Volume 19, issue 5 (2019)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 24
Issue 9, 4731–5219
Issue 8, 4139–4730
Issue 7, 3571–4137
Issue 6, 2971–3570
Issue 5, 2389–2970
Issue 4, 1809–2387
Issue 3, 1225–1808
Issue 2, 595–1223
Issue 1, 1–594

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
Kauffman states and Heegaard diagrams for tangles

Claudius Bodo Zibrowius

Algebraic & Geometric Topology 19 (2019) 2233–2282
Bibliography
1 C C Adams, The knot book: an elementary introduction to the mathematical theory of knots, W H Freeman (1994) MR1266837
2 J W Alexander, Topological invariants of knots and links, Trans. Amer. Math. Soc. 30 (1928) 275 MR1501429
3 A Alishahi, R Lipshitz, Bordered Floer homology and incompressible surfaces, preprint (2017) arXiv:1708.05121v1
4 I Altman, Introduction to sutured Floer homology, preprint (2013) arXiv:1304.2606v1
5 J Archibald, The multivariable Alexander polynomial on tangles, PhD thesis, University of Toronto (2010) MR2941804
6 J A Baldwin, A S Levine, A combinatorial spanning tree model for knot Floer homology, Adv. Math. 231 (2012) 1886 MR2964628
7 S Bigelow, A diagrammatic Alexander invariant of tangles, J. Knot Theory Ramifications 21 (2012) MR2925434
8 S Bigelow, A Cattabriga, V Florens, Alexander representation of tangles, Acta Math. Vietnam. 40 (2015) 339 MR3366173
9 C Damiani, V Florens, Alexander invariants of ribbon tangles and planar algebras, J. Math. Soc. Japan 70 (2018) 1063 MR3830799
10 A P Ellis, I Petkova, V Vértesi, Quantum 𝔤𝔩(1|1) and tangle Floer homology, preprint (2015) arXiv:1510.03483v1
11 S Friedl, A Juhász, J Rasmussen, The decategorification of sutured Floer homology, J. Topol. 4 (2011) 431 MR2805998
12 P M Gilmer, R A Litherland, The duality conjecture in formal knot theory, Osaka J. Math. 23 (1986) 229 MR836713
13 J Hanselman, J Rasmussen, L Watson, Bordered Floer homology for manifolds with torus boundary via immersed curves, preprint (2017) arXiv:1604.03466v2
14 R Hartley, The Conway potential function for links, Comment. Math. Helv. 58 (1983) 365 MR727708
15 B J Jiang, On Conway’s potential function for colored links, Acta Math. Sin. (Engl. Ser.) 32 (2016) 25 MR3431158
16 A Juhász, Holomorphic discs and sutured manifolds, Algebr. Geom. Topol. 6 (2006) 1429 MR2253454
17 A Juhász, Floer homology and surface decompositions, Geom. Topol. 12 (2008) 299 MR2390347
18 A Juhász, The sutured Floer homology polytope, Geom. Topol. 14 (2010) 1303 MR2653728
19 L H Kauffman, Formal knot theory, 30, Princeton Univ. Press (1983) MR712133
20 K G Kennedy, A diagrammatic multivariate Alexander invariant of tangles, preprint (2012) arXiv:1205.5781v2
21 M Khovanov, A functor-valued invariant of tangles, Algebr. Geom. Topol. 2 (2002) 665 MR1928174
22 P Lambert-Cole, Twisting, mutation and knot Floer homology, Quantum Topol. 9 (2018) 749 MR3874002
23 P Lambert-Cole, On Conway mutation and link homology, Adv. Math. 354 (2019) MR3982609
24 W B R Lickorish, An introduction to knot theory, 175, Springer (1997) MR1472978
25 W B R Lickorish, K C Millett, A polynomial invariant of oriented links, Topology 26 (1987) 107 MR880512
26 R Lipshitz, A cylindrical reformulation of Heegaard Floer homology, Geom. Topol. 10 (2006) 955 MR2240908
27 R Lipshitz, P Ozsváth, D Thurston, Bordered Heegaard Floer homology: invariance and pairing, preprint (2014) arXiv:0810.0687v5
28 A Manion, On the decategorification of Ozsváth and Szabó’s bordered theory for knot Floer homology, Quantum Topol. 10 (2019) 77 MR3900777
29 P Ozsváth, Z Szabó, Holomorphic disks and knot invariants, Adv. Math. 186 (2004) 58 MR2065507
30 P Ozsváth, Z Szabó, Holomorphic disks and topological invariants for closed three-manifolds, Ann. of Math. 159 (2004) 1027 MR2113019
31 P Ozsváth, Z Szabó, Knot Floer homology, genus bounds, and mutation, Topology Appl. 141 (2004) 59 MR2058681
32 P Ozsváth, Z Szabó, Holomorphic disks, link invariants and the multi-variable Alexander polynomial, Algebr. Geom. Topol. 8 (2008) 615 MR2443092
33 P Ozsváth, Z Szabó, A cube of resolutions for knot Floer homology, J. Topol. 2 (2009) 865 MR2574747
34 P S Ozsváth, Z Szabó, Bordered knot algebras with matchings, preprint (2017) arXiv:1707.00597v2
35 P Ozsváth, Z Szabó, Kauffman states, bordered algebras, and a bigraded knot invariant, Adv. Math. 328 (2018) 1088 MR3771149
36 I Petkova, V Vértesi, Combinatorial tangle Floer homology, Geom. Topol. 20 (2016) 3219 MR3590353
37 M Polyak, Alexander–Conway invariants of tangles, preprint (2010) arXiv:1011.6200v1
38 J A Rasmussen, Floer homology and knot complements, PhD thesis, Harvard University (2003) arXiv:math/0306378v1 MR2704683
39 N Reshetikhin, V G Turaev, Invariants of 3–manifolds via link polynomials and quantum groups, Invent. Math. 103 (1991) 547 MR1091619
40 S Sarkar, Maslov index formulas for Whitney n–gons, J. Symplectic Geom. 9 (2011) 251 MR2811652
41 A Sartori, The Alexander polynomial as quantum invariant of links, Ark. Mat. 53 (2015) 177 MR3319619
42 R Zarev, Bordered sutured Floer homology, PhD thesis, Columbia University (2011) MR2941830
43 C Zibrowius, On a polynomial Alexander invariant for tangles and its categorification, preprint (2016) arXiv:1601.04915v1
44 C Zibrowius, On a Heegaard Floer theory for tangles, PhD thesis, University of Cambridge (2017) arXiv:1610.07494
45 C B Zibrowius, Peculiar modules for 4–ended tangles, J. Topol. 13 (2020) 77