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C 1;0 foliation theory
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Transverse 1–dimensional foliations play an important role in the study of codimension-
one foliations. In Geom. Topol. Monogr. 19 (2015) 21–72, the authors introduced
the notion of flow box decomposition of a 3–manifold M. This is a combinatorial
decomposition of M that reflects both the structure of a given codimension-one
foliation and that of a given transverse dimension-one foliation, and that is amenable
to inductive strategies.

In this paper, flow box decompositions are used to extend some classical foliation
results to foliations that are not C 2 . Enhancements of well-known results of Cale-
gari on smoothing leaves, Dippolito on Denjoy blowup of leaves, and Tischler on
approximations by fibrations are obtained. The methods developed are not intrinsically
3–dimensional techniques, and should generalize to prove corresponding results for
codimension-one foliations in n–dimensional manifolds.
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1 Introduction

Smoothness plays an important role in the theory of codimension-one foliations of
3–manifolds. Reeb constructed the first C1 foliation on S3 as the union of two
foliated solid tori, or Reeb components [27]. This work of Reeb, together with work
of Alexander [1] and Wallace [30], led to the proofs by Lickorish [21] and Novikov
and Zieschang [24] that any closed 3–manifold has a C1 codimension-one foliation.
On the other hand, Haefliger [17] showed that no foliation of S3 can be analytic. This
was greatly improved by Novikov [24] to show that any C 2 foliation of S3 must have
Reeb components, and these never exist in analytic foliations.

The qualitative nature of foliation theory and its impact on the ambient 3–manifold
was considerably advanced by Thurston’s introduction of the norm on the homology of
a 3–manifold, and in particular the minimizing properties of leaves of taut, transversely
oriented, C 2 foliations [28].
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A foliation is taut if closed smooth transversals to the foliation pass through every
point of the manifold. This is also known as everywhere taut to distinguish it from the
more familiar notion of smoothly taut, in which closed smooth transversals are only
required to intersect every leaf of the foliation. For a discussion of these and other
notions of tautness, and why they are different for C k;0 foliations, the same for C k;1

foliations, and interchangeable up to C 0 approximation and isotopy of foliations, see
Colin, Kazez and Roberts [6].

Foliations as a tool for understanding problems in 3–dimensional topology came to the
fore as a result of Gabai’s constructions of both C1 and often less smooth, but finite
depth, taut foliations [14; 15; 16]. The success of Gabai’s applications of foliation
theory led to many constructions of taut codimension-one foliations. Often these
foliations are constructed using Denjoy blowup techniques that yield foliations that are
only C1;0 ; that is, leaves are smoothly immersed, but transversely, their tangent plane
fields vary only continuously.

The impetus for our work starts with the Eliashberg–Thurston approximation theo-
rem [13]. They showed that a taut, cooriented codimension-one C 2 foliation of a 3–
manifold can be C 0 approximated by a pair of symplectically fillable contact structures.
This allows nontrivial Heegaard Floer invariants to be assigned to any manifold that
supports a taut foliation; see Ozsváth and Szabó [25]. This is, consequently, one
of the pillars of the conjectural relationship between L–spaces, taut foliations and
left orderability of the fundamental group. For details, see for example Ozsváth and
Szabó [26] and Boyer, Gordon and Watson [3].

In [19; 20] we extended the Eliashberg–Thurston approximation theorem to the class of
all C 1;0 , cooriented taut foliations, thereby extending its reach to manifolds carrying
the new constructions of foliations mentioned above. Similar results can be found in
Bowden [2]. In doing so, we found that many of the standard tools for working with
foliations had either not been developed for foliations with lesser smoothness than
originally intended, or had not been developed with an eye towards C 0 approximation
theory in which it is often necessary to produce a new foliation while only moving the
tangent planes of the original foliation slightly.

This paper includes enhancements to well-known results of Calegari [4] on smoothing
leaves, Dippolito [12] on Denjoy blowup of leaves, and Tischler [29] on approximations
by fibrations. It is possible that some of our results can be obtained by “reading between
the lines” of the original source. However, as is well known, subtleties, sometimes fatal,
arise when smooth objects are replaced by objects that are merely continuous. (See for
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example [6].) The original theorems are foundational results in foliation theory, and
proofs of these theorems, in the generality in which they are used, do not exist in the
literature. An advantage to the decomposition approach we use is that each of these
results can be proved directly with a single inductive strategy.

The methods developed in this paper are not intrinsically 3–dimensional techniques,
and we expect they can be adapted to prove corresponding results for codimension-one
foliations in n–dimensional manifolds.

Basic definitions (codimension-one foliation, flow, .F ; ˆ/–compatible, C 0 close
and C 0 small) are given in Section 2. In Section 3 we recall the definition of flow
box decomposition, define regular neighborhood structure, and prove a sequence of
useful local smoothing results. The main result of Section 4 is a proof that any C 1;0

foliation is isotopic to a C 0 close C1;0 foliation. In Section 5 we prove that any
C 1;0 measured foliation is isotopic to a C 0 close smooth measured foliation. Basic
facts from [19; 20] about holonomy neighborhoods are recalled in Section 6. We give
Dippolito’s definition [12] of Denjoy blowup in Section 7 and prove that particularly
nice, C 0 close, Denjoy blowups of a C 1;0 codimension-one foliation always exist.

Throughout this paper, unless stated otherwise, M will denote a 3–manifold that is
either smooth or smooth with corners. When @M ¤∅, it is often useful to think of M
as a sutured manifold, not necessarily orientable, in the sense of [14]. Recall that any
topological 3–manifold admits a smooth structure, unique up to diffeomorphism; see
Moise [22; 23].

The restriction of a map to a closed subset A is said to be smooth on A if its restriction
to some open neighborhood of A is smooth.

Acknowledgements We thank the referee for many helpful suggestions, and we thank
Greg Knese for showing us how convolution can be used to smooth foliations.

This work was partially supported by grants from the Simons Foundation (#244855 to
Kazez, #317884 to Roberts) and from the National Science Foundation (DMS-1612036
to Kazez, DMS-1612475 to Roberts).

2 Codimension-one foliations and transverse dimension-one
foliations

We begin by defining foliations in 3–manifolds with empty boundary. Near the end of
this section, we extend these definitions to 3–manifolds with nonempty boundary that
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are smooth or smooth with corners, namely manifolds locally modeled by open sets
in Œ0;1/3 .

Definition 2.1 Let M be a smooth 3–manifold with empty boundary. Let k and l
be nonnegative integers or infinity with l � k . Both C k and C k;l codimension-one
foliations F are decompositions of M into a disjoint union of C k immersed connected
surfaces, called the leaves of F, together with a collection of charts Ui covering M,
with �i W R2 �R! Ui a homeomorphism, such that the preimage of each component
of a leaf intersected with Ui is a horizontal plane.

The foliation F is C k if the charts .Ui ; �i / can be chosen so that each �i is a C k

diffeomorphism.

The foliation F is C k;l if for all i and j ,

(1) the derivatives @ax@
b
y@
c
z , taken in any order, on the domain of each �i and each

transition function ��1j �i are continuous for all aC b � k and c � l , and

(2) if l � 1, then �i is a C 1 diffeomorphism.

Remark 2.2 The smoothness conditions on both the charts and the transition functions
are to ensure that the smooth structure on the leaves is compatible with the smooth
structure on M.

In particular, TF exists and is continuous if and only if F is C 1;0 . Also notice that
C k;l foliations are C l , but not conversely.

Two C k;0 foliations F and G of M are called C k;0 equivalent if there is a self-
homeomorphism of M that maps the leaves of F to the leaves G , and is C k when
restricted to any leaf of F.

We use the terms transverse, transversal and transversely in the smooth sense; that is,
they refer to smooth objects intersecting so that the associated tangent spaces intersect
minimally.

Given a codimension-one foliation F, it is useful to fix a one-dimensional foliation ˆ
transverse or topologically transverse to F. Such a ˆ always exists and can be realized
as the union of curves �p.t/ of continuous local flows � . When F is transversely
oriented and M closed, ˆ can be realized as the union of curves �p.t/ of a global
flow �W M �R!M. When F is C 0 , this is proved in [18, Theorems 1.1.2 and 1.3.2].
When F is C 1;0 , ˆ can be chosen to be smooth; in fact, in this case, it is elementary
to see that ˆ exists and consists of the integral curves of a smooth line field transverse
to TF. See, for example, Lemma 5.1.1 of [5].
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Conventions Unless otherwise stated, throughout the rest of this paper, we will use
foliation to mean a codimension-one transversely oriented foliation of a 3–manifold M.
Such an M will be assumed to be compact and oriented. Since the foliations studied will
be C 1;0 we can assume without loss of generality that a smooth transverse dimension-
one foliation to the foliation is chosen. To simplify the exposition, we will abuse
language, and refer to a one-dimensional foliation transverse to a codimension-one
foliation as a flow, even though the domain of the trajectories may not be R.

When a foliation F is understood, a submanifold of positive codimension in M is
called horizontal if each component is a submanifold of a leaf of F. When both a
foliation F and a transverse flow ˆ in M are understood, a submanifold of positive
codimension in M is called vertical if and only if it can be expressed as a union
of subsegments of the flow ˆ. A codimension-0 submanifold X of M is called
.F ; ˆ/–compatible if its boundary is piecewise horizontal and vertical, and hence F
and ˆ restrict naturally to foliation and flow on X. If X is .F ; ˆ/–compatible, let
@vX denote its vertical boundary, and let @hX denote its horizontal boundary.

Definition 2.3 Suppose X is an .F ; ˆ/–compatible submanifold of M, where possi-
bly X DM. An isotopy of X which maps each flow segment of ˆjX to itself is called
a flow-compatible, or ˆ–compatible, isotopy. Note that a flow-compatible isotopy
of X fixes @hX pointwise.

By allowing the foliation atlas to include boundary charts, Definition 2.1 naturally
extends to the case that M has nonempty boundary that is either smooth or smooth
with corners. Smooth boundary components must either be a leaf of F, and hence
horizontal, or transverse to F. A boundary component with corners must decompose
along its corners into smooth subsurfaces, where if two subsurfaces share a corner,
one is horizontal and one is transverse to F. Such an M is a sutured manifold, in the
sense of [14]. Thus, if @M ¤∅ and we double .M;F/ along @vM, DF is a foliation
of DM with all components of @.DM/ leaves of F.

We restrict attention to flows ˆ that meet @M in a similarly constrained way. A
flow is required to be either everywhere transverse or everywhere tangent to a smooth
component of @M. And if .S; 
/ is a boundary component with annular sutures A.
/,
a flow is required to be transverse to R.
/ and tangent to A.
/. Thus the flow is
transverse to @hM, and @vM is vertical. In particular, if ˆ is a flow transverse to F, it is
possible to double ˆ along @vM so that M is a .DF ;Dˆ/–compatible submanifold
of DM.
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In the context of foliations, the terms C 0 close and C 0 small both refer to distances
between tangent planes. More formally, suppose that a metric, d , has been chosen on
the set of continuous sections of the Grassmann bundle of 2–planes in TM 3 . Given a
section, typically the tangent bundle of a foliation, TF, we say that another section, TG ,
can be found C 0 close to TF, if for all � > 0 a G exists such that d.TF ; TG/ < � . For
brevity, this is stated as G can be found C 0 close to F. An isotopy Ft of F is called
C 0 small if it can be chosen so that at all times Ft is C 0 close to F. An isotopy can
be found C 0 close to the identity if given any � > 0 an isotopy can be found that keeps
every section within � of its starting position.

Throughout the paper, I will be used to denote the closed interval Œ0; 1�.

3 Flow boxes and local approximations

3.1 Flow boxes

Flow box decompositions were introduced and shown to exist in [19]. In the definition
given below, an extra condition, (5), is added that is particularly useful for inductive
arguments.

We note that our use of the term flow box differs from that standardly used in the
theory of flows on manifolds, and reflects the fact that we are interested primarily in
codimension-one foliations, with an emphasis on the usefulness of a fixed smooth
transverse one-dimensional foliation. Flow boxes, in our sense, are combinatorial
versions of biregular foliation charts.

Definition 3.1 [19] Let F be either a C k or C k;l foliation, and let ˆ be a smooth
transverse flow. A flow box, F, is an .F ; ˆ/–compatible closed chart, possibly with
corners. That is, it is a submanifold diffeomorphic to D�I, where D is either a closed
C k disk or polygon (a closed disk with at least three corners), ˆ intersects F in the
arcs f.x; y/g � I, and each component of D � @I is embedded in a leaf of F.

Notice that the components of F \F give a family of C k graphs over D. In the case
that D is a polygon, it is often useful to view the disk D as a 2–cell with @D the
cell complex obtained by letting the vertices correspond exactly to the corners of D.
Similarly, it is useful to view the flow box F as a 3–cell possessing the product cell
complex structure of D�I. Then @hF is a union of two (horizontal) 2–cells and @vF
is a union of c (vertical) 2–cells, where c is the number of corners of D. In the case
that D has no corners, we abuse language slightly and consider @hF to be a union
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of two (horizontal) 2–cells and @vF to be a single vertical face, where the face is the
entire vertical annulus @D � I.

Definition 3.2 Suppose V is a compact, .F ; ˆ/–compatible, codimension-0 subman-
ifold of M. A flow box decomposition of M rel V , or simply flow box decomposition
of M if V D∅, is a decomposition of M nint.V / as a finite union M DV [

�Sn
iD1 Fi

�
where

(1) each Fi is a flow box,

(2) V \Fi is a union, possibly empty, of horizontal subsurfaces and vertical 2–cells
of Fi , together possibly with some 0– and 1–cells,

(3) the interiors of Fi and Fj are disjoint if i ¤ j ,

(4) if i ¤ j and Fi \ Fj is nonempty, it must be homeomorphic to a point, an
interval or a disk that is wholly contained either in @hFi \ @hFj or in a single
face in each of @vFi and @vFj , and

(5) if � is a vertical 2–cell of Fn and the interior of � intersects a vertical 2–cell
�0 of some Fi with i < n, then ���0.

Most of the results proved in this paper use flow box decompositions relative to an
empty codimension-0 submanifold. The general definition is particularly useful for
approximating foliations by contact structures, as described in [19; 20], and it appears
in support of that work in Corollary 7.5.

Proposition 3.3 Suppose F is either a C k or a C k;l foliation of a compact mani-
fold M and let ˆ be a smooth flow transverse to F. Suppose V is a compact .F ; ˆ/–
compatible, codimension-0 submanifold of M. Then M has a flow box decomposition
rel V . Moreover, any flow box decomposition of V can be extended to a flow box
decomposition of M.

Proof Conditions (1)–(4) follow from Proposition 4.4 of [19]. Thus it is enough to
show that a flow box decomposition satisfying (1)–(4) can be inductively subdivided
so that (5) is satisfied.

To do this, consider the union, X, of all vertical 2–cells contained in an Fi with
i < n that intersect the interior of some vertical 2–cell of Fn . Split Fn along a finite
collection of leaves of F \Fn that contain .@hX/\Fn , and let F jn be the resulting
components. Redefine the polygonal structure on each F jn by decreeing that, in addition
to the original vertical edges, every component of @vX \F

j
n is also a vertical edge.

Replacing Fn by the F jn completes the inductive step of the construction.
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A flow box decomposition is called V –transitive, or in the case that V D∅, transitive,
if there exists an indexing set i D 1; : : : ; n and Vi such that V0 D V , Vi D Vi�1[Fi ,
and, for i D 1; : : : ; n,

(6) Vi�1\Fi contains a vertical 2–cell of Fi .

Condition (6) is used in [19; 20], where flow boxes are needed to laterally propagate
an approximating contact structure from V to the rest of M.

Proposition 3.4 [19, Proposition 4.4] If M is compact and each point in M can be
reached from V by a path in a leaf of F, then there is a transitive flow box decomposi-
tion of M rel V .

If B D B.F ; ˆ/ is a flow box decomposition of M rel V , an isotopy of M is B–
compatible if it is ˆ–compatible and, in addition, maps each cell of each flow box
of B to itself setwise.

By condition (5), the set of vertical faces of the flow boxes Fi is partially ordered
by set containment: if �i and �j are vertical faces of Fi and Fj , respectively, and
their interiors have nonempty intersection, and i < j , then �j ��i . Call a vertical
face maximal if it is maximal with respect to this partial ordering, namely if it is not
properly contained in any vertical face.

Let �1; : : : ; �m be a listing of the maximal faces. It will sometimes be helpful to
consider a regular neighborhood of

S
j �j of the following sort:

Definition 3.5 Let F1; : : : ; Fn be a listing of the flow boxes of a flow box decompo-
sition B D B.F ; ˆ/. A regular neighborhood structure NB D NB.F ; ˆ/ for B is a
tuple of the form

.N;Nv; N.�1/; : : : ; N.�m//;

where

(1) �1; : : : ; �m is a listing of the maximal faces of B ,

(2) each N.�j / is a flow box that properly contains �j ,

(3) Nv is an .F ; ˆ/–compatible regular neighborhood of the union of the vertical
1–cells of the maximal faces �j ,

(4) Nv decomposes as a finite union of flow boxes Bp DDp�I, where Bp\Bq �
@hBp \ @hBq and Bp \

�S
i .@vFi /

.1/
�
� .f0g � I / for each p ,

(5) if j ¤ k , then N.�j /\N.�k/ is contained in the interior of Nv ,
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(6) N WDNv [
S
j N.�j /, and

(7)
S
i @vFi is a deformation retract of N.

Figure 1 illustrates a horizontal cross-section of a regular neighborhood structure in a
neighborhood of a single flow box. Note that a B–compatible isotopy takes a regular
neighborhood structure NB.F ; ˆ/ to a regular neighborhood structure NB.F 0; ˆ/.

Nv

�j

N.�j /

Figure 1: Horizontal cross-section of a flow box.

A standard method of proof is to work inductively with a cell complex, working first
with 0–cells, and then extending over the 1–cells, followed by the 2–cells, and finally
the 3–cells. Since a foliation is determined by its restriction to the 2–skeleton, the focus
of most constructions is on the 1–dimensional foliations of the vertical faces. When
smoothness is a priority, it is often useful to work instead with regular neighborhoods of
the cells. Regular neighborhood structures provide a vocabulary for this approach in the
context of flow box decompositions, namely establish a property first on Nv , then on
the union

S
j N.�j /, and finally extend this property over the 3–cells complementary

to N [
S
i @hFi .

Definition 3.6 A flow box decomposition B is smooth-sided if the interior of every
vertical face of every flow box Fi of B is a smooth surface. The flow box decomposition
is called smooth if it is smooth-sided and every horizontal face has a neighborhood in
the leaf it is contained in that is smoothly embedded.

Lemma 3.7 Let M be compact. If F is C 1;0 and ˆ is a smooth transverse flow in M,
then there exists a smooth-sided flow box decomposition of M. If F is C1;0 and ˆ
is a smooth transverse flow in M, then there exists a smooth flow box decomposition
of M.
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Proof The proof of Proposition 4.4 of [19] starts by choosing initial flow boxes
and these may be taken to be smooth-sided. The rest of the construction involves
transversality of vertical intersections and splitting along leaves, and both of these
operations work with smooth vertical faces.

Lemma 3.8 If F is C 1;0 , ˆ is a smooth transverse flow in M and B is a smooth-
sided flow box decomposition, then there exists a flow-compatible isotopy that takes F
to a C 0 close C 1;0 foliation and takes B to a smooth flow box decomposition.

Proof Let U be the union of small neighborhoods, in leaves of F, of each of the
horizontal faces of all Fi 2 B . Then U is a C 1 embedded surface. This may be
isotoped, while preserving flow lines of ˆ and moving the tangent planes of F by no
more than � , to a smoothly embedded surface. Applying this isotopy to B produces
the desired smooth flow box decomposition.

Remark 3.9 Suppose B is a smooth .F ; ˆ/–flow box decomposition, where F is a
C k;0 foliation for some k � 1, and ˆ is a smooth flow transverse to ˆ. The interior
of each flow box describes a smooth chart for M in which the flow restricts to the
union of vertical segments fxg � I and the leaves of F restrict to a C 0 family of C k

graphs. After fixing a point x0 , an index t may be chosen so that the leaf containing
.x0; t / is given by the graph z D ft .x/.

We now give several elementary and frequently used smoothing operations that will
be used in a neighborhood of a surface. To streamline statements, let S be a surface,
possibly with boundary, and let S � I �M. A strictly horizontal foliation of S � I
is the foliation with leaves S � ftg; t 2 I. An almost horizontal foliation of S � I
is a foliation transverse to the I –fibers which contains S � @I as leaves. A product
submanifold, S � I of M, is called an .F ; ˆ/–compatible product if the restriction
of F to S � I is almost horizontal, and the I –fibers fxg � I are flow segments of ˆ.

Notation 3.10 If S is a proper subsurface of a leaf of a given foliation, N.S/ will
denote a regular neighborhood of S in its leaf.

3.2 Approximating C 1;0 by C 1;0

We begin by showing that any C 1;0 almost horizontal product foliation can be approx-
imated by C1;0 almost horizontal product foliations.
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Proposition 3.11 (leafwise smoothing a product foliation) Let S be a compact
smooth surface, possibly with boundary, and let F be a C 1;0 almost horizontal product
foliation on S � I. Then F can be C 0 deformed to a C 0 close, C1;0 , almost
horizontal product foliation S on S � I. If F is C1;0 , on some compact .F ; ˆ/–
compatible submanifold, then we may choose the deformation to fix this submanifold
pointwise. In addition, if some finite number of leaves of F are C1;0 embedded, then
the deformation can be chosen to fix these leaves pointwise, and if L01; : : : ; L

0
n are

subsurfaces of leaves L1; : : : ; Ln of F so that regular neighborhoods N.L0i / of L0i
in Li are smoothly embedded in M, then the deformation can be chosen to fix each L0i
pointwise.

Proof Pick a metric on the bundle of tangent 2–planes to S � I. Fix a point x0 in S,
and denote the leaf of F that contains .x0; t / by Pt . Given s < t and x 2 S, let Œs; t �x
denote the subinterval of fxg � I with boundary points in Ps [Pt . Each Pt is the
graph of a C 1 function ft W S ! I. It is enough to deform the continuously varying
family ft to a smoothly varying family whose graphs foliate S � I.

Let � > 0. Choose a partition 0D t0 < t1 < � � �< tnD 1 of Œ0; 1� with the property that
for all x 2 S, for each i , the tangent planes to leaves of F at each point of Œti�1; ti �x
are all within � of each other. Perform a C 0 small isotopy so that

S
i Pti is smoothly

embedded.

If some finite number of leaves of P are smoothly embedded, the partition can be
chosen so that these leaves appear as Pti . In the relative case, each Li can be smoothed
by a C 0 small isotopy relative to L0i , and the partition can be chosen so these leaves
also appear as Pti .

For i D 1; : : : ; n let `i W Œti�1; ti �! Œ0; 1� be a smooth bijection that vanishes to infinite
order at the endpoints. For t 2 Œti�1; ti � define

gt D .1� `i .t//fti�1
C `i .t/fti :

Then gt is a continuous family of smooth functions whose graphs give a S1;0 foliation
S of S�I. Since gt is a linear combination of fti�1

and fti , it is easily checked using
local coordinates on S that the normal vector to the graph of gt is a linear combination
of normals to fti�1

and fti . It follows that tangent planes to gt are C 0 close to the
tangent planes to ft .

Since ft and gt are graphs, there is an I –fiber-preserving deformation of F to S.
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3.3 Approximating C 1;0 by C 1

Next we show that any C1;0 almost horizontal product foliation can be approximated
by C1 almost horizontal product foliations. The proof of the following theorem is
due to Greg Knese, who showed us how convolution can be used to smooth foliations.

Theorem 3.12 (smoothing a C1;0 product foliation) Let S be a compact smooth
surface, and let F be a C1;0 almost horizontal product foliation on S�I. Then F can
be C 0 approximated by a C1 , almost horizontal product foliation S on S�I. If some
finite number of leaves of F are chosen, then the approximation can be chosen to fix
these leaves pointwise, and if L01; : : : ; L

0
n are subsurfaces of leaves L1; : : : ; Ln of F

such that regular neighborhoods N.L0i / of L0i in Li are smoothly embedded in M,
then the approximation can be chosen to fix each L0i pointwise. If F is C1 on some
compact .F ; ˆ/–compatible submanifold, then we may choose the approximation to
fix this submanifold pointwise.

Proof An almost horizontal C1;0 product foliation F on S�I is the homeomorphic
image of the product foliation on S � I by a map of the form .p; t/ 7! .p; F.p; t//.

Since F is C1;0 ,

(a) @iCjF=@xi@yj exists and is jointly continuous in p and t for all i , j and
smooth local coordinates x , y on S.

Let ft .p/D F.p; t/. A function F satisfying (a) defines an almost horizontal product
foliation if

(b) the graphs Gt of ft are pairwise disjoint and
S
t2I Gt D S � I.

It is convenient to consider the homeomorphism that is the inverse of .p; t/ 7!
.p; F.p; t//. This is denoted by .p; t/ 7! .p; T .p; t//. Thus T .p; z/ is the unique t
such that F.p; t/D z ; hence the graph GT.p;z/ passes through .p; z/.

Note that T must be continuous. For, if .pn; zn/!.p; z/ and jT .pn; zn/�T .p; z/j>� ,
then there is a subsequence with T .pn; zn/! t ¤ T .p; z/. But then

0D zn�F.pn; T .pn; zn//! z�F.p; t/

and hence t D T .p; z/.

The first goal is to find a family of functions F sW S � I ! I for 0 < s < 1
2

such that
each F s is smooth, satisfies (b) and has the following limiting property, (c). To specify
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this, define F 0.p; t/D F.p; t/ and let T s.p; t/ be defined analogously to T .p; t/ so
that F s.p; T s.p; t// D t for 0 � s � 1

2
. To force the tangent planes of the almost

horizontal foliation Fs defined by F s to limit on the tangent planes of F as s! 0

we require

(c) @F s.p; T s.p; t//=@x! @F 0.p; T 0.p; t//=@x uniformly as s! 0, where x is
a smooth local coordinate for S.

We may assume that F.p; 0/D 0 and F.p; 1/D 1 for all p 2 S, so that condition (b)
is equivalent to t 7! F.p; t/ being a monotone increasing function for all p .

Next construct an extension of F to S � Œ�1; 2�! Œ�1; 2� so that

(1) property (a) holds on S � Œ�1; 2�,

(2) t 7! F.p; t/ is increasing on
�
�
1
2
; 3
2

�
, and

(3) F D 0 on S � f�1; 2g.

This can be done by first defining F.p; t/D 2�F.p; 2� t / when t > 1 and F.p; t/D
�F.p;�t / when t < 0, and then multiplying by a smooth bump function for

�
�
1
2
; 3
2

�
so that (3) is satisfied. Choose this bump function so that the extension of F is “odd”
about both t equal to 0 and 1; namely, for �1

2
� t � 1

2
, F.p;�t /D �F.p; t/ and

F.p; 1� t /� 1D 1�F.p; 1C t /.

Let �W R! Œ0;1/ be smooth and even with the support of � contained in Œ�1; 1�
and

R
R �.t/ dt D 1.

Define �s.t/D 1
s
�
�
t
s

�
for s > 0. Note that the support of �s is contained in Œ�s; s�

and
R

R �
s.t/ dt D 1.

Define, for 0 < s < 1
2

,

F s.p; t/D .F.p; � /��s/.t/D

Z
Œt�s;tCs�

F.p; u/�s.t �u/ du

D

Z
Œ�s;s�

F.p; t �u/�s.u/ du:

The map t 7! F s.p; t/ is increasing on Œ0; 1� since if t1 > t2 then, for s < 1
2

,

F s.p; t1/�F
s.p; t2/D

Z
Œ�s;s�

.F.p; t1�u/�F.p; t2�u//�
s.u/ du

and the integrand is positive since t 7! F.p; t/ is increasing on
�
�
1
2
; 3
2

�
.
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Next,
F s.p; 0/D

Z
Œ�s;s�

F.p;�u/�s.u/ duD 0

since F.p; � / is odd across t D 0 and �s is even. Similarly, F s.p; 1/ D 1 for all
p 2 S. Now,

jF s.p; t/�F.p; t/j �

Z
Œ�s;s�

jF.p; t �u/�F.p; t/j�s.u/ du

� supju�vj�sjF.p; u/�F.p; v/j ! 0:

The limit of 0 is taken as s approaches 0 and exists by uniform continuity of F.
Similarly, if x is a smooth local coordinate on S, then @F s=@x approaches @F=@x
uniformly as s tends to 0.

Claim lims!0 T s.p; z/D T 0.p; z/:

Otherwise, there exist sn! 0 and .pn; zn/2 S � I such that

.�/ jT sn.pn; zn/�T
0.pn; zn/j> �:

By passing to a subsequence we may assume that

.pn; zn/! .p; z/ 2 S � I; T sn.pn; zn/! t ¤ T 0.p; z/;

jF sn �F j<
1

n
at all points in S � I:

Evaluating the last inequality at .pn; T sn.pn; zn//, and using
F sn.pn; T

sn.pn; zn//D zn , gives

jzn�F.pn; T
sn.pn; zn//j<

1

n
:

Letting n tend to 1 implies z �F.p; t/D 0, thus T 0.p; z/D t . So, by continuity
of T 0 , T 0.pn; zn/! T 0.p; z/D t , and this contradicts .�/.

Hence, (c) is satisfied.

Finally, F s.p; t/ is smooth; indeed,

@iCjCkF s

@xi@yj @tk
D
@iCjF

@xi@yj
�
@k�s

@tk
D

Z
@iCjF

@xi@yj
.p; u/

@k�s

@tk
.t �u/ du

exists and is continuous.

To ensure that the family of graphs of F s for a fixed s > 0 form a C1 foliation on
S � I, we show that .p; t/ 7! .p; F s.p; t// is a diffeomorphism. This map is smooth,
injective, and the image is a union of smooth graphs, so it is enough, by the inverse
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function theorem, to show that the derivative of F s.p; t/ with respect to t is greater
than 0.

By the previous formula, with i D j D 0 and k D 1,

@F s

@t
D

Z
F.p; u/

@�s

@t
.t �u/ du:

By choice, �s is an even positive function, thus @�s.t�u/=@t is an odd function about
uD t that is negative on u 2 .t � s; t/ and positive on u 2 .t; tC s/. Since F.p; u/ is
an increasing function of u, it follows that @F s=@t > 0.

This completes the proof of the first portion of the proposition. Now consider the case
that F has a finite number of subsurfaces L0i of leaves Li that are smoothly embedded.
An open neighborhood N.L0i / in Li is smoothly embedded. Hence we may smooth
each leaf Li as necessary, keeping L0i fixed. Thus we reduce to the case that F has a
finite number of leaves Li that are smoothly embedded.

Begin by noting that if F is smooth in a neighborhood of S �@I, then we may assume
that F is horizontal; that is, F is constant in p in this neighborhood. Hence, the
foliation given by F s is horizontal for s small enough and when in a small enough
neighborhood of S �@I. We may therefore proceed as follows. First, replace F with a
C 0 close C1;0 foliation obtained by replacing each leaf Li with a small smoothly
embedded closed I –bundle Ni D Li � Ii of parallel copies of Li . (See, for example,
the proof of Lemma 7.4.) For each i , let N 0i D Li �Ji , where Ji is a closed interval
contained in the interior of Ii . Now proceed as before on the complement of the union
of these N 0i .

3.4 Smoothing with constraints

Definition 3.13 Let F be an almost horizontal foliation on S � I. If ˇ � S is
an arc with ˇ.0/ D � and ˇ.1/ D x , let �F .ˇ/ denote the homeomorphism from
fxg � I ! f�g� I given by lifting ˇ to leaves of F. More precisely, given such an
arc ˇ , let ˇt be the path in a leaf of F that ends at .x; t/ and projects to ˇ , and define
�F .ˇ/.x; t/D ˇt .0/.

The next two results are concerned with extending the smoothing of product foliations
of a surface crossed with I. Proposition 3.14 shows how such a foliation that has
been smoothed above the neighborhoods of two vertices can be smoothed above a
neighborhood of an edge connecting the two vertices. Proposition 3.15 shows that the
smoothing can be extended from the 1–skeleton of the surface to the 2–skeleton.
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Proposition 3.14 (smoothing above a 1–cell) Let D D I � I, with core curve
˛ D

˚
1
2

	
� I, oriented as above. Let ˆ denote the 1–dimensional foliation by I –fibers

fxg � I for x 2 D. Suppose F is a C 1;0 almost horizontal foliation on D � I that
is C1;0 on the neighborhood Nv D I � .J0 [ J1/ � I of I � @I � I, where J0
and J1 are nondegenerate closed intervals containing 0 and 1, respectively. Then
F can be C 0 deformed to a C 0 close, C1;0 , almost horizontal foliation G on
D � I such that G agrees with F on Nv and �G.˛/ D �F .˛/. If L01; : : : ; L

0
n are

smoothly embedded leaves of F, then the deformation can be chosen to fix these leaves
pointwise. Moreover, if L01; : : : ; L

0
n are subsurfaces of leaves L1; : : : ; Ln of F such

that regular neighborhoods N.L0i / of L0i in Li are smoothly embedded in D � I, then
the deformation can be chosen to fix each L0i pointwise.

Moreover, if F is C1 on Nv and �F is smooth, then G can be chosen to be C1 .

Proof Pick a metric on the bundle of tangent 2–planes to D�I. Denote the leaf of F
that contains

�
1
2
; 0; t

�
by Ft . Each Ft is the graph of a C 1 function ft W D! I. Fix

a smooth monotonic bump function `W I ! I that vanishes on J1 and is identically 1
on J0 .

By Proposition 3.11, there is a C1;0 , almost horizontal, foliation S of D � I that is
C 0 close to F and agrees, in the sense that the decompositions as unions of surfaces
agree, with F on Nv . Denote the leaf of S that contains

�
1
2
; 0; t

�
by St . Each St is

the graph of a C1 function st W D! I. If ft describes the graph of the leaf L0i for
some i , then choose S so that st D ft along L0i .

It may be helpful, even though not necessary, to recall that by the construction of S
found in the proof of Proposition 3.11, we may assume that there is a partition 0D t0 <
t1 < � � � < tm D 1 such that Sti D Fti for each i , and each leaf St for t 2 Œti ; tiC1�
has tangent plane field C 0 close to the tangent plane field of each of Fti and FtiC1

.

Define a homeomorphism hW I ! I by��
1
2
; 0
�
; h.t/

�
D �S.˛/ ı �

�1
F .˛/

��
1
2
; 0
�
; t
�
:

The point of the definition of h.t/ is that a leaf of S that contains
��
1
2
; 0
�
; h.t/

�
will

intersect the leaf of F that contains
��
1
2
; 0
�
; t
�

at the point
��
1
2
; 1
�
; sh.t/

�
1
2
; 1
��
D��

1
2
; 1
�
; ft

�
1
2
; 1
��

.

Since F and S agree on I � .J0[J1/, sh.t/ D ft on I �J1 . Since F and S are C 0

close, h is C 0 close to the identity map and, for each t 2 I, the graphs st and sh.t/
are C 1 close on the rest of D.
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We obtain a C1;0 foliation G approximating F and satisfying the holonomy constraint
�G.˛/D �F .˛/ as follows. Define

gt .x; y/D `.y/st .x; y/C .1� `.y//sh.t/.x; y/

D `.y/.st .x; y/� sh.t/.x; y//C sh.t/.x; y/:

Then, for a fixed t ,

@xgt D ` � .@xst � @xsh.t//C @xsh.t/

and
@ygt D @y`.st � sh.t//C ` � .@yst � @ysh.t//C @ysh.t/:

By choosing S sufficiently close to F, we guarantee that the C1;0 foliation G with
leaves the graphs of the functions gt W D! I is C 0 close to F. Since S D F on Nv ,
the choice of ` implies G D F on Nv . This foliation G is obtained by a C 0 small
deformation of F.

Proposition 3.15 (smoothing above a 2–cell) Let D � I be a C1 flow box and let
A be a closed smooth regular collar neighborhood of @D in D. Let ˆ denote the
1–dimensional foliation by I –fibers fxg � I for x 2D. Suppose F is a C 1;0 almost
horizontal foliation on D � I that is C1;0 on A� I. Then F can be C 0 deformed to
a C 0 close, C1;0 , almost horizontal foliation G on D � I such that G agrees with F
on A� I.

Moreover, if F is C1 on A� I, then G can be chosen to be C1 .

Proof This follows as an immediate corollary to Propositions 3.11 and 3.12.

4 Any C 1;0 foliation is a limit of C 1;0 foliations

The next theorem adds C 0 approximation to a theorem of Calegari [4]. It is applied and
cited as Theorem 2.10 in [20]. Calegari shows that a foliation with continuous leaves can
be isotoped to a foliation with smooth leaves. Instead, we start with a C 1;0 foliation so
that the leaves have continuously varying tangent planes, and then isotope the foliation
to have smooth leaves while controlling the amount the tangent planes move.

Theorem 4.1 Suppose F is a C 1;0 foliation of a compact manifold M. Then there is
a C 0 small isotopy of M taking F to a C1;0 foliation G that is C 0 close to F. If ˆ
is a smooth flow transverse to F, the isotopy may be taken to be flow-compatible.
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Proof Let ˆ be a smooth flow transverse to F, and apply Lemma 3.7 to obtain a
smooth-sided .F ; ˆ/–flow box decomposition B0 of M. Applying the isotopy of
Lemma 3.8 to B0 and F, respectively, produces a smooth flow box decomposition B
and C 0 close foliation F1 . Let �1; : : : ; �n be a listing of the maximal vertical faces
of B , and choose a regular neighborhood structure .N;Nv; N.�1/; : : : ; N.�n// for B .

By Proposition 3.11 and Theorem 3.12, there is a C 0 small, B–compatible isotopy
of M that takes F1 to a C 0 close C 1;0 foliation F2 that is smooth on Nv .

By Proposition 3.14, there is a C 0 small, B–compatible isotopy of M that takes F2
to a C 0 close C 1;0 foliation F3 that is smooth on Nv and C1;0 on each N.�i /.

Finally, by Proposition 3.15, there is a C 0 small, B–compatible isotopy of M that
takes F3 to a C 0 close C1;0 foliation G .

Corollary 4.2 Any C 1;0 foliation is a limit of C1;0 foliations.

5 Measured foliations

A transverse measure on a codimension-one foliation F is a continuous, nondegenerate,
invariant measure, �, on each arc transverse to F. It is continuous in the sense
that if � is smoothly parametrized as � D Œ0; x�, then �.Œ0; x�/ is continuous in x .
Nondegenerate means that � is positive on every open interval. Invariant, in this
context, means that the measure of a transverse arc is unchanged under isotopies of the
arc that keep each point on the same leaf of F.

Lemma 5.1 (smoothing a measure near a transversal) Let .F ; �/ be a C1;0 mea-
sured foliation in M. Suppose � is a smoothly embedded arc or closed curve which
is everywhere transverse to F. Then there is a C 0 small isotopy of M which is the
identity outside some small regular neighborhood N of � and takes the measured
foliation .F ; �/ to a C 0 close C1;0 measured foliation .F 0; �0/ such that F 0 is
smooth in a neighborhood of � and the measure, �0, restricted to � is smooth. If � is
smooth on a closed submanifold A of � , then the isotopy can be chosen so that �0D�
on A. If, in addition, F is smooth in an .F ; ˆ/–compatible regular neighborhood N0
of A, then the isotopy can be chosen to be the identity on N0 .

Proof It suffices to consider the case that � is a smoothly embedded arc.

Regard � as a smooth map I !M. Then �.�Œ0; t �/ is a homeomorphism, hW I !R,
onto its image. Approximate h by a diffeomorphism, relative to endpoints, g . The
goal is to make a small, continuous change of coordinates on � so that � is smooth in
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the new coordinates. In other words, we must choose a homeomorphism f W I ! I so
that h ıf is smooth. This is accomplished by defining f D h�1g .

The next step is to use this reparametrization to describe a C 0 small isotopy of M
which is the identity outside a small neighborhood of � and takes the measure � to a
measure �0 that on � satisfies �0Œ0; t �D�.� ıf Œ0; t �/ for each t 2 Œ0; 1�. In particular,
�0 restricted to � is smooth.

To accomplish this, let N1 and N2 be small smoothly embedded tubular neighborhoods
of � satisfying N1� int.N2/. Choose these neighborhoods small enough that F meets
each in a foliation by meridian disks. Parametrize these disks by their intersection
with � D Œ0; t � and so that N1 is identified with the smooth family of meridian disks
Dt DD

2 � ftg.

Next isotope F in N2 so that the disk Df .t/ is taken to the disk Dt . Choose this
isotopy to be C 0 small and ˆ–compatible, taking F to a C 0 close C1;0 foliation. If
we choose N1 small enough and f sufficiently close to the identity, we may choose
these isotopies to be as close as desired to the identity.

Define �0 near � so that it is invariant and agrees with � away from � .

Corollary 5.2 (smoothing F near a transversal) Let F be a C1;0 foliation in M.
Suppose � is a smoothly embedded arc or closed curve which is everywhere transverse
to F. Then there is a C 0 small isotopy of M that is the identity outside some small
regular neighborhood of � and takes F to a C 0 close C1;0 foliation F 0 such that F 0

is smooth in a neighborhood of � . If F is smooth in an .F ; ˆ/–compatible regular
neighborhood N0 of a closed subset of � , then the isotopy can be chosen to be the
identity on N0 .

Proof Choose a small regular neighborhood N of � so that F meets it in a product
foliation by disks. Use distance along � to define a smooth transverse measure on the
restriction of F to N. The result now follows immediately from Lemma 5.1.

The next lemma shows how the existence of a transverse measure allows the foliation
to be smoothed near a compact portion of a leaf.

Lemma 5.3 (smoothing in the neighborhood of a compact subsurface of a leaf) Let
.F ; �/ be a C1;0 measured foliation in M. Suppose S is a compact subsurface of a
leaf of F. Then there is a C 0 small isotopy of M which is the identity outside some
small regular neighborhood of S in M and takes the measured foliation .F ; �/ to a
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C1;0 measured foliation .F 0; �0/ such that F 0 is smooth in a neighborhood of S and
the measure �0 restricted to this neighborhood is smooth.

Proof Let L be the leaf of F containing S. If S D L, let N.S/ D L. Otherwise,
let N.S/ be the closure of a regular neighborhood of S in L. Use the measure, �,
to give a continuous parametrization of the flow ˆ in a neighborhood of N.S/. To
avoid confusion, let ˆ0 denote this reparametrized restriction of ˆ. Choose this
parametrization so that ˆ0.x; 0/D x for all x 2N.S/ and �.ˆ0.x; Œs; t �//D t � s for
s < t sufficiently close to 0.

For some � > 0, ˆ0W N.S/ � Œ��; �� ! M is a topological embedding, and for
each t 2 Œ��; ��, ˆ0.N.S/� ftg/ is a compact subsurface of a leaf of F, necessarily
isotopic to N.S/. Since F is C1;0 and ˆ0 is smooth when restricted to a leaf,
ˆ0.N.S/� Œ��; ��/ is a smooth codimension-zero submanifold, possibly with corners.

Use Theorem 3.12 to C 0 isotope F in ˆ0.N.S/ � Œ��; ��/ so that it is a smooth
foliation by surfaces isotopic to N.S/. The resulting measured foliation .F 0; �0/
and the measure �0 are necessarily smooth on the neighborhood ˆ0.N.S/� .��; �//
of N.S/.

The next theorem is applied and cited as Theorem 8.10 in [20]:

Theorem 5.4 Suppose F is a transversely orientable C 1;0 measured foliation in M.
Then there is an isotopy of M taking F to a C1 measured foliation which is C 0

close to F. If ˆ is a smooth flow transverse to F, the isotopy may be taken to be
flow-compatible.

Proof By Theorem 4.1 we may assume F is C1;0 . From Lemma 3.7 it follows that
M has a smooth flow box decomposition, M D F1[ � � � [Fn .

Using Lemma 5.3, we may assume, after a C 0 small isotopy, that F and � are smooth
in a small regular neighborhood Nh of

S
i @hFi . The vertical 1–skeleton of B is a

disjoint union of transversals to F, and hence, by applying Lemma 5.1, we may assume,
after a C 0 small isotopy, that F and � are smooth on Nh[Nv , where Nv is a union
of flow boxes that form an .F ; ˆ/–compatible regular neighborhood of the union of
the vertical 1–cells of

S
i @
.1/Fi .

Let �1; : : : ; �n be a listing of the maximal vertical faces of B , and let

.N;Nv; N.�1/; : : : ; N.�n//
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be a regular neighborhood structure for B . Choose N.N.�i // for 1� i � n so that�
N [

[
i

N.N.�i //; Nv; N.N.�1//; : : : ; N.N.�n//

�
is also a regular neighborhood structure for B .

Let ��i and �Ci denote the two vertical edges of �i . Let �i denote the homeomorphism
obtained by following leaves of F across �i . Since the measure � is smooth on �˙i and
�i preserves �, �i is smooth. By Proposition 3.14, there is a C 0 small, B–compatible
isotopy of M that is the identity on Nv [Nh and outside the union

S
i N.N.�i //,

and takes F to a foliation G that is smooth on N and C 0 close to F.

Finally, we apply Proposition 3.15, to extend G above each �i to a smooth foliation
that is C 0 close and isotopic, by a C 0 small isotopy, to F. Since � is defined on the
vertical boundary of every flow box, it extends to all of G .

The next corollary now follows from Theorem 8.11 in [20], which uses Theorem 5.4
in its proof. Alternatively, it also follows from Theorem 5.4 together with Tischler’s
theorem [29], which states that any transversely oriented, measured C 2 foliation on a
compact n–manifold can be C1 approximated by a smooth fibration over S1 .

Corollary 5.5 A C 1;0 , transversely oriented, measured foliation on a compact 3–
manifold is C 0 close to a smooth fibration over S1 .

6 Holonomy neighborhoods

In this section, we recall some definitions and results used in [20], giving those proofs
which, for clarity of exposition, were deferred to this paper.

Let 
 be an oriented simple closed curve in a leaf L of F, and let p be a point in 
 .
We are interested in the behavior of F in a neighborhood of 
 . Let h
 be a holonomy
map for F along 
 , and let � and � be small closed segments of the flow ˆ which
contain p in their interiors and satisfy h
 .�/D � . Choose � small enough that � [ �
is a closed segment and not a loop. Notice that � \ � is necessarily a closed segment
containing p in its interior. There are three possibilities:

(1) � D � ,

(2) one of � and � is properly contained in the other, or

(3) � \ � is properly contained in each of � and � .
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ˆ\V

A

�

@hV

V

R

Figure 2: Holonomy neighborhood.

We will need to consider very carefully a regular neighborhood of 
 which lies nicely
with respect to both F and ˆ. To this end, restrict attention to foliations F which
are C1;0 and transversely oriented, and transverse flows ˆ which are smooth, and
suppose that 
 is smoothly embedded in L. Let A be the closure of a smooth regular
neighborhood of 
 in L; so A is a smoothly embedded annulus in L.

Lemma 6.1 [20, Lemma 3.1] Suppose F is C1;0 and transversely oriented , and ˆ
is smooth. If � and A are chosen to be small enough , there is a compact submanifold
V of M, smoothly embedded with corners , which satisfies the following:

(1) V is homeomorphic to a solid torus.

(2) @V is piecewise vertical and horizontal ; namely, @V decomposes as a union
of subsurfaces @vV [ @hV , where @vV is a union of flow segments of ˆ and
@hV is a union of two surfaces L� and LC , each of which is either a disk or an
annulus , contained in leaves of F.

(3) Each flow segment of ˆ\V runs from L� to LC .

(4) � is contained in a component of the flow segments of ˆ\V .

(5) A is a leaf of the foliation F \V .

Proof Cover a small open neighborhood of 
 by finitely many smooth flow boxes.
By passing to a smaller � and A as necessary, we may suppose that A is covered by
two flow boxes with union, V , satisfying the properties (1)–(5).

Notation 6.2 Denote the neighborhood V of Lemma 6.1 by V
 .�; A/. Let R
 .�; A/
denote any smooth vertical rectangle embedded in V
 .�; A/ such that the result of
cutting V
 .�; A/ open along R
 .�; A/, and taking the metric closure, is diffeomorphic
to a solid cube. Denote this cube by Q
 .�; A/.
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Notice that R
 .�; A/ is uniquely determined if and only if � ¤ � . If 
 is essential, then
Q
 .�; A/ can be viewed as an . zF ; ẑ /–flow box, where . zF ; ẑ / is the lift of .F ; ˆ/ to
the universal cover of M.

Definition 6.3 The neighborhood V
 .�; A/ is called the holonomy neighborhood
determined by .�; A/, and is called an attracting neighborhood if h
 .�/ is contained
in the interior of � .

Fix a set of pairwise disjoint holonomy neighborhoods V
1
.�1; A1/; : : : , V
n

.�n; An/

for F, and let V denote their union. Let Ri D R
i
.�i ; Ai / for 1 � i � n, and let R

denote the union of the Ri . For each i , 1� i �n, fix a smooth open neighborhood NRi

of Ri in M. Choose each NRi
small enough that its closure, NRi

, is a closed regular
neighborhood of Ri . Let NR denote the union of the NRi

.

Now, given V , R and NR , we further constrain the set of foliations F to C1;0

foliations which are smooth on NR . The following lemma, applied and cited as
Lemma 3.7 in [20], establishes that we can do this with no loss of generality.

Lemma 6.4 Let F be a transversely oriented, C1;0 foliation, and let ˆ be a smooth
flow transverse to F. Let V denote the union of a set of pairwise disjoint holonomy
neighborhoods for F and fix NR as above. There is an isotopy of M taking F to a
C1;0 foliation which is both C 0 close to F and smooth on NR . This isotopy may be
taken to preserve V and be flow-compatible.

Proof Apply Theorem 3.12 to an .F ; ˆ/–flow box that intersects V in a regular
neighborhood of NR , and contains NR in its interior.

Next we describe a preferred product parametrization on a closed set containing V . In
this paper, we express S1 as the quotient S1D Œ�1; 1�=�, where � is the equivalence
relation on Œ�1; 1� which identifies �1 and 1.

Lemma 6.5 Let F be a transversely oriented , C1;0 foliation , and let ˆ be a smooth
flow transverse to F. Let V denote the union of pairwise disjoint holonomy neigh-
borhoods Vi D V
i

.�i ; Ai / for F for 1 � i � n, and fix NR as above. Suppose F
is smooth on NR . Then for each i , 1 � i � n, there is a pairwise disjoint collec-
tion of closed solid tori Pi such that Pi contains Vi and there is a diffeomorphism
Pi ! Œ�1; 1��S1 � Œ�1; 1� which satisfies the following:

(1) the flow segments ˆ\Pi are identified with the segments f.x; y/g � Œ�1; 1�,

(2) Ai is identified with Œ�1; 1��S1 � f0g,
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(3) 
i is identified with f0g �S1 � f0g,

(4) Ri is identified with Œ�1; 1�� f1��1g � Œ�1; 1�, and

(5) the restriction of the diffeomorphism to NRi
maps leaves of F to horizontal

level surfaces Dz DD � fzg, where D D Œ�1; 1��
���

1
2
; 1
�
[
�
�1;�1

2

��
=�
�
.

Proof Since F is smooth on NR , there is a choice of smooth coordinates on an
open neighborhood of NR with respect to which the leaves of F are horizontal and
the restrictions of the conditions (1)–(5) hold true. This parametrization extends
to a smooth parametrization of a smooth solid torus neighborhood of V satisfying
conditions (1)–(5).

Definition 6.6 Fix V and NR as above. Let Pi and Pi ! Œ�1; 1� � S1 � Œ�1; 1�

be as given in Lemma 6.5. Abuse notation and use the diffeomorphism to identify
Pi with Œ�1; 1� � S1 � Œ�1; 1�. Let Pi be the product foliation of Pi with leaves
.Œ�1; 1��S1/� ftg, and call such a foliated solid torus, .Pi ;Pi /, a product neighbor-
hood of .Vi INRi

/. Letting P denote the union of the Pi and P denote the union of
the Pi , call .P;P/ a product neighborhood of .V INR/.

Definition 6.7 Let F be a transversely oriented, C1;0 foliation and V the union of
pairwise disjoint, holonomy neighborhoods V
i

.�i ; Ai / for F for 1 � i � k . Let R
denote the union of the R
i

.�i ; Ai / for 1 � i � k , and let NR be an open regular
neighborhood of R in V . Let .P;P/ be a product neighborhood of .V INR/. The
foliation F is strongly .V; P /–compatible if

(1) F \NR D P \NR , and

(2) in the coordinates inherited from P, F \V is a product foliation Œ�1; 1��F0 ,
where F0 is a C1;0 foliation of V \ .f1g � S1 � Œ�1; 1�/ (ie F \ V is x–
invariant).

The following lemma, applied and cited as Lemma 3.11 in [20], establishes that, up to
a C 0 small perturbation of F, we can always choose the product neighborhood .P;P/
so that F is strongly .V; P /–compatible.

Lemma 6.8 Let F be a transversely oriented, C1;0 foliation and let ˆ be a smooth
flow transverse to F. Let V denote the union of a set of pairwise disjoint holonomy
neighborhoods for F and fix NR as above. There is a C 0 small, flow-compatible
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isotopy of M that takes F to a C1;0 foliation that is C 0 close to F and strongly
.V; P /–compatible for some choice of product neighborhood .P;P/ of .V INR/. This
isotopy may be taken to preserve V .

Proof We may assume F \NR D P \NR . Let N.NR/ be an .F ; ˆ/–flow box
neighborhood that contains NR in its interior. After applying an isotopy as described in
Theorem 3.12, we may assume that F is smooth on V nN.NR/. Thus, we may choose
the smooth coordinates .x; y; z/ on V nN.NR/ so that with respect to these coordinates,
F is x–invariant. Finally, proceeding as in the proof of Proposition 3.14, perform a C 0

small isotopy of F so that the leaves of its restriction to N.NR/ nNR are obtained by
smoothed linear extensions. Thus, the smooth coordinates P D Œ�1; 1��S1 � Œ�1; 1�
for P can be chosen to restrict to the preferred coordinates on NR and V nN.NR/,
and consequently these smoothed linear extensions are C1;0 and x–invariant.

7 Denjoy blowup

In [10; 7; 8; 9; 11], Denjoy gave examples of C 1 foliations on T 2 with exceptional
minimal sets. In [12], Dippolito generalized Denjoy’s method to C1;0 codimension-
one foliations of n–manifolds. This generalized construction is commonly referred to
as Denjoy blowup, and is defined precisely as follows:

Definition 7.1 Let L be a countable (finite or countably infinite) union of leaves of a
C k;0 foliation F of M with k � 1, and let ˆ be a smooth flow transverse to F. A
C k;0 foliation, F 0, is a Denjoy blowup of F along L if there is an open subset U �M
and a continuous collapsing map � W M !M satisfying the following properties:

(1) F 0 is transverse to ˆ,

(2) there is an injective map j W L�I !M such that j jL�.0;1/ is a C k immersion
and j.L� .0; 1//D U,

(3) for each p 2 L, j.fpg � I / is contained in a flow line of ˆ,

(4) j.L� f0g/ and j.L� f1g/ are leaves of F 0,

(5) ��1.p/ is a point if p … L and equals j.fpg � I / if p 2 L,

(6) � is ˆ–compatible and maps leaves of F 0 to leaves of F,

(7) � is C k when restricted to any leaf of F 0, and

(8) there is a ˆ–compatible C k homotopy �t W M !M such that �t is an isotopy
for t 2 Œ0; 1/ and � D �1 .
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If L is a C k;0 almost horizontal foliation of L� I and the pullback of the Denjoy
blowup F 0 to L�I is C k equivalent to L, then F 0 is a Denjoy blowup of F along L
by L.

Lemma 7.2 Suppose F and G are C 1;0 foliations of M transverse to a common
smooth flow ˆ. If F and G are ˆ–compatible isotopic, then a Denjoy blowup of G is
a Denjoy blowup of F.

Proof Denjoy blowup is defined only up to ˆ–compatible isotopy, and so varying a
foliation by a ˆ–compatible isotopy does not change its Denjoy blowup.

The following result extends Dippolito’s generalization of Denjoy’s construction
[12, Theorem 7] in two ways. First, it allows for foliations which are not C1;0 . Second,
it shows that the resulting foliation, F 0, can be constructed arbitrarily C 0 close to F.

Theorem 7.3 (Denjoy blowup) Let F be a C 1;0 foliation in a compact 3–manifold M.
Suppose that F is transverse to a smooth flow ˆ. Let L be a countable collection of
leaves of F and let L be a C 1;0 almost horizontal foliation of L� I. Then there exists
a C1;0 F 0 arbitrarily C 0 close to F that is a Denjoy blowup of F along L by L.

Moreover , if F is C1;0 and B is a .F ; ˆ/–flow box decomposition of M, with flow
boxes F1; : : : ; Fn , and L is disjoint from

S
j @hFi , then the Denjoy blowup can be

chosen to be strongly B–compatible in the following sense: the restriction of F 0 to
each Fi is the Denjoy blowup of the restriction of F to Fi .

By Theorem 4.1, a C k;0 foliation on a compact 3–manifold can be isotoped by a C 0

small ˆ–compatible isotopy to a C 0 close C1;0 foliation. Thus, by Lemma 7.2, it
is enough to prove the theorem with the assumption that F is C1;0 and L is C k;0 .
While it may be possible to conclude C 0 proximity of F 0 from Dippolito’s original
proof, the method of flow box decompositions gives a direct and elementary proof.

We first describe the Denjoy blowup of a strictly horizontal (and therefore smooth)
foliation F of a single flow box.

Lemma 7.4 Let F be a strictly horizontal foliation of a C1–flow box F DD�I. Let
L be a countable union of leaves of F, and let L be a C k;0 almost horizontal foliation
of L�I for some k � 1. Then there exists a C1;0 strictly horizontal foliation F 0 that
is a Denjoy blowup of F along L by L, with associated collapsing map � that is C 0

close to the identity.
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Moreover, given finitely many leaves D � ftj g of F that are disjoint from L, F 0 can
be chosen so that the restriction of � to each D � ftj g is the identity map.

Proof In this case, ˆ is a flow along the vertical segments fxg � I.

Let Dt D D � ftg, and let the components of L be the leaves Dzi
for some set of

points zi 2 .0; 1/ for i 2A.

We begin by describing the Denjoy blowup of I along the points zi . Let wi denote
a summable sequence of positive numbers, with sum w D

P
i wi . Cut I at each zi

and insert an interval Ji of length wi . The result is a new interval of length 1Cw .
The left inverse of this operation is a Cantor function; denote this Cantor function by
cW Œ0; 1Cw�! Œ0; 1�. Let pW Œ0; 1�! Œ0; 1� denote the function obtained by composing
the function c with the linear scaling sW Œ0; 1�! Œ0; 1Cw�; so pDcıs . These functions
are illustrated in Figure 3.

Let Œz�i ; z
C
i �D s

�1.Ji / and notice that zCi �z
�
i Dwi=.1Cw/. Set C DI n

F
i .z
�
i ; z
C
i /

and let ƒ be the strictly horizontal lamination with leaves Dt for t 2 C. Let Ui D
D � .z�i ; z

C
i /, and U D

F
i Ui , the open set F nƒ.

Let � D id� pW F ! F, where id is the identity map on D. In particular, � takes
each flow segment .x � I /\Ui to the point .x; zi /.

Fix i 2 A, and let fi W I ! Œz�i ; z
C
i � be the affine diffeomorphism. Define ji D

id�fi W .Dzi
�I /!Ui , and define j D

S
ji W L�I !U to be the map that restricts

to ji on Dzi
� I.

1

zi

0

blowup

c

s�1

s

p

1Cw

Ji

0

1

zCi
z�i

0

Figure 3
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Let F 0 denote the foliation obtained by taking the union of ƒ with j.L/. Now fix
� > 0. Since f 0i Dwi=.1Cw/<wi and F is strictly horizontal, the wi can be chosen
so that F 0 is a Denjoy blowup of F along L by L, with associated collapsing map �
that is C 0 close to the identity.

Properties (1)–(7) of Definition 7.1 then follow immediately. The homotopy �t of
property (8) is given by the straight line, ˆ–compatible homotopy from the identity
map to � . By Theorem 4.1, we may isotope the resulting C 1;0 Denjoy blowup to a
C 0 close C1;0 Denjoy blowup.

Finally, if D � ftj g is a listing of finitely many leaves of F that are disjoint from L,
cut F open along each D � ftj g, and perform Denjoy blowup, as just described, on
each resulting flow box.

Hence, Theorem 7.3 holds for a strictly horizontal (and therefore smooth) foliation F
of a single flow box.

Proof of Theorem 7.3 By Theorem 4.1, F is ˆ–compatible isotopic to a C 0 close
C1;0 foliation. By Lemma 7.2, therefore, we may restrict attention to the case that F
is C1;0 .

Let B be a smooth .F ; ˆ/–flow box decomposition of M. Let F1; : : : ; Fn be a listing
of the flow boxes of B . Choose B so that

S
i @hFi is disjoint from L.

Let �i for 1� i � n be a listing of the maximal vertical faces of B , and let

.N;Nv; N.�1/; : : : ; N.�n//

be a regular neighborhood structure for B . By Corollary 5.2 and Lemma 7.2, it suffices
to further restrict attention to the case that F is C1;0 , and smooth when restricted
to Nv .

We will describe a C 0 close Denjoy splitting F 0 by considering first Nv , then the
union

S
i N.�i /, and finally the flow box interiors forming the complement of N.

Recall that Nv is a union of flow boxes, Bj D Dj � I, satisfying conditions (3)
and (4) of Definition 3.5. Rechoose the Bj , if necessary, so that Dj � .0; 1/ has empty
intersection with

S
i @hFi . This can be achieved by cutting each Bj open along any

horizontal level that has nonempty intersection with
S
i @hFi .

Let B DD � I be a Bj that has nonempty intersection with L. Since the restriction
of F to B is smooth, there is a smooth parametrization .x; z/ of B such that the
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restriction of F to B is strictly horizontal and the restriction of ˆ to B has flow lines
the vertical line segments x�I. By Lemma 7.4, therefore, there is a Denjoy blowup F 0B
of the restriction of F to B, and hence functions �B W B! B and jB W LB � I ! B

satisfying the conditions of Definition 7.1.

Repeat this process for each Bj that has nonempty intersection with L. And let
F 0Bj
D F on the remaining Bj . Thus, we get a C1;0 Denjoy blowup F 0Nv

of the
restriction of F to Nv that is strongly compatible with B , together with functions
�Nv
W Nv!Nv and jNv

W LNv
� I !Nv satisfying the conditions of Definition 7.1.

The foliation F 0Nv
can be chosen to be C 0 close to the restriction of F to Nv .

Next, let � be any maximal vertical face of B and let �˙ be the vertical edges of � .
Let N.��/ and N.�C/ denote the components of Nv \N.�/ that contain �� and �C ,
respectively. The Denjoy blowup, F 0Nv

, is defined on Nv , and hence on each N.�˙/.
Let L` be a listing of the components of L \ N.�/. Set a` D L` \ N.��/, and
set b` D L` \N.�C/. Writing N.�/ D D � I, where D D I � I, � D f0g � I � I
and ˛ D f0g � I � D. Orient ˛ so that �F .˛/.a`/ D b` . On each Œa�

`
; aC
`
�, define

�.z/ D jNv
ı �L.˛/ ı j

�1
Nv
.z/. On the complement of

S
`Œa
�
`
; aC
`
�, where ��1 is

single-valued, define �.z/D ��1 ı �F .˛/ ı�.z/.

By Proposition 3.14, the foliation F 0Nv
defined on Nv extends to a C1;0 Denjoy

blowup of F on Nv [ N.�/ that is B–compatible, C 0 close to F on N.�i / and
satisfies �F 0.˛/D � . Repeating this construction for each maximal face �i extends
the definition of the C 0 close Denjoy blowup of F to N.

Finally, the Denjoy blowup F 0N defined on N extends to a strongly B–compatible
Denjoy blowup F 0, C 0 close to F, on each flow box Fm of B by Proposition 3.15.
Moreover, since at each step we are extending over a flow box Fm , the resulting
packet, jFm

W .L� I /\ Fm ! Fm , of inserted leaves will be C k;0 equivalent to L
on Fm . Similarly, the extension of the collapsing map � W N !N to Fm is uniquely
determined by the properties that it maps leaves of F 0 to leaves of F and maps each
I –fiber to itself.

Since the resulting foliation F 0 satisfies the conditions of Definition 7.1 on N and on
each flow box of B , it satisfies these conditions on M.

The following corollary is cited as Theorem 5.2 in [20].

Corollary 7.5 Let F be a transversely oriented, C k;0 foliation with k � 1 that is
transverse to a smooth flow ˆ. Let L be a countable collection of leaves of F, and let
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F1 be a C k;0 foliation of L�I transverse to the I –coordinate that contains L�@I as
leaves. Then there exists a C k;0 F 0 arbitrarily C 0 close to F that is a Denjoy blowup
of F along L and such that the pullback of F 0 to L� I is equivalent to F1 .

Moreover, if V is the union of a set of pairwise disjoint holonomy neighborhoods for F,
.W;P/ is a product neighborhood of V , and F is strongly .V;W /–compatible, then
F 0 can be chosen to be strongly .V;W /–compatible.

Proof The first paragraph of the corollary is stated as it is used in [20], and it follows
directly from Theorem 7.3.

For the second paragraph, it suffices to consider the case that V consists of a single
holonomy neighborhood.

Using Notation 6.2, V can be cut open along R into a cube Q . Parametrize QD I 3

so that
NR D I �

��
3
4
; 1
�
[
�
0; 1
4

��
� I;

and decompose Q along I �
˚
1
2

	
� I into two flow boxes. Thus V is realized as a

union of two flow boxes, and, by Proposition 3.3, this flow box decomposition of V
extends to a flow box decomposition B of M. Moreover, this extension, B , can be
chosen so that each vertical face of V , except for the proper subface of R , is maximal.
Let �1 denote the maximal face R .

Choose a regular neighborhood structure .N;Nv; N.�1/; : : : ; N.�m// for B such that
the following two properties are satisfied:

(1) The decomposition of Nv into flow boxes Bp DDp � I satisfies: each vertical
edge of V appears as 0� I �Dp � I for some p .

(2) N.�1/\V DNR .

It now follows that if F is strongly .V;W /–compatible, then we can apply the con-
struction of Theorem 7.3 so that

(1) F 0 is strictly horizontal in the flow boxes Bp of Nv that contain vertical edges
of R ,

(2) F 0 is strictly horizontal in N.�1/, and

(3) in the coordinates inherited from W , the fixed product neighborhood of V ,
F 0\V , is x–invariant.

Hence, if F is strongly .V;W /–compatible, then a C 0 close, C k;0 , Denjoy blowup F 0

can be chosen to be strongly .V;W /–compatible.
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