Volume 19, issue 5 (2019)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 19
Issue 6, 2677–3215
Issue 5, 2151–2676
Issue 4, 1619–2150
Issue 3, 1079–1618
Issue 2, 533–1078
Issue 1, 1–532

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

Author Index
The Journal
About the Journal
Editorial Board
Subscriptions
Editorial Interests
Editorial Procedure
Submission Guidelines
Submission Page
Ethics Statement
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
To Appear
 
Other MSP Journals
Colored Khovanov–Rozansky homology for infinite braids

Michael Abel and Michael Willis

Algebraic & Geometric Topology 19 (2019) 2401–2438
Abstract

We show that the limiting unicolored sl(N) Khovanov–Rozansky chain complex of any infinite positive braid categorifies a highest-weight projector. This result extends an earlier result of Cautis categorifying highest-weight projectors using the limiting complex of infinite torus braids. Additionally, we show that the results hold in the case of colored homflypt Khovanov–Rozansky homology as well. An application of this result is given in finding a partial isomorphism between the homflypt homology of any braid positive link and the stable homflypt homology of the infinite torus knot as computed by Hogancamp.

Keywords
Khovanov homology, Khovanov–Rozansky homology, link homology, colored link homology, colored Khovanov–Rozanksy homology, infinite braids, infinite twist
Mathematical Subject Classification 2010
Primary: 57M27
References
Publication
Received: 8 December 2017
Revised: 11 October 2018
Accepted: 26 October 2018
Published: 20 October 2019
Authors
Michael Abel
Department of Mathematics
Duke University
Durham, NC
United States
Michael Willis
Department of Mathematics
University of California, Los Angeles
Los Angeles, CA
United States