4, 1601–2143
Issue 3, 1073–1600
Issue 2, 531–1072
Issue 1, 1–529
Volume 19, 7 issues
Volume 19
Issue 7, 3217–3753
Issue 6, 2677–3215
Issue 5, 2151–2676
Issue 4, 1619–2150
Issue 3, 1079–1618
Issue 2, 533–1078
Issue 1, 1–532
Volume 18, 7 issues
Volume 18
Issue 7, 3749–4373
Issue 6, 3133–3747
Issue 5, 2509–3131
Issue 4, 1883–2507
Issue 3, 1259–1881
Issue 2, 635–1258
Issue 1, 1–633
Volume 17, 6 issues
Volume 17
Issue 6, 3213–3852
Issue 5, 2565–3212
Issue 4, 1917–2564
Issue 3, 1283–1916
Issue 2, 645–1281
Issue 1, 1–643
Volume 16, 6 issues
Volume 16
Issue 6, 3073–3719
Issue 5, 2459–3071
Issue 4, 1827–2458
Issue 3, 1253–1825
Issue 2, 621–1251
Issue 1, 1–620
Volume 15, 6 issues
Volume 15
Issue 6, 3107–3729
Issue 5, 2479–3106
Issue 4, 1863–2477
Issue 3, 1239–1862
Issue 2, 623–1238
Issue 1, 1–622
Volume 14, 6 issues
Volume 14
Issue 6, 3141–3763
Issue 5, 2511–3139
Issue 4, 1881–2509
Issue 3, 1249–1879
Issue 2, 627–1247
Issue 1, 1–625
Volume 13, 6 issues
Volume 13
Issue 6, 3099–3731
Issue 5, 2471–3097
Issue 4, 1857–2469
Issue 3, 1243–1856
Issue 2, 625–1241
Issue 1, 1–624
Volume 12, 4 issues
Volume 12
Issue 4, 1901–2517
Issue 3, 1265–1899
Issue 2, 643–1263
Issue 1, 1–641
Volume 11, 5 issues
Volume 11
Issue 5, 2477–3084
Issue 4, 1861–2475
Issue 3, 1243–1860
Issue 2, 625–1242
Issue 1, 1–624
Volume 10, 4 issues
Volume 10
Issue 4, 1865–2468
Issue 3, 1245–1863
Issue 2, 627–1244
Issue 1, 1–625
Volume 9, 4 issues
Volume 9
Issue 4, 1885–2502
Issue 3, 1255–1883
Issue 2, 625–1254
Issue 1, 1–624
Volume 8, 4 issues
Volume 8
Issue 4, 1855–2414
Issue 3, 1223–1853
Issue 2, 615–1222
Issue 1, 1–613
Volume 7, 4 issues
Volume 7
Issue 4, 1633–2270
Issue 3, 1135–1632
Issue 2, 529–1134
Issue 1, 1–528
Volume 6, 5 issues
Volume 6
Issue 5, 2031–2518
Issue 4, 1519–2029
Issue 3, 1025–1517
Issue 2, 513–1024
Issue 1, 1–512
Volume 5, 4 issues
Volume 5
Issue 4, 1291–1732
Issue 3, 865–1290
Issue 2, 443–864
Issue 1, 1–442
Volume 4, 2 issues
Volume 4
Issue 2, 647–1272
Issue 1, 1–645
Volume 3, 2 issues
Volume 3
Issue 2, 623–1292
Issue 1, 1–622
Volume 2, 2 issues
Volume 2
Issue 2, 591–1204
Issue 1, 1–590
Volume 1, 2 issues
Volume 1
Issue 2, 627–790
Issue 1, 1–625
|
|
|
|
|
1 |
C C Adams, The
knot book: an elementary introduction to the mathematical
theory of knots, W H Freeman (1994) MR1266837 |
2 |
J W Alexander,
Topological
invariants of knots and links, Trans. Amer. Math. Soc.
30 (1928) 275 MR1501429 |
3 |
A Alishahi, R
Lipshitz, Bordered Floer homology and incompressible
surfaces, preprint (2017) arXiv:1708.05121v1 |
4 |
I Altman,
Introduction to sutured Floer homology, preprint (2013)
arXiv:1304.2606v1 |
5 |
J Archibald,
The
multivariable Alexander polynomial on tangles, PhD
thesis, University of Toronto (2010) MR2941804 |
6 |
J A Baldwin,
A S Levine, A combinatorial
spanning tree model for knot Floer homology, Adv. Math.
231 (2012) 1886 MR2964628 |
7 |
S Bigelow, A diagrammatic
Alexander invariant of tangles, J. Knot Theory
Ramifications 21 (2012) MR2925434 |
8 |
S Bigelow, A
Cattabriga, V Florens, Alexander
representation of tangles, Acta Math. Vietnam. 40
(2015) 339 MR3366173 |
9 |
C Damiani, V
Florens, Alexander invariants of
ribbon tangles and planar algebras, J. Math. Soc. Japan
70 (2018) 1063 MR3830799 |
10 |
A P Ellis, I
Petkova, V Vértesi, Quantum 𝔤𝔩(1|1) and tangle
Floer homology, preprint (2015) arXiv:1510.03483v1 |
11 |
S Friedl, A
Juhász, J Rasmussen, The decategorification
of sutured Floer homology, J. Topol. 4 (2011) 431
MR2805998 |
12 |
P M Gilmer,
R A Litherland, The duality
conjecture in formal knot theory, Osaka J. Math. 23
(1986) 229 MR836713 |
13 |
J Hanselman, J
Rasmussen, L Watson, Bordered Floer homology for
manifolds with torus boundary via immersed curves, preprint
(2017) arXiv:1604.03466v2 |
14 |
R Hartley, The Conway potential
function for links, Comment. Math. Helv. 58 (1983) 365
MR727708 |
15 |
B J Jiang,
On
Conway’s potential function for colored links, Acta
Math. Sin. (Engl. Ser.) 32 (2016) 25 MR3431158 |
16 |
A Juhász, Holomorphic discs and
sutured manifolds, Algebr. Geom. Topol. 6 (2006) 1429
MR2253454 |
17 |
A Juhász, Floer homology and
surface decompositions, Geom. Topol. 12 (2008) 299
MR2390347 |
18 |
A Juhász, The sutured Floer
homology polytope, Geom. Topol. 14 (2010) 1303 MR2653728 |
19 |
L H Kauffman,
Formal knot theory, 30, Princeton Univ. Press (1983)
MR712133 |
20 |
K G Kennedy, A
diagrammatic multivariate Alexander invariant of tangles,
preprint (2012) arXiv:1205.5781v2 |
21 |
M Khovanov,
A
functor-valued invariant of tangles, Algebr. Geom.
Topol. 2 (2002) 665 MR1928174 |
22 |
P Lambert-Cole,
Twisting, mutation
and knot Floer homology, Quantum Topol. 9 (2018) 749
MR3874002 |
23 |
P Lambert-Cole,
On
Conway mutation and link homology, Adv. Math. 354
(2019) MR3982609 |
24 |
W B R
Lickorish, An introduction to
knot theory, 175, Springer (1997) MR1472978 |
25 |
W B R
Lickorish, K C Millett, A polynomial
invariant of oriented links, Topology 26 (1987) 107
MR880512 |
26 |
R Lipshitz,
A
cylindrical reformulation of Heegaard Floer homology,
Geom. Topol. 10 (2006) 955 MR2240908 |
27 |
R Lipshitz, P
Ozsváth, D Thurston, Bordered Heegaard Floer
homology: invariance and pairing, preprint (2014) arXiv:0810.0687v5 |
28 |
A Manion, On the decategorification of
Ozsváth and Szabó’s bordered theory for knot Floer
homology, Quantum Topol. 10 (2019) 77 MR3900777 |
29 |
P Ozsváth, Z
Szabó, Holomorphic disks
and knot invariants, Adv. Math. 186 (2004) 58 MR2065507 |
30 |
P Ozsváth, Z
Szabó, Holomorphic
disks and topological invariants for closed
three-manifolds, Ann. of Math. 159 (2004) 1027 MR2113019 |
31 |
P Ozsváth, Z
Szabó, Knot Floer
homology, genus bounds, and mutation, Topology Appl.
141 (2004) 59 MR2058681 |
32 |
P Ozsváth, Z
Szabó, Holomorphic disks,
link invariants and the multi-variable Alexander
polynomial, Algebr. Geom. Topol. 8 (2008) 615 MR2443092 |
33 |
P Ozsváth, Z
Szabó, A
cube of resolutions for knot Floer homology, J. Topol.
2 (2009) 865 MR2574747 |
34 |
P S Ozsváth, Z
Szabó, Bordered knot algebras with matchings,
preprint (2017) arXiv:1707.00597v2 |
35 |
P Ozsváth, Z
Szabó, Kauffman states,
bordered algebras, and a bigraded knot invariant, Adv.
Math. 328 (2018) 1088 MR3771149 |
36 |
I Petkova, V
Vértesi, Combinatorial tangle
Floer homology, Geom. Topol. 20 (2016) 3219 MR3590353 |
37 |
M Polyak,
Alexander–Conway invariants of tangles, preprint (2010)
arXiv:1011.6200v1 |
38 |
J A Rasmussen,
Floer homology and knot complements, PhD thesis, Harvard
University (2003) arXiv:math/0306378v1
MR2704683 |
39 |
N Reshetikhin,
V G Turaev, Invariants of 3–manifolds via link polynomials and quantum
groups, Invent. Math. 103 (1991) 547 MR1091619 |
40 |
S Sarkar, Maslov index
formulas for Whitney n–gons, J. Symplectic Geom. 9 (2011)
251 MR2811652 |
41 |
A Sartori, The Alexander
polynomial as quantum invariant of links, Ark. Mat. 53
(2015) 177 MR3319619 |
42 |
R Zarev, Bordered
sutured Floer homology, PhD thesis, Columbia University
(2011) MR2941830 |
43 |
C Zibrowius, On a
polynomial Alexander invariant for tangles and its
categorification, preprint (2016) arXiv:1601.04915v1 |
44 |
C Zibrowius, On a
Heegaard Floer theory for tangles, PhD thesis, University
of Cambridge (2017) arXiv:1610.07494 |
45 |
C B Zibrowius,
Peculiar
modules for 4–ended
tangles, J. Topol. 13 (2020) 77 |
|