Volume 19, issue 5 (2019)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 25, 1 issue

Volume 24, 9 issues

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
The motivic Mahowald invariant

J D Quigley

Algebraic & Geometric Topology 19 (2019) 2485–2534
Bibliography
1 J F Adams, On the groups J(X), IV, Topology 5 (1966) 21 MR0198470
2 J F Adams, A periodicity theorem in homological algebra, Proc. Cambridge Philos. Soc. 62 (1966) 365 MR194486
3 J F Adams, J H Gunawardena, H Miller, The Segal conjecture for elementary abelian p–groups, Topology 24 (1985) 435 MR816524
4 M J Andrews, New families in the homotopy of the motivic sphere spectrum, Proc. Amer. Math. Soc. 146 (2018) 2711 MR3778171
5 M Behrens, Root invariants in the Adams spectral sequence, Trans. Amer. Math. Soc. 358 (2006) 4279 MR2231379
6 M Behrens, Some root invariants at the prime 2, from: "Proceedings of the Nishida Fest" (editors M Ando, N Minami, J Morava, W S Wilson), Geom. Topol. Monogr. 10, Geom. Topol. Publ. (2007) 1 MR2402775
7 M Behrens, M Hill, M J Hopkins, M Mahowald, On the existence of a v232–self map on M(1,4) at the prime 2, Homology Homotopy Appl. 10 (2008) 45 MR2475617
8 P Bhattacharya, P Egger, A class of 2–local finite spectra which admit a v21–self-map, preprint (2016) arXiv:1608.06250
9 D M Davis, M Mahowald, The spectrum (P bo)−∞, Math. Proc. Cambridge Philos. Soc. 96 (1984) 85 MR743704
10 D M Davis, M Mahowald, Homotopy groups of some mapping telescopes, from: "Algebraic topology and algebraic K–theory" (editor W Browder), Ann. of Math. Stud. 113, Princeton Univ. Press (1987) 126 MR921475
11 D Dugger, D C Isaksen, The motivic Adams spectral sequence, Geom. Topol. 14 (2010) 967 MR2629898
12 D Dugger, D C Isaksen, Motivic Hopf elements and relations, New York J. Math. 19 (2013) 823 MR3141814
13 B Gheorghe, Exotic motivic periodicities, preprint (2017) arXiv:1709.00915
14 B Gheorghe, The motivic cofiber of τ, Doc. Math. 23 (2018) 1077 MR3874951
15 B Gheorghe, G Wang, Z Xu, The special fiber of the motivic deformation of the stable homotopy category is algebraic, preprint (2018) arXiv:1809.09290
16 T Gregersen, A Singer construction in motivic homotopy theory, PhD thesis, University of Oslo (2012)
17 T Gregersen, J Heller, J I Kylling, J Rognes, P A Østvær, A motivic Segal conjecture for the group of order two, in preparation
18 B J Guillou, D C Isaksen, The motivic Adams vanishing line of slope 1 2, New York J. Math. 21 (2015) 533 MR3386536
19 M J Hopkins, J H Smith, Nilpotence and stable homotopy theory, II, Ann. of Math. 148 (1998) 1 MR1652975
20 P Hu, I Kriz, K Ormsby, Convergence of the motivic Adams spectral sequence, J. K-Theory 7 (2011) 573 MR2811716
21 D C Isaksen, Classical and motivic Adams charts, preprint (2014) arXiv:1401.4983
22 D C Isaksen, Stable stems, preprint (2014) arXiv:1407.8418
23 D C Isaksen, A Shkembi, Motivic connective K–theories and the cohomology of A(1), J. K-Theory 7 (2011) 619 MR2811718
24 A Krause, Periodicity in motivic homotopy theory and over BPBP, PhD thesis, Rheinische Friedrich-Wilhelms-Universität Bonn (2018)
25 M Levine, A comparison of motivic and classical stable homotopy theories, J. Topol. 7 (2014) 327 MR3217623
26 W H Lin, D M Davis, M E Mahowald, J F Adams, Calculation of Lin’s Ext groups, Math. Proc. Cambridge Philos. Soc. 87 (1980) 459 MR569195
27 M E Mahowald, D C Ravenel, Toward a global understanding of the homotopy groups of spheres, from: "The Lefschetz centennial conference, II" (editor S Gitler), Contemp. Math. 58, Amer. Math. Soc. (1987) 57 MR893848
28 M E Mahowald, D C Ravenel, The root invariant in homotopy theory, Topology 32 (1993) 865 MR1241877
29 M Mahowald, P Shick, Periodic phenomena in the classical Adams spectral sequence, Trans. Amer. Math. Soc. 300 (1987) 191 MR871672
30 H R Miller, D C Ravenel, W S Wilson, Periodic phenomena in the Adams–Novikov spectral sequence, Ann. of Math. 106 (1977) 469 MR0458423
31 F Morel, 𝔸1–algebraic topology over a field, 2052, Springer (2012) MR2934577
32 F Morel, V Voevodsky, 𝔸1–homotopy theory of schemes, Inst. Hautes Études Sci. Publ. Math. 90 (1999) 45 MR1813224
33 D C Ravenel, Complex cobordism and stable homotopy groups of spheres, 121, Academic (1986) MR860042
34 N Ricka, Motivic modular forms from equivariant stable homotopy theory, preprint (2017) arXiv:1704.04547
35 H Sadofsky, The root invariant and v1–periodic families, Topology 31 (1992) 65 MR1153239
36 P Shick, On root invariants of periodic classes in ExtA(2, 2), Trans. Amer. Math. Soc. 301 (1987) 227 MR879570
37 L Smith, On realizing complex bordism modules : applications to the stable homotopy of spheres, Amer. J. Math. 92 (1970) 793 MR275429
38 N E Steenrod, Cohomology operations, 50, Princeton Univ. Press (1962) MR0145525
39 H Toda, On spectra realizing exterior parts of the Steenrod algebra, Topology 10 (1971) 53 MR0271933
40 V Voevodsky, Reduced power operations in motivic cohomology, Publ. Math. Inst. Hautes Études Sci. 98 (2003) 1 MR2031198