Volume 19, issue 5 (2019)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 24
Issue 5, 2389–2970
Issue 4, 1809–2387
Issue 3, 1225–1808
Issue 2, 595–1223
Issue 1, 1–594

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
Colored Khovanov–Rozansky homology for infinite braids

Michael Abel and Michael Willis

Algebraic & Geometric Topology 19 (2019) 2401–2438
Bibliography
1 M Abel, M Hogancamp, Categorified Young symmetrizers and stable homology of torus links, II, Selecta Math. 23 (2017) 1739 MR3663594
2 S Cautis, Clasp technology to knot homology via the affine Grassmannian, Math. Ann. 363 (2015) 1053 MR3412353
3 S Cautis, Remarks on coloured triply graded link invariants, Algebr. Geom. Topol. 17 (2017) 3811 MR3709661
4 S Cautis, J Kamnitzer, S Morrison, Webs and quantum skew Howe duality, Math. Ann. 360 (2014) 351 MR3263166
5 B Cooper, V Krushkal, Categorification of the Jones–Wenzl projectors, Quantum Topol. 3 (2012) 139 MR2901969
6 B Elias, M Hogancamp, On the computation of torus link homology, Compos. Math. 155 (2019) 164 MR3880028
7 B Elias, M Khovanov, Diagrammatics for Soergel categories, Int. J. Math. Math. Sci. (2010) MR3095655
8 I Frenkel, C Stroppel, J Sussan, Categorifying fractional Euler characteristics, Jones–Wenzl projectors and 3j–symbols, Quantum Topol. 3 (2012) 181 MR2901970
9 M Hogancamp, Khovanov–Rozansky homology and higher Catalan sequences, preprint (2017) arXiv:1704.01562
10 M Hogancamp, Categorified Young symmetrizers and stable homology of torus links, Geom. Topol. 22 (2018) 2943 MR3811775
11 G Islambouli, M Willis, The Khovanov homology of infinite braids, Quantum Topol. 9 (2018) 563 MR3827809
12 M Khovanov, Categorifications of the colored Jones polynomial, J. Knot Theory Ramifications 14 (2005) 111 MR2124557
13 M Khovanov, Triply-graded link homology and Hochschild homology of Soergel bimodules, Internat. J. Math. 18 (2007) 869 MR2339573
14 M Khovanov, L Rozansky, Matrix factorizations and link homology, Fund. Math. 199 (2008) 1 MR2391017
15 M Mackaay, M Stošić, P Vaz, The 1,2–coloured HOMFLY–PT link homology, Trans. Amer. Math. Soc. 363 (2011) 2091 MR2746676
16 A Mellit, Homology of torus knots, preprint (2017) arXiv:1704.07630
17 H Queffelec, D E V Rose, The 𝔰𝔩n foam 2–category : a combinatorial formulation of Khovanov–Rozansky homology via categorical skew Howe duality, Adv. Math. 302 (2016) 1251 MR3545951
18 L H Robert, Categorification of the colored 𝔰𝔩3–invariant, J. Knot Theory Ramifications 25 (2016) MR3513938
19 D E V Rose, A categorification of quantum 𝔰𝔩3 projectors and the 𝔰𝔩3 Reshetikhin–Turaev invariant of tangles, Quantum Topol. 5 (2014) 1 MR3176309
20 L Rozansky, A categorification of the stable SU(2) Witten–Reshetikhin–Turaev invariant of links in S2xS1, preprint (2010) arXiv:1011.1958
21 L Rozansky, An infinite torus braid yields a categorified Jones–Wenzl projector, Fund. Math. 225 (2014) 305 MR3205575
22 W Soergel, The combinatorics of Harish-Chandra bimodules, J. Reine Angew. Math. 429 (1992) 49 MR1173115
23 B Webster, G Williamson, A geometric construction of colored HOMFLYPT homology, Geom. Topol. 21 (2017) 2557 MR3687104
24 G Williamson, Singular Soergel bimodules, Int. Math. Res. Not. 2011 (2011) 4555 MR2844932
25 H Wu, A colored 𝔰𝔩(N) homology for links in S3, Dissertationes Math. 499 (2014) 217 MR3234803
26 Y Yonezawa, Quantum (𝔰𝔩n,V n) link invariant and matrix factorizations, Nagoya Math. J. 204 (2011) 69 MR2863366